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In Escherichia coli the response to DNA damage shows strong cell-to-cell-heterogenity. This
results in a random delay in cell division and asymmetrical binary fission of single cells, which
can compromise the size homeostasis of the population. To quantify the effect of the heteroge-
neous response to genotoxic stress (called SOS response in E. coli) on the growth of the bacterial
population, we propose a flexible time-continuous parametric model of individual-based population
dynamics. We construct a stochastic model based on the “adder” size-control mechanism, extended
to incorporate the dynamics of the SOS response and its effect on cell division. The model is fitted
to individual lineage data obtained in a ’mother machine’ microfluidic device. We show that the
heterogeneity of the SOS response can bias the observed division rate. In particular, we show that
the adder division rate is decreased by SOS induction and that this perturbative effect is stronger
in fast-growing conditions.

I. INTRODUCTION

How cells control their size is a fundamental problem
that has attracted much attention. The modelling, anal-
ysis and statistical calibration of this dynamic process,
both from phenomenological and coarse-grained mecha-
nistic approaches, has been studied by a large number of
biologists, physicists and mathematicians [1–4]. Several
variables and key checkpoint events have been proposed
as candidates for drivers of cell division (see the reviews
[5, 6] and the references therein). Nonetheless, the sim-
ple “adder model”, in which individual cells divide after
adding a given amount of volume which is tightly con-
trolled and uncorrelated to the initial cell size, has been
shown to provide an excellent fit to the experimental dis-
tributions of Escherichia coli cell sizes [7], in contrast
to purely age-structured (“timer”) or purely volume-
structured (“sizer”) models. The underlying molecular
origins of the adder model have been explored recently,
suggesting it is an emergent property of the coordination
of DNA replication, RNA/protein allocation and protein
accumulation [6, 8].

In E. coli, the induction of DNA damage triggers a
complex molecular response called the SOS response
[9, 10], which is essential for repair. Recent develop-
ments in high-throughput single-cell imaging techniques
have allowed the observation of the effect of the SOS
response on an individual scale [11, 12]. Among these,
the microfluidic device called the mother machine (MM)
[13, 14], is designed to track multiple single bacteria over
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several generations, thus permitting long-term contin-
uous imaging [15]. In particular, the intensity of the
stress response can be monitored over time using fluo-
rescent transcriptional reporter markers. These experi-
ments have revealed significant heterogeneity in the SOS
response among individual cells [12, 15, 16], ranging from
very weak to very strong, with substantial impacts on
their morphology and growth [17]. Indeed, the SOS
response induces the expression of proteins that cause
cell division to stop without arresting cell growth. Con-
sequently, the SOS heterogeneity is translated into the
emergence of a subpopulation of abnormally long “fila-
mentous” bacteria [15, 18].

Although previous experiments have suggested that
the adder model is robust under diverse kinds of growth
inhibitions [19], the multifactorial effects of the SOS re-
sponse may lead to perturbations of the adder model,
especially for filamentous bacteria. Interestingly, once
the stress is removed, filamentous bacteria can resume
proliferation through a series of asymmetrical divisions
[18, 20, 21]. Moreover, their divisions are known to fulfil,
on average, the adder hypothesis [18, 20]. However, it
is unclear how robust the adder model is under such a
heterogeneous response and how fast it can restore size
homeostasis upon exposure to an antibiotic that causes
DNA damage.

Here, we introduce a parametric time-continuous
model of cell proliferation that takes into account the
SOS response. We then fit this model to single-cell lin-
eage data acquired in the mother machine where cells
were exposed to the antibiotic ciprofloxacin at sublethal
levels [22, 23]. We show that our model explains the
observed dynamics and allow us to give quantitative in-
sights about the effect of the SOS response over the divi-
sion mechanism under different nutrient conditions. We
show first that an Ornstein-Uhlenbeck model for the ex-
pression level of the SOS response recovers the popula-
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tion distributions when the antibiotic is added and subse-
quently removed from the medium. Second, we show that
the adder division rate is decreased by SOS induction and
that this perturbative effect is stronger in fast-growing
conditions. Finally, we show that the observed asymmet-
rical divisions of filamentous bacteria can be well-fitted
by a Beta mixture model, which shows a larger variance
in fast-growing media.

II. A TIME-CONTINUOUS SINGLE-CELL
ADDER MODEL UNDER STRESS

We consider a stochastic formulation which accounts
for the individual (single-cell) variability within the
population. To that extent, each individual cell i is
characterised by a three-dimensional vector ξi(t) =
(ai(t), yi(t), xi(t)) consisting of:

• ai(t), its added size from birth to current time t,

• yi(t), its current size at time t, and

• xi(t), the SOS level (fluorescence) at time t.

