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SYMMETRY REDUCTION AND RECOVERY OF TRAJECTORIES

OF OPTIMAL CONTROL PROBLEMS VIA MEASURE

RELAXATIONS

Nicolas Augier1,* , Didier Henrion2,3 , Milan Korda2,3 and
Victor Magron2

Abstract. We address the problem of symmetry reduction of optimal control problems under
the action of a finite group from a measure relaxation viewpoint. We propose a method based on
the moment-Sum of Squares (SOS) aka Lasserre hierarchy which allows one to significantly reduce the
computation time and memory requirements compared to the case without symmetry reduction. We
show that the recovery of optimal trajectories boils down to solving a symmetric parametric polynomial
system. Then we illustrate our method on the symmetric integrator and the time-optimal inversion of
qubits.
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1. Introduction

While symmetries and associated computer algebra methods have been extensively studied in the framework
of dynamical systems [1–4], few results have been obtained in this direction for control systems. The need
for efficient algorithms providing global solutions to optimal control is a key challenge. A significant effort
has been put into exploiting symmetries in extremal trajectories with the Pontryagin Maximum Principle
(see [5, 6]). In particular, in [5] the author defines a reduced Hamiltonian system via Poisson reduction for Lie
group symmetries. However, to the best of our knowledge, no efficient numerical method has been implemented
in this setting. On the other hand, symmetry reduction has been successfully applied to problems of static
constrained polynomial optimization [7], especially when the optimization problem is invariant under the action
of a finite group. It turned out that a symmetry adapted numerical solution allows one to significantly reduce the
computation effort without compromising accuracy. The literature on exploiting symmetries for globally solving
optimal control problems is much sparser. In financial mathematics, symmetries of the Hamilton-Jacobi-Bellman
(HJB) equation attached to specific stochastic processes were exploited in [8, 9]. In [10] the authors are exploiting
symmetries of a particular class of optimal control problems with the objective of generating benchmark HJB
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equations with explicit analytic solutions. Symmetries in an infinite-dimensional linear programming relaxation
of the problem of extreme value computation were exploited in [4].

This paper complements recent efforts to improve the scalability of the moment-SOS hierarchy to perform
more efficient analyses of dynamical systems with sparse input data [11–13]; see also the recent surveys [14,
15] describing several sparsity exploiting techniques for polynomial optimization problems. Here, we develop
a systematic method of symmetry reduction for optimal control problems, when the symmetry is induced
by a finite group (infinite symmetry groups are beyond the scope of the present paper), using the measure
relaxation formulation introduced in [16] and its numerical solution via the moment-SOS (sum of squares)
aka Lasserre hierarchy, as originally proposed in [17]. In particular, we show that the solution of the optimal
control problem can be reduced to solving semi-definite programming (SDP) problems possessing symmetry
invariance properties. To the best of the authors’ knowledge, the problem of symmetry reduction of optimal
control problems has not been studied yet with measure relaxations. The strength of our approach is that it
provides a globally converging method for nonlinear optimal control via the solution of convex SDP problems.
The symmetry reduction allows one to compute lower bounds on the optimal cost in a more efficient way,
which is a crucial task for applications, including those from quantum control [18]: among them one can cite
the computation of the so-called quantum speed limit [19], or biological systems, which are often composed of
large-scale networks of structurally similar dynamical systems having symmetries [20, 21].

Another contribution of this paper is to propose a method allowing one to recover the moments of optimal
trajectories. In the polynomial optimization case without symmetry reduction, specific tools for extraction of
minimizers have been developed in [22] based on flat extensions [23]. The distinguishing feature of this method
is the possibility to extract all global minimizers provided there are only finitely many of them and certain
genericity conditions are satisfied. In the optimal control case, the question of recovery of optimal trajectories
is much more intricate, mainly due to the fact that the dynamical setting provides an infinite number of
moment conditions for which the flat extension condition cannot be satisfied. The non-uniqueness of optimal
trajectories for an optimal control problem is a classical feature (see for instance [24] for an overview in the
sub-Riemannian setting), and is related to the notion of the so-called cut locus. We will see along the article
that this phenomenon appears naturally for optimal control problems admitting symmetries and is an obstacle
to the recovery of optimal trajectories when using the moment-SOS hierarchy. This difficulty has already been
underlined in the context of Generalized Moment Problem in [25], Remark 13. We propose here a practical
reconstruction method of the state and control trajectories in the case of systems having symmetries, both
using invariant polynomials and the characterization of occupation measures as extreme points of the set of
solution of the relaxed problem given in [16].

1.1. Contributions

The main results of the paper can be summarized as follows:

1. We adapt the symmetry-adapted SDP scheme developed in [7] to the optimal control setting, with conver-
gence guarantees, allowing one to provide more precise lower bounds on the cost than without exploiting
symmetry and at a lower computational cost.

2. We propose a method of approximation of optimal trajectories by using invariant polynomials and a
selection algorithm of occupation measures. Our algorithm can be decomposed into the resolution of
two successive symmetry-reduced moment-SOS hierarchies for which the uniqueness of the solution is
guaranteed.

We illustrate theses results by an efficient recovery of time-optimal trajectories for two-level quantum systems,
using a symmetry-adapted moment-SOS hierarchy.

2. Notations

� For n ≥ 1, denote the group of invertible n×nmatrices byGLn(R). Denote the direct sum of two subspaces
E1 and E2 of a vector space V by E1

⊕
E2, and for two matrices (M1,M2) ∈ GLn(R) × GLm(R) with

n,m ≥ 1, denote the (n+m)× (n+m) block matrix composed of the two blocksM1 andM2 byM1

⊕
M2.
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� We let L∞(X,S) denote the Banach space of essentially bounded measurable functions on a set X with
values in a set S with the essential supremum. For a C1 function φ on a product set X × U , let ∇xφ be
gradient of φ w.r.t. the variable x ∈ X.

� A group G with identity element e is said to act on a set X when there is a map ψ : G ×X → X such
that the following holds for every x ∈ X:
1. ψ(e, x) = x
2. ψ(g, ψ(h, x)) = ψ(gh, x), for every g, h ∈ G.
By a slight abuse of notations, we will write in this article ψ(g, x) = g(x), for every (g, x) ∈ G×X. A group
homomorphism between two groups G and H is a mapping τ : G → H such that τ(g1g2) = τ(g1)τ(g2),
for every g1, g2 ∈ G.

� Denote the set of non-negative finite Borel measures on a set S by M+(S). We say that a sequence
(µk)k∈N of measures in M+(S) weak-⋆ converges to µ ∈ M+(S), if for every continuous function φ on S
with compact support, we have

∫
S
φ(x)dµk(x) →

∫
S
φ(x)dµ(x), when k → ∞.

� For n ≥ 1, denote the set of real polynomials with indeterminates x1, . . . , xn by R[x1, . . . , xn]. For α =
(α1, . . . , αn) ∈ Nn, define xα = xα1

1 . . . xαn
n .

� For a subset S of a vector space V , denote the convex hull of S by Conv(S), i.e. the smallest convex set
included in V containing S.

3. Definitions and basic facts

Consider a polynomial map f in the variables (x, u) ∈ X × U with values in Rn, where X is a compact
semi-algebraic subset of Rn and U is a compact semi-algebraic subset of Rm with n,m ≥ 1, and consider the
controlled ordinary differential equation

ẋ(t) = f(x(t), u(t)), (3.1)

where t 7→ x(t) takes values in X, and the control t 7→ u(t) takes values in U .
Let

X = {x ∈ Rn | ∀j ∈ {1, . . . , p}, vj(x) ≥ 0},

K = {x ∈ Rn | ∀j ∈ {1, . . . , q}, θj(x) ≥ 0},

where (vj)j∈{1,...,p}, (θj)j∈{1,...,q} with p, q ≥ 1 are families of polynomials w.r.t. the variable x, such thatK ⊆ X,
and

U = {u ∈ Rm | ∀j ∈ {1, . . . , l}, wj(u) ≥ 0},

where (wj)j∈{1,...,l} with l ≥ 1 is a family of polynomials w.r.t. the variable u.
Following the definition given in [5], we define a symmetry for control system (3.1) as follows.

Definition 3.1. For a subgroup G of GLn(R) acting on X, and a subgroup H of GLm(R) acting on U , we say
that equation (3.1) is G-invariant if there exists a group homomorphism τ : G→ H such that for every g ∈ G,
f(g(x), τ(g)(u)) = g(f(x, u)) for every (x, u) ∈ X × U .

A simple example of such invariance is the case of a controlled harmonic oscillator corresponding to

f(x1, x2, u) =

(
x2

−x1 + u

)
. We have that equation (3.1) is G-invariant with G = {IdR2 ,−IdR2}, H = {1,−1}

and τ(±IdR2) = ±1.

Definition 3.2. A set S is G-invariant if g(S) ⊂ S for all g ∈ G.
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Assume that the sets X,K,U, {x0} and equation (3.1) are G-invariant1, and consider the optimal control
problem:

ρ :=infu∈L∞([0,T ],U) J(x, u) =

∫ T

0

h(t, x(t), u(t))dt+H(x(T ))

s.t. (x(t), u(t)) satisfies equation (3.1), x(0) = x0, x(T ) ∈ K,

(OCP)

where h : [0, T ] × X × U → R is a polynomial function such that h(t, g(x), τ(g)(u)) = h(t, x, u), for every
(t, x, u) ∈ [0, T ] × X × U , and H : X → R is a polynomial function such that H(g(x)) = H(x), for every
g ∈ G, x ∈ X.

3.1. Embedding of the optimal control problem into a linear program on measures

We relax Problem (OCP) into a linear program on measures, following the approach pioneered in [26–29]
and used computationally in conjunction with semi-definite programming (SDP) hierarchies in [17].

3.1.1. Liouville equation

Given a test function ϕ ∈ C1([0, T ] × Rn) and a trajectory x(·) of (3.1) generated by a control input u(·)
starting from the initial condition x0, we have

ϕ(T, x(T ))− ϕ(0, x0) =

∫ T

0

ϕ̇(t, x(t)) dt =

∫ T

0

∂ϕ

∂t
(t, x(t)) + ⟨∇xϕ(t, x(t)), f(x(t), u(t))⟩ dt. (3.2)

To each trajectory-control pair, we can associate a measure µ associated to the trajectory-control pair (x(t), u(t))
is defined by

µ(A×B × C) =

∫ T

0

IA×B×C(t, x(t), u(t)) dt,

for all Borel sets A ⊂ [0, T ], B ⊂ Rn, C ⊂ U , and a terminal measure defined by

µT := δx(T ).

Definition 3.3. We say that a pair of measures (ν, νT ) ∈ M+([0, T ] × X × U) × M+(K) is a pair of
occupation measures associated with a trajectory of equation (3.1) if dν(t, x, u) = dtδx(t)(dx)δu(t)(du) and
dνT (x) = δx(T )(dx), for some pair (x(t), u(t)) satisfying equation (3.1), where x(·) : [0, T ] → X is a Lipschitz
function and u(·) ∈ L∞([0, T ], U).

For a pair (µ, µT ) of occupation measures, the definition of µ implies that

∫ T

0

h(t, x(t), u(t)) dt =

∫
[0,T ]×Rn×U

h(t, x, u) dµ(t, x, u),

for all h ∈ L1(µ). The measure µ therefore uniquely encodes the trajectory-control pair (x(t), u(t)) and allows
one to replace integration along the trajectory-control pair by spatial integration with respect to µ. Using this

1The requirement of x0 being G-invariant can be relaxed to x0 ∈ X0 with X0 being G-invariant.
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and (3.2), we obtain the relation∫
ϕ(T, x) dµT (x)− ϕ(0, x0) =

∫
[0,T ]×Rn×U

∂ϕ

∂t
+ ⟨∇xϕ(t, x), f(x, u)⟩ dµ(t, x, u). (3.3)

This equation is referred to as the Liouville equation. Crucially, the equation is affine in the measures (µ, µT ).

