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Abstract—We propose a novel resource allocation framework
for latency-critical traffic, namely Ultra Reliable Low Latency
Communications (URLLC), in mobile networks which meets
stringent latency and reliability requirements while minimizing
the allocated resources. The Quality of Service (QoS) requirement
is formulated in terms of the probability that the latency exceeds
a maximal allowed budget. We develop a discrete-time queuing
model for the system, in the case where the URLLC reservation
is fully-flexible, and when the reservation is made on a slot basis
while URLLC packets arrive in mini-slots. We then exploit this
model to propose a control scheme that dynamically updates the
amount of resources to be allocated per time slot so as to meet
the QoS requirement. We formulate an optimization framework
that derives the policy which achieves the QoS target while
minimizing resource consumption and propose offline algorithms
that converge to the quasi optimal reservation policy. In the case
when traffic is unknown, we propose online algorithms based
on stochastic bandits to achieve this aim. Numerical experiments
validate our model and confirm the efficiency of our algorithms
in terms of meeting the delay violation target at minimal cost.

Index Terms—URLLC, latency, discrete-time queue, reliability,
5G Networks.

I. INTRODUCTION

Ultra-Reliable Low Latency Communications (URLLC) ser-
vice was introduced in 5G [1] to tackle critical services such
as autonomous driving, industry 4.0, smart grid, etc. A typical
performance target is 1ms and 99, 999% delay and reliability
constraints, respectively [2]. Several features were introduced
in the 3GPP standardization to help reach the URLLC low
latency constraint. For instance, short Transmission Time
Interval (TTI) allows a mini-slot as small as 0.144 ms and
resource preemption allows borrowing resources on-the-fly
from other services such as enhanced Mobile Broadband
(eMBB) [3]. These techniques enable the radio latency (i.e.,
the time between the packet generation and its decoding by
the base station) to be below 0.5 ms. However, the underlying
assumption is that resources are always available and latency is
only due to the packet alignment, scheduling grant reception,
over-the-air transmission and packet decoding.

When resources are scarce or traffic load is high, queuing
delay, i.e., the delay before a resource is available for the
packet to be scheduled, occurs. When URLLC service is
in competition with eMBB service, the problem of queuing
is solved by the feature of preemptive scheduling, wherein
URLLC packets are served immediately upon arrival by pre-
empting some eMBB resources [3]. However, when URLLC
packets compete with other URLLC packets, preemption is

not possible and over-reservation of resources may be needed.
For instance, when URLLC traffic is periodic, semi-persistent
scheduling (SPS) is proposed and resources are pre-reserved
for each of the users [4]. However, for sporadic traffic sce-
narios, SPS is highly inefficient and mastering the queuing
delay is still an open problem. Solving this problem requires
efficient performance models for resource dimensioning on
one hand, and control schemes that dynamically adapt the
reserved resources to the system status, on the other hand.
These are precisely the objectives of this paper.

Related works

Many works addressing the issue of URLLC resource allo-
cation control focused on the contention-based aspect of such
resource allocation (see for instance [5], [6] and the references
therein). These works are beyond the scope of our present
work as they focus on grant-free scheduling. We instead focus
here on works related to grant-based scheduling for URLLC.
In [7] for instance, a constrained Markov Decision Process
(CMDP) approach has been proposed, slices of different types,
including URLLC, are allocated resources dynamically as
a function of their demand, QoS requirement and level of
priority, the solution is of the form of a randomized policy.
The QoS requirement however was modeled as the ratio of
allocated resources to demand, and does not explicitly quantify
the reliability and delay performances of URLLC in terms
for instance of delay violation probability, which we do in
our present work. In [8], the authors addressed the issue of
allocating efficiently orthogonal channels to URLLC devices
without knowing their Channel State Information (CSI). A
constrained multi-agent MDP approach has been adopted,
wherein the state of a device represents its packet loss rate and
the action is the allocation of channels across the devices. A
low complexity approximate algorithm has also been devised
along with optimality gap analysis. The aim of their work
however is to maximize the overall devices throughput while
keeping their packet loss rates as low as possible, whereas our
aim is to minimize needed resources while achieving required
QoS. In [9], the authors aimed to minimize the quantity
of reserved resources while satisfying the URLLC QoS by
making use of unsupervised learning for the training of a
Deep Neural Network (DNN) that expresses the relationship
between the solution to their constrained optimization problem
and the system parameters. In our work however, we derive a
model relating the quantity of resources to be reserved to the



system parameters (user’s arrival rates and radio conditions)
and make use of it in the optimization and control.

Several works adopted queuing approach for the modeling
of URLLC dynamics. [10] proposed an M/M/1 model based
on the assumption of Poisson arrivals of packets and an expo-
nential model for the variation of packet sizes due to different
radio conditions. [11] relaxed the exponential assumption for
the service rate and adopted an M/G/1 model with vacations
(to account for the presence of other users), but with two
restrictive assumptions. First, the ”General” service model is
due to different packet sizes and not different radio conditions,
and second, packets are supposed to be served by one server
in continuous time, while packets in 5G are multiplexed in the
spectrum dimension (several servers) and time is slotted. [12]
makes use of an M/GI/∞ model in order to study resource
allocation for URLLC. [13] considers a M/M/m/K queue to
model the system reliability for a worst case scenario where
users are assumed to be at the cell edge. The work in [14]
derives generic end-to-end latency distribution of any network
topology which enables to determine percentiles, and applies
it to the cases of exponential and deterministic service distri-
butions. The work in [15] considers a risk-resistant approach
(risk is outage) to minimize the latter based on an M/G/1
queuing model. In our work, however, we assume general
arrival distribution, not restricted to Poisson and we consider
a discrete time system with frequency multiplexing.

As of works dealing with URLLC, eMBB and/or massive
machine-type communications (mMTC), the work in [16]
investigates the radio resource allocation across these three
types. The primary goal was to maximize network utility while
ensuring QoS standards are met with an upper bound on the
resources that can be reserved. However, for the URLLC slice,
they use a link-layer model and effective capacity theory based
on large deviation theory to describe the QoS requirements,
which differs from our method, where we focuses on packet
loss due to delay violation. In [17], the focus is on resource
allocation in the downlink to accommodate both eMBB and
URLLC packets. Their approach assumes that URLLC packets
are either immediately served or discarded, and that they are
transmitted by puncturing eMBB packets. The overarching
objective is to maximize eMBB slice throughput while guaran-
tying some minimal number of URLLC packets. This differs
from our work where the objective is again to serve URLLC
packets subject to delay and reliability constraints. To address
resource allocation, they introduce two problems. The first one
operates on a slot basis to satisfy the throughput requirement
of the eMBB slice, while the second one operates on a mini-
slot basis to serve as many URLLC packets as possible while
minimizing also the loss in the eMBB throughput slice. In
[18] the authors aimed to maximize system throughput in a
distributed massive MIMO system serving eMBB and URLLC
slices. They ensured a minimum data rate as a QoS criterion
but did not consider packet loss probability. In their approach,
they assume that all users are active and that traffic is known.
In contrast, our work addresses uncertainty in user activity.

Other works consider Age of Information (AoI) and not

delay and reliability as the performance criteria for time-
critical traffic. In [19], the URLLC slice’s performance is
modeled based on the probability that the AoI exceeds a
specific threshold. This is done within a discrete-time frame-
work, considering Last Come First Served (LCFS) scheduling
and preemption. A similar approach is taken in [20], where
the aim is to maximize the average information freshness for
all users. The authors propose online and offline algorithms
based on MDP for user selection control. These studies focus
on the case of serving a single user at a time and again
on the AoI while we consider packet multiplication in the
frequency domain and focus on URLLC performance in terms
of outage (probability of packets received beyond a certain
delay budget), as defined by 3GPP.

Paper contributions

We propose in this paper a new control model which enables
to meet URLLC stringent performance target while minimiz-
ing the allocated resources. Recall that the QoS requirements
for URLLC are specified by bounds on two metrics: one on
delay, 1ms, and one on reliability, which is the probability
of exceeding the delay bound, and which is set to 10−5. The
delay violation probability which we use in our work combines
both metrics, as it quantifies the probability of violating the
delay bound, which should be equal to the reliability bound.
To do so, we first develop a generic mathematical model for
the evolution of the number of packets waiting in the queue
and show how to derive the delay violation probability for
a policy that controls the resource allocation dynamically.
We formulate an optimization problem whose objective is to
preserve the system resources while achieving the performance
target. We then study the structure of the problem and propose
adequate algorithms that converge quickly to efficient resource
allocation policies.