We assume that each cell behaves independently. The
population then evolves in continuous time through three
fundamental dynamics: stress response, growth, and di-
vision. While growth is assumed to be deterministic, the
division and stress response mechanisms will account for
the observed stochasticity. We suppose that the stress re-
sponse is independent from the growth dynamics, while,
on the other hand, the division mechanism is affected by
the level of stress response.

In particular, we consider the case where the antibiotic
inducing the SOS response is present only between times
τ0 < t ≤ τ1. The continuous-time model will allow us
to study the transient phases of the introduction of the
antibiotic at t = τ0 and of its removal at t = τ1. The
model is detailed below and summarised by Fig. 2.

A. SOS response

Previous simulation studies that have looked at the
expression levels of several proteins participating in the
SOS response, have shown that the SOS regulatory net-
work can be accurately modelled by low-dimensional
chemical reaction models [11, 24, 25]. These models are
typically characterised by negatively autoregulated mo-
tifs, as shown in Fig. 1, where a stressor u produces some
damage z, which triggers a response x that, in turn, re-
pairs the damage z.
To account for this dynamic feedback, the authors in

[25] propose a simple deterministic model they name in-
tegral feedback model. It supposes that the amount of
damage z(t) is the result of the difference between the
value of the stressor signal u(t) (damage induction) and
the stress response x(t) (damage repair). At the same

Stressor u (input)

Damage z
(output)

Response
x (latent)

SOS
Reporter

FIG. 1. Scheme summarising the negative autoregulation
models of the SOS response of [25]. Arrows marked → rep-
resent positive regulation (v.g. synthesis or disinhibition),
while ⊣ represents negative regulation (repression or inhibi-
tion). The fluorescent SOS appears highlighted.

time, the stress response x(t) senses the damage, and its
intensity increases linearly with the level of damage z(t)
with a proportionality factor equal to θ > 0. The param-
eter θ thus represents the rate of reactivity of the stress
response with respect to the perceived damage.
Here, we generalise the deterministic integral feedback

model to account for the fact that the SOS response is not
coordinated and varies significantly between individuals
and in time. We propose to model the dynamics of the
SOS signal as a real-valued process (Xt)t≥0 solution to
the Orstein-Uhlenbeck Stochastic Differential Equation

dXt = θc(t)(µc(t) −Xt)dt+ ζc(t)dBt (1)

where Bt is a standard Brownian motion, c(t) = 1t∈[τ0,τ1[

equals 1 whenever the antibiotic is present in the medium
and 0 otherwise, and θi, µi, ζi, i ∈ {0, 1} can be inter-
preted as follows:

• µi is the basal SOS expression level under stress
i ∈ {0, 1}.

• θi > 0 measures the strength at which the SOS
expression reverts to its basal level after periods
of under or over-expression. It is related to the
molecular rates of induction and repression of the
SOS response.

• ζ2i > 0 is the variance with which the log-
fluorescence level fluctuates around the average
value, accounting for various potential sources of
stochasticity in the signal.

B. Growth

Each cell i of size yi grows exponentially [26] at elon-
gation rate λ > 0 which we assume to be the same for
the whole population:

dyi(t)

dt
= λyi(t).

Thereby, the size y(t) and added size a(t) at time t ≥ 0
of a bacterium which had size y(s) and added size a(s)
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FIG. 2. The adder model of cell division

at time s < t are given by the following deterministic
equations:

y(t) = y(s) exp(λ(t− s)) (2)

a(t) = a(s) + y(s) exp(λ(t− s))− y(s) (3)

C. Division

We suppose that divisions occur at random times,
driven by an instantaneous division rate β ≥ 0 that de-
pends on the current cell trait ξt = (at, yt, Xt) such that

P(Division time ∈ [t+ dt[ |Division time ≥ t, ξt)

= β(ξt)dt+ o(dt). (4)

Within the framework of the unperturbed adder model
[7, 27] (forgetting the SOS level Xt), a bacterium of birth
size y0 will divide at a random size y0 + Adiv where the
added size Adiv is independent from y0, distributed ac-
cording to

S(a) = P(Adiv ≥ a) = exp

(
−
∫ a

0

B(α)dα

)
. (5)

In this case, β is written as

β(a, y, x) = λyB(a), (6)

where B is the adder division rate and λ is the elonga-
tion rate. Under the adder hypothesis, the function B
depends only on a. To incorporate the effect of SOS re-
sponse, we propose rates B that depend also on the value
of the SOS level x. Notice that in general this will re-
sult in the lost of the adder property. Indeed, since the
SOS response evolves through time, its level at division
depends on the total duration of the interdivision time,
which depends on the birth size for the adder model. As
middle ground, we consider the case in which the SOS
level affects the fluctuations of the adder around its ideal
value, rather than the added amount of size itself. To
that extent, we consider the case where conditionally to
the SOS level x, the division rates B(a, x) are those of

a Generalised Gamma distribution [28, 29], detailed in
Appendix A, with scale parameter independent of x, and
shape parameters depending linearly on the value of x
through two values s1 and q1 to be estimated (see the
Appendix for their definition).