3.1.2. Relaxed OCP

For a set S in a Euclidean space, denote the set of Borel measures defined on S by M+(S). If the infimum of
(OCP) is attained, denote the set of optimal pairs by T = {(x(t), u(t)) ∈ X ×U optimal in (OCP)}. With these
definitions, we are ready to write an infinite-dimensional linear programming (LP) relaxation of Problem (OCP).
The relaxation reads

ρ⋆ = inf
µ,µT

∫
hdµ+

∫
H dµT

s.t. (µ, µT ) satisfy (3.3) ∀ϕ ∈ C1([0, T ]×X)

(µ, µT ) ∈ M+([0, T ]×X × U)× M+(K).

(O)

We observe that the objective function of this optimization problem is linear, the first constraint is affine and
the last constraint is an inclusion into a convex cone. Problem (O) is therefore an infinite-dimensional linear
programming problem with the decision variables (µ, µT ). Note that the constraint sets on the trajectories and
controls are imposed through the conic inclusion (the last constraint) of the optimization problem.

Definition 3.4. Let us denote byM the convex set of optimal solutions (µ, µT ) ∈ M+([0, T ]×X×U)×M+(K)
of Problem (O).

From here, we will make the following assumption.

Assumption 3.5. Assume that:

� Problem (OCP) is feasible;
� X, K and U are compact and T <∞, which implies that M is non-empty.

A simple observation shows that ρ⋆ ≤ ρ. Whenever ρ⋆ < ρ, we say that there is a relaxation gap between the
original Problem (OCP) and the relaxed Problem (O). A fundamental question is to understand under what
assumptions there is no relaxation gap. A classical set of assumptions from [16] is:

Assumption 3.6. The following conditions hold:

� ∀(t, x) ∈ [0, T ]×X, the function v 7→ infu∈U{h(t, x, u) | v = f(t, x, u)} is convex;
� ∀x ∈ X, the set f(x, U) is convex;
� h is lower semicontinuous and f is Lipschitz;

We introduce the following definition of occupation measures, which correspond to the solutions of the
measure Problem (O) which provide solutions of the original Problem (OCP).

Remark 3.7. Note that, under Assumption 3.6, the occupation measures can be defined as measures associated
with classical solutions of equation (3.1), instead of considering solutions in the sense of Young measures (for
more information, see for instance [16], Proof of Thm. 2.3).

3.2. Moment sequences, relaxation scheme, invariance

For positive integers k,N , define NN
k := {ω ∈ NN |

∑N
j=1 ωj ≤ k}. For positive integers n,m, let us define

a multi-index α as a vector of n nonnegative integers α = (α1, . . . , αn), and a multi-index β as a vector of
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m nonnegative integers β = (β1, . . . , βm), and s ≥ 1. For the sake of notation, a polynomial q ∈ R[t, x, u]
(respectively, q ∈ R[x]) is written as

q(t, x, u) =
∑

γ=(s,α,β)

qγt
sxα1

1 . . . xαn
n uβ1

1 . . . uβm
m ,

(respectively, q(x) =
∑

α qαx
α1
1 . . . xαn

n , where α ∈ Nn).

Definition 3.8. � Given a real sequence z = (zγ)γ∈N1+n+m (respectively, y = (yα)α∈Nn), define the so-called
Riesz linear functional

Lz(q) :=
∑
γ

qγzγ ,

for every q ∈ R[t, x, u] (respectively, Ly(q) :=
∑

α qαyα, for every q ∈ R[x]).
� For each k ∈ N, define the moment matrix Mk(z) by

(Mk(z))β,γ := zβ+γ ,

for every β, γ ∈ N1+n+m
k (respectively, (Mk(y))β,γ := yβ+γ , for every β, γ ∈ Nn

k ).
� For each k ∈ N and q ∈ R[t, x, u] (respectively, q ∈ R[x]) , define the localizing matrix as

(Mk(qz))β,γ :=
∑

δ∈N1+n+m

qδzδ+β+γ ,

for every β, γ ∈ N1+n+m
k (respectively, (Mk(qy))β,γ :=

∑
δ∈Nn qδyδ, for every β, γ ∈ Nn

k ).
� For the sake of notation, define z(t) := (zj,0,0)j∈N, z(x) := (z0,α,0)α∈Nn , and z(u) := (z0,0,β)β∈Nm .

Definition 3.9. A pseudo-moment sequence z = (zα)α∈B (respectively, y = (yα)α∈B̃) is defined as the image

of a monomial basis B (respectively, B̃) of R[t, x, u] (respectively, R[x]) by a linear functional L : R[t, x, u] → R
(respectively, L : R[x] → R).

3.2.1. Dense relaxation

Assumption 3.10. Assume that the final time T > 0 is fixed and without loss of generality, let us normalize
it to T = 1.

Remark 3.11. Assumption 3.10 can be removed by considering the final time T as a supplementary variable,
as it was done in [17]. All the results of the present paper remain valid in this case provided that a finite bound
is imposed on the final time.

Consider the polynomials (vj)j , (θj)j , (wj)j as defined in Section 3, and define d(X,K,U) :=
maxj,l,k (deg(vj),deg(θl),deg(wk)). Following the steps of [17], we propose the following dense relaxation hier-
archy, indexed by k ≥ k0, where k0 := ⌈max (deg(f),deg(h),deg(H), d(X,K,U)) /2⌉, for two pseudo moment
sequences z = (zα)α∈B and y = (yα)α∈B̃, where B (respectively, B̃) is a monomial basis of R[t, x, u] (respectively,
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R[x]). It is denoted by (Qk), and defined as follows:

ρk := inf
y,z

Lz(h) + Ly(H)

s.t. Mk(y),Mk(z) ⪰ 0

Mk−⌈deg(vj)/2⌉(vjz(x)) ⪰ 0

Mk−⌈deg(wj)/2⌉(wjz(u)) ⪰ 0

Mk−⌈deg(θj)/2⌉(θjy) ⪰ 0

Mk−1(t(1− t)z(t)) ⪰ 0

Ly(ϕ)− Lz (∂ϕ/∂t+ ⟨∇xϕ, f⟩) = ϕ(0, x0),

∀ϕ = (tsxα) ∈ R[t, x] s.t. s+ |α| ≤ 2k + 1− deg(f),

(Qk)

where z(t), z(x) and z(u) are defined as in Definition 3.8. Note that last equality is a linear equality constraint
involving the pseudo-moment variables y and z holds if and only if equation (3.3) is satisfied for every ϕ ∈
R[t, x] s.t. deg(ϕ) ≤ 2k + 1− deg(f).

3.2.2. Putinar’s Positivstellensatz

The key argument in the convergence of the hierarchy is Putinar’s Positivstellensatz, which is stated in its
simplest form as follows. Let Ω ⊂ RN be a compact semi-algebraic set defined as

Ω := {x ∈ RN | gj(x) ≥ 0, j ∈ {1, . . . ,m}},

for some family of polynomials (gj)j∈{1,...,m} in R[x].

Assumption 3.12. There exists a polynomial q ∈ R[x] such that q(x) ≥ 0 is compact and q(x) = q0(x) +∑m
j=1 gj(x)qj(x), where the polynomials (qj)j∈{1,...,m} are sums of squares (SOS) polynomials in R[x].

Theorem 3.13 (Putinar Positivstellensatz [30]). Assume that Assumption 3.12 holds. Then we have the
following:

� If f ∈ R[x] and f > 0 on Ω, then f = f0 +
∑m

j=1 fjgj, for some family (fj)j∈{1,...,m} of sums of squares
(SOS) polynomials in R[x].

� Let y = (yα)α∈NN be a sequence of real numbers. If for every j ∈ {1, . . . ,m} and k ∈ N, Mk(y) ⪰ 0 and
Mk(gjy) ⪰ 0, then y has a representing measure with support contained in Ω, i.e., there exists µ ∈ M+(RN )
with supp(µ) ⊆ Ω such that yα =

∫
RN x

αdµ(x), for every α ∈ NN .

3.2.3. Convergence result

Under Assumption 3.5, 3.6 and 3.12, the results of [17], Theorem 3.6 and [25], Theorem 5 allow us to prove
the following.

Proposition 3.14. Assume that Assumption 3.6 holds for Ω = [0, T ] × X × U and Ω = K, and that
Assumption 3.12 holds. Then we have the following:

� the sequence (ρk)k is nondecreasing and ρk → ρ⋆ when k → +∞
� if Problem (O) has a unique solution (µ, µT ), then any sequences (zksαβ)k≥k0

and (ykα)k≥k0
optimal in (Qk)

satisfy for every s ∈ N, α ∈ Nn and β ∈ Nm,

lim
k→∞

zksαβ =

∫
[0,T ]×X×U

tsxαuβdµ(t, x, u),
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and

lim
k→∞

ykα =

∫
K

xαdµT (x).

3.2.4. Structure of the set of optimal measures

In the case where the set of optimal trajectories of Problem (OCP) is not reduced to a single trajectory, the
set of optimal measures for Problem (O) is not reduced to occupation measures associated with trajectories in
the sense of Definition 3.3. However, as shown in [16], there are strong structural results for the solutions of
equation (3.3), which will be crucial for the methods exposed in the present paper. Let us first recall a basic
notion.

Definition 3.15. An extreme point of a convex set A is a point x ∈ A with the property that if x = θy+(1−θ)z
with y, z ∈ A and θ ∈ (0, 1), then x = y = z.

By [16], Theorem 1.3, we have the following results for the solutions of equation (3.3).

Proposition 3.16. The set of solutions of equation (3.3) satisfying (µ, µT ) ∈ M+([0, T ]×X×U)×M+(K) is a
convex compact set in the weak-⋆ topology. Its set of extreme points E := S×ST ⊂ M+([0, T ]×X×U)×M+(K)
is non empty and can be identified as occupation measures, as in Definition 3.3.

Using [16], Corollary 1.4, we have the following property.

Corollary 3.17. For every (µ, µT ) solution of equation (3.3), there exist probability measures ν on S and νT
on ST satisfying

∫
[0,T ]×X×U

ϕ(t, x, u)dµ(t, x, u) =

∫
S

(∫
[0,T ]×X×U

ϕ(t, x, u)dγ(t, x, u)

)
dν(γ),

∫
K

φ(x)dµT (x) =

∫
ST

(∫
K

φ(x)dγ(x)

)
dνT (γ),

for all (ϕ, φ) ∈ C1([0, T ]×X × U)× C1(K).

By linearity and continuity of the cost functional of Problem (O) w.r.t. (µ, µT ) ∈ M+([0, T ] × X × U) ×
M+(K), we obtain the following result.

Corollary 3.18. The set M is a convex compact set of M+([0, T ]×X ×U)×M+(K) in the weak-⋆ topology.
Its set of extreme points is non empty and is equal to E ∩ M ⊂ M+([0, T ] × X × U) × M+(K), where E is
defined in Proposition 3.16.

