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Abstract
In this note, we establish some fixed point theorems of the Leray-Schauder type for upper
semicontinuous and weakly sequentially upper semicontinuous multivalued mappings in
Banach spaces. The cases of condensing and nonexpansive multivalued maps were also
considered.
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1 Introduction and preliminaries
In the last years, fixed point theory for single and multivalued mappings, under the weak

topology, has known many developement. In particular, under various conditions, several
works were dedicated to derive theorems of Schauder’s type (Himmelberg’s theorem [16]),
Sadovskii’s type, Krasnosel’skii’s type and Leray-Schauder’s type (see, for example, [1, 3–7,
9, 10, 13–15, 17–21] and the references therein). Our objectif in this work is to establish some
fixed point results of Leray-Schauder’s type in Banach spaces for upper semicontinuous and
weakly sequentially upper semicontinuous mappings. This work is essentially motivated by
Theorems 1.1 and 1.2, obtained in [2], and conditions (H1) and (H2) which were introduced
in [17] (see below).
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Now we introduce notations and definitions which are required in the paper. Let X be
Banach space and define the sets

P(X) = {M ⊂ X : M is nonempty},

Pbd(X) = {M ⊂ X : M is nonempty and bounded},

Pcv(X) = {M ⊂ X : M is nonempty and convex},

Pcl,cv(X) = {M ⊂ X : M is nonempty, convex and closed}.

W(X) = {M ⊂ X : M is nonempty weakly compact}

We shall now give the notion of a measure of weak noncompactness on a Banach space
[8].

Definition 1.1. A map µ : Pbd(X) → [0,+∞[ is said to be a measure of weak
noncompactness on X if it satisfies the following conditions

(1) The family kerµ :=
{
M ∈ Pbd(X) : µ(M) = 0

}
is non-empty and kerµ is contained

in the set of relatively weakly compact subsets of X .

(2) Monotonicity: M1 ⊂ M2 ⇒ µ(M1) ≤ µ(M2) for all M1, M2 ∈ Pbd(X).
(3) Invariance under passage to the closed convex hull: µ(co(M)) = µ(M) where co

denotes the closed convex hull of M .
(4) Homogeneity: µ(λM) = |λ|µ(M) ∀ ∈ R.
(5) Subadditivity: µ(M1 +M2) ≤ µ(M1) + µ(M2) for all M1, M2 ∈ Pbd(X).
(6) Maximum Property: µ

(
M1∪M2

)
= max

(
µ(M1), µ(M2)

)
for all M1, M2 ∈ Pbd(X).

(7) Fullness: µ(M) = 0 if and only if M is a relatively weakly compact set.
The family kerµ given in first assertion is called the kernel of the measure µ. It should be

noticed that the inclusions M ⊆ Mw ⊆ co(M) together with the item (3) of Definition 1.1
imply

(8) µ(Mw) = µ(M).

Note that if µ(·) is a full measure of weak noncompactness having the maximum property,
then it is non-singular, that is:

(9) µ(M ∪ {x}) = µ(M), for all M ∈ Pbd(X) and x ∈ X .

Before going further we recall the following definitions required below.

Definition 1.2. Let X and Y be two normed spaces and let F : X → Pcl,cv(Y ) be a
multivalued map.

• We say that F is upper semicontinuous (u.s.c. for short) if, for every open set U of Y , the
set F−1(U) is open in X , where F−1(U) =

{
x ∈ X : F (x) ⊂ U

}
.

• F is called weakly upper semicontinuous (w.u.s.c. for short) if F is upper semi-continuous
with respect to the weak topologies of X and Y .

• F is called weakly sequentially upper semicontinuous (w.s.u.s.c. for short) if for any weakly
closed set G of Y, F−1(G) is weakly sequentially closed. 2
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Definition 1.3. Let X and Y be two normed spaces and F : X → Pcl,cv(Y ) be a multivalued
map. A single valued map f : X → Y is called a selection of F if for every x ∈ X ,
f(x) ∈ F (x).