Finally, when a division occurs, we let ρ ∈ [0, 1] the ra-
tio between the observed size of the followed mother after
and before division and we write k(y, ρ) the probability
density that a mother of size y produces a daughter of
size ρy. The mother machine allows to identify the pro-
genitor cell for each followed individual. This allows to
compute the ratio ρ between the birth size of each cell and
the division size of its mother. The experimental results
and PDE simulations carried out by Wehrens et al. [18]
show that the division septa appear around very precise
positions determined by the nodes of the stationary so-
lutions of a reaction-diffusion model of proteins (the Min
system). Moreover, they show that the number of these
positions increases with the mother size y. In concrete,
they show that both the empirical and simulated distri-
butions of ρ, reach their maximum at constant positions
(wN

n )n∈J1,NK ∈]0, 1[ determined by the total number N
of nodes and given explicitly by

wN
n =

2n− 1

2N
. (7)

Based on these previous findings and our own observa-
tions, we propose a parametric model for k(y, ρ). First,
we call N(y) the number of possible septa, which is func-
tion of the mother size y. In particular, we suppose that
there is a critical size parameter y∗ that determines the
number of possible septa by the rule

N(y) =

[
y

2y∗

]
+ 1, (8)

where [u] is the integer part of u. This means that if
the mother size is below 2y∗ there is only one possible
septum (N = 1), if the mother size is between 2y∗ and
4y∗, then there are two possible septa (N = 2), etc. As
such, y∗ can be thought as related to the characteristic
wavelengths of the standing waves produced by the Min
system.

Additionally, we suppose that, conditionally to the
mother size y, the division can occur at each possible
septum with equal probability, this is, each possible site
can be chosen uniformly with probability 1/N(y). There-
fore, we suppose that k is of the form

k(y, ρ) =
1

N(y)

N(y)∑
n=1

FN(y)
n (ρ) , (9)

where, for all fixed N and n, FN
n (ρ) is the probability

density of producing a daughter of size ρ times the size
of the mother, when the division happens at the n-th
septum among the N possible ones.

Finally, we suppose that cells have no particular ori-
entation. For example, if N = 3, the first and the third
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septa cannot be distinguished. In general, this imposes
that our densities F have to verify, for all n ≤ N/2 and
all ρ ∈ [0, 1] a symmetry condition written

FN
n (ρ) = FN

N+1−n(1− ρ).

In particular, we suppose that FN
n is the probability

density function of the Beta distribution of parameters
(αN

n , βN
n ). This is

FN
n (ρ) =

Γ(αN
n + βN

n )

Γ(αN
n )Γ(βN

n )
ρα

N
n −1(1− ρ)β

N
n −1. (10)

The findings of Wehrens et al. suggest to take, for all
N > 1, n ∈ J1, NK, the value of wN

n defined in (7)
as the mode of the distribution FN

n . This is wN
n =

argmax0≤ρ≤1F
N
n (ρ) (i.e. as the peak of the observed dis-

tribution). Since for αN
n > 1 and βN

n > 1 the mode

is given by
αN

n −1
αN

n +βN
n −2

(otherwise equal to 0 and 1, and

therefore not of our interest), we want

wN
n =

αN
n − 1

αN
n + βN

n − 2
.

Let the denominator be called vNn := αN
n + βN

n − 2 > 0.
Then we can write

αN
n = 1 + vNn wN

n ,

βN
n = 1 + vNn

(
1− wN

n

)
.

As the next computation shows, the variance of ρ is a
decreasing function of vNn :

Var(ρ) =
αN
n βN

n

(αN
n + βN

n + 1)(αN
n + βN

n )2

=
1 + vNn + (vNn )2(wN

n − (wN
n )2)

(vNn + 3)(vNn + 2)2
.

As such, vNn is an inverse measure of the dispersion of
the distribution of ρ. We make the biological assumption
that the concentration of division proteins around the
chosen septum is independent of the length of the cell
and the total number of possible septa. This translates
as setting for all N ≥ 1, n ∈ J1, NK, vNn = v > 0 constant,
depending only on the culture medium.

Therefore, using the parametrisation, the kernel k de-
pends only on two parameters (for each medium): the
critical size y∗ which defines the number of possible septa,
and the constant v which determines the dispersion of the
Beta distributions around them.