4. Techniques and properties for symmetry reduction

The idea behind the algorithms which will be exposed in further Sections 7 and 8 is to reduce the problem via
a symmetry decomposition of the solution set M, by the resolution of appropriate G-invariant LP problems on
the set of G-invariant non-negative measures. It requires an understanding of the group action on the space of
optimal trajectories T , on polynomials, as well as on the space of non-negative measures, that will be described
in this section. We will first state two crucial results, namely Lemma 4.3 and Proposition 4.4 about the structure
of the set of solutions to (O). Then we will introduce symmetry-reduced moments matrices, which will be the
key tool enabling us to solve approximately the symmetry-reduced measure LPs via SDPs.

In what follows, we make the following assumption.
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Assumption 4.1. The group G is finite, and Problem (OCP) is G-invariant.

4.1. Group action on measures and properties of solutions of the linear problem on
measures

Definition 4.2. � For a measure µ ∈ M+([0, T ] × X × U), define the pushforward measure g#µ of µ,
defined for every g ∈ G, for every Borel subset A of [0, T ], Borel subset B of X, and Borel subset C
of U , by g#µ(A × B × C) := µ(A × g−1(B) × τ(g)−1(C)). Define similarly, for a Borel subset D of K,
g#µT (D) := µT (g

−1(D)) for µT ∈ M+(K).
� Define for every µ ∈ M+([0, T ] × X × U), the Reynold operator R by R(µ) := 1

|G|
∑

g∈G g#µ. Define

similarly RT (µT ) :=
1
|G|
∑

g∈G g#µT , for µT ∈ M+(K).

� We say that a measure µ ∈ M+([0, T ] ×X × U) (respectively, µT ∈ M+(K)) is G-invariant if g#µ = µ
(respectively, g#µT = µT ), for every g ∈ G. Denote the set of G-invariant pairs (µ, µT ) ∈ M+([0, T ] ×
X × U)× M+(K) of measures which are solution of Problem (O) by MG.

� For every G-invariant (µ⋆, µ⋆
T ) ∈ M+([0, T ]×X ×U)×M+(K), define the (possibly infinite dimensional)

convex set

Aµ⋆,µ⋆
T
:= {(µ, µT ) ∈ M+([0, T ]×X × U)× M+(K) | R(µ) = µ⋆, RT (µT ) = µ⋆

T }.

A first observation is that if the control system and initial condition x0 and final target set K are invariant by
G, then the Liouville equation (3.3) is invariant by G, i.e., the set M is G-invariant, as stated in next Lemma.

Lemma 4.3. Assume that the initial condition x0 ∈ X and final target set K ⊆ X are invariant by G. Then
equation (3.3) is invariant by G, i.e., the pair (µ, µT ) satisfy (3.3) if and only if (g#µ, g#µT ) satisfy (3.3), for
every g ∈ G.

Proof. Consider µ satisfying (3.3) and ϕ ∈ C1([0, T ]×X). For every g ∈ G, we have∫
K

ϕ(T, g(x))dµT (x)− ϕ(0, g(x0)) =

∫
[0,T ]×X×U

(
∂ϕ

∂t
(t, g(x)) + ⟨∇xϕ(t, g(x)), g(f(x, u))⟩

)
dµ(t, x, u)

=

∫
[0,T ]×X×U

(
∂ϕ

∂t
(t, g(x)) + ⟨∇xϕ(t, g(x)), f(g(x), τ(g)(u))⟩

)
dµ(t, x, u)

=

∫
[0,T ]×X×U

(
∂ϕ

∂t
(t, x) + ⟨∇xϕ(t, x), f(x, u)⟩

)
dg#µ(t, x, u),

where the last equality is obtained by symmetry invariance of f . We deduce the result using the equality
g(x0) = x0 and

∫
K
ϕ(T, g(x))dµT (x) =

∫
K
ϕ(T, x)dg#µT (x) by G-invariance of x0 and K.

Note that the fact that the set M is G-invariant does not imply that each of its elements are G-invariant,
so that MG ⊊ M in general. We state the following structural results for the set of G-invariant solutions of
Problem (O), whose proof is postponed to Appendix A.1.

Proposition 4.4. The set MG ⊆ M defined in Definition 4.2 satisfies the following properties:

� MG is non empty.
� We have the equality

MG = {(R(µ), RT (µT )) | (µ, µT ) ∈ M},

and MG is a weak-⋆ compact convex set.
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MG

M

Aµ?1

(µ?
1;µ

?
1T )

(µ?
2;µ

?
2T )

Aµ?2

Occupation measures

Occupation measures

Figure 1. Simplified representation of the set of optimal measures M for Problem (O). The
occupation measures are the extreme points of M, and (µ⋆

1, µ
⋆
1T ), (µ

⋆
2, µ

⋆
2T ) are the extreme

points of MG.

� The extreme points of MG are the images by the Reynold operator of the occupation measures optimal
in (O), i.e.,

EG = {(R(µ), RT (µT )) | (µ, µT ) ∈ M is a pair of occupation measures}.

� We have MG = Conv(EG).

Note that the results of this paper are not specific to the case where the set of optimal trajectories T for
Problem (OCP) is finite. However, in the latter case, we have the following simple features, which are illustrated
on the simplified finite dimensional representation of Figure 1.

Remark 4.5 (Finite dimensional case). When there is a finite number k ≥ 1 of optimal trajectories, the set of
optimal measures is

M = {(µ, µT ) ∈ M+([0, T ]×X × U)× M+(K) | µ =
k∑

i=1

λiν
i, µT =

k∑
i=1

λiν
i
T

k∑
i=1

λi = 1, λi ≥ 0},

where (νi, νiT )i∈{1,...,k} are pairs of occupation measures associated with the optimal trajectories. In this case,
the group action induces a permutation of the extreme points of M.

4.2. Group action on pseudo-moment sequences and symmetry-adapted moment
matrices

Here we give some important properties concerning the numerical resolution of the SDPs. In particular,
using the classical isotopic decomposition of G-modules, we define the symmetry reduced moment matrices, as
it was done in [7]. It is first presented for general polynomials depending on a variable x ∈ Rn; its adaptation
to the variables (t, x, u) involved in optimal control problems is straightforward. It requires standard tools of
representation theory, which can be found, for instance in [31]. Consider a group action of a finite group G of
GLm(R) on a subspace X ⊆ Rn.
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Definition 4.6. � A linear map L : R[x] → R is G-invariant if L(P (g(x))) = L(P (x)) for every g ∈ G and
P ∈ R[x].

� A pseudo-moment sequence y = (yα)α∈B associated with a linear map L : R[x] → R and a monomial basis
B of R[x] is G-invariant if L is G-invariant.

� Define the Reynold operators on linear maps L : R[x] → R, by R(L) := 1
|G|
∑

g∈G L
g, where Lg(P )(x) =

L(P (g(x))), for every g ∈ G and P ∈ R[x].
� For a polynomial P ∈ R[x], define the polynomial R(P ) := 1

|G|
∑

g∈G P
g.

As described in [7], Section 3, the set R[x] can be seen as a real G-module defined by a group action defined
for a polynomial P ∈ R[x], define P g(x) := P (g(x)) for every g ∈ G. As a direct consequence of the so-called
isotopic decomposition of G-modules, the set R[x] can be decomposed as a sum of irreducible G-modules, as

R[x]⊗ C =

q⊕
l=1

Vl, (4.1)

where

Vl =
⊕
j∈Jl

Wlj

where for fixed l ∈ {1, . . . , q}, the sets Wlk are pairwise isomorphic complex irreducible G-modules, in the sense
that they do not admit non-trivial G-invariant subspaces.

Now we can give the following definition of symmetry-reduced moments matrices, which are defined according
to this decomposition, by considering a basis (slj,v)v ofWlj , setting Sl = {slj,1, j ∈ Jl}, and defining the truncated

sets Sl
k := {(sl1, . . . , slηl

)} ⊆ Sl of the basis elements of Sl of degree at most k. Note that, as claimed in [7],

Section 3, the set Sl ⊆ C[x] can be assumed to be real.

Definition 4.7 (Symmetry-reduced moment and localizing matrices). Define the symmetry-reduced moments
matrix, defined for a G-invariant pseudo-moment sequence y = (yα)α∈B associated with a G-invariant linear
map L, as

MG
k (y) :=

k⊕
l=1

MG
kl(y),

where the (u, v) entry of MG
kl(y) is equal to L(s

l
us

l
v).

Remark 4.8. � For the study of Problem (OCP), one needs to consider the variables (t, x, u) and the
action of an element g ∈ G as (t, x, u) 7→ (t, g(x), τ(g)(u)), as described in Section 3. It is then necessary
to introduce both G-invariant pseudo-moment sequence w.r.t. the variables (t, x, u) and x, that we will
be denoted, respectively as z = (zγ)γ∈B and y = (yα)α∈B̃, for a monomial basis B (respectively, B̃) of
R[t, x, u] (respectively, R[x]).

� The same symmetry reduction holds for the partial moment matrices associated with z(t), z(u) and z(x),
as well as for the localizing matrices, as defined in Definition 3.8.

To this purpose, we introduce the following set.

Definition 4.9. Let KG be the set of pairs (y, z) of G-invariant sequences written as y = (yα)α∈B̃ and z =

(zγ)γ∈B, for some monomial basis B of R[x] and B̃ of R[t, x, u].

4.2.1. Sign-symmetries

In the numerical implementations proposed in Section 9, we will consider the practical case of sign symmetries
for the optimal control problem, whose algebraic structure is described below.
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Definition 4.10. We say that Problem (OCP) has a sign-symmetry if it is G-invariant in the sense of
Definition 3.1, where G is generated by a finite set of n × n diagonal matrices (Dj)j∈{1,...,s}, s ≥ 1, with
coefficients equal to ±1, such that, for every j ∈ {1, . . . , s}, τ(Dj) is a m×m diagonal matrix with coefficients
equal to ±1.

In the case where Problem (OCP) has a sign-symmetry generated by a single n × n diagonal matrix D we
use the following decomposition and reduction of moment matrices:

� We consider the truncations of the irreducible decomposition (4.1) to degree k as

R[t, x, u]k = V 1
k

⊕
V 2
k ,

where

V 1
k = {P ∈ R[t, x, u]k | P (t,D(x), τ(D)(u)) = P (t, x, u)},

and

V 2
k = {P ∈ R[t, x, u]k | P (t,D(x), τ(D)(u)) = −P (t, x, u)}.

Similarly consider

R[x]k = Ṽ 1
k

⊕
Ṽ 2
k ,

where

Ṽ 1
k = {P ∈ R[x]k | P (D(x)) = P (x)},

and

Ṽ 2
k = {P ∈ R[x]k | P (D(x)) = −P (x)}.

� We generate G-invariant pseudo-moment sequences (y, z) ∈ KG as sequences indexed w.r.t. the products
of elements of monomial basis Sj

k associated with V j
k (respectively, S̃j

k associated with Ṽ j
k ), for j ∈ {1, 2}.

� As defined in Definition 4.7, the moment matrix MG
k (z) can be decomposed as two blocks

MG
k (z) =MG

k1(z)
⊕

MG
k2(z),

where for l ∈ {1, 2}, the square matrix MG
kl(z) has dimension equal to dim(V l

k).
� The matrix MG

k (y) can be decomposed as two blocks MG
k (y) = MG

k1(y)
⊕
MG

k2(y), where for l ∈ {1, 2},
the square matrix MG

kl(y) has dimension equal to dim(Ṽ l
k).