This paper has original contributions on two fronts: model-
ing and control. Specifically:

• We propose a discrete-time queuing model on the mini-
slot basis where packets belonging to different users
may have different radio conditions and occupy differ-
ent amounts of resources. This model does not make
particular assumptions on the arrival process of pack-
ets and models the service discipline following the 5G
time/frequency scheduling.

• We derive the delay violation probability, defined as the
probability that the packets waiting in the queue at some
time cannot be completely served within the delay budget.

• We propose two offline algorithms for resource reser-
vation that adapt to the traffic conditions and achieve
minimal resource reservation while meeting stringent
QoS requirements, with rapid convergence.

• We propose an online algorithm based on a stochastic
bandit framework and show how our analytical model
can be used for guiding the sequential policy selection
process until convergence to the optimal one.

• We apply our resource allocation algorithms to two
cases: when resource allocation to URLLC service is



immediate upon decision, at the mini-slot level, as well
as to less flexible case where the decision is effective at
some reconfiguration epochs, e.g., at the slot level, while
URLLC is scheduled on the mini-slot level.

Paper organization

In section II, we model the delay violation probability and
resource consumption for both fixed and dynamic resource
reservation. Section III describes the policy performance for
both immediate and delayed resource allocation settings. Sec-
tion IV formulates an optimization framework for meeting the
violation target while minimizing the cost in terms of resources
and proposes online and offline efficient algorithms for finding
the optimal policy. Section IV validates our model against
simulations and illustrates the optimal policies for resource
allocation. Section V eventually concludes the paper.

II. SYSTEM AND MODEL

In the following, we will use the notation X for sets, |X |
for the cardinality of sets, x for line vectors and xT their
transpose, and X for matrices, of elements Xij .

A. System model

We consider a 5G cell where resources are organized into
Physical Resource Blocks (PRBs) in the frequency and time
domains. The time domain has two levels of granularity: the
slot level, on the order of 1ms, for the scheduling of eMBB
users, and the mini-slot level, with smaller duration denoted by
T , to serve URLLC users. Our aim is to devise policies which
determine the (minimal) quantity of resources that should be
reserved for URLLC traffic so as to meet its QoS requirement.
To this end, we investigate two main cases: a first one where
URLLC resources are adapted at each mini-slot, in a fully
flexible way. The difficulty in this case resides in anticipating
bursts of packet arrivals by proactively reserving resources
within the set of available ones. The second case, which
we present in the next section, focuses on the setting where
resource reservation is updated at the border of the slot, and not
at each mini-slot, considering that the resources are occupied
by eMBB traffic and cannot be preempted until the next slot.
As stated above, the QoS requirement is formulated in terms
of the probability that the delay exceeds a maximal allowed
budget (1ms); this delay violation probability should be kept
smaller than 10−5.

B. Traffic model

We start by describing the radio configuration that depends
on the sub-carrier spacing and the mini-slot definition. Even
if a slot is composed of 14 symbols its length depends on the
subcarrier spacing (1 ms for 15 kHz and 0.5 ms for 30 kHz,
and so on). However, to accommodate URLLC packets with
stringent delay requirements, 5G NR also allows for mini-
slot transmissions, providing scalable TTIs. Each mini-slot
could consist of 2, 4, or 7 symbols, corresponding to mini-
slot transmission times of 70µs, 140µs, or 250µs, respectively
when using the 30 KHZ subcarrier spacing. In our work, we

assume the use of a 30 kHz subcarrier spacing and mini-
slots containing 7 symbols. Thus the maximum number of
consecutive slots that a given packet can stay in the buffer
is in this case equal to 4 (δ = 4), which corresponds to 1ms
delay budget. In each mini-slot, URLLC packets are generated
following some stochastic process, and packet arrivals in
different mini-slots are independent. Packets are small, and
might be of equal or variable sizes. As of the delay budget, a
packet may stay for δ mini-slots in the system before its delay
budget expires otherwise it is in violation.

In this section, we will not make further assumptions on
the arrival process and packet sizes, but we will suppose
that, during mini-slot t, the number of resources required for
serving new arriving packets is a discrete random variable a(t),
defined in some subset A of N, the set of positive integers1.
Let zj be the probability that a(t) = j, j ∈ A. For the ease
of notation, we define zj = 0 for j /∈ A. We will show in
section V how the zj’s are derived in typical 5G scenarios.

C. Delay violation model for a fixed reservation

We start by the simple, yet practical case, where the amount
of resources reserved for URLLC is constant and equal to R
PRBs. This is done at the mini-slot level. As the queue follows
a First Come First Serve (FCFS) discipline, a packet generated
in a mini-slot sees other packets generated within the same
mini-slot and those generated in previous mini-slots that are
still in the queue waiting for service, if any.

In mini-slot t, knowing that there are R reserved resources,
the queue length after scheduling, denoted by B(t), is defined
as the amount of resource units that will be needed in the
future mini-slots (t′ > t) to serve the backlogged traffic after
using all the resources of mini-slot t, and is given by:

B(t) = (a(t) +B(t− 1)−R)
+
, (1)

where (x)+ = max(0, x). a(t) is, as stated above, the amount
of resources needed for serving new packets arriving in mini-
slot t, B(t−1) is the queue length from the previous mini-slot
and a(t) + B(t − 1) is the total amount of resources needed
for serving all the backlogged packets from previous mini-
slots plus the new packets arriving at mini-slot t. As there are
R resources available in each mini-slot, at most R among the
required resources are used, and the remaining packets, if any,
are backlogged in the next mini-slot2.

We define the probability of delay violation V as the
probability that the packets that are present in mini-slot t
cannot all be served until mini-slot t+ δ − 1:

V = lim
t→∞

Pr[B(t) > (δ − 1)R] (2)

1a(t) is in PRBs reserved in a mini-slot. For instance, for two arriving
packets and when, considering the Modulation and Coding Scheme (MCS)
and the packet size, the first packet needs 1 PRB and the second 3 PRBs,
a(t) = 4.

2The term queue length can be considered as an abuse of language, as it
refers classically to the number of packets in the queue, while it designates
here the PRBs required to serve the packets. We note that this information is
known to the scheduler as MCS is decided before the packet is queued.



as packets that are still in the queue after scheduling have been
in the system at least during mini-slot t, and some of them
will exceed the delay limit if the resources in the next (δ− 1)
mini-slots are not sufficient to serve all of them. We will show
afterwards that this limit exists.

D. Model for a dynamic resource reservation policy
We now consider the more general case of a controller that

dynamically adapts URLLC resources at every mini-slot for
achieving a low violation probability, not exceeding a small
value vmax. We note that the resource adaptation has to be
performed without knowing the arrivals in the next mini-slot,
but based on the queue length of the current one.

We define a policy by a set of resource reservations for each
queue length event. Formally, let R ⊂ N be the set of possible
resource reservations for URLLC, and define r as the vector
grouping the elements of R sorted in ascending order3. Under
policy p, when the queue length is equal to b ∈ B, the system
reserves an amount of resources for the next mini-slot equal
to pb ∈ R. The set of all possible policies is P . Formally, we
define a policy p as a vector of |B| elements, with pb ∈ R.

For convenience, we define the matrix M(p) of zeros and
ones, of size |B| × |R|, where there is a single ”1” for each
line b, placed at position (b, j) such that pb is the jth element
of r. Under policy p, we can compute the amount of resource
reservation when the queue length is equal to b ∈ B by:

R(b,p) = pb = M(p)[b+ 1, :]rT (3)

where M(p)[b+ 1, :] is the b+ 1 row of matrix M(p).
Note that R was taken as constant in the previous section,

now it depends on the queue length b and policy p.
Under policy p, the queue length evolves following:

B(t) = (a(t) +B(t− 1)−R(B(t− 1),p))
+
, (4)

The delay violation probability is:

V (p) = lim
t→∞

Pr[B(t) >

δ−1∑
i=1

R(B(t+ i),p)] (5)

Equation (5) reduces to equation (2) for R taken as constant,
as in the previous section. The average amount of consumed
resources, which quantifies the cost of the policy, is:

C(p) = lim
t→∞

E[R(B(t),p)] (6)

This equation represents the expected number of resources
C to be reserved within the system, under policy p, consid-
ering the distribution of the system’s state, i.e., queue length
B(t), as it approaches its long-term or limiting behavior.

Our goal is to minimize this cost while ensuring that the
delay violation probability remains below a threshold vmax.
This leads to the following optimization problem:

p∗ = argmin
p∈P

[C(p)] (7)

subject to V (p) ≤ vmax

3For instance, if R = [Rmin, Rmax], with Rmin < Rmax positive
integers, |R| = Rmax − Rmin and r = (Rmin, Rmin + 1, ..., Rmax).
Another practical example is when there are two possible resource allocations
for URLLC, i.e., R = {Rmin, Rmax}, r = (Rmin, Rmax) and |R| = 2.