III. RESULTS

From now on, we call ηX the parameters associ-
ated with the Ornstein-Uhlenbeck model of SOS expres-
sion, ηβ the parameters associated with the Generalised
Gamma Adder model of the division rate, and ηk the

parameters associated with the cell division kernel. Us-
ing the procedure presented in Appendix B, we esti-
mate the most likely values of η = (ηX , ηβ , ηk), which
allow us to carry the simulations presented in the fol-
lowing section. The data considered consist on observa-
tions under three different growth media: fast-growing
(M9 minimal salts supplemented with glucose and amino
acids), intermediate growing rate (M9+glucose) and
slow-growing (M9+glycerol), where 3 ng/ml of the an-
tibiotic ciprofloxacin is added to the medium between
hours t = 2 and t = 14 of the experiment, which last for
a total of T = 25 hours. See [23] for the methodological
details and [22] for the raw datasets.

A. The Ornstein-Uhlenbeck model recovers the
population distributions and the induction and

recovery phases of the SOS response

Table I gives the estimated parameters of the Ornstein-
Uhlenbeck model for the SOS response dynamics. The
estimated parameters show that the presence of a sub-
lethal concentration of ciprofloxacin produces a shift in
the mean value µ of the SOS signal of 10-100 times the
basal fluorescence (the values in the table are in log-
scale), without significantly changing the regulation pa-
rameter θ. This suggests that ciprofloxacin leads to an
increased production of the fluorescent marker measured,
without altering the average response rates of the SOS
regulatory circuit itself. That is without affecting the
turning off of the SOS response once the damage is re-
paired, for example. At the same time however, the noise
of the SOS intensity, conveyed by ζ, is systematically su-
perior under exposure to ciprofloxacin, which could indi-
cate the presence of additional perturbations. Nonethe-
less, the small variations of these parameters point to-
wards a certain robustness of the SOS response. With
respect to the the variations in different media, we ob-
serve that the SOS dynamical response is noisier under
fast-growing conditions and exhibits larger values of θ.
In particular, this means that the steady state of SOS
intensity is reached faster in fast-growing media which
is expected as the response rate of bacterial systems de-
pends largely on their growth rate. On the other hand,
the mean SOS expression is slightly increased in interme-
diate and slow-growth media compared to fast growht, as
expected from the bacterial growth laws.

Medium
SOS diffusion parameters
θc µc ζ2c

Cip− Cip+ Cip− Cip+ Cip− Cip+
gly 0.217 0.233 4.57 6.01 0.0702 0.103
glu 0.319 0.223 4.60 6.12 0.1074 0.117

gluaa 0.423 0.351 4.53 5.46 0.1439 0.161

TABLE I. Maximum Likelihood Estimators of the parameters
driving the Ornstein-Uhlenbeck Equation (1) for the three
different media, and under the presence or not of ciprofloxacin
(log-scale of fluorescence measurements (arbitrary units)).
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The SOS predictions of Eq. (1) using the parameters
ηX given by Table I are shown in Fig. 3. Panel A of
the figure shows the predicted mean SOS intensity over
time (dashed line) and compares it to the empirical mean
(solid line). We see an excellent qualitative agreement
between the two curves. The fast regulation dynam-
ics conveyed by the Ornstein-Uhlenbeck, which models
a rather instantaneous regulation, seem to capture well
the dynamical transition at times t = 2 and t = 14. In
particular, the model recovers very accurately the shape
of the inflexion observed at this regime change. We see
also that, as already discussed above and as is shown by
the values of θ in Table I, the steady-state is reached
faster in fast-growing media.

Panel B of Fig. 3 shows the empirical (solid line)
and predicted (dashed line) steady-state distributions of
SOS intensity under the effect of ciprofloxacin. As the
Ornstein-Uhlenbeck process (1) is stationary, the pre-
dicted distribution is given explicitly by its stationary
distribution: a Gaussian of mean µ and variance ζ2/(2θ).
We also see an excellent qualitative agreement in the
steady-state distribution, particularly around the mean
value, except for the glucose medium, whose distribu-
tion is wider than the predicted Gaussian. In general,
the observed distributions are more skewed to the left.
This can be explained by the fact that the Ornstein-
Uhlnebeck process imposes a symmetrical noise around
the mean value, while the observations show that cells,
even under ciprofloxacin, tend to concentrate below the
expected value. At the same time, but more rarely,
some lineages can induce very strongly the SOS response,
which also widens the distribution towards the right. In
panel C we compare the empirical distribution (top row)
with the simulations (bottom row). Here again, the OU
process captures very the qualitative behaviour, but we
notice some outlier cell lineages that are not recovered
in the simulations, suggesting that there is additional
noise that is not accounted for by the OU fluctuations.
Taken together, these results indicate that the Ornstein-
Uhlenbeck process captures well the dynamics of the SOS
response under sub-lethal levels of ciprofloxacin.