Example 4.11. For the case n = m = 1, D = τ(D) = −1, k = 2, in the concatenation of the basis S1
2 =

(1, t, t2, x2, xu, u2) and S2
2 = (x, u, tx, tu) and associated pseudo-moment sequences zS1

2
indexed w.r.t. products

of the elements of S1
2 and zS2

2
indexed w.r.t. products of the elements of S2

2 , the moment matrix reads as two
blocks

MG
2 (z) =

(
M2(zS̃1

2
) 0

0 M2(zS̃2
2
)

)
,
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of size 6× 6 and 4× 4, instead of a squared 10× 10 matrix in the dense case. Similarly, in the concatenation of
the basis S̃1

2 = (1, x2) and S̃2
2 = (x), and associated pseudo-moment sequences yS̃1

2
indexed w.r.t. the elements

of S̃1
2 and yS̃2

2
indexed w.r.t. the elements of S̃2

2 , the moment matrix reads as two blocks

MG
2 (y) =

(
M2(yS̃1

2
) 0

0 M2(yS̃2
2
)

)

of size 2× 2 and 1× 1.

Remark 4.12. In the case where G is generated by several diagonal matrices in the sense of Definition 4.10,
the moment matrices can be reduced into more numerous blocks, in the same way as what is done for the dual
version on positive polynomials in [32], Section III-C.

5. Symmetry adapted relaxation for optimal control

Now we adapt the moment-SOS relaxation exposed in [17] by adapting the polynomial optimization results
of [7] to the setting of Problem (O).

We restrict Problem (O) to the optimization over G-invariant measures.

ρG := inf
µ,µT

⟨µ, h⟩

s.t. (µ, µT ) satisfy (3.3)

supp(µT ) ⊆ K

(µ, µT ) ∈ M+([0, T ]×X × U)× M+(K)

µ, µT are G− invariant, i.e. g#µ = µ, g#µT = µT , for every g ∈ G.

(OG)

As Problem (O) is feasible, we can consider µ, µT in its feasible set, and obtain directly by Lemma 4.3 and the
affine dependence of equation (3.3) in the pair (µ, µT ) that (µ⋆, µ⋆

T ) = (R(µ), RT (µT )) belongs to the feasible
set of Problem (OG). It follows that Problem (OG) is feasible, and the corresponding cost is unchanged by the
transformation via the transformation (µ, µT ) 7→ (R(µ), RT (µT )), so that ρG = ρ⋆, where ρ⋆ is the optimal cost
of Problem (O). As a consequence, the set of optimal measures for Problem (OG) is exactly the set MG defined
in Definition 4.2.

Remark 5.1. Note that Problem (OG) does not correspond to a measure relaxation of an optimal control
problem in the form described by (OCP). Contrarily to what one could think at first sight and to what has been
done in different settings in [3, 5, 33], we do not map the trajectories of (OCP) onto trajectories of a reduced
control system via a change of variables. Instead, we take advantage of the linearity of the measure relaxation
formulations (O) and (OG).

In order to propose a suitable semi-definite approximation of Problem (OG) with convergence guarantees,
we propose to follow the steps of [7], Section 3 via the use of decompositions described in Section 4 allowing
one to decompose the moment matrices and localizing matrices into several low dimensional blocks, as defined
in Definition 4.7.

For (y, z) ∈ KG, denote the symmetry reduced moment matrices by MG
k (y) and MG

k (z) defined for k ≥ 1, as
in Definition 4.7. Following the steps of [7], we propose a hierarchy indexed by k ≥ k0, where k0 is chosen as in
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Section 3.2.1, denoted by (QG
k ):

ρGk := inf
(y,z)∈KG

Lz(h) + Ly(H)

s.t. MG
k (y),MG

k (z) ⪰ 0

MG
k−⌈deg(vj)/2⌉(vjz(x)) ⪰ 0

MG
k−⌈deg(wj)/2⌉(wjz(u)) ⪰ 0

MG
k−⌈deg(θj)/2⌉(θjy) ⪰ 0

MG
k−1(t(1− t)z(t)) ⪰ 0

Ly(ϕ)− Lz (∂ϕ/∂t+ ⟨∇xϕ, f⟩) = ϕ(0, x0), ∀ϕ = (tsxα) ∈ R[t, x] s.t. s+ |α| ≤ 2k + 1− deg(f)

(QG
k )

Remark 5.2. In accordance with Definition 4.6, G-invariant pseudo-moment sequences (y, z) ∈ KG can be
generated as R(L)(B), where B is a monomial basis of R[x] and L : R[x] → R is a linear map. The same holds
for z = (zγ)γ , replacing R[x] by R[t, x, u]. Up to an elimination of redundant terms, those sequences can be
reindexed w.r.t. a basis of invariant polynomials of R[x] and R[t, x, u], the latter being further introduced in
Defintion 7.1.

Theorem 5.3. Assume that Assumption 3.6 and 3.12 hold. Then the sequence (ρGk ) is non-decreasing and
converges to ρ∗ when k → +∞.

Proof. We adapt the arguments of [7], Theorem 3.7. Let y, z be two pseudo-moment sequences associated with
linear maps L : R[t, x, u] → R and L̄ : R[x] → R, which are solution of (Qk), which is feasible by [17], Theorem
3.6. Then the two G-invariant sequences ỹ, z̃ associated with R(L) and RT (L̄), where R(L) and RT (L̄) are
defined as in Definition 4.6, are solution of (QG

k ), so that we have that the SDP (QG
k ) is feasible and ρGk = ρk.

As ρk → ρ∗ from Proposition 3.14, it follows that ρGk → ρ∗, when k → ∞.

The same result as Proposition 3.14 can be proved for the symmetric relaxation, as a direct consequence
of [25], Theorem 5.

Proposition 5.4. Assume that Assumption 3.6 and 3.12 hold and that Problem (OG) has a unique solution
(µ, µT ), i.e., that MG is a singleton. Then any sequences (zksαβ)k≥k0

and (ykα)k≥k0
optimal for (QG

k ), we have,
for every s ∈ N, α ∈ Nn and β ∈ Nm,

zksαβ →
∫
[0,T ]×X×U

tsxαuβdµ(t, x, u),

ykα →
∫
K

xαdµT (x),

when k → +∞.

6. A recovery method without symmetry reduction: how to
catch extreme points in the set of optimal measures

In this section, we address the problem of recovering an approximation to an optimal trajectory from a given
moment sequence obtained from solving (QG

k ). We start with the case where symmetries are not exploited.
Subsequently, we will tackle the recovery problem in the symmetry-reduced case.
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6.1. Christoffel-Darboux kernel for curve reconstruction

Given a moment sequence, a method to recover the support of the corresponding measure is to use the
so-called Christoffel-Darboux kernel, following the steps of [34] and [35], Section 6. Let b(t, y) be a polyno-
mial basis of R[t, y]k, T > 0 and let Y ⊆ Rn be an arbitrary set, and f be a mapping from [0, T ] to Y . Let

Mk =
∫ T

0
b(t, f(t))b(t, f(t))Tdt be the moment matrix of order d = 2k of the measure dµ(t, y) = δf(t)(dy)dt

on [0, T ]× Y .

Definition 6.1. Define the Christoffel-Darboux (CD) polynomial

qk(t, y) := b(t, y)(Mk + βkId)
−1 b(t, y)T ,

with a regularization parameter βk := 23−
√
k, and fk(t) := min

(
argminy∈Y qk(t, y)

)
.

We have the following important result, which corresponds to [34], Theorem 1.

Theorem 6.2. If the set S ⊆ [0, T ] of continuity points of f is such that [0, T ] \ S has Lebesgue measure zero,
then fk(t) → f(t) when k → +∞ for a.e. t ∈ [0, T ], and ∥fk − f∥L1([0,T ]) → 0.

In the case where there is a unique solution to Problem (OCP), this method allows us to rebuild (at least
approximately) the optimal trajectory. Indeed, in the latter case, Proposition 3.14 allows to recover trajectories
thanks to the knowledge of the approximate moment matrix of the corresponding occupation measure, in
the sense of Definition 3.3. However, the reconstruction is much trickier when uniqueness fails. In this case,
by linearity of Problem (O), the moments which are obtained via moment relaxations may correspond to
approximations of the moments of any superposition of measures belonging to the set M.

Remark 6.3. Non-uniqueness is a natural consequence of the existence of symmetry for Problem (OCP), when
there exists g ∈ G such that τ(g) ̸= IdRm , where τ is as in Definition 3.1. In this case, if (x(t), u(t)) steers a
G-invariant element x0 ∈ X towards a G-invariant set K, then (g(x(t)), τ(g)(u(t))) satisfies the same property,
for every g ∈ G.

6.2. Catching extreme points

In this section, we propose a method that allows approximating the moments of an occupation measure
solution of Problem (O), without exploiting symmetries. Our method, based on the resolution of two SDPs,
ensures convergence towards the moments of the extreme points of the optimal measure solutions M, which
correspond to occupation measures by Corollary 3.18.

The two steps are:

1. Compute the truncated optimal cost ρk via the resolution of the SDP (Qk);
2. Solve the SDP (Zk) defined below in order to obtain an approximation of the moments of a pair of

occupation measures in M.

Assumption 6.4. Consider two polynomials P ∈ R[t, x, u] and P̃ ∈ R[x] such that

inf
(µ,µT )∈M

∫
[0,T ]×X×U

P (t, x, u)dµ(t, x, u) +

∫
K

P̃ (x)dµT (x) (6.1)

has a unique solution (µ⋆, µ⋆
T ) ∈ M+([0, T ]×X × U)× M+(K).

Notice that the optimization in (6.1) takes place over M, i.e., the set of optimal solutions to (O).

Remark 6.5. The fact that the measures in M+([0, T ]×X × U) and M+(K) are moment determinate guar-
antees the existence of P and P̃ . Moreover, the genericity of the uniqueness property of Assumption 6.4 w.r.t.
polynomials P and P̃ of large enough degree can be obtained by a direct application of [36], Theorem 5.
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Define k1 := max(k0,deg(P ),deg(P̃ )). For k ≥ k1, let ρk be the truncated optimal cost of (Qk), and consider
the following SDP, denoted (Zk):

inf
y,z

Lz(P ) + Ly(P̃ ),

s.t. Lz(h) + Ly(H) ≤ ρk,

Mk(y),Mk(z) ⪰ 0,

Mk−⌈deg(vj)/2⌉(vjz(x)) ⪰ 0,

Mk−⌈deg(θj)/2⌉(θjy) ⪰ 0,

Mk−⌈deg(wj)/2⌉(wjz(u)) ⪰ 0,

Mk−1(t(1− t)z(t)) ⪰ 0,

Ly(ϕ)− Lz (∂ϕ/∂t+ ⟨∇xϕ, f⟩) = ϕ(0, x0), ∀ϕ = (tsxα) ∈ R[t, x] s.t. s+ |α| ≤ 2k + 1− deg(f).

(Zk)

We have the following:

Proposition 6.6. � Under Assumption 6.4, the optimal pair (µ⋆, µ⋆
T ) of Problem (6.1) is a pair of

occupation measures, in the sense of Definition 3.3.
� For any sequences (zksαβ)k≥k1

and (ykα)k≥k1
optimal for (Zk), we have, for every s ∈ N, α ∈ Nn and

β ∈ Nm, zksαβ →
∫
[0,T ]×X×U

tsxαuβdµ⋆(t, x, u), ykα →
∫
K
xαdµ⋆

T (x) when k → ∞.

Proof. In order to prove the first claim, as M is weak-⋆ compact by Proposition 3.16 and the map

M ∋ (µ, µT ) 7→

(∫
[0,T ]×X×U

P (t, x, u)dµ(t, x, u),

∫
K

P̃ (x)dµT (x)

)

is continuous, it is a direct consequence of [37], Corollary 4.2 that the solution of Problem (6.1) is reached at an
extreme point of M. The uniqueness assumption of the solution of (6.1) implies that it is reached at an extreme
point of M, and only at this point. Using Proposition 3.16, we obtain that the solution of Problem (6.1) is
reached at a pair of occupation measures, and the first claim of the proof is proved.