Here too, taking R as constant makes C = R.

III. PERFORMANCE MODEL

We now turn to evaluating the performance of a given
policy, in terms of delay violation probability and cost.

A. Evaluation of the performance of an arbitrary policy

In order to compute the violation probability, we need to
determine the distribution of the queue length in steady-state.
We observe that eqn. (4) involves three random variables:

• B(t), that is a discrete integer random variable that takes
its values in [0,∞[. Let qb(t) be the probability that B(t)
takes the value b ∈ [0,∞[.

• B(t− 1), that has the same limiting distribution as B(t),
• and a(t), that is the amount of resources needed for

serving the new packet arrivals. a(t) is independent from
B(t−1) and takes its values in some set [0, amax], where
amax is a positive integer (that might be infinite).

In steady-state, let qb be the probability that the queue length
is equal to b ≥ 0. Setting a maximal queue length Bmax >> R
and defining the space of queue lengths B = [0, Bmax] ⊂ N,
we write the following system of linear equations:

q(p) = q(p)Q(p) (8)

where Q(p) is the transition matrix under policy (p) with
element Qjb, j and b ∈ B, designating the transition proba-
bility from queue length j at time t to queue length b at time
(t+1), and q is the vector of queue lengths probabilities. The
elements of the transition matrix Q(p) are given by:

Qjb(p) =


zb+R(b,p)−j , if b ∈]0, Bmax[∑

i≥b+R(b,p)−j zi, if b = Bmax∑
i≤R(b,p)−j zi, if b = 0

0, otherwise

(9)

Recall that zj = Pr[a(t) = j], j ∈ A. This set of equations
can be solved by adding the normalizing equation:

q(p)qT (p) = 1 (10)

We establish the existence of the limit in equation (2), which
relies on the properties of the Markov chain characterized by
transition matrix Q as delineated in equation (9). This Markov
chain satisfies both the irreducibility and aperiodicity condi-
tions. To show irreducibility, we make use of the following
assumptions: i. the number of possible reservations R(b,p)
should be smaller than the maximal value of a(t), and ii. the
probability vector of a(t), denoted by z, should have no zero
values. These assumptions enable the observation that from
any state b of the Markov chain, one can either remain at
b, move to b − 1, or transition to b + 1. This observation
directly implies that for any pair of states x and y, it is
always feasible to transition from state x to state y within at
most |y − x| steps of the Markov chain, thereby establishing
irreducibility. As of aperiodicity, for an irreducible Markov
chain to be aperiodic, it suffices to have at least one self-
loop at one state. For instance, let us consider a scenario



where there are no backlogged packets and the number of
resource blocks required for serving the newly arriving packets
is less than the reservation (R(b,p) ≥ a(t)). In such case,
a self-loop exists at each state of the Markov chain, and
hence aperiodicity. All in all, we conclude that the Markov
chain under consideration fulfills both the irreducibility and
aperiodicity conditions, yielding the existence of the limit in
equation (2).

These steady-state probabilities q(p) enable the computa-
tion of the distribution of the amount of reserved resources.
For this purpose, we define, for all m ∈ R, P−1(m,p) as the
following subset of B:

b ∈ P−1(m,p)⇐⇒ b ∈ B and R(b,p) = m.

Note that P−1(m,p) is a set while R(b,p) is an integer,
and ∪m∈RP−1(m,p) = B.

The policy cost (6) which quantifies the quantity of re-
sources of a given policy can be computed by:

C(p) = q(p)M(p)rT (11)

From equation (3), which computes the number of PRBs
to be reserved for each queue length b under policy p, we
have that M(p)rT represents the policy p, it is a vector with
each entry denoting the number of PRBs to be reserved for
each queue length. Multiplying this vector by q(p), which
is the probability distribution of the queue length, yields the
expected number of reserved resources based on policy p.

Computing the delay violation of (5) is less straightforward
as it depends on the amount of resources allocated during
the next mini-slots, which is not constant. For this purpose,
for every mini-slot t ≥ t0, we define the variable S(t) as the
cumulative resources the system has reserved for URLLC from
time t0 until t given that the system starts reserving resources
at t0 (S(t0) = 0). We have the recursion:

S(t+ 1) = S(t) +R(B(t),p).

The violation probability of equation (5) is thus:

V (p) = lim
t→∞

Pr[S(t0 + δ − 1) < B(t) |p] (12)

We define the resource/queue state of the system at time t
as the couple (S(t), B(t)). The transition probability between
states (x, j) and (s, b) in one mini-slot is computed by:

T ((x, j)→ (s, b)) = Qj,b1R(j,p)=s−x (13)

where 1R(j,p)=s−x is the indicator function. We note that S(t)
tends to ∞ when t increases. However, we are interested in
its evolution on δ − 1 mini-slots, starting from S(t) = 0, to
account for the amount of accumulated resources since a queue
length is generated. The maximal value of S after δ− 1 mini-
slots is Smax = (δ − 1)rRmax

, and the state space of S(t)
is S ⊂ [0, Smax] ⊂ N. In matrix form, we define the tran-
sition matrix Y(p) of (S(t), B(t)), grouping these transition
probabilities as a matrix of dimensions Smax|B| × Smax|B|.
By rearranging the vector of states into |B| blocks, with block

b corresponding to the states ((0, b), ...(Smax, b), Y can be
defined in blocks, as follows:

Y(p) =


Q00Y

(0) Q01Y
(0) ... Q0|B|Y

(0)

Q10Y
(1) Q11Y

(1) ... Q1|B|Y
(1)

...
Q|B|0Y

(|B|) Q|B|1Y
(|B|) ... Q|B||B|Y

(|B|)


(14)

Note that the components of Y depend on the policy, but we
have omitted it from the notation for convenience. Sub-matrix
Y(b)(p) corresponds to the evolution of the accumulated
resources S(t), when the queue length is equal to b:

Y (b)
sx (p) =


1, if x = s+R(b,p)

1, if s+R(b,p) > Smax and x = Smax

0, otherwise
(15)

The transition matrix of (S(t), B(t)) after δ − 1 steps is
then computed by Yδ−1(p). Our objective is to study the
evolution of the resource/queue length starting from t, know-
ing that S(t) = 0. Let y0(p) be the vector of probabilities
of the couple (queue length, accumulated resources) at some
reference time t when we start accounting for it. The steady-
state probabilities for the queue length being computed as the
solution of the set of equations (8), this probability vector is:

y0(p) = [ q0(p), 0, ...0︸ ︷︷ ︸
B=0,Smax terms

, ..., q|B|(p), 0, ...0︸ ︷︷ ︸
B=Bmax,Smax terms

].

The resource/queue length state probability when the delay
budget expires is then:

y(p) = y0(p)Y
δ−1(p) (16)

The violation probability is computed by:

V (p) =
∑
b∈B

∑
s∈S;s<b

yb|S|+s, (17)

where yi is the ith element of the vector y given in equation
(16). Vector y represents the state (cumulative number of
reserved resources with cardinality |S|, queue length with
cardinality |B|) starting from time 0 where the cumulative
number of resources is 0 until the delay budget δ expires.
The index in yb|S|+s in the above equation represents the
probability that the number of cumulative reserved resources is
s when the system starts with b backlogged packets (multiplied
by |S| to account for all possible values of s). The first
summation in the above equation iterates over all initial values
of queue length b, while the second summation, constrained
by s < b, calculates the probability that after δ−1 time steps,
the cumulative number of resources is smaller than the queue
length in the initial state (s < b). This effectively computes
the violation probability for each specific queue length b. This
process is repeated for all values of b, ultimately yielding the
violation probability value for the entire system.



B. Model extension to a delayed resource reservation

So far we considered a fully flexible resource allocation,
where the system observes the queue status and reserves an
amount of resources for URLLC within the set of available
resources R at each mini-slot. However, in many practical
settings, delay may occur before resources are to be effectively
reserved, and the most common case is when the system serves
jointly URLLC and eMBB traffic, scheduled on different
scales: a mini-slot of length T for URLLC and a slot of length
τT , with τ a positive integer, for eMBB. Once resources are
allocated for eMBB, they are occupied for the whole slot and
cannot be preempted for URLLC until the beginning of the
next slot. In this context, the amount of resources will be
reserved to URLLC depending on the length of the queue
at the boundary of the slot, and not of the mini-slot.

A state is then defined by a three-tuple: the current queue
length at the boundary of the slot which we denote by B1 and
for which we reserve R(B1,p) resources, the queue length at
the boundary of the mini-slot which we denote by B2, and an
index ℓ, ℓ ∈ {0, 1, . . . , τ −1}, for the mini-slot we are in now
(within one slot).