B. The adder division rate is decreased by SOS
induction and its perturbative effect is stronger in

fast-growing conditions

To understand the coupling of the SOS level and the
division rate, we calculated the Maximum Likelihood Es-
timators of the parameters of the Generalised Gamma
model introduced in Appendix A. As seen in Table II
(right part), in all three media, the multiplicative noise
effect conveyed by s1 is much less significant than the
shape change effect conveyed by q1. Moreover, q1 in-
creases with the richness of the medium. This shows
that the perturbative effect of the SOS response on the
adder control is stronger in fast-growing conditions.

To observe more clearly the effects of s1 and q1 on the

division dynamics, we calculate the division rates B(·, x)
predicted by the MLE for different values of x in all three
media, as shown in Fig. 4. First, we find the expected re-
sult that the division rate is lower in richer media (that
is, divisions occur fast in rich media) regardless of the
SOS level. Second, we observe a strong impact of the
SOS level. In all three media, increasing the SOS level
leads to lower division rates, in keeping with the fact
that the SOS response induces a delay in division. The
strength of this inhibition seems to be stronger in poorer
media, where the division rates in the absence of stress
are higher. In other words, it seems that the adder size
control is more sensitive to stress in poorer growth condi-
tions. Not only is the value of the division rate changed,
but so is the shape of its dependence on the added size.
At low SOS levels, in all three media, the most likely
division rate is an increasing function of the added size.
Indeed, the intercept parameters s0 and q0 (see Table II)
are all three in the “increasing” region of the parameter
space represented in Fig. 6. However, as x increases (i.e.
the SOS level gets higher), the division rate changes its
shape and tends in all three media towards an arc-shaped
“lognormal-like” distribution, similar to the path A fol-
lowed at the right panel of Fig. 6. In these conditions,
cells that have increased their length by a large amount
are less likely to divide than shorter cells. This apparent
contradiction emerges from the fact that when we mea-
sure the division rate as a function solely of the added
size, we implicitly marginalise over all the unknown indi-
vidual variables that might have an effect. This is simi-
lar to the problem of random effects in the Mixed Effect
Models literature [30]. Indeed, if starting from B(a, x) we
wanted to obtain a real adder division rate B̄(a), function
of a only, we can compute

B̄(a) :=
d

da

(
− log S̄(a)

)
,

where S̄ is the population survival function given by

S̄(a) = P (Adiv ≥ a) = E
[
exp

(
−
∫ a

0

B(a,Xτ(a))

)
da

]
,

where the expectation is taken over the Ornstein-
Uhlenbeck process X and τ(a) = λ−1 log(1 + y−1

0 a) is
the time needed to reach an added size a given the birth
size y0. Hence, under suitable integrability assumptions
for S̄ we can differentiate under the expectation sign and
then

B̄(a) =
E
[
B(a,Xτ(a))e

−
∫ a
0

B(s,Xτ(s))ds
]

E
[
−
∫ a

0
B(s,Xτ(s))ds

]
= E

[
B(a,Xτ(a))

∣∣Adiv ≥ a
]
̸= E

[
B(a,Xτ(a))

]
.

This relation evidences a bias on B̄(a). Only the individ-
uals that have yet not divided at added size a contribute
to the value of B̄(a). Therefore, if only cells with very
high SOS intensity x survive until longer added sizes, and
the conditional division rate B(a, x) is lower for high x,
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FIG. 3. Fitting results of the SOS dynamics using the Ornstein-Uhlenbeck model: dynamical and stationary.
A. In solid lines, empirical mean of the SOS intensity calculated from the grey trajectories in the background, which represent
individual cells. Only lineages with observed divisions were retained. In dashed lines, the mean SOS intensity predicted by
Eq. (1) using the parameters summarised in Table I. The time window of the ciprofloxacin treatment is delimited by vertical
dashed lines. B. In solid lines, empirical steady-state distribution of the SOS intensity under ciprofloxacin, obtained from the
data observed between t = 10 and t = 14 (last 4 hours of treatment, 8 hours after initial dose). In dashed lines, stationary
distribution expected from the Eq. (1) using the parameters summarised in Table I. C. Comparison of the empirical fluorescence
observations (first row) and the simulated trajectories of (1) using the MLE.

then the marginal rate B̄(a) will be lower for larger a,
producing an “effective catastrophe” region in B̄, as for
example observed by [2] in a size-structured model, even
if B(a, x) were not decreasing themselves. In our case, if
the stress is low enough, division rates are monotonically
increasing (as one naively might expect for a homeostatic
system: the more size that has been added, the more
likely should the cell divide). And, if the stress is high
enough they tend towards a characteristic arc-shaped di-
vision rate. In other words, our findings suggest that it is
the high-SOS cells that lead to an apparent depression of
the division rate when measuring it with population-level
statistics.