The proof of the second claim is adapted from the proof of [25], Theorem 8, with a slight modification
provided that the value of ρk depends on k ≥ k0. It relies on the simple fact that the condition (µ, µT ) ∈ M
is equivalent to the fact that (µ, µT ) is solution of equation (3.3) and ⟨h, µ⟩ + ⟨H,µT ⟩ ≤ ρ⋆, where ρ⋆ is the
optimal cost of Problem (O). Consider the sequence of SDP relaxations, denoted by (Z̄k), defined for k ≥ k1 as

inf
y,z

Lz(P ) + Ly(P̃ ),

s.t. Lz(h) + Ly(H) ≤ ρ⋆,

Mk(y),Mk(z) ⪰ 0,

Mk−⌈deg(vj)/2⌉(vjz(x)) ⪰ 0,

Mk−⌈deg(θj)/2⌉(θjy) ⪰ 0,

Mk−⌈deg(wj)/2⌉(wjz(u)) ⪰ 0,

Mk−1(t(1− t)z(t)) ⪰ 0,

Ly(ϕ)− Lz (∂ϕ/∂t+ ⟨∇xϕ, f⟩) = ϕ(0, x0), ∀ϕ = (tsxα) ∈ R[t, x] s.t. s+ |α| ≤ 2k + 1− deg(f).

(Z̄k)

By [25], Proposition 7, the SDP (Zk) admits a pair of minimizing sequences (zk, yk)k≥k1 . For γ = (s, α, β) ∈
N1+n+m, define the sequence (ẑk)k≥k1

by ẑkγ := zkγ for |γ| ≤ 2k, and ẑkγ := 0 if |γ| > 2k. Define similarly

(ŷk)k≥k1 by ŷkα := ykα for |α| ≤ 2k, and ŷkα := 0 if |α| > 2k. By [25], Lemma 5, we obtain that (ẑk)k≥k1 is
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uniformly bounded in l∞(N1+n+m) and (ŷk)k≥k1 is uniformly bounded in l∞(Nn), so that they admit weak-⋆
converging subsequences. Denote the corresponding limits by zγ,∞ for every γ ∈ N1+n+m and yα,∞ for every
α ∈ Nn. As ρk → ρ⋆ when k → +∞, we can show that the pair

(
(zγ,∞)γ∈N1+n+m , (yα,∞)α∈Nn

)
is feasible for

the SDP (Z̄k), for every k ≥ k1. Thanks to Theorem 3.13, we obtain that (zγ,∞)γ∈N1+n+m and (yα,∞)α∈Nn

are the moment sequences of a pair of measures (µ∞, µ∞
T ) ∈ M+([0, T ]×X × U)× M+(K) that is feasible for

Problem (6.1). Moreover, by construction of the moment relaxations (Zk) and (Z̄k), we can check that (µ∞, µ∞
T )

is optimal for Problem (6.1), so that we can deduce by uniqueness that (µ∞, µ∞
T ) = (µ⋆, µ⋆

T ). It follows that the
sequences (ẑk)k≥k1

and (ŷk)k≥k1
are bounded sequences having unique weak-⋆ accumulation points, and the

result is proved.

Remark 6.7. The SDP (Zk) corresponds to a minimization over the outer approximation of the optimal set
of Problem (O), computed previously with SDP (Qk). In accordance with Remark 6.5, we will consider k ≥ k1
large enough and random polynomials P and P̃ of degree smaller than k for its practical implementations.

7. Recovery of optimal trajectories with symmetry
reduction when the optimal invariant measure is unique

Now we present a method to recover trajectories in the case where Problem (OCP) is G-invariant, assuming
uniqueness of the solution of Problem (OG), i.e., that the set MG is a singleton. In this case, one can apply
Proposition 5.4 in order to approximate the moments of the unique measure in MG. It is then an important
task to propose a recovery method of the occupation measures thanks to the latter moments. Our method
uses invariant polynomials and brings about a significant reduction in the computational cost compared to the
method of Section 6. The results of this section will be combined with those of Section 6 in order to tackle the
general case in Section 8.

7.1. Algorithm

ALGORITHM A1

1. Compute a lower approximation ρGk of the optimal cost via (QG
k ), and obtain an approximation of the

moments of the unique G-invariant pair of measures (µ⋆, µ⋆
T ) ∈ MG;

2. Recover the trajectory and control associated with a pair of occupation measures (µ, µT ) ∈ M which is
an extreme point of the set M, by solving (P1) or (P2), detailed in what follows.

The first step has already been detailed in Section 5 and consists in computing ρGk . Now we describe the
second step, i.e., how do invariant polynomials allow us to recover the moments of optimal trajectories.

7.2. Invariant polynomials and constancy results

We start by giving a basic definition of invariants adapted to our setting.

Definition 7.1. � We say that a polynomial Q ∈ R[x, u] is G-invariant if it belongs to the set

R[x, u]G = {Q ∈ R[x, u] | ∀g ∈ G, Q(g(x), τ(g)(u)) = Q(x, u)}.

Define similarly R[x]G = {P ∈ R[x] | ∀g ∈ G, P (g(x)) = P (x)} and R[u]G = {V ∈ R[x] | ∀g ∈
G, P (τ(g)(u)) = V (u)}.

� We say that a polynomial Q ∈ R[x, u] is G-state/control invariant if Q can be decomposed as Q(x, u) =
P (x)V (u), where P (g(x)) = P (x) and V (τ(g)(u)) = V (u), for every g ∈ G.

Next proposition states that we can express some important invariant quantities over the optimal set M for
Problem (O).
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Proposition 7.2. Assume that MG is a singleton (µ⋆, µ⋆
T ), and let Q ∈ R[x, u]G and P ∈ R[x]G. Then the

mapping

M+([0, T ]×X × U)× M+(K) ∋ (µ, µT ) 7→

(∫
[0,T ]×X×U

tsQ(x, u)dµ(t, x, u),

∫
K

P (x)dµT (x)

)

is constant on M.

Proof. Assume by contradiction that there exist distinct pairs (µ1, µT1) and (µ2, µT2) in M2 such that∫
[0,T ]×X×U

tsQ(x, u)dµ1(t, x, u) ̸=
∫
[0,T ]×X×U

tsQ(x, u)dµ2(t, x, u) (7.1)

for some s ∈ N.
By G-invariance of Q, we have that for every measure µ ∈ M+([0, T ]×X × U) and g ∈ G,∫

[0,T ]×X×U

tsQ(x, u)dg#µ(t, x, u) =

∫
[0,T ]×X×U

tsQ(x, u)dµ(t, x, u),

and hence ∫
[0,T ]×X×U

tsQ(x, u)dR(µq)(t, x, u) =

∫
[0,T ]×X×U

tsQ(x, u)dµq(t, x, u),

for q ∈ {1, 2}. It follows from (7.1) that the two G-invariant measures R(µ1) and R(µ2) are distinct, which
is a contradiction provided that MG is a singleton. The same argument holds for the measures µT1 and µT2

in M+(K), by considering the integrals
∫
K
P (x)dµT1(x) and

∫
K
P (x)dµT2(x) for P ∈ R[x]G, and we get the

result.

Corollary 7.3. Assume that MG is a singleton (µ⋆, µ⋆
T ), and let Q(x, u) = P (x)V (u) ∈ R[x, u]G be

G-state/control invariant. Then the mapping

M+([0, T ]×X × U)× M+(K) ∋ (µ, µT ) 7→

(∫
[0,T ]×X×U

tsP (x)V (u)dµ(t, x, u),

∫
K

P (x)dµT (x)

)

is constant on M, for every s ∈ N. In particular, if (x(t), u(t)) is a solution of Problem (OCP), then the moments
of the measure dν(t, x, u) = δP (x(t))(dx)δV (u(t))(du)dt defined on the set [0, T ]×P (X)× V (U) ⊂ [0, T ]×R2 are
given by ∫

[0,T ]×X×U

tsP (x)αV (u)βdµ∗(t, x, u),

and those of the measure dνT (t, x, u) = δP (x(T ))(dx) defined on P (K) ⊂ R are given by
∫
K
P (x)αdµ∗

T (x), for
every α, β, s ∈ N.

Consider a family of homogeneous generators (Qq)q∈{1,...,p} of the invariant ring R[x, u]G, where p ≥ 1, i.e.,
the family (Qq)q∈{1,...,p} satisfies R[x, u]G = R[Q1, . . . , Qp]. The existence of such generators is guaranteed by
Hilbert’s finiteness theorem, and Noether’s bound theorem (see, for instance [38]) ensures that one can bound
the degree of the polynomials (Qq)q∈{1,...,p} by the order |G| of G.
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Main tasks: The problem of recovery of optimal trajectories can then be seen from two different viewpoints,
both requiring the use of the invariant polynomials (Qq)q:

� (P1): Find an admissible trajectory (x(t), u(t)) for equation (OCP), assuming the knowledge (at least
approximate) of the curves (Qq(x(t), u(t)))q∈{1,...,p}.

� (P2): Find the moments of a pair (µ, µT ) ∈ M defined as occupation measures under the form(
dµ(t, x, u),dµT (x)

)
=
(
δx(t)(dx)δu(t)(du)dt, δx(T )(dx)

)
,

having an approximate knowledge of those of (µ⋆, µ⋆
T ), by a similar method of the one described in

Section 6.2.

7.3. Problem (P1)

For an optimal trajectory (x(t), u(t)) of Problem (OCP), consider the curves

zq(t) = Qq(x(t), u(t)), (7.2)

for q ∈ {1, . . . , p}, and every t ∈ [0, T ]. By Proposition 7.2, the moment matrices of the measures dνq(t, z) =
δzq(t)(dz)dt are independent from the choice of the optimal trajectory (x(t), u(t)) and can be computed thanks

to the moments of (µ⋆, µ⋆
T ), obtained solving Problem (OG) via the resolution of the SDP (QG

k ). As a direct
consequence, the curves (zq(t))q can be recovered approximately via the use of Christoffel-Darboux kernels, as
defined in Definition 6.1.

7.3.1. Solve the polynomial system (7.2) in (x(t), u(t)) with state/control separation

Due to the fact that controlled vector field f is polynomial and defined on a compact set, we have the
existence of a solution (x(·), u(·)) of equation (7.2) such that the state x(·) is a Lipschitz function. It is then
natural to separate the state and the control and get rid at first of the control u(t) which is possibly discon-
tinuous (for instance in the case of bang-bang optimal controls). Consider a family of homogeneous generators
(Pq1 , Vq2)(q1,q2)∈{1,...,p1}×{1,...,p2} of the invariant rings R[x]G and R[u]G, where p1, p2 ≥ 1, so that equation (7.2)
can be simplified into

(yq1(t), vq2(t)) = (Pq1(x(t)), Vq2(u(t))) , (7.3)

for (q1, q2) ∈ {1, . . . , p1} × {1, . . . , p2}, and every t ∈ [0, T ], which is divided into separate equations on the
variables x and u. A method to test the dynamical feasibility of a solution of equation (7.3) and, in the positive
case, recover the associated optimal control is proposed in Appendix A.3.