Let M be a subset of a normed space X and let F : M → Pcl,cv(M) be a multivalued
map. We recall that F has a fixed point means that if there exists x ∈ M such that x ∈ F (x).

Definition 1.4. Let M be a nonempty closed, convex subset of a Banach space X , µ(·) a
measure of weak noncompactness on X and F : M → P(X) a multivalued mapping. We say
that :

(a) F is µ–condensing if µ(F (D)) < µ(D), for all bounded subset D of M with
µ(D) > 0.

(b) F is µ-nonexpansive map if µ(F (D)) ≤ µ(D), for all bounded subset D of M.

Let J : D(J ) ⊂ X → X be a single valued mapping. We recall the following conditions
introduced in [17, p. 260]:

(H1) For each weakly convergent sequence (xn)n∈N of D(J ), the sequence (J (xn))n∈N
has a strongly convergent subsequence.

(H2) For each weakly convergent sequence (xn)n∈N of D(J ), the sequence (J (xn))n∈N
has a weakly convergent subsequence.

Now, we recall the following results established in [2].

Theorem 1.1. Let M be a nonempty closed, convex subset of a Banach space X and let
F : M → Pcl,cv(M) be a u.s.c. multivalued map. Suppose that all selections of F satisfy the
condition (H1) and F (M) is relatively weakly compact. Then there exists x ∈ M such that
x ∈ F (x).

Theorem 1.2. Let X be a Banach space, M a nonempty closed, convex subset of X . Let
F : M → Pcl,cv(M) be a w.s.u.s.c. multivalued map and F (M) is relatively weakly compact.
Then there exists x ∈ M such that x ∈ F (x).

Theorem 1.3. Let X be a Banach space and M a nonempty bounded, closed and convex
subset of X. Assume that µ(·) a measure of weak noncompactness on X . If F : M →
Pcl,cv(M) is a w.s.u.s.c. µ-condensing multivalued map, then there exists x ∈ M such that
x ∈ F (x).

In the remainder of this paper, if A be a subset of a normed space X , we denote by A
w

the closure of A in the weak topology of X .

2 Main results
In this section, we shall gather our results of Leray-Schauder’s type for a class of

multivalued mapping. The first one deals with mappings satisfying condition (H1).
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Theorem 2.1. Let X be a Banach space and M a nonempty closed, convex subset of X .
Let U ⊂ M be an open subset of M , and p ∈ U . Assume that F : U → Pcl,cv(M) is a
continuous multivalued mapping and each selection of F satisfies condition (H1). If F (U) is
relatively weakly compact. Then, either
(a) there exists x ∈ U such that x ∈ F (x), or
(b) there exists x ∈ ∂U and λ ∈ (0, 1) such that x ∈ λF (x) + (1− λ)p.

Proof. Suppose (b) does not hold and F does not have a fixed point in x ∈ ∂U (otherwise,
we are finished, i.e. (a) occurs). Then

x /∈ λF (x) + (1− λ)p for all x ∈ ∂U and λ ∈ [0, 1].

Let A be the set

A := {x ∈ U : x ∈ tF (x) + (1− t)p for some t ∈ [0, 1]}.

It is clear that A is nonempty because 0 ∈ A (take t = 0). Furthermore, we have A∩ ∂U = ∅
and the continuity of F imply that A is closed. So by Uryshon’s theorem (see, for example,
[11, p.15]), there exists a continuous function ζ : M → [0, 1], such that ζ(x) = 1 if x ∈ A
and ζ(x) = 0 if x ∈ ∂U . We can define the multivalued mapping S : M → Pcl,cv(M) by:

S(x) =

{
ζ(x)F (x) + (1− ζ(x))p, x ∈ U,

{p}, x ∈ M \ U.
(1)