C. The Beta mixture model recovers the observed
asymmetrical divisions of filamentous bacteria, with

larger fluctuations in fast-growing media

To analyse the division dynamics, we computed the
MLE of y∗ and v as shown in Table II. The value of
MLE of y∗ is close to the mean division size observed
in the empirical control dataset (3.25 µm in gly, 3.53
µm in glu, and 4.89 µm in gluaa [23]). This confirms
the interpretation of y∗ as a characteristic length of un-
perturbed bacteria. The parameter v, which measures
the inverse of the dispersion of the position of the septum
is higher in the poorest medium. That is to say, the
septum position is less precise in rich nutrient conditions.
This confirms the trend observed with no antibiotic (see
Appendix C), where the septum position seemed also to
be less precise in fast-growing media.

Fig. 5A shows that the division statistics are well re-
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FIG. 4. Predicted adder division rate B(a,X) by MLE under the three different media

. The adder rate as a function of added size a (abscissa) and SOS level X (colors) predicted from the fitted parameters of
Table II for SOS levels varying from very low (10, blue) to very high (10000, red) in the three growth conditions.

Medium
Division parameters

Adder rate β Septum kernel k
s0† s1 q0† q1 y∗ (µm) v

gly 0.4207 -0.009473 0.7832 -0.1552 3.6896 122.758
glu 0.3019 0.01579 0.5559 -0.1552 3.6896 127.586

gluaa 0.6626 -0.007368 0.6963 -0.2026 5.7586 93.7931

TABLE II. Maximum Likelihood Estimators of the parame-
ters driving division for the three media.. The adder division
rate B depends on the values of s0, s1, q0 and q1 as defined in
Appendix A. The mother-to-daughter ratio kernel k depends
on the characteristic length y∗ and dispersion parameter v in-
troduced in Section IIC. Parameters marked by † are inferred
by fitting a Generalised Gamma distribution directly to the
added size distributions of the first SOS decile of control cells.

covered by our Beta mixture model. However, the transi-
tion boundaries determined by y∗ are less marked in the
empirical observations, suggesting the presence of indi-
vidual heterogeneity that our model does not fully cap-
ture. Finally, Fig. 5B-D shows the joint distributions of
size and SOS response averaged over various time win-
dows. The bulk of the distribution seems well recovered,
particularly during the presumed stationarity reached af-
ter 12 hours of antibiotic treatment (Panel D). However,
some rare events associated to excessive filamentation
seem not be captured by the model. This also might in-
dicate the presence of individual heterogeneity in the pa-
rameters of the division rate, which cannot be explained
only by the SOS measurements.

IV. CONCLUSIONS

We have proposed a parametric model of the pertur-
bative effects of ciprofloxacin-induced SOS response over
the adder model of size control in E. coli in several growth

conditions. Our findings coincide with the previous ob-
servations that the adder model is robust to growth mod-
ulation [19]. In contrast, we have found that the SOS
response, which is known to have multifactorial physi-
ological effects, induces a loss of size control, resulting
in broader distributions of the added size at division,
while keeping the median relatively constant. In terms
of the division rate, we have shown, using a parametric
Generalised Gamma model, that the adder division rate
function B is reduced by the SOS response in a nutrient-
dependent way. In particular, the previously observed
catastrophe or decreasing regions in the division rate can
be explained quantitatively by the contribution of high
SOS individuals to division arrest. We observe however
that the experimental heterogeneity of the joint SOS and
size distributions is still more important than our model
predicts. In this sense, one interesting axis of future work
might be the extension of our model to include mixed ef-
fects [30], that is, to allow individual heterogeneity in
the parameters of the probability distributions of the
model. For instance, this could enable having a Gen-
eralised Gamma model at the population level (the fixed
effects) consistent with the idea that the adder is robust
in average, but with some parameters that could show
variability among individual cells (the random effects).
Further, this could also enable to statistically test the
heterogenxeity of the population. Mixed Effects Models
are extensively used to model individual-based responses
in pharmacokinetics, for example, where the evolution of
the drug in time is driven by a deterministic ODE. The
extensions required to adapt the method to a stochastic
diffusion process, such as our Ornstein-Uhlenbeck model,
which is moreover coupled to the stochastic process of cell
division, would constitute an interesting challenge see for
example [31].
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FIG. 5. A. Data and simulations of ρ ∼ k(·|y) (septum position given the mother size) for I = 100 independent lineages
and the MLE as parameters (glucose+aa medium, where a larger number of possible septa can be observed). B-D. Data and
simulations of the joint distributions of the SOS level at division and the division size. B is the time average over the whole
experiment, C is during the first 2 hours, and D during the last 4 hours of ciprofloxacin exposure (10 ≤ t < 14).
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FIG. 6. Adapted from [32]. The 4 possible shapes of the division rate B that can be obtained with a GenGamma(m, s, q) model
at fixed m > 0. Inset: starting from (s0, q0) giving a monotonically increasing division rate, and depending on the values of q1
and s1, an increased level of SOS response might lead to an arc shaped lognormal-like division rate (A), or to a monotonically
decreasing division rate (B).