Remark 7.4. By Corollary 7.3, the moments of the measure

dνq1,q2(t, x, u) = δyq1
(t)(dx)δvq2 (t)(du)dt

defined on [0, T ]× R2 are given by ∫
[0,T ]×X×U

tsPq1(x)
αVq2(u)

βdµ∗(t, x, u),

for every (q1, q2) ∈ {1, . . . , p1} × {1, . . . , p2}, s, α, β ∈ N.

Remark 7.5. In the case of sign-symmetries given in Example 4.11, the set R[x]G is generated by P (x) = x2

and R[u]G is generated by V (u) = u2. Hence solving (7.3) in x-component is equivalent to taking the square root,
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up to the singularity at x = 0. Solving (7.3) in the u-component may be harder due to possible discontinuities
of the control u(t).

Remark 7.6. In this setting, Problem (P1) corresponds to a lift over invariant problem (see for instance [39, 40]
for a study of regularity issues). The resolution of equation (7.3) can be made analytically in some easy cases
(e.g. sign symmetries). Computer algebra methods can be used in more complex cases, which are, however,
beyond the scope of this paper.

7.4. Problem (P2)

In the case where solving (P1) is too hard, we propose a numerical method involving a supplementary step,
which aims at getting the moments of an extreme point (µ, µT ) of the set M using the approximate values of
the moments of (µ⋆, µ⋆

T ), and the selection of extreme measures proved in Section 6.2 with SDP (Zk). It consists
in the minimization of a functional built from polynomials P ∈ R[t, x, u] and P̃ ∈ R[x] guaranteeing uniqueness
of the following LP on measures:

inf
µ,µT

∫
P dµ+

∫
P̃dµT

s.t. (µ, µT ) satisfy (3.3)

(µ, µT ) ∈ Aµ⋆,µ⋆
T
,

(7.4)

where Aµ⋆,µ⋆
T
is defined as in Definition 4.2.

By noticing that (µ, µT ) ∈ Aµ⋆,µ⋆
T
if and only if

∫
tsQ(x, u)dµ =

∫
tsQ(x, u)dµ⋆ and

∫
Q̃(x)dµT =

∫
Q̃(x)dµ⋆

T

for every s ∈ N and (P, Q̃) ∈ R[x, u]G ×R[x]G, we can propose the following SDP relaxation sequence, denoted
by (Rk) and defined, for k ≥ k1, as

inf
y,z

Lz(P ) + Ly(P̃ )

s.t. Lz(h) + Ly(H) ≤ ρGk

Mk(y),Mk(z) ⪰ 0,

Mk−⌈deg(vj)/2⌉(vjz(x)) ⪰ 0,

Mk−⌈deg(θj)/2⌉(θjy) ⪰ 0,

Mk−⌈deg(wj)/2⌉(wjz(u)) ⪰ 0,

Mk−1(t(1− t)z(t)) ⪰ 0,

Ly(ϕ)− Lz (∂ϕ/∂t+ ⟨∇xϕ, f⟩) = ϕ(0, x0), ∀ϕ = (tsxα) ∈ R[t, x] s.t. s+ |α| ≤ 2k + 1− deg(f),

Lz(t
sPq(x)

αVq(u)
β) = Lz⋆

k
(tsPq(x)

αVq(u)
β),

Ly(Pq(x)
α) = Ly⋆

k
(Pq(x)

α),

for every s ∈ N, α ∈ N, β ∈ N, q ∈ {1, . . . , p},

(Rk)

where z⋆k, y
⋆
k are the optimal solutions of the SDP (QG

k ).
By similar arguments to those used in the proof of Proposition 6.6 concerning the convergence of SDP (Zk),

we obtain the following convergence result.

Proposition 7.7. For any sequences (zksαβ)k≥k0 and (ykα)k≥k0 optimal for (Rk), we have, for every s ∈ N,
α ∈ Nn and β ∈ Nm,

zksαβ →
∫
[0,T ]×X×U

tsxαuβdµ(t, x, u),
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and

ykα →
∫
K

xαdµT (x),

when k → ∞, where (µ, µT ) is a pair of occupation measures solution of (O).

Remark 7.8. Note that even if this method breaks symmetry and does not involve the symmetry
reduced moment matrices, the number of SDP variables is significantly reduced because of multiple moment
substitutions. The efficiency of (Rk) will be illustrated in the numerical results of Section 9.

8. Recovery of trajectories with symmetry reduction in the
general case

Our next Algorithm (A2) allows to tackle the case where the solution of Problem (OG) is not unique, i.e.,
the set MG is not a singleton, using symmetry reduction. It requires the supplementary minimization Step 2,
which relies on the results of Section 6 and generalizes the hierarchy (Zk) to the symmetric setting.

ALGORITHM A2

1. Compute a lower approximation ρGk of the optimal cost via (QG
k );

2. Select an extreme pair of G-invariant measures (µ⋆, µ⋆
T ) ∈ MG, by minimizing a random symmetric linear

functional;
3. Apply Step 2 of Algorithm (A1) (i.e. solve (P1) or (P2)) in order to recover the trajectory and control

associated with a pair of occupation measures (µ, µT ) ∈ M belonging to the set Aµ⋆,µ⋆
T
, where Aµ⋆,µ⋆

T
is

defined as in Definition 4.2.

The goal of what follows is to describe Step 2 of Algorithm (A2). Indeed, the first step (respectively, third
step) has already been described in Section 5 (respectively, Sect. 7). Contrary to the case described in Section 7
where MG is a singleton, the mapping

(µ, µT ) 7→

(∫
[0,T ]×X×U

tsP (x)αV (u)βµ(t, x, u),

∫
K

P (x)αµT (x)

)

is in general not constant for (µ, µT ) ∈ M. However it is constant on every Aµ,µT
, for (µ, µT ) ∈ MG, where

Aµ,µT
is as in Definition 4.2. The goal is then to recover the value of this mapping on Aµ⋆,µ⋆

T
, where (µ⋆, µ⋆

T )

is an extreme point of MG.

Proposition 8.1. Let Q(x, u) = P (x)V (u) ∈ R[x, u]G be G-state/control invariant, in the sense of
Definition 7.1. The moments of any measure of the form

(dν(t, x, u),dνT (x)) =
(
δP (x(t))(dx)δV (u(t))(du)dt, δP (x(T ))(dx)

)
,

where (x(t), u(t)) are optimal pairs of Problem (OCP) are given by(∫
[0,T ]×X×U

tsP (x)αV (u)βdµ(t, x, u),

∫
K

P (x)αdµT (t, x, u)

)

where (µ, µT ) is an extreme point of MG.

Proof. By Proposition 4.4, the extreme points of MG are

EG = {(R(µ), RT (µT )) | (µ, µT ) ∈ M is a pair of occupation measures}.
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Consider an extreme point of MG which can be written as the image R(µ) by R of an occupation measure µ.
Then we have ∫

[0,T ]×X×U

tsP (x)αV (u)βdR(µ) =
1

|G|
∑
g∈G

∫
[0,T ]×X×U

tsP (g(x))αV (τ(g)(u))βdµ

=

∫
[0,T ]×X×U

tsP (x)αV (u)βdµ

=

∫
[0,T ]×X×U

tsP (x)αV (u)βdν,

where the second equality is obtained by G-invariance of Q = PV , and the third one by definition of ν. The
same argument being true for the measure νT by using RT , the result follows.

Assumption 8.2. Consider G-invariant polynomials P ∈ R[t, x, u] and P̃ ∈ R[x] such that

inf
(µ,µT )∈MG

∫
[0,T ]×X×U

P (t, x, u)dµ(t, x, u) +

∫
K

P̃ (x)dµT (x) (8.1)

has a unique solution (µ⋆, µ⋆
T ) ∈ MG, which is an extreme point of MG.

Consider the SDP relaxation sequence, denoted by (ZG
k ), defined for k ≥ k0 as

inf
y,z

Lz(P ) + Ly(P̃ )

s.t. Lz(h) + Ly(H) ≤ ρGk

MG
k (y),MG

k (z) ⪰ 0,

MG
k−⌈deg(vj)/2⌉(vjz(x)) ⪰ 0,

MG
k−⌈deg(θj)/2⌉(θjy) ⪰ 0,

MG
k−⌈deg(wj)/2⌉(wjz(u)) ⪰ 0,

MG
k−1(t(1− t)z(t)) ⪰ 0,

Ly(ϕ)− Lz (∂ϕ/∂t+ ⟨∇xϕ, f⟩) = ϕ(0, x0), ∀ϕ = (tsxα) ∈ R[t, x] s.t. s+ |α| ≤ 2k + 1− deg(f).

(ZG
k )

This SDP is a generalization of SDP (Zk). By similar arguments to those used in the proof of Proposition 6.6
together with Proposition 8.1, we obtain the following convergence result.

Proposition 8.3. Assume that Assumption 8.2 holds. Then for any sequences (zksαβ)k≥k0 and (ykα)k≥k0 optimal

for (ZG
k ), we have, for every s ∈ N, α ∈ Nn and β ∈ Nm,

zksαβ →
∫
[0,T ]×X×U

tsxαuβdµ⋆(t, x, u),

and

ykα →
∫
K

xαdµ⋆
T (x),

when k → ∞.
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9. Numerical examples

We illustrate our methods first with an elementary example of an integrator with symmetries. Then we tackle
the case of qubit inversion, which is the most simple example of quantum systems, and which has attracted
a large interest for years [18, 41]. All computations shown were run on a personal computer running MACOS
with an 11th Gen Intel(R) Core(TM) i7-11800H @ 2.20GHz Processor and 16GB of RAM. The software was
coded in Matlab utilizing the Gloptipoly3 [42] library for problem formulation or Yalmip [43], and SeDuMi
[44] as the SDP solver2. The code symmetric OCP SOS.m from [45] achieves the cost computation with Yalmip
modeling and uses the classical dual formulation on polynomials of the Moment hierarchies stated in the present
paper (see e.g. [7, 17, 25]), while symmetric OCP qubit.m achieves the trajectory reconstruction via Algorithm
(A2). The use of Yalmip is restricted to the computation of optimal costs, corresponding to the first step of the
proposed algorithms solving SDP (QG

k ). As Gloptipoly modeling is more convenient for dealing with the measure
formulation of our optimization problems, we will use it for trajectory recovery. However, as a counterpart we
will restrict the numerical simulations concerning trajectory reconstructions to the symmetry reduction (QI

k)
described in Appendix A.2 which considers G-invariant moment sequences. It achieves in practice only moment
substitutions instead of block diagonal reduction of moment and localizing matrices.

9.1. Toy model: integrator with symmetry

Consider the following integrator optimal control problem:

min T

s.t. ẋ(t) = u(t) on [0, T ]

|u(t)| ≤ 1, |x(t)| ≤ 1

x(0) = 0, x(T )2 = 1.

(INT)

Here we have X = [−1, 1] = {x ∈ R | v1(x) = 1 − x2 ≥ 0}, U = [−1, 1] = {u ∈ R | w1(u) = 1 − u2 ≥ 0},
K = {±1} = {x ∈ R | θ1(x) = 1− x2 = 0}, which are compact semi-algebraic sets such that Assumption 3.12 is
satisfied. Moreover, one can check easily that Assumption 3.6 is satisfied. The group G = {−1, 1} together with
multiplication acts as a sign symmetry with 1(x) = x, −1(x) = −x, τ = IdR, in accordance with Definition 3.1.
The initial state and final set are G-invariant, in the sense of Definition 3.2. By a direct analysis of the dynamics,
we show that the optimal cost is T = 1 and the two optimal trajectories are defined, for every t ∈ [0, 1], by
(x1(t), u1(t)) = (t, 1) and (x2(t), u2(t)) = (−t,−1). Their associated occupation measures are dνj(t, x, u) =
δxj(t)(dx)δuj(t)(du)dt, for j ∈ {1, 2}. By Proposition 3.18, the set M of optimal measures for Problem (O) is
equal to

M = {(λ1dν1(t, x, u) + λ2dν2(t, x, u), λ1δ1(dx) + λ2δ−1(dx)) | λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0},

so that the unique G-invariant pair of measures in M is (µ⋆, µ⋆
T ), where µ

⋆ = 1
2 (ν1 + ν2) and µ

⋆
T = 1

2 (δ1(dx) +
δ−1(dx)).