There are |B| × |B| × τ states. At time t (taking mini-slot
as time unit), and knowing all the system states at t′ where
t−ℓ(t) ≤ t′ < t, the elements of state (B1(t), B2(t), ℓ(t)) are
given as follows:

B2(t) = (B2(t− 1) + a(t)−R(B1(t− 1),p))+ (18)

B1(t) =


B2(t) = (B2(t− 1) + a(t)−R(B1(t− 1),p))+

if t = kτ for k ∈ N

B1(t
′) s.t. t− τ < t′ < t and t′ = kτ

otherwise
(19)

where a(t) is the quantity of resources needed for newly
arriving packets in the mini-slot, and ℓ(t) = t − τ⌊ tτ ⌋ where
⌊x⌋ is the greatest integer less than or equal to x.

The violation probability for a given policy p is now:

V (p) = lim
t→∞

Pr[B2(t) >

δ−1∑
i=1

R(B1(t+ i),p)], (20)

and the average consumed resources becomes:

C(p) = lim
t→∞

E[R(B1(t),p)] (21)

In order to calculate the distribution of the queue length in
steady-state, we need first to define the transition probability
matrix, denoted by D(p). It is of size τ |B|2 × τ |B|2 and is
composed of τ2 matrices, denoted by Alk, each of size |B|2×
|B|2. As ℓ(t) designates the mini-slot index, only the transition
probabilities between states (·, ·, ℓ(t)) and (·, ·, ℓ(t + 1)) are
non-zeros, and as ℓ(t) ∈ {0, . . . , τ − 1} we have:

D(p) =



0 A01 0 · · · 0

0 0 A12 · · ·
...

...
... 0

. . . 0

0 · · ·
... 0 A(τ−2)τ−1

A(τ−1)0 0 0 · · · 0


There are three different types of these non-zero matrices:
• A01 contains the transition probabilities of the system

when the slot and mini-slot borders coincide,
• Aℓ,ℓ+1 with ℓ ∈ {1, . . . , τ − 2}, expresses the transition

probabilities within the slot,
• and A(τ−1)0, represents the end of the slot, in which case
ℓ is reinitialized to 0.

We show in appendix B how the matrices A can be
expressed in terms of the transition matrix Q of the non-
delayed system described in the previous section.

Let d(p) be the stationary probability of the queue length,
it can be calculated by solving d(p) = d(p)D(p).

In order to calculate the violation probability, we introduce a
new expression for S(t), the cumulative resources the system
has reserved for URLLC until time t, which is:

S(t) = S(t− 1) +R(B1(t),p) (22)

The violation probability is calculated as in equation (17)
and the cost is calculated as in equation (11), where instead
of q(p) we use the probability distribution vector of B1.

IV. OPTIMAL POLICY DERIVATION

The objective is to minimize resource consumption while
respecting a target on the delay. For this purpose, we formulate
the following optimization problem:

p∗ = argmin
p∈P

[C(p)] (23)

subject to V (p) ≤ vmax

The above model evaluates the performance of any policy in
P , for cases with immediate or delayed resource reservation.
However, the number of possible policies is very large, and
there is a need for efficient algorithms for selecting the policy
that solves problem (23), other than the exhaustive search.

If no constraints were imposed on the structure of the policy,
the cardinality of P is equal |R||B|. One can impose that
pb ≥ pj , if b ≥ j, meaning that a larger queue length leads
to a larger resource reservation. This constraint reduces the
number of possible policies, but does not change the order of
complexity. For instance, for |B| = 2, there are |R|(|R|+1)

2
policies4, and for |B| = 3, the number of policies is on the
order |R|3

6 policies5.

4It is sufficient to observe that if p0 takes the ith value, p1 can take any
value between the ith and the last one, leading to |R| − i + 1 possibilities.
The number of policies is then

∑|R|
i=1(|R| − i+ 1) =

|R|(|R|+1)
2

5A similar approach as for |B| = 2 is followed, fixing the value for p0 (|R|
possibilities), and enumerating the policies knowing that there are two lines
remaining, with a reduced space of possible resource allocations as p1 ≥ p0.



A. An algorithm for policy selection

We now propose a heuristic algorithm for choosing the
policy. We first define, on P , the following ordering relation
⪯ for policies that will help designing the algorithm:

Definition 1. Two policies p and g of P verify p ⪯ g, if and
only if, for all b ∈ B, pb = R(b,p) ≤ gb = R(b,g).

Note that P is partially ordered with respect to ⪯. We have
the following:

Lemma 1. For any two policies p and g of P , if p ⪯ g, then
V (p) ≥ V (g).

Proof. If we reserve more resources for any amount of packets
in the queue, the delay violation is necessarily lower as the
queue vanishes more quickly, knowing that the exogenous
arrival process is the same.

Note that we consider also that

C(p) ≤ C(g) for p ⪯ g, (24)

as there is systematically a larger amount of resources reserved
for each state. We show numerically the validity of our
assumption (24) in appendix (C).

We define the policy incrementation ⊕ in P by a constant
vector c of real elements in R by the following:

Definition 2. For all p ∈ P and c ∈ R|B|, g = p⊕ c is the
element of P such that:

gb = min[gb+1; argmin
l∈R
{|pb + cb − l|}] (25)

with the convention g|B|+1 = Rmax.

Based on lemma 1, we propose algorithm 1 for problem
(23). It starts by a random policy p0 and a random vector e of
0’s and 1’s. The first bloc (lines 4 to 6) corresponds to a policy
p0 with large delay violation that is incremented by e until
reaching an acceptable performance. The second bloc (lines 7
to 9) corresponds to the opposite case where the violation is
too low and the policy is decremented by e until reaching the
target. The stopping rule is not straightforward, as the minimal
cost is not known a priori. This is why at least Nmin paths
are tested, for constructing some empirical statistics, and the
algorithm is stopped when the cost of the policy is very close
(e.g., by 1%) to the minimal previously observed cost.

B. Optimal policy on an ordered subset of threshold policies

In the previous section, we proposed algorithm 1 that
explores policies with a random structure, determined by a
random policy p0 and a random constant shift e. While poli-
cies explored on one path are ordered, policies encountered on
different paths are not necessarily comparable. Our objective
here is to define a totally ordered subset of policies on which
it is possible to perform more efficient search algorithms. We
define the following translation function on P:

Algorithm 1 Policy search algorithm

1: Input: the probability distribution z
2: repeat
3: p0 ← random from P
4: e← random from {0, 1}|B|

5: while V (p0) > vmax do
6: p0 ← p0 ⊕ e
7: end while
8: while V (p0) < vmax do
9: p0 ← p0 ⊕−e

10: end while
11: until number of random policy generations > Nmin and

C(p0) is very close to the minimum observed cost
12: Output p∗ is the policy with the smallest observed cost.
13: =0

Definition 3. ∀p ∈ P, tr(p) ∈ P such that:

R(b, tr(p)) =


R(b− 1,p) if b > 0

ri−1 if b = 0, R(b,p) = ri, i > 1

R(b,p) otherwise
(26)

where ri is the ith element of r, the vector grouping the
elements of set R sorted in ascending order.

Defining tr(n)(·) as the n times function composition of
tr(·), we can build a subset P̂ of P , by translation:

Definition 4. The extended threshold set P̂ is defined as the
subset of P , grouping the maximal allocation policy supP(p)
and its subsequent one-step translations.

One can see that starting from supP(p), which is the
maximal policy in the set of all policies P , and applying the
translation function (following definition 3 of the translation
function), we need |R|−1 translations so that the first element
of this policy is r1 = Rmin, and for all the elements of this
policy to be equal to Rmin we need Bmax translations. Adding
supP(p) policy to P̂ , we get that:

|P̂| = Bmax + 1 + |R| − 1 = Bmax + |R|

Indeed, two families of policies belong to P̂:
• Moderate policies ranked i ∈ [0, Bmax], that start by

allocating Rmin, until a threshold B(t) = Bmax − i,
staring from which the allocation increases by one step
in r each time the queue length increases until reaching
Rmax.

• Aggressive policies ranked i ∈ [Bmax + 1, Bmax + |R|],
that start, for B(t) = 0, by a reservation equal to
ri−Bmax+1, and then increases until reaching Rmax.

To introduce this family of policies, we illustrate a toy
example by describing the shape of the policies in the ordered
set P̂ , when r = {Rmin = R1, R2, Rmax = R3} and
Bmax = 4 in figure 1. The y-axis refers to the amount of
resources reserved following a policy p ∈ P̂ and the x-axis
specifies the possible size of the queue in the system. For each



policy, we give the number of resources reserved at each state
(queue length). We know that |P̂| = 7, the first 5 policies
are categorized as moderate policies, whereas 6th and 7th are
aggressive policies.