The intercepts s0 and q0 are to be obtained from the control dataset. The unknown parameters s1 > 0 and q1 ∈ R
measure the additional linear effect of the SOS level x on the dispersion of the distribution around m0.

Cox et al. [32] show that different values of s and q can generate very flexible rate functions (Fig. 6). Indeed, the
Gamma distribution of mean em and coefficient of variation s is obtained doing q = s. The Lognormal distribution,
of log mean m and log standard deviation s is obtained by doing q = 0. This flexibility will be important to account
for the SOS-induced filamentation, as our results will show further below.

First, we suppose that the median added size (in log scale) does not depend on the intensity of the response. This
means that we fix a medium-dependent constant m(x) = m0 for all x ∈ R. Second, we make the following assumptions
concerning the effect of SOS induction on the shape of the added size distribution. We make the strong assumption
that both q(x) and s(x) are affine functions of the SOS level x. This is, we introduce two parameters q1 ∈ R and
s1 > 0 such that

q(x) = q0 + q1x,

s(x) = s0 + s1x,

where the intercepts q0 and s0 are obtained in absence of SOS response and will be supposed known. Then, starting
from a certain (s0, q0), depending on the values of q1 and s1, the value of x can change the shape of the division rate
as shown by the example at the left panel of Fig. 6.

Appendix B: Parameter estimation of the coupled SOS-adder dynamics using cell lineages

We model our observations as a discrete sample of I independent realisations during time t ∈ [0, T ], with T = N∆t.
This is, we consider a sample (

Oi
n∆t

)i=1,...,I

n=0,...,N
= (Ai

n∆t, Y
i
n∆t, X

i
n∆t)

i=1,...,I
n=0,...,N

To model this discrete-time process we define first p(a, y, x) as the probability to divide in the following ∆t interval
starting with state (a, y, x). Then, for all n we let U i

n be a Bernoulli random variable of parameter p(Ai
n, Y

i
n, X

i
n), this

is, which is equal to 1 if the lineage i divides in the interval [n∆t, (n+ 1)∆t[, and 0 otherwise. Since the intervals of
time when a a division occurs are observed, Un is also an observed variable, available from the mother machine data.

Notice that the probability p(a, y, x) is given by

p(a, y, x) = Ex

[∫ ∆t

0

β(a+ y(eλt − 1), yeλt, Xt) exp

(
−
∫ t

0

β(a+ y(eλs − 1), yeλs, Xs)ds

)
dt

]
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However, since ∆t is small enough, we do the first-order approximation p(a, y, x) ≈ β(a, y, x)∆t. Thus, given
(Ai

0, Y
i
0 , X

i
0) we can generate (Ai

n, Y
i
n, X

i
n) by the following hierarchical model (since they are i.i.d. samples, we forget

the i ∈ {1, ..., I} corresponding to each independent lineage):

Draw independently


Un ∼ Bernoulli(p(An, Yn, Xn))

ρn ∼ k(Yne
λ∆t, ·)

Wn ∼ N (0, 1)

(B1)

cn = 12<n∆t≤14 (B2)

Xn+1 = Xne
−θcn∆t + µcn

(
1− e−θcn∆t

)
+ ζcn

√
(1− e−2θcn∆t)/(2θcn)Wn (B3)

Yn+1 = UnρnYne
λ∆t + (1− Un)Yne

λ∆t (B4)

An+1 = (1− Un)(An + Yn+1 − Yn) (B5)

Eq. (B5) resets the added size at 0 at each division (i.e., when Un = 1), and otherwise adds the increment of size
Yn+1 − Yn, with Yn+1 given by Eq. (B4). When a division occurs the size is multiplied by the daughter-to-mother
size ratio ρn distributed according the size-dependent probability kernel k(y, ·) defined in (9). Eq. (B3) corresponds
to the explicit solution of the Ornstein-Uhlenbeck Equation (1).