9.1.1. Cost computation

On Table 1, we compare the dense (Qk) and symmetric (QG
k ) relaxations in the case d = 2k ∈ {14, 16, 18, 20},

where the SDPs are modeled with Yalmip. We notice a better reduction of the computational time due to the
block structure of the semi-definiteness constraints involved in the SDPs for (QG

k ), and to the reduced SDP
variables. The fourth column corresponds to the number of moments involved in the SDP. The reduction by a
factor 2 of the number of pseudo-moment variables in the symmetry-adapted SDP relaxation is consistent with
our theoretical estimates from Section 4.2.

2See the code archive https://github.com/nicolasaugier1/SYMMETRIC OCP.git for more details.

symmetric_OCP_SOS.m
symmetric_OCP_qubit.m
https://github.com/nicolasaugier1/SYMMETRIC_OCP.git
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Table 1. Comparison of dense (Qk) and symmetric (QG
k ) relaxations for integrator system,

modeled with Yalmip with d = 2k ∈ {14, 16, 18, 20}.

d = 14 Cost Time SDP variables

Without symmetry 0.9736 13s 709
With symmetry 0.9740 4.8s 359
d = 16
Without symmetry 0.9740 28.7s 1002
With symmetry 0.9748 9.5s 506
d = 18
Without symmetry 0.9752 81.3s 1367
With symmetry 0.9760 20.8s 689
d = 20
Without symmetry 0.9736 183s 1812
With symmetry 0.9755 44.54s 912

(a) Rebuilt trajectory of (x(t))2 (b) Rebuilt trajectory of x(t)

Figure 2. Rebuilt and theoretical trajectories of Problem (INT) as a function of t, computed
with d = 16 via Christoffel-Darboux Kernels.

9.1.2. Reconstruction via solving (P1) in Algorithm (A1)

On this toy problem, the solution of (OG) is unique and equal to (µ⋆, µ⋆
T ), and we can apply Algorithm (A1)

described in Section 7. We consider the invariant polynomial Q(x) = x2, and thanks to Proposition 7.3, we
have

∫
[0,T ]

Q(x(t))dt =
∫
Q(x)dµ⋆(t, x, u). In this setting, the polynomial system (7.3) restricted to the state

trajectory writes y(t) = Q(x(t)), for every t ∈ [0, T ]. This fact allows plotting the image Q(x(t)) of one of the
two optimal trajectories x(t) as a function of t obtained via Christoffel-Darboux kernels on Figure 2. In this
case, approximations of the two optimal trajectories can be obtained by taking the square root, modulo a sign
choice at the points where x(t) vanishes (here it is only the case at t = 0, as it can be guessed numerically from
the curve of Q(x(t))).

As explained in Section 7.2, the control reconstruction is harder because the control can be discontinuous. In
particular, considering the invariant polynomial V (u) = u2, we have

∫
[0,T ]

V (u(t))dt =
∫
V (u)dµ⋆(t, x, u). This

allows us to plot the image V (u(t)) as a function of t obtained via Christoffel-Darboux kernels on Figure 3.
We can guess numerically that the optimal control should be bang-bang. However, Figure 3 does not allow
recovering u(t) due to its possible switches between the values ±1.
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Figure 3. Rebuilt and theoretical image via V (u) = u2 of optimal control trajectories of
Problem (INT) as a function of t, computed with d = 16 via Christoffel-Darboux Kernels.

Figure 4. Reconstruction of the control u(t) thanks to the hierarchy (Rk), with d = 2k = 16.

9.1.3. Optimal control reconstruction via solving (P2) in Algorithm (A1)

In order to recover an optimal control, we propose to solve the LP on measures (7.4) via the corresponding
moment relaxation (Rk), as illustrated on Figure 4. This method involves only moment substitutions without
block diagonalization of moment matrices as in SDP (QG

k ). The computation time is equal to 12, 9506s with
498 pseudo-moment variables for d = 16.

9.2. Minimal time inversion of a single qubit

Consider the following control system, corresponding to the equation of a Qubit on the Bloch Sphere S2:

ẋ(t) = (A0 + u(t)A1)x(t) (9.1)
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where x(t) belongs to the real two-dimensional sphere S2 ⊂ R3. The matrices

A0 =

 0 −κ cos(α) 0
κ cos(α) 0 0

0 0 0

 ,

A1 =

0 0 0
0 0 −κ sin(α)
0 κ sin(α) 0

 ,

are 3× 3 real antisymmetric matrices, with given parameters κ ≥ 0 and α ∈ (0, π/2). The OCP is the following:

min T ≥ 0,

s.t. ẋ(t) = (A0 + u(t)A1)x(t) on [0, T ]

x(t) ∈ S2, u(·) ∈ [−1, 1]

x(0) = (0, 0, 1), x(T ) = (0, 0,−1).

(QUBIT)

With the notations of Section 3, we have X = S2 = {x ∈ R3 | x21 + x22 + x23 − 1 ≥ 0, −(x21 + x22 + x23) −
1 ≥ 0}, U = [−1, 1] = {u ∈ R | w1(u) = 1 − u2 ≥ 0}, and K = (0, 0,−1), which are compact semi-algebraic
sets, satisfying Assumption 3.12. Moreover, one can check easily that Assumption 3.6 is satisfied. The group
G = {D, IdR3}, with D = diag(−1,−1, 1) together with matrix multiplication, acts as a sign symmetry with
τ(IdR3) = 1, τ(D) = −1, in accordance with Definition 3.1. Notice that x0 = (0, 0, 1) and x1 = (0, 0,−1) are
G-invariant, in the sense of Definition 3.2. Using the theoretical results of [41], when α ≥ π/4, we know that
there are four optimal control strategies. The optimal controls consist of two bang arcs, with switching times
occuring when the trajectory x(t) crosses the equator of S2, and it is proved analytically that the minimal
time is equal to Tf = 2π/κ. More precisely, the four optimal control are (u1(t),−u1(t), u2(t),−u2(t)), where
u1(t), u2(t) are defined as:

u1(t) ≡
{

1 for t ∈ [0, ts]
−1 for t ∈ [ts, Tf ],

and

u2(t) ≡
{

1 for t ∈ [0, Tf − ts]
−1 for t ∈ [Tf − ts, Tf ],

where ts = π− arccos (cot2(α)). Denote the trajectories associated to those controls by (xj(t))j∈{1,...,4}, belong-
ing to S2. The controls u1(t), u2(t) are plotted on Figure 5d. For readability, we did not plot the symmetric
controls −u1(t),−u2(t). On the Figures 5a, 5b, and 5c, we have plotted the x1, x2, x3 components of the
trajectories corresponding to the optimal controls u1(t), u2(t). Note that taking the sign symmetric controls
−u1(t),−u2(t) achieves a change of sign for x1(t) and x2(t), while keeping x3(t) invariant. On Figure 6, we have
plotted the four possible optimal trajectories on the sphere S2.

9.2.1. Cost computations

We assume that κ =
√
10
2 , α = arctan(3) ≈ 1, 25 ≥ π/4. In this case, the theoretical minimal time is ρ =

2π/κ ≈ 0.9935. Table 2 displays our numerical results, providing the lower bounds for the cost, with a relaxation
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(a) x1-component with u1(t) or u2(t) (b) x2-component with u1(t) or u2(t)

(c) x3-component with u1(t) or u2(t) (d) Optimal controls u1(t), u2(t)

Figure 5. Components of optimal trajectories and optimal controls modulo sign symmetry.

order d = 2k ∈ {6, 8, 10, 16}, obtained respectively with the relaxations (Qk) and (QG
k ), modeled with Yalmip.

As in the integrator we notice a better reduction of the computational time compared to previous case due
to the block structure of the semi-definitness constraints involved in the SDPs for (QG

k ). Note that we have
not been able to perform the experiments for d = 16 without exploiting symmetry because our computational
device ran out of memory as indicated by the abbreviation “OoM” in the table.

9.2.2. Optimal trajectory reconstruction using Algorithm (A2)

Contrary to the case of the integrator (INT) there is no guarantee of uniqueness for solutions of Prob-
lem (OG) associated to Problem (QUBIT), so that we propose to apply Algorithm (A2) using symmetries via
the application of successive SDPs: first (QG

k ) in order to obtain a lower approximation ρGk of the optimal cost,
then (ZG

k ) to recover the image of optimal trajectories by invariant polynomials. The efficiency is compared to
the dense case which does not take into account symmetries implemented in Appendix A.4. A basis of homoge-
neous generating invariant polynomials is given for the x-component by P1(x1, x2, x3) = x21, P2(x1, x2, x3) = x22,
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(a) Optimal trajectories around the North pole. The pole
is plotted as a red dot.

(b) Optimal trajectories around the South pole. The pole
is plotted as a red dot.

Figure 6. The four optimal trajectories (x1(t), x2(t), x3(t), x4(t)) plotted on the sphere in
different colors

Table 2. Comparison of dense (Qk) and symmetric (QG
k ) relaxations for qubit system, with

Yalmip modeling, with d = 2k ∈ {6, 8, 10}.

d = 6 Cost Time SDP variables

Without symmetry 0.7708 1.7s 672
With symmetry 0.7708 1.7s 346
d = 8
Without symmetry 0.8758 16.2s 1782
With symmetry 0.8758 5.5s 906
d = 10
Without symmetry 0.9244 226s 4004
With symmetry 0.9244 55.5s 2023
d = 16
Without symmetry 0.9585 OoM 25194
With symmetry 0.9585 16534s 12642

P3(x1, x2, x3) = x1x2, P4(x1, x2, x3) = x3, and for the u-component by V (u) = u2. In this setting, the polyno-
mial system (7.3) restricted to the state trajectory writes yj(t) = Pj(x(t)), for every j ∈ {1, . . . , 4}, and t ∈ [0, T ].
By application of the SDP (ZG

k ) in Algorithm (A2), we recover approximately the moments of an extreme point
(µ⋆, µ⋆

T ) in the set MG associated with Problem (O). We can then approximate the moments of the curves
x1(t)

2, x2(t)
2, x3(t), for optimal trajectories (x1(t), x2(t), x3(t)) for Problem (QUBIT). On Figure 7, we have

plotted the reconstruction of the latter curves thanks to the Christoffel-Darboux kernels for d = 2k = 10, for
which the computation time is 81.1s. The curves corresponding to optimal trajectories are plotted in dashed
lines.

Solving (P1) as third step of Algorithm (A2) and selection of trajectories Optimal trajectories of
Problem (QUBIT) then have to be selected among the Lipschitz curves which are solutions of yj(t) = Pj(x(t)),
for every j ∈ {1, . . . , 4}, and t ∈ [0, T ], as described in Section 7.2 with equation (7.3). A feasibility test
can be done, which consists in solving approximately the linear programs (A.2) via the SDP (Qu

k) from
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(a) Reconstruction of (x1(t))2 (b) Reconstruction of (x2(t))2

(c) Reconstruction of (x3(t))

Figure 7. Reconstruction of the image of trajectories via invariant polynomial with CD kernels,
with d = 2k = 10.