It is clear that S(M) is bounded, [0, 1] is compact, ζ and F are continuous multivalued maps,
hence S is a continuous multi-valued map. So, it is enough to show that S satisfies the con-
ditions of Theorem 1.1, that is, all selections of S satisfy the condition (H1) and S(M) is
relatively weakly compact. To do so, let (xn)n∈N be a weakly convergent sequence in M .
According to either or neither (xn)n∈N lies in U , for n large enough, we distinguish two cases:

(i) There exists some n0 ∈ N such that, for all n ∈ N, (n ≥ n0 =⇒ xn ∈ U). In this
case, the sequence (xn)n≥n0 is contained in U and converges weakly to some x ∈ U . Since
all selections of S satisfy (H1), we infer that there exists a selection f of F (then of S)
and a sequence (yn)n≥n0 , such that for each n ≥ n0, yn = f(xn). So, (yn)n≥n0 has a
strongly convergent subsequence (ynk

)k∈N to some y ∈ S(U). Because [0, 1] is compact, we
can extract from ζ(xnk

)k≥0 a strongly convergent subsequence ζ(xnkj
)j≥0. We note that the

sequence ζ(xnkj
)j≥0 satisfies

S(xnkj
) = ζ(xnkj

)F (xnkj
)1− ζ(x))p for all j ∈ N.

Thus, if we denote by H the Hausdorff distance on B(X), it is not difficult to check that, for
t ∈ [0, 1], we have

lim
j→+∞

H({S(xnkj
)}, {ty + (1− t)p}) = 0.

(ii) If (xn)n∈N is such that for all n ∈ N, there exists k ∈ N such that xnk
/∈ U , then we

may consider a subsequence (xnk
)k∈N ⊂ M \ U . Therefore, we can consider a subsequence
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(xnkj
)j∈N of M \ U such that, for each j, we have S(xnkj

) = {p}. This proves that, for j
large enough, we have H(S(xnkj

), {p}) = H({p}, {p}) = 0.

Hence, according to (i)-(ii) we conclude that all selections of S satisfy (H1).

To see that S(U) is relatively weakly compact, it suffices to observe that S(U) ⊂ F (U) and
F (U) is relatively weakly compact, so S(U) is relatively weakly compact. According to Equ.
(1), for all x ∈ U we have S(x) = ζ(x)F (x) − (1 − ζ(x))p. Now Theorem 1.1 ensures
the existence of a point z ∈ M such that z ∈ S(z). Since p ∈ U , we have z ∈ U and so
z ∈

(
ζ(z)F (z) + (1− ζ(z)p

)
. As a result, z ∈ A and so ζ(z) = 1. Hence z ∈ F (z). QED

Notice that, in Theorem 2.1, the set M is not necessarily bounded. In case it is bounded,
we obtain a more precise result:

Theorem 2.2. Let X be a Banach space, M a nonempty closed, bounded, convex subset of
X and µ(·) a measure of weak non-compactness on X . Let U ⊂ M be an open subset of M ,
and p ∈ U . Let F : U → Pcl,cv(M) is a continuous multivalued mapping and each selection
of F satisfies condition (H1). If F is µ-condensing, then, either

(a) there exists x ∈ U such that x ∈ F (x), or
(b) there exists x ∈ ∂U and λ ∈ (0, 1) such that x ∈ λF (x) + (1− λ)p.

This theorem is the nonlinear alternative version of the following fixed point theorem
established in [2, Theorem 3.1].

Theorem 2.3. Let M be a nonempty bounded, closed, convex subset of a Banach space
X and let F : M → Pcl,cv(M) be a u.s.c. multivalued map and µ(·) a measure of weak
non-compactness on X . Suppose that all selections of F satisfy condition (A). If F is µ-
condensing, then there exists x ∈ M such that x ∈ F (x).