1. Likelihood of the observations

Let η = (ηX , ηβ , ηk) the vector of parameters considered. From the previous set of equations, the log-likelihood of
the observations under the considered parametric model is given by

logL((Ai
n, Y

i
n, X

i
n, U

i
n)|η) :=

∑
i≥1,n≥1

logP((Ai
n, Y

i
n, X

i
n, U

i
n), (A

i
n+1, Y

i
n+1, X

i
n+1, U

i
n+1)|η)

= ℓ1((Y
i
n, U

i
n)|ηk) + ℓ2((A

i
n, Y

i
n, X

i
n, U

i
n)|ηβ) + ℓ3((X

i
n)|ηX)

+ constant independent from η

where

ℓ1((Y
i
n, U

i
n)|ηk) =

I∑
i=1

+∞∑
M=1

∑
n∈J0,NK:

Y i
n−1≤2My∗,

Y i
n−1>2(M−1)y∗

U i
n log

(
M∑

m=1

1

M
FM
m

(
Y i
n

Y i
n−1e

λ∆t

∣∣∣∣ v)
)
, (B6)

ℓ2((A
i
n, Y

i
n, X

i
n, U

i
n)|ηβ) =

I∑
i=1

(
N∑

n=1

U i
n log

(
β(Ai

n, Y
i
n, X

i
n|ηβ)∆t

)
+

N∑
n=1

(1− U i
n) log

(
1− β(Ai

n, Y
i
n, X

i
n|ηβ)∆t

))
(B7)

ℓ3((X
i
n)|ηX) =

I∑
i=1

N−1∑
n=0

log g

(
Xi

n+1

∣∣∣∣Xne
−θcn∆t + µcn

(
1− e−θcn∆t

)
,
ζ2cn(1− e−2θcn∆t)

2θcn

)
(B8)

and where g(·|µ;σ2) is the Gaussian distribution of mean µ and variance σ2 and k is given by Eq. (9), parameterised
by y∗ and c. The division probability p, which depends on β, is parameterised by v1. In particular the contributions
of the parameters related to k, to β, and to the Ornstein-Uhlenbeck are all independent.
We see that the likelihoods of the model can be computed explicitly, and we show below some first numerical

results concerning their computation. One of the remarkable properties of the Ornstein-Uhlenbeck process is that
the three parameters (θ, µ, ζ) possess explicit Maximum Likelihood Estimators (MLE) [33, 34]. Thus, using the data
from the time interval t ∈]2, 14], in which the cells are under the effect of the antibiotic, we infer the values of of
(θ1, µ1, ζ1). Using the remaining time (pre and post exposure), we infer the values of (θ0, µ0, ζ0). Contrary to the
Ornstein-Uhlenbeck process, the likelihoods ℓ1 and ℓ2 do not allow to obtain the MLE in close forms. However, ℓ1 and
ℓ2 are both numerically tractable and our computations show that they are convex (see Fig. 7), so that the numerical
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FIG. 7. Log-likelihoods of the parameters of the SOS perturbed adder model. The MLE are marked ∗. A. Log-
likelihood ℓ1 (B6) of the division size observations as function of the critical mother length y∗ and the concentration parameter
v of the Beta mixture (9)-(10). B. Log-likelihood ℓ2 (B7) of the added sizes at division as function of s1 and q1.

maximisation can be done by classical approaches. Fig. 7A gives the value of ℓ1 as functions of y∗ and v. We see
that the log-likelihood has convex contour levels, and a unique global maximum. Similarly, we can compute the value
of ℓ2 (B7). Fig. 7B shows the log-likelihood as function of the SOS-induced linear factors s1 and q1 multiplying the
dispersion parameters of the Generalised Gamma model (A). The intercepts s0 and q0 were inferred as the MLE of
a Generalised Gamma fitted directly to the added size distributions of the 10% of cells with lowest SOS signal at
division. The numerical computations show that ℓ2 also has convex contours and a unique global maximum. All the
inferred parameters are tabulated in Table II.

Appendix C: Medium-dependent division statistics on control dataset

We fit a Beta distribution F̂ as a suitable estimator of the distribution of the ratio ρ observed in datasets obtained
absence of ciprofloxacin for the three media [23]. The estimated parameters along with their 95% confidence intervals
are given in Table III for the three different media. The bigger the value of α and β the more concentrated the
distribution, which can be observed in Fig. 8. We see that the distribution is wider in richer media. This could mean
that the position of the division septum is less exact in fast growing bacteria.

Medium α β
Glycerol 20.5415± 0.69271 20.5410± 0.69269
Glucose 8.9463± 0.59662 8.9466± 0.59664
Glucose+aa 5.9614± 0.14157 5.9617± 0.1415835

TABLE III. Beta distribution parameters and 95% confidence intervals for the fitted mother-to-daughter ratio in each medium.

FIG. 8. Estimated densities F̂ for the three different media according to the parameters of Table III
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