Lemma 2. P̂ is totally ordered with respect to ⪯.

Proof. First we recall that tri(p) ⪯ p for i ≥ 1. Let p1

and p2 be two policies in P̂ , following the setup given in
definition (4). One can notice that p1 and p2 can be expressed
as tri(supP(p)) and trj(supP(p)) respectively for specific
values of i and j. Therefore, if i ≤ j, we have p1 ⪯ p2 and
vice versa.

We are now able to define the distance metric in P̂:

Definition 5. Let p1 ⪯ p2 be two policies in P̂ , the distance
between them |p2−p1| is defined as the number of translations
to reach p1 starting from p2 (or simply the difference of ranks
between p1 and p2). In other terms, |p2 − p1| = ∆ if and
only if tr(∆)(p2) = p1.

Based on the above, and restricting ourselves to threshold
policies, we define the Dichotomy algorithm 2. We suppose
that V (supP(p)) < vmax, otherwise there is no solution that
satisfies the delay requirement in P . The algorithm starts
within set I1 = [pmin,pmax], where pmin allocates Rmin

constantly, and pmax = supP(p) allocates Rmax constantly.
We then consider the intermediate policy p, obtained by
translating pmax by half the distance with pmin (Dichotomy).
If, for this intermediate policy, the violation probability is
larger than the target, pmin is replaced by it, resulting in
I2 = [p,pmax] otherwise, p replaces pmax and we get
I2 = [pmin,p]. This Dichotomy is repeated until the distance
between the two extremes is 1.

Algorithm 2 Dichotomy search algorithm
1: Input: the probability distribution z
2: pmax ← supP(p)
3: pmin ← infP(p)
4: ∆← ⌊ |pmax−pmin|

2
⌋

5: while ∆ > 1 do
6: p← tr(∆)(pmax)
7: if V (p) > vmax then
8: pmin ← p
9: else

10: pmax ← p
11: end if
12: ∆← ⌊ |pmax−pmin|

2
⌋

13: end while
14: p← pmax

15: Output p
16: =0

Fig. 1: The policies in the ordered set P̂

C. Dichotomy algorithm convergence

We prove the convergence of the Dichotomy procedure to
the solution of (23) in the following theorems.

Theorem 1. There exists a unique solution for problem (23)
denoted by p∗.

Proof. The proof of the existence of a global solution to
problem (23) can be inferred from two observations: firstly,
V (infP(p)) > vmax and V (supP(p)) < vmax, indicating the
existence of a feasible policy within the set P̂ . Additionally,
since the cost function is increasing, there exists a unique
solution denoted by p∗.

Lemma 3. Let Ik be the interval described in the dichotomy
algorithm at iteration k, function Ck = maxp∈Ik C(p) exhibits
a monotonically decreasing behavior. Furthermore, within
each interval Ik, there exists at least one feasible policy p.

Proof. The argument behind this lemma is that following the
fact that Ik ⊇ Ik+1 it is obvious that Ck is a decreasing
function in k. Moreover, at each iteration of the Dichotomy
algorithm, we have that V (p1) < vmax, and thus at least one
feasible policy exists in each iteration.

Theorem 2. The Dichotomy algorithm converges to the op-
timal policy p∗ = ∩∞k=1Ik, with each Ik representing the set
of policies considered in the k-th iteration of the Dichotomy
algorithm.

Proof. The proof of this theorem unfolds in two steps. Firstly,
we demonstrate that the Dichotomy algorithm converges to a
single point. Secondly, we prove that this single point is the
optimal policy in P̂ . For the first step, in order to ensure the
convergence of the Dichotomy algorithm to a single policy,
we must satisfy the conditions outlined in Theorem 4 of [21],
known as the Nested Interval Theorem. This theorem asserts
that if S1 ⊇ S2 ⊇ · · · ⊇ Sk ⊇ . . . is a sequence of nested,
closed, bounded, non-empty intervals, then ∩∞k=1Sk is non-
empty. Additionally, if |Sk| → 0(k → ∞), then ∩∞k=1Sk



consists of a single point. Here, Si can be interpreted as the
set of considered policies in iteration i of the Dichotomy al-
gorithm. As previously described in the Dichotomy algorithm,
we initiate the process with the interval I1 = [pmin, pmax].
Subsequently, we select I2 as either [pmin, p] or [p, pmax],
where p = tr(∆)(pmax) and ∆ = |pmax−pmin|

2 . This naturally
establishes a nesting relationship, i.e., I1 ⊇ I2 ⊇ . . . ⊇ IK .
Moreover, it is obvious that the length of these intervals,
denoted as |Ik|, decreases as k increases, following the pattern
|Ik| = |pmax−pmin|

2k
→ 0(k → ∞). This construction satisfies

the conditions specified in the Nested Interval Theorem. For
the second and final step, we show in lemma 3 that this single
policy is the optimal solution of equation (23).

Thus we proved the two steps needed for the convergence
of the Dichotomy algorithm to the unique optimal policy.

Note 1. We now assess the complexity of both algorithms,
the Policy Search and Dichotomy. At each iteration, we
need to calculate the overflow probability and thus solve
both equations (8) and (16). Solving equation (8) has a
complexity of O(|B|3) and solving equation (16) requires
O((δ − 1)(Smax × |B|)2). To this we add the complexity of
updating the policy, it is equal to O(|B| × |R|) for the Policy
Search algorithm and O(|B|) for the Dichotomy one. In total,
for the Policy search algorithm, as we require at least N
iterations, the complexity is:

O(N(|B| × |R|+ |B|3 + (δ − 1)(Smax × |B|)2))

The number of iterations in the Dichotomy algorithm depends
on how many times we can divide B+ |R| − 1 by 2, which is
log2(B + |R| − 1). Thus, the complexity is:

O(log2(B + |R| − 1)(|B|+ |B|3 + (δ − 1)(Smax × |B|)2))
= O(log2(B + |R| − 1)(|B|3 + (δ − 1)(Smax × |B|)2))

D. Online dynamic resource allocation as a unimodal bandit

The above algorithms 1 and 2 are based on the analytical
solution of equations (8,17) which are used to evaluate the
intermediate policies, that take as input the traffic and system
parameters. This corresponds to an offline strategy where an
optimal policy is determined for each setting. However, a
network operator may rely on online experimentation where
a policy is implemented and tested for some time Te. For
Te <∞, the violation rate observed for a policy p is a random
variable, distributed around V (p).

Based on the above, we define a stochastic bandit problem
on P̂ whose arms are the different policies. When an arm p
is selected, we define its reward by µ(p) = −|V (p)− vmax|
where vmax is again the target delay violation probability. Our
objective is to define an efficient algorithm π, from the subset
of sequential algorithms Π, that finds the optimal arm while
minimizing the regret. This latter is defined, after Tr rounds,
as G(Tr) = µ∗ −

∑Tr

n=1 µ(p
π(n)), where pπ(n) denotes the

arm selected in round n under algorithm π, and µ∗ is the
maximal reward achieved under the optimal policy p̂∗ ∈ P̂ .

Lemma 4. If V (infP(p)) > vmax and V (supP(p)) < vmax,
then the reward function µ(p) is unimodal in P̂ .

Proof. Lemma 1 states that if a policy increases, its viola-
tion rate decreases. This means that, starting from infP(p)),
when policy p increases (reserves more resources earlier) and
before reaching p̂∗, the delay violation probability decreases
and the gap with V (p̂∗) decreases, meaning that µ(p) =
−|V (p) − V (p̂∗)| increases. For a policy that is larger than
p̂∗, the violation further decreases, meaning that the gap starts
increasing until reaching vmax − V (supP(p)). µ(.) is thus
unimodal on P̂ .

The problem is then a unimodal bandit [22], and effi-
cient algorithms can be proposed that exploit its structure
for minimizing the regret as in [23]. However, as |P̂| is
large, we might approximate it as a continuous unimodal
bandit with continuous arms x ∈ [0, 1], with x defined as
the rank of the policy in P̂ divided by |P̂|. For solving
such problems, [24] shows that Stochastic Polychotomy (SP)
algorithms exhibit regrets and optimization errors with optimal
scaling. SP algorithms consist in successively narrowing an
interval in [0, 1] while ensuring that the best arm remains
in this interval with high probability, and can be seen as
an extension of the Dichotomy algorithm in the deterministic
case. In particular, the SPK algorithm uses the ITK interval
trimming subroutine defined in [24], with K sampled arms
within the input interval. The idea is that, if a subroutine
starts with some interval I = [i, i], K arms (policies) are
sampled with ranks i ≤ i1 ≤ ... ≤ iK ≤ i, it tests sequentially
the sampled arms until collecting sufficient information about
the reward of each of the arms. It then removes one of the
extremities of the initial interval and outputs I1 = [i, iK ]
(respectively I2 = [i1, i]), if it estimates that the optimal
arm lies in I1 (respectively I2) with a large probability. I
is initialized as [0, |P̂| and narrowed down until finding the
optimal arm i∗ and its corresponding policy.