Appendix A.3, choosing among the possible trajectories x(t) allowed by the previous step. We checked numer-
ically in TRAJECTORY TEST.m the infeasibility of the curve whose x2-component is equal to ±

√
y2(t), by

checking SDP infeasibility of (Qu
k) with d = 6. This fact ensures that the x2-component of optimal trajectories

change sign and are composed, up to a global sign change, of two branches t 7→ +
√
y2(t) for t ∈ [0, t⋆] then

t 7→ −
√
y2(t) for t ≥ t⋆ where t⋆ > 0, as claimed by the structure of optimal solutions plotted on Figure 5. Note

however that this step requires the knowledge of the moments of the function t 7→ ±
√
y2(t), which can be done

thanks to computing approximate moment integrals of the square root of Christoffel-Darboux approximant of
y2(t). In order to avoid this difficulty and possible accumulation of errors, the computations have been made
by computing the corresponding moments thanks to the knowledge of the theoretical optimal trajectory.

Control reconstruction via solving (P2) as third step of Algorithm (A2) Concerning the recovery
of the optimal control, the same discontinuity problem occurs as for the integrator example of Section 9.1. We

TRAJECTORY_TEST.m
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(a) Reconstruction of the control u(t) with (Rk) (b) First part of the rebuilt trajectory x(t)

(c) Second part of the rebuilt trajectory x(t)

Figure 8. Rebuilt control with (Rk) for d = 2k = 10 on Figure 8a. The control is plugged into
the dynamics (9.1) on the simulations plotted on the figures 8b and 8c.

propose to solve the linear program and (7.4) via the corresponding moment relaxation (Rk). On Figure 8, we
illustrate the results obtained by applying the SDP (Rk), allowing to recover approximately an optimal control
u(t) via Christoffel-Darboux kernels, which is plotted on Figure 8a. Due to moment substitutions, the compu-
tation time of (Rk) with d = 2k = 10 is equal to 118s, with 3040 pseudo-moment variables, which is improved
w.r.t. the dense case. The control is then plugged in the dynamics (9.1), and we obtain the corresponding
trajectories on Figure 8b and 8c.

Remark 9.1. Note that the time needed for the second step of Algorithm (A2) would have been approximately
twice the time of its first step using Yalmip modeling, as the two steps are two symmetry-reduced problems
of the same size. However, the third step of Algorithm (A2) may require supplementary time when solving
Problem (P2) via (Rk), due to a reduction which only involves moment substitutions.

10. Conclusion

In this work, we have shown that using symmetries is an efficient way to increase the computational efficiency
for solving optimal control problems using the moment-sum-of-squares hierarchy, treating both reduction of
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(a) Reconstruction of the control u(t) (b) Reconstruction of x1(t)

(c) Reconstruction of x2(t) (d) Reconstruction of x3(t)

Figure 9. Reconstruction with (CD) kernel of optimal control and trajectories, without sym-
metry for Problem (QUBIT), with d = 2k = 10, compared to theoretical optimal solutions in
dashed lines.

problem size as well subsequent recovery of of optimal trajectories. It turned out that symmetry reduction
allows to recover the image of optimal trajectories of the state variables by invariant polynomials in a very
efficient way. Then we proposed a method via moment substitution allowing to recover an optimal control. In
further works, we plan to study systems exhibiting more complex symmetries, and computer algebra methods
to solve the polynomial system obtained by symmetry reduction. A longer term perspective is to study Lie
group symmetries which are very common in physics.
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(a) First part of the rebuilt trajectory x(t) (b) Second part of the rebuilt trajectory x(t)

Figure 10. Simulation of the trajectory of (QUBIT) in black by plugging the rebuilt control
by SDP (Zk) into the dynamics (9.1), without symmetry, with d = 2k = 10, compared to
theoretical optimal trajectories in dashed lines.

Appendix A. Appendix

A.1 Proof of Proposition 4.4

Proof. For the proof of the first point, let (µ, µT ) ∈ MG. By G-invariance, we have R(µ) = µ and RT (µT ) =
µT , so that (µ, µT ) ∈ {(R(µ), RT (µT )) | (µ, µT ) ∈ M}. Conversely, for (µ, µT ) ∈ M, Lemma 4.3 proves that
(R(µ), RT (µT )) ∈ MG, as the group G is finite. In particular, the set MG is non empty. Concerning weak-⋆
compactness, as R and RT are continuous operators for the weak-⋆ topology, the set MG is closed as the inverse
image of (0, 0) by the continuous mapping (µ, µT ) 7→ (R(µ)− µ,RT (µT )− µT ). It follows that the set MG is
weak-⋆ compact as a closed subset of the weak-⋆ compact set M.

For the proof of the second point, assume by contradiction that there exist (µ, µT ) ∈ M which are not
occupation measures and such that (R(µ), RT (µT )) is an extreme point of MG. By Proposition 3.16, we have
that (µ, µT ) satisfy

∫
[0,T ]×X×U

ϕ(t, x, u)dµ(t, x, u) =

∫
S

(∫
[0,T ]×X×U

ϕ(t, x, u)dγ(t, x, u)

)
dν(γ),

and ∫
K

φ(x)dµT (x) =

∫
ST

(∫
K

φ(x)dγ(x)

)
dνT (γ),

for every (ϕ, φ) ∈ C1([0, T ] ×X × U) × C1(K), where (ν, νT ) are probability measures on the sets S and ST

of occupation measures, in the sense of Definition 3.3. From the linearity of R and RT that R(µ) and RT (µT )
satisfies

∫
[0,T ]×X×U

ϕ(t, x, u)d(R(µ))(t, x, u) =

∫
S

(∫
[0,T ]×X×U

ϕ(t, x, u)d(R(γ))(t, x, u)

)
dν(γ),
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and ∫
K

φ(x)d(RT (µT ))(x) =

∫
ST

(∫
K

φ(x)d(RT (γ))(x)

)
dνT (γ),

for every (ϕ, φ) ∈ C1([0, T ]×X ×U)×C1(K). As (µ, µT ) /∈ E = S × ST , we have that (ν, νT ) is not supported
on a single point of E . We obtain a contradiction since (R(µ), RT (µT )) is assumed to be an extreme point of
MG.

The last statement follows from Krein-Milmann theorem in the infinite dimensional setting [37], Chapter III,
Section 4.

A.2 Symmetric hierarchy without block diagonalization

For two G-invariant pseudo-moment sequences y and z, consider the following symmetry-adapted relaxation
hierarchy, indexed by k ≥ k0, where k0 is chosen as in Section 3.2.1, denoted by (QI

k):

rk := inf
y,z

Lz(h) + Ly(H)

s.t. Mk(y),Mk(z) ⪰ 0

Mk−⌈deg(vj)/2⌉(vjz(x)) ⪰ 0

Mk−⌈deg(wj)/2⌉(wjz(u)) ⪰ 0

Mk−⌈deg(θj)/2⌉(θjy) ⪰ 0

Mk−1(t(1− t)z(t)) ⪰ 0

Ly(ϕ)− Lz (∂ϕ/∂t+ ⟨∇xϕ, f⟩) = ϕ(0, x0), ∀ϕ = (tsxα) ∈ R[t, x] s.t. s+ |α| ≤ 2k + 1− deg(f)

(QI
k)

The latter semi-definite conditions being equivalent to those of (QG
k ), we have the equality rk = ρGk , for every

k ≥ k0.

A.3 Dynamical test of the solutions of equation (7.3) and control recovery

In general, not every Lipschitz curve solving equation (7.3) in its x-component is feasible nor optimal for
Problem (OCP). It is then a crucial task to propose a numerical method testing the feasibility and optimality
of x(·) for Problem (OCP) and in the positive case recovering the associated optimal control u(·).

Assumption A.1. We know a Lipschitz curve x(·) solving equation (7.3) in its x-component and/or its
associated moments w.r.t. the Lebesgue measure on [0, T ].

For µ ∈ M+([0, T ]× U), consider the following reduced Liouville equation

ϕ(T, x(T ))− ϕ(0, x0) =

∫
[0,T ]×Rn×U

∂ϕ

∂t
+ ⟨∇xϕ(t, x(t)), f(x(t), u)⟩ dµ(t, u), (A.1)

for every ϕ ∈ C1([0, T ]×X).
Introduce the following linear program:

inf
µ

∫
[0,T ]×U

h(t, x(t), u)dµ(t, u)

s.t. µ satisfy (A.1)

µ ∈ M+([0, T ]× U).

(A.2)
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Note that, as the curve x(·) is fixed, the term H(x(T )) involved in the cost of Problem (OCP) can be removed,
and if there exists u(·) such that (x(·), u(·)) is feasible and optimal for Problem (OCP), then the set of solutions
of Problem (A.2) is non-empty and contains the occupation measure dν(t, u) = δu(t)(du)dt.

In order to solve Problem (A.2), we propose the following hierarchy, indexed by k ≥ k0, for pseudo moment
sequences z = (zγ)γ∈B and y = (yα)α∈B̃, where B is a monomial basis of R[t, x, u], and B̃ is a monomial
basis of R[x]. It is denoted by Qu

k and defined as a slight modification of (Qk), by adding the conditions
Lz(t

sxα) = Lz⋆(tsxα),∀s, α s.t. s+ |α| ≤ 2k and Ly(x
α) = Ly⋆(xα),∀α ∈ Nn s.t. |α| ≤ 2k, where z⋆, y⋆ are the

moment sequences associated with the measures dν(t, x) = δx(t)(dx)dt and dνT (x) = δx(T )(dx), that are known
a priori under Assumption A.1.

We have the following properties:

� If there exists k ≥ k0 such that (Qu
k) is unfeasible, then the curve x(·) is unfeasible for Problem (OCP),

and the solution has to be rejected.
� In the case where (Qu

k) is feasible, check optimality, by checking that inf Qu
k +H(x(T ))− ρGk is close to 0

when k → +∞.

Remark A.2. In order to avoid approximation issues, in our numerical implementations we replace the
constraints Lz(t

sxα) = Lz⋆(tsxα),∀s, α s.t. s + |α| ≤ 2k and Ly(x
α) = Ly⋆(xα),∀α ∈ Nn s.t. |α| ≤ 2k by

|Lz(t
sxα) − Lz⋆(tsxα)| ≤ ϵ,∀s, α s.t. s + |α| ≤ 2k, |Ly(x

α) − Ly⋆(xα)| ≤ ϵ, ∀α ∈ Nn s.t. |α| ≤ 2k, with ϵ > 0
small enough.

A.4 Optimal trajectory reconstruction without using symmetries

We propose to achieve the reconstruction of trajectories without using symmetries described in Section (6).
The SDP (Zk) allows finding the approximate values of the moments of an optimal trajectory for Prob-
lem (QUBIT) in the variables (t, x, u). We have plotted the rebuilt optimal control u(t) and trajectory
components (x1(t), x2(t), x3(t)) on Figure 9, to be compared with the optimal solutions obtained with the
four optimal controls (u1(t),−u1(t), u2(t),−u2(t)), which are plotted in dashed lines. We notice that the con-
trol curve is close to the optimal one, contrary to the recovered trajectories, especially the x2-component. For
d = 2k = 10, we obtain the reconstruction of Figure 10 by plugging the control obtained on Figure 9a into
the dynamics of equation (9.1). On the figure, the simulated trajectory is plotted in black, and the optimal
trajectories corresponding to the controls (u1(t),−u1(t), u2(t),−u2(t)) are plotted in dashed lines.
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