Proof of Theorem 2.2 Using arguments similar to those used in proving Theorem 2.1, we
can see that the operator S defined by (1) maps continuously M into itself itself and satisfies
the condition (H1). By Theorem 2.3, it is enough to check that S is an µ-contraction. To
this end, let C ⊂ M . For all x ∈ C, we either have S(x) = ζ(x)F (x) + (1 − ζ(x))p,
ζ(x) ∈ [0, 1] or S(x) = p. We infer that S(C) ⊂ co

(
F (C)∪{p}

)
. Hence, using that fact that

µ is non-singular, we can writes

µ(S(C) ≤ µ
(

co
(
(F (C) ∪ {p}

))
= µ

(
(F (C) ∪ {p}

)
≤ max

(
µ(F (C)), µ({p})

)
= µ(F (C))

< µ(C).

Since F is continuous, then it is u.s.c. multi-valued map, so Theorem 2.3 gives the desired
result. QED

Now we are concerned with the existence of fixed point theorems for w.s.u.s.c. multival-
ued maps by applying Theorem 1.2 without assuming condition (H1).
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Theorem 2.4. Let X be a Banach space, M a nonempty closed, convex subset of X and let
U ⊂ M be weakly open relative to M , and p ∈ U . Suppose U

w
is a weakly compact subset

of M and F : Uw → Pcl,cv(M) is a w.s.u.s.c. multivalued map. Then, either
(a) there exists x ∈ U

w
such that x ∈ F (x), or

(b) there exists x ∈ ∂MU (the weakly boundary of U in M ) and λ ∈]0, 1[ with x ∈
λF (x) + (1− λ)p.

In this theorem we suppose that U weakly open relative to M , which means that U is
open for the topology induced on M by the weak topology of X . In other words, there exists
a weakly open subset O of X such that U = O∩M . The hypothesis U

w
is a weakly compact

means that there exists a weakly open subset O of X such that U = O ∩M is relativement
weakly compact.

Proof. Suppose (b) does not hold and F does not have a fixed point in x ∈ ∂MU (otherwise,
we are finished, i.e. (a) occurs). Then

x /∈ λF (x) + (1− λ)p for all x ∈ ∂MU and λ ∈ [0, 1].

Let A be the set

A :=
{
x ∈ Uw : x ∈ tF (x) + (1− t)p for some t ∈ [0, 1]

}
.

So, A is nonempty because 0 ∈ A (take t = 0). and A ∩ ∂MU = ∅. Moreover, since
A ⊂ U

w
, we conclude that A is relatively weakly compact. Let (xn)n∈N a sequence of A

such that xn ⇀ x (it is clear that x ∈ Uw ). By the definition of A, for each n ∈ N,
there exists tn ∈ [0, 1] such that xn ∈ tnF (xn) + (1 − tn)p. Since [0, 1] is compact, we
can extract a subsequence (tnk

)k∈N such that limk→∞ tnk
= t ∈ [0, 1]. Using the fact that

F : Uw → Pcl,cv(M) is a w.s.u.s.c. multivalued mapping, so the graph of F is weakly
sequential closed. Therefore, we get xnk

∈ tnk
F (xnk

)+ (1− tnk
)p ⇀ tF (x)+ (1− t)p and

so x ∈ A. This yields that A is weakly sequentially closed.

Let x ∈ Uw be be adherent to A for the weak topology σ(X,X∗). Since A
w

is weakly
compact, by the Eberlein-Ŝmulian theorem (see [15, Theorem 1.7.3, p. 31]), there exists a
sequence (xn)n∈N in A such that xn ⇀ x. Now the use of the fact A is weakly sequentially
closed, we conclude that x ∈ A. Hence Aw = A which proves that A is weakly closed. Since
Uw is weakly compact and A ⊂ U

w
, we deduce that A is weakly compact.