V. NUMERICAL EXPERIMENTS

In our work, we assume the use of a 30 kHz subcarrier spac-
ing and mini-slots containing 7 symbols. Thus the maximum
number of consecutive slots that a given packet can stay in the
buffer is in this case equal to 4 (δ = 4), which corresponds to
1ms delay budget.

A. Integration within the network management architecture

Before evaluating the performance of the proposed control
schemes, we show how they integrate within the 5G and
Beyond architecture. The following three inputs are exploited
by our scheme for deriving the optimal control policy:

1) Channel conditions distribution, i.e. the probability that a
user in a given base station uses a given MCS k,

2) Traffic intensity, i.e., the number of new packets arriving
per time slot at each base station, and

3) Queue status, i.e., the number of packets waiting in the
scheduler queue at each time slot.



The first two inputs serve for computing the zi’s in the
transition rates of equation (9), and are to be computed on
a large time scale (in the order of tens of seconds). The latter
input is updated in real-time, at the scheduler level and serves
for computing the resource allocation for the next slot. We
discuss in the following how these information can be obtained
and where the proposed scheme is ideally implemented, and
then how they can be exploited for deriving the optimal policy.

1) MCS and traffic analytics module: Based on the network
measurements, the following information are computed, at the
gNodeB level:

1) The number of active users U , i.e. the number of con-
nected users that generate packets from time to time.

2) The activity probability f , i.e. the probability for a user
to generate a packet during a slot.

3) The probability of using MCS k once a packet is gen-
erated, denoted by βk, with

∑K
k=1 βk = 1, K being

the number of available MCS. In the case of a forced
common MCS for URLLC, K = 1 and β1 = 1.

Based on this information, the analytics module is able to
provide the zi’s, used for computing the transition matrices
in the performance model. Indeed, when a packet uses MCS
k, it consumes an amount of PRBs equal to αk, computed as
follows: when an MCS with a spectral efficiency of ζ bit/s/Hz
is used, and knowing that the PRB size is h Hz, a packet of
size s bits occupies a number of PRBs equal to ⌈ s

Thζ ⌉, where
⌈x⌉ is the largest integer greater than or equal to x and T is
the duration of the mini-slot.

The amount of resources consumed by a user u in mini-slot
i is thus a random variable with distribution:

Xu,i =

{
0, with prob. (1− f)

αk with prob. fβk

(27)

Without loss of generality, we assume that the MCS are
sorted in increasing order of spectral efficiency, meaning that
α1 > ... > αK . The total number of resources requested by
new packets generated in mini-slot i is then given by:

a(i) =

U∑
u=1

Xu,i (28)

zj describes now the probability that new arrivals in a
mini-slot require j resources (PRBs), while in the homoge-
neous case, zj was equal to the probability of having j new
packet arrivals. zj can now be computed using the multino-
mial distribution. Let m(u0, u1, ..., uK) be the probability of
having, in a given mini-slot, a vector of generated packets
u⃗ = (u0, u1, ..., uK), where uk is the number of packets with
MCS k, and u0 is the number of users that did not generate
any packet. Let U be the space of all possible vectors u⃗ such
that

∑K
k=0 uk = U ,

m(u⃗) =
U !∏K

k=0 uk

(1− f)u0fU−u0

K∏
k=1

βuk

k (29)

The term U !∏K
k=0 uk

calculates the multinomial coefficient,
accounting for the number of permutations of active and
non-active users. The term (1 − f)u0fU−u0 account for the
probability of having u0 non-active users and U − u0 active
users. The term

∏K
k=1 β

uk

k captures the probability that active
users consume specific number of resources according to
their MCS. Let Uj , j ∈ [0, α1U ], be the subset of U such
that

∑K
k=0 ukαk = j (α1U corresponds to the limiting case

where all users generate packets and use the worst MCS). The
probability of consuming j resources is thus computed by:

zj =
∑
u⃗∈Uj

m(u⃗) (30)

2) Policy selection module: Based on the per-gNodeB MCS
distributions provided by the analytics module, the policy se-
lection module implements the performance evaluation model
and outputs the per-gNodeB policy that achieves the target
delay violation of 10−5 by solving problem (23). The solution
is based on one of the algorithms of section IV. The real-
time implementation of the policy is left for the scheduler that
updates the URLLC resources by observing the instantaneous
state of the queue. Note that the policy remains constant until
a significant change is detected at the analytics modules within
the Non RT or the Near RT RIC (e.g. traffic intensity or MCS
distribution) that leads to a policy update.

B. Model validation with respect to simulations

Before using the models for deriving optimal policies, we
assess their accuracy with respect to a system simulator as
follows. A BS serves a set of URLLC users. At the start of
each run, the positions of the users are drawn randomly in the
cell, and their path losses are computed accordingly. The path
loss for user i at time t is thus expressed by:

pi(t) =
adbi

GLSiFi(t)
, (31)

where di is the distance to the base station, a and b are
the path loss coefficients, G is the antenna gain, L accounts
for the equipment imperfections, Si and Fi(t) are shadowing
and fast fading, respectively. At each time step, the simulator
computes the Signal-to-Interference-plus-Noise Ratio (SINR),
as follows:

SINRi(t) =
P/pi(t)

η + Ii
(32)

where η is the noise, P is the transmission power and Ii is
the interference from other base stations. The system then
dynamically selects the MCS based on the computed SINR
values, and then computes the amount of PRBs necessary for
serving the corresponding packets.

The performance model’s validation is conducted as fol-
lows: a policy is established, associating each queue state with
a reserved resource. This policy is then implemented both
in the simulator and the model to compute the probability
of delay violation and the cost. This process is performed
for both common and heterogeneous MCS cases. The former
case corresponds to a system where URLLC users do not



implement link adaptation, e.g. in order to avoid additional de-
lays in channel estimation, and use a pre-determined common
MCS, while the latter performs link adaptation and chooses
a dynamic MCS that fits to the varying radio conditions. We
consider a scenario where users have different arrival rates.
We plot in Figure 2 the violation probability and the cost as
a function of increasing average probability of users being
active, where each user has a different probability f that is
uniformly distributed between 0.1 and 0.4. This is conducted
under the policy of order Bmax + 3, where the set of possible
amounts of reserved PRBs is R = {0, 1, . . . , 20}. The figure
shows a perfect fit between both curves in both setups, which
validates the accuracy of our model.

Fig. 2: Delay violation probability and cost (U = 30, δ = 4).

C. Optimal policy illustration

We now investigate the performance of our proposed re-
source allocation policies. We consider U = 30 users, each
active with a probability f = 0.2. Unless stated otherwise, we
consider for illustration the case of homogeneous MCS.

1) Illustration of control policies on a simple policy set: We
start, for illustration purposes, by policies defined on a reduced
set of possible resource reservations, R, so that exhaustive
search on policies is possible. As a baseline, we consider the
fixed resource allocation case, and apply the model of equation
(2) with a target violation probability of V (p) = 10−5; the
amount of needed resources, continuously reserved, is equal
to R = 8 resource units.

We illustrate a very simple policy with two reservation
levels, R1 and R2 resources. In this case, the set of possible
reservations is R = {R1, R2}, a policy p corresponds to a
threshold B̄ on the queue length above which the resource
reservation switches from R1 to R2:

pb =

{
R1, b ≤ B̄

R2, otherwise

We plot in figure 3 the costs, in terms of allocated resources,
and violation probabilities for different thresholds, for different
sets of policies (we consider different values for R1, we fix
R2 = 8 resources). If we focus on a given set R = {R1, R2},
we observe that the violation probability increases and the cost
decreases when B̄ increases. Second, we observe that there is a
jump in the violation probability that corresponds to threshold
B̄ = R1(δ − 1), i.e., to a queue that cannot be evacuated
with R1 resources within the delay budget. Another important
observation is that, for all the illustrated cases, the target
performance can be achieved for some thresholds and that
the optimization problem (23) has a solution that corresponds,
for most of the cases, to a cost close to 6, i.e., with a gain
of 25% with respect to the constant reservation case (R = 8).
Note that this limit cost corresponds to the average number of
packets per slot (Uf = 30× 0.2), so that the system is stable.

Fig. 3: Average cost and delay violation for the threshold
policies on R = {R1, R2}, R1 varies while R2 = 8.