Since (X,σ(X,X∗) (X endowed with its weak topology) is a Hausdorff locally convex topo-
logical vector space, it is completely regular and the assertion (b) is not satisfied, so we have
A ∩ (M \ U) = ∅. Again by Uryshon’s theorem [15, Theorem 1.1.2], there is a weakly con-
tinuous function ζ : M → [0, 1], such that ζ(x) = 1 for x ∈ A and ζ(x) = 0 for x ∈ M \ U .
We can define the multivalued map S : M → Pcl,cv(M) by:

S(x) =

{
ζ(x)F (x) + (1− ζ(x))p, x ∈ Uw,

{p}, x ∈ M \ Uw.
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Since M is convex and closed, by Mazur’s theorem, M is weakly closed and therefore
∂MU = ∂MUw. Using the fact that ζ is weakly continuous and F is w.s.u.s.c., we infer that
S is w.s.u.s.c. multivalued mapping.

Furthermore, we have S(M) ⊆ co(F (Uw)∪{p}). Putting H := co(F (Uw)∪{p}). By Krein-
Smulian’s theorem (see [11, p. 434]), H is a weakly compact subset of M and S(H) ⊆ H
and therefore S(H) is relatively weakly compact and consequently S : H → Pcl,cv(H) is
w.s.u.s.c. multivalued mapping (see above). Hence S satisfies all assumptions of Theorem
1.2, so there exists z ∈ M such that z ∈ S(z). If z /∈ U , ζ(z) = 0 and so z = p, which
contradicts the hypothesis p ∈ U . This shows that z ∈ U and z ∈

(
ζ(z)F (z) + (1− ζ(z))p

)
which implies that z ∈ A, thus we have ζ(z) = 1 and so z ∈ F (z) which completes the
proof. QED

The following corollary is an easy consequence of Theorem 2.4.

Corollary 2.1. Let X be a Banach space, M a nonempty closed, convex subset of X and
U a weakly open subset of M with p ∈ U . Assume that U

w
is weakly compact and F :

Uw → Pcl,cv(M) is a w.s.u.s.c. multivalued map. In addition, suppose that F satisfies the
Leray-Schauder boundary conditions, that is,

x /∈ λF (x) + (1− λ)p for all x ∈ ∂MU and λ ∈]0, 1[.

Then F has a fixed point in Uw.

QED

Now, we are in a position to establish the next result of the Leray-Schauder type for
w.s.u.s.c. µ-condensing multivalued mappings.

Theorem 2.5. Let X be a Banach space, M a nonempty closed, convex subset of X and
U ⊂ M a weakly open subset of M with p ∈ U . Assume F : Uw → Pcl,cv(M) is a w.s.u.s.c.
µ-condensing multivalued map where µ(·) is a measure of weak noncompactness on X . If
F
(
Uw

)
is bounded, then, either

(a) there exists x ∈ U
w

such that x ∈ F (x), or
(b) there exists x ∈ ∂MU (the weakly boundary of U in M ) and λ ∈]0, 1[ with x ∈

λF (u) + (1− λ)p.

Proof. Suppose (b) does not hold and F does not have a fixed point in x ∈ ∂MU (otherwise,
we are finished, i.e. (a) occurs). Then

x /∈ λF (x) + (1− λ)p for all x ∈ ∂MU and λ ∈ [0, 1].

Define the set A by

A := {x ∈ Uw : x ∈ tF (x) + (1− t)p for some t ∈ [0, 1]}.
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As in the proofs of theorems above, A is nonempty. Furthermore, we have A ⊂ co(F (A) ∪
{p}) and so

µ(A) ≤ µ(co(F (A) ∪ {p}) = µ(F (A)) < µ(A),

which is a contradiction. Hence, µ(A) = 0 and so A is relatively weakly compact. Using
the same arguments as in Theorem 2.4, we see that A is weakly closed and so A is weakly
compact. Now, We can define the multivalued map S : M → Pcl,cv(M) by:

S(x) =

{
ζ(x)F (x) + (1− ζ(x))p x ∈ Uw,

{p}, x ∈ M \ Uw

where ζ : M → [0, 1] is a weakly continuous map satisfying ζ(x) = 1 for x ∈ A and
ζ(x) = 0 for x ∈ M \ U . Let V be a bounded subset of M . According to the definition of S,
we have S(V ) ⊆ co(F (V ) ∪ {p}) and so

µ(S(V )) ≤ µ(F (V ∩ U)) ≤ µ(F (V )) < µ(V ).

Hence, S is µ-condensing. Since ζ is weakly continuous and F is a w.s.u.s.c. µ-condensing
multivalued map, we deduce that S is a w.s.u.s.c. µ-condensing multivalued map. Accord-
ingly, S satisfies all assumptions of Theorem 1.3. Hence, there exists z ∈ M with z ∈ S(z).
If z /∈ U , ζ(z) = 0 and so z = p, which contradicts the hypothesis p ∈ U . This shows that
z ∈ U and z ∈

(
ζ(z)F (z) + (1− ζ(z))p

)
which implies that z ∈ A, thus we have ζ(z) = 1

and so z ∈ F (z) which completes the proof.
QED

The following corollary is an easy consequence of the theorem above.

Corollary 2.2. Let X be a Banach space, M a nonempty closed, convex subset of X and
U ⊂ M a weakly open subset of M with p ∈ U . Assume F : Uw → Pcl,cv(M) is a
w.s.u.s.c. µ-condensing multivalued map where µ(·) is a measure of weak noncompactness on
X . In addition, suppose that F

(
Uw

)
is bounded and satisfies the Leray-Schauder boundary

conditions:

x /∈ λF (x) + (1− λ)p for every x ∈ ∂MU and λ ∈]0, 1[.

Then F has a fixed point in Uw.

We conclude this paper by the following result.

Theorem 2.6. Let X be a Banach space, M a nonempty closed, convex subset of X and
U ⊂ M a weakly open subset of M with 0 ∈ U . Assume F : Uw → Pcl,cv(M) is a w.s.u.s.c.
µ-nonexpansive multivalued map and each selection of F satisfies condition (H2) where µ(·)
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is a measure of weak noncompactness on X . In addition, suppose that F
(
Uw

)
is bounded

and F satisfies the Leray-Schauder boundary conditions:

x /∈ λF (x) + (1− λ)p for every x ∈ ∂MU and λ ∈]0, 1[. (2)

Then F there exists x ∈ U
w

such that x ∈ F (x).

Proof. Let Fn =
n

n+ 1
F, for n = 1, 2, · · · . Set ζn =

n

n+ 1
. It is clear that (ζ)n∈N is

contained in (0, 1) and ζn → 1 as n goes to +∞. Since ζn < 1, the map Fn is a w.s.u.s.c.
µ-condensing multivalued mapping.
According to Theorem 2.5, there exists zn ∈ U

w
such that zn ∈ ζnF (zn) for some zn ∈

∂MU and λn ∈ (0, 1). This yields that zn ∈ λnζnF (zn) which contradicts the result of
Corollary 2.2 because λnζnF is µ-condensing. Hence, for each x ∈ ∂U and λn ∈ (0, 1), we
have x /∈ λnFn(x) and consequently Fn has a fixed point in U

w
.

Next, set K = co(Fn(M)). It is clear that K is contained in M and, by Krien-Ŝmulian’s
theorem, K is a convex weakly compact subset of X .

Let (xn)n∈N be a sequence of points of K. The weak compactness of K yields that there
exists a subsequence (xnk

)k∈N of (xn)n∈N such that xnk
⇀ x as n → +∞. Let (ynk

)k∈N
be a sequence in Fn(K) such that, for each k ∈ N, ynk

∈ ζnk
F (xnk

). Hence, there is a
selection f of F such that, for each k ∈ N, ynk

= f(xnk
). Since f satisfies (H2), we infer

that (ynk
)k∈N has a weakly convergent subsequence in K, say (ynkj

)j∈N, that is ynkj
⇀ y

as j → +∞. We note that, when n goes to +∞, ζn → 1. Thus, we deduce that there exists
x ∈ K with x ∈ F (x). QED
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