We show in Figure 4, the convergence of the Dichotomy
algorithm towards the optimal policy that solves equation
(23) within the set P̂ . The optimal policy is determined
through an exhaustive search, initiated by selecting the policy
with the highest rank in P̂ (supremum policy). This initial
policy must satisfy the chance constraints. The Dichotomy
algorithm adjusts resource reservation by iteratively translating
to policies with higher or lower ranks, depending on whether
the initial point in the Dichotomy algorithm is lower or higher
than the optimal one, until reaching the smallest policy in P̂
that satisfies the chance constraint. Figure 4 illustrates the
distance between the policy obtained from the Dichotomy
algorithm and the optimal one. This distance represents the
number of translations required to transition from one policy
to another within P̂ . It converges to zero after 8 iterations.

2) Policy search algorithms: We consider a general policy,
where resource allocation can take any positive value below
Rmax = 10. We plot in figure 5 the evolution of the cost



Fig. 4: Convergence of the Dichotomy algorithm to the optimal
policy p∗ (U = 30, δ = 4).

Fig. 5: Cost evolution for the policy search using algorithms
1 and 2, and the schemes based on the state of the art.

and violation probability when following algorithms 1 and 2
for our dynamic policy. For algorithm 2, we also compare
the dynamic algorithm with the static one as well as the state
of the art algorithm, based on the model of [25], where the
performance of URLLC is based on an M/M/1 model, and also
we consider modeling the performance by an M/D/c model.
In the latter models (M/M/1 and M/D/c), the policy is not
dynamic (does not depend on the queue length), but is based
on a dimensioning of resources so that the performance is
equal to the target. For the M/D/c model we make use of the
Dichotomy algorithm for calculating the optimal c, however
for the M/M/1 model, the violation probability in [25], for an
average service time of 1

R packets per slot is given by:

ō(R) = e−(R−ā)δ (33)

where ā is the average packet arrival rate. This leads to the
following reservation for a target delay violation of ϵ:

R̄ =
1

δ
ln

1

ϵ
+ ā (34)

Let us first compare algorithms 1 and 2 for the dynamic
policy (proposed scheme) with homogeneous MCS setup (each
packet consumes 1 resource unit, defined as the amount of
PRBs for carrying one packet with the common MCS).

When using algorithm 1, we start by a ”large” policy
corresponding to a very low violation and reduce it in several
iterations as detailed in the algorithm until reaching the target
violation. We repeat this process at least Nmin = 10 times,
and continue until the violation is within 1% of the minimal
observed performance. Each portion of the upper side of figure
5 corresponds to a ”trial”, starting from a random large policy
to the policy that yields the target violation. 34 iterations,
each corresponding to a policy evaluation, are needed for this
example. Note that if we seek an accuracy of 0.1%, up to
100 iterations are needed. However when using the Dichotomy
algorithm 2, the algorithm converges in 8 iterations to obtain
the optimal dynamic policy in P̂ . We illustrate the associated
policies in figure 6. For algorithm 1, we illustrate the initial
random policy corresponding to the trial that leads to the
lowest cost, along with the final policy. For algorithm 2, we
illustrate the initial largest policy (supP(p) with a constant
maximal resource allocation) and the final policy, obtained
by translation and corresponding to smooth increase of the
resource allocation starting from a threshold.

We now turn to the comparison of algorithm 2 for the
cases of dynamic versus non-dynamic (proposed scheme with
constant reservation R) versus M/D/c versus state of the art
policies, as illustrated in figure 5 below. We observe that the
dynamic, non-dynamic and M/D/C policies outperform the one
based on the model in [25] as they reduce the cost. Indeed, the
latter leads to an over-reservation and thus to an unnecessarily
low delay violation. We have that both the M/D/c and non-
dynamic policies exhibit the same behavior. However, the
dynamic policy outperforms both of them as its cost is lower.

We now consider in figure 7 the case of adapted MCS,
where the MCS distribution and the corresponding resource
consumption distribution is issued from the MCS and traffic
analytics module of the simulator. We compare our proposal,
based on the developed analytical model, with the one obtained
using an M/D/c model. However, the M/D/c model could
not be directly applied, as it supposes the existence of c
homogeneous servers, corresponding to equal packet sizes,
while the adapted MCS case corresponds to heterogeneous
packet sizes. We then consider three flavours for M/D/c, with
three different approximations of the server capacity: the first
considers the distribution’s expected value, i.e. deals with the
system as if all packets use the average MCS, the second
involves the 95-th percentile MCS, and the third supposes that
the worst-case MCS is used. Our proposed scheme ensures
the target outage, while the other model either over-dimension
(95-th percentile and worst case) or violate the target outage



Fig. 6: Evolution of the policy for algorithms 1 and 2.

Fig. 7: Cost evolution for algorithm 2 applied to our model
and the M/D/c model with heterogeneous MCS setup.

(average MCS model). The latter case (average MCS) may be
surprising as, in the same time, the cost is slightly higher than
our proposal and the outage is violated. Indeed, the policy with
the M/D/c assumption is static (constant resource reservation
independent of queue state), while it is dynamic with our
proposal, leading to a lower reservation most of the time in
our case.

D. Implementing the optimal online controller

The previous analysis showed that a search algorithm on
threshold-like policies is efficient. However, this corresponds
to the offline strategy where a policy is determined using the
analytical model. We now consider the online setting, where

the policy optimization problem is modeled as a stochastic
bandit, and, when the policies are restricted to the set P̂ ,
stochastic polychotomy can be used for selecting the best
arm (policy), as it has been shown in section IV-D. In this
algorithm, when an arm is selected to be evaluated, the system
is run for some time Te, long enough for observing the
rare event that is the delay violation. If the policy is large,
i.e. the violation probability is very low, Te could be for
tens of seconds. Otherwise, the violation probability is high
and the policy is quickly adjusted (after a minimal time of
1000TTI = 0.25 sec).
We allow also for the number of users to fluctuate. In this
case, we need to timely update the upper and lower limits
of the interval of the Dichotomy algorithm (section IV-D): if
the number of users increases, the upper limit of the actual
interval may not be large enough to keep the delay violation
probability within the 10−5 bound, and if the number of users
decreases, the lower limit might be too high for the new traffic.

Specifically,

1) if the number of users increases and/or the radio con-
ditions degrade, the system detects it within 1 second
approximately (as will be described in the implementation
proposal in the next subsection). During this time, if
the delay violation probability is smaller than the 10−5

bound, the dichotomy algorithm stays as is (the upper
limit becomes equal to the current policy). If the delay
violation exceeds the bound, the system adjusts the lower
limit of the Dichotomy algorithm to the current policy and
sets the upper limit to the maximal policy in P̂ .

2) if the number of users decreases and /or the radio con-
ditions improve, we look for the new lower limit of the
Dichotomy algorithm by decreasing the actual policy, say
by k. If the decrease by k results in a high violation prob-
ability, this policy becomes the lower limit, otherwise we
continue to decrease by k until violating the bound. The
upper limit stays as before and dichotomy is re-applied.
The value of k might take small values, especially if the
operator is risk avert, but this might however take a long
time to converge. If the operator wishes to accelerate
the convergence, it could take larger k steps, with the
risk of violating the delay bound to a large extent. It is
hence a trade-off between efficiency versus conservatism,
depending on the level of risk aversion of the operator.

In Figure 8, we study the evolution of the violation and cost
with the sequential policy trials under dynamic conditions,
where the number of users varies over time. Starting with
U = 38, transitioning to U = 43, and subsequently to U = 33,
this investigation evaluates the efficiency and adaptability of
our algorithm in real-world scenarios. We have chosen to
implement abrupt changes in the traffic so that the performance
of the algorithm in extreme conditions is tested. From t = 0
to t ∼ 250, the system is empty. Subsequently, as the
number of users increases, we observe that we test a bunch
of policies in a short time due to their resulting high violation
probabilities. The algorithm swiftly adapts to these conditions.



At t ∼ 750, as the number of users increases, so does the
violation probability. However, the algorithm quickly adjusts
within a few seconds, by changing the upper and lower bounds
of the dichotomy interval, and resumes operation. Prior to
convergence for the final user count, at t ∼ 1250, there is a
sudden decrease in the number of users. The algorithm contin-
ues testing the policy for an extended period before changing.
At this point, we observe that the violation probability is zero.
Consequently, we initiate a 5-step decrementation (k = 5)
process for the policy in hand, repeated three times until we
reach a policy with a violation probability exceeding 10−5 that
we test for a short time (until a large violation is detected),
enabling the algorithm to establish new upper and lower
limits and resume operation until convergence. The algorithm
maintains consistent performance despite varying user counts,
highlighting its robustness in dynamic environments.

Fig. 8: Online policy optimization navigating through varying
numbers of users

E. Illustrating the impact of reservation delay

In this section, we study the impact of reserving the re-
sources at the slot boundaries instead of mini-slot boundaries
on both the cost and violation.

We illustrate in figure 9 the impact of increasing τ (the
number of mini-slots during which the system cannot be
interrupted) on the delay violation. We derive the optimal
policies using the Dichotomy algorithm when τ = 1 (case
with no delay in the reservation), and then apply these policies
without modification to the system when τ = 2, 3 and 4. The
URLLC delay budget is fixed and equal to δ = 4 mini-slots.
The figure shows that the violation increases with the increase
of τ , as the policy, derived under the assumption that the
system is fully flexible, i.e., at each mini-slot, is not reactive
enough when τ increases. Observing that the optimal policy
for a fully flexible system does not perform well for a delayed
system, we now use algorithm 2 to generate optimal policies

Fig. 9: Violation probability variation with reservation on slot
boundary when increasing τ while keeping the same policy

for all values of τ . These policies will result in roughly the
same violation probability of 10−5, and so it is reasonable to
compare their costs. We plot in figure 10 (left) the cost with
respect to τ , one can see that the cost has increased by 22%
as τ becomes equal to 4. The rank of these policies in the
set P̂ is illustrated in the right plot. Here the optimal policy
when τ = 1 is a moderate policy that reserves Rmin = 0 until
the queue length exceeds 4, whereas the optimal policy when
τ = 4 is an aggressive policy that starts by reserving 5 PRBs
even for an empty queue (i.e., B(t) = 0). This is due to the
fact that these policies account proactively for the packets that
will arrive in the next mini-slots within the slot. This has been
done in the case where users have different arrival rates that
are uniformly distributed between 0.1 and 0.4.

Fig. 10: The evolution of cost and optimal policy order in
terms of τ (U = 30)



F. Implementation in the 5G and Beyond architecture

We propose an implementation within the Open Radio
Access Network (O-RAN) architecture, specifically within the
RAN Intelligent Controller (RIC), as illustrated in Figure 11.
Two distinct modules are proposed as follows. The MCS
and traffic analytics module (rApp), within the Non Real-
Time (RT) RIC, operates on a time unit on the order of 1
second. It is responsible for constructing a per-gNodeB MCS
distribution and the associated traffic intensity based on direct
measurements from the gNodeBs, including the generated
packets and their associated Channel Quality Indicator (CQI).
It then sends these distributions to the Near RT RIC. The Non
RT RIC also detects changes in the number of users in the
cell and/or their radio conditions and notifies the Near RT
RIC. The latter, which operates within a time range between
10 milliseconds and 1 second, implements two modules. The
first is the policy optimization module, implemented as an
xApp, that selects the resource allocation policy, and the other
one, the QoS monitoring xApp, that observes the packet delays
and calculates the violation probability. Moreover, the policy
optimization module uses the violation probability and the traf-
fic and radio condition distributions as input and implements
the proposed algorithms for selecting the per-gNodeB resource
allocation policy. This scheme has a very low time complexity
O(|B|), as shown in Note 1. These per-gNodeB policies, i.e.,
the amount of URLLC resources associated with each queue
state, are provided to the schedulers located in the O-RAN
Distributed Unit (O-DU), which is a logical node hosting
Radio Link Control (RLC)/Medium Access Control (MAC).
In other words, it is responsible for applying the policies in
real-time.

Fig. 11: Architecture proposal.

VI. CONCLUSION

We focused in this paper on resource allocation for latency-
critical traffic in 5G networks. We considered devices that
transmit packets with stringent delay and reliability constraints
and formulated the equations describing the evolution of the
number of packets waiting in the system. We derived the
delay violation probability, i.e. the probability that the delay

exceeds a maximal threshold and used it in a general resource
allocation setting where the system adapts dynamically the
reserved URLLC resources to the queue state. We showed
that, by exploiting some structure of the policy, we can
devise algorithms with quick convergence, especially in online
optimization where we formulated the problem as a stochastic
unimodal bandit and proposed polychotomy to solve it. Our
numerical results show that our policy optimization algorithms
allow reaching efficient solutions in practical 5G scenarios.
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APPENDIX

A. Computing the performance numerically

In this section, we use a tree exploration method to calcu-
late the performance numerically. To calculate the violation
probability, we should study the evolution of the cumulative
reserved resources in the next δ − 1 mini-slots, whereas this
metric is a random variable that depends on the queue length
in the upcoming mini-slots.

Algorithm 3 describes a numerical method for calculating
this metric. Assume we begin at state b, then define 2 zero
matrices Vold and Vnew with sizes Bmax × Smax, then let
Vold initially hold only one nonzero element at index (b, 1)
which is qb, and passing by block (4-7), we fill out Vnew,
which describes the possible evolutions of the system (queue
length and cumulative number of resources for one step (mini-
slot)). In other words, the element (j, s) in Vnew represents the
probability of having s resources reserved and being at state
j in the next mini-slot, after that in line (8) we update Vold to
be equal to Vnew because it describes the current information
of the system, and repeating the same methodology for δ − 1
we get Vnew as the system possible states (j, s) after δ − 1
mini-slots. So we simply add all the elements of the s column
of Vnew for all s ≤ b − 1. Then we repeat the process for
all states b, summing the results to get the delay violation
probability.

Algorithm 3 Violation probability calculation

Ensure: Vold, Vnew ∈ RBmax×Smax

1: for b ≤ Bmax do
2: Vold[b, 1] = qb

3: for t = 1 : δ − 1 do
4: Vnew = 0Bmax×Smax

5: for all j ≤ Bmax and s ≤ Smax do
6: Vnew[:, s + R(j,p)] = Vnew[:, s + R(j,p)] +

Vold[j, s]Q[j, :]T

7: end for
8: Vold ← Vnew

9: end for
10: V (p) = V (p) +

∑
j≤Bmax

∑
s≤b Vnew[j, s]

11: end for
=0

B. Transition matrix in the delayed case

We show here how the transition matrix D for the delayed
system can be expressed in terms of the transition matrix Q of
the fully flexible system. Let QR be the transition matrix with
no delays while reserving R resource blocks with QR

j,: and QR
:,j

to be the jth raw and the jth column of matrix Q respectively,
thus the three different sub-matrices can be written as follows:

• In the first matrix A(τ−1)0 we will consider only the
following indices (i, j, ℓ = τ − 1)→ (b, b, ℓ = 0) for all

i, j, b ∈ [0, Bmax], then A(τ−1)0 =:

Bmax︷ ︸︸ ︷



QR1
:,1 0 · · · 0 QR1

:,2 · · · QR1

:,Bmax

QR2
:,1 0 · · · 0 QR2

:,2 · · · QR2

:,Bmax

...
...

...
...

... · · ·
...

...
...

...
... · · ·

...
Q

RBmax
:,1 0 · · · 0 Q

RBmax
:,2 · · · Q

RBmax

:,Bmax

• For a01, only the indices (j, j, ℓ = 0) → (j, b, ℓ = 1)
where j, b ∈ [0, . . . , Bmax] are non-zeros, by the fact
that at ℓ = 0, B1 and B2 should be equal, then A0,1 =:

QR1
1,: 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0

Bmax


0 QR2

2,: 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0

Bmax


...

...
...

...
...

0 0 0 · · · 0 Q
RBmax

Bmax,:


• All other matrices, Aℓ,ℓ+1 with ℓ ∈ {1, . . . , τ − 2}, will

have (k, j, ℓ)→ (k, b, ℓ+ 1) as non-zeros indices for all
k, j, b ∈ [0, Bmax] then Aℓ,ℓ+1 =

QR1 0 0 . . . 0

0 QR2 0 . . .
...

0 0
. . . 0 0

...
...

...
. . . 0

0 0 . . . 0 QRBmax


C. Cost comparison of threshold policies

We assumed that minimizing policies (in terms of reser-
vations for each state) would result in cost savings, and we
now intend to illustrate this statement. Then we aim to get
C(p) ≤ C(g) when using two policies p ≤ g ∈ P̂ , for which
we run multiple simulations, the results of which are shown in
figure 12, using descending policies starting with the maximal
policy, and we can see that the cost decreases when the policy
decreases. We should note here that after a certain number
of translations applied to the maximal policy, the cost will be
constant as the number of translations is less than Bmax, and
this in fact is due to the dependency of the distribution of the
queue length on the policies, resulting in a type of translation
of the distribution so that it is concentrated in the larger states,
which leads to approximately the same cost. This shows that
the cost does not increase as policies decrease, thus equation
(24) is valid.



Fig. 12: The variation of cost in the extended threshold set P̂


