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Abstract 40 

Background 41 

Silicon (Si) is increasingly recognized as a pivotal beneficial element for plants in ecology and 42 

agricultural sciences, but soil-plant Si cycling has been considered mostly through the prism of 43 

abiotic mineral weathering, whilst numerous biological processes have been overlooked. 44 

Leveraging ecological processes that impact soil-plant Si cycling in cropping systems might 45 

improve crop Si status, but this remains hypothetical to date. 46 

Scope 47 

We aim to comprehensively compile information about biotic and abiotic processes driving soil-48 

plant Si cycling, and translate their potential beneficial effects in agricultural practices. We 49 

emphasize the fundamental need to consider the effects of agricultural practices on Si mobility in 50 

soil-plant systems when striving towards sustainable agroecosystems. 51 

Conclusions 52 

Regarding soil abiotic factors, degree of soil weathering, mineralogy, texture and pH are key 53 

predictors of soil Si dynamics, while soil aggregation processes deserve further investigation. The 54 

biological processes associated with mycorrhizal associations, silicate-solubilizing bacteria, and 55 

soil macrofauna enhance Si mobility in soil-plant systems, while the effect of root exudates is 56 

likely, but deserves further studies. Large herbivores strongly affect soil-plant Si mobility by 57 

increasing plant-derived Si turnover rates and redistribution, thereby making integrated crop-58 

livestock systems a promising perspective to improve crop Si status. Recycling crop residues and 59 

implementing suitable cover crops promotes Si mobility in soil-plant systems by leveraging the 60 

relatively high solubility of plant-derived Si-bearing minerals. The soil-root-microorganism 61 
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interactions facilitated by cereal-legume intercropping systems also contributes to the mobility of 62 

Si in the soil-plant continuum. The capacity of certain agricultural practices to increase Si 63 

mobility in soil-plant systems stresses the need to understand complex soil-plant-animal 64 

interactions when aiming to enhance Si-based plant stress resistance in agroecosystems. 65 

Keywords: large herbivores; cover crops; intercropping; integrated crop-livestock systems; 66 

nutrient-acquisition strategies; sustainable agroecosystems; recycling crop residues; facilitation; 67 

biochar 68 

Introduction 69 

Silicon (Si) is taken up by all vascular plants and contributes to a wide range of functions 70 

(Epstein 1994). It is deposited as hydrated amorphous silica in plant tissues (SiO2.nH2O; 71 

phytoliths) and helps mitigate several plant biotic and abiotic stresses (Ma 2004; Liang et al. 72 

2007; Zhu and Gong 2014; Cooke and Leishman 2016; Hartley and DeGabriel 2016; Debona et 73 

al. 2017; Coskun et al. 2019), can be used as a cheap plant structural component (Raven 1983), 74 

and, eventually, increase plant primary productivity and crop yield (Savant et al. 1999; Liang et 75 

al. 2015b; Tubana et al. 2016; Xu et al. 2020). The essentiality of Si for plants remains debated 76 

and challenging to assess (Epstein 1994; Coskun et al. 2019), but overwhelming evidence show 77 

its importance for plant functioning. It is therefore increasingly considered a key element in plant 78 

ecology (Cooke and Leishman 2011; Katz 2019) and agriculture, especially considering the 79 

importance of Si-accumulating species in global food production (e.g., wheat, rice, sugarcane) 80 

(Fig. 1) (Meyer and Keeping 2000; Datnoff et al. 2001; Haynes 2014; Liang et al. 2015b; Tubana 81 

et al. 2016). 82 
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Over the last 30 years, soil scientists and biogeochemists studied Si in a wide range of 83 

environments to explore the role of soil properties and vegetation on soil-plant Si cycling (Bartoli 84 

1983; Alexandre et al. 1997; Lucas 2001; Derry et al. 2005; Sommer et al. 2006; Henriet et al. 85 

2008b, a; Cornelis et al. 2010; Haynes 2014; Cornelis and Delvaux 2016; Meunier et al. 2018; 86 

Vander Linden and Delvaux 2019; de Tombeur et al. 2020c, a, b; Schaller et al. 2021). The 87 

processes and factors governing Si release rates from minerals are well documented (Sommer et 88 

al. 2006; Churchman and Lowe 2012; Haynes 2014; Cornelis and Delvaux 2016; Schaller et al. 89 

2021), as are the influence of plant-induced mechanisms (bioweathering and Si uptake) on 90 

terrestrial Si cycling (Lucas et al. 1993; Alexandre et al. 1997; Street-Perrott and Barker 2008; 91 

Haynes 2017; de Tombeur et al. 2020a). However, how certain aspects of the soil-plant-animal 92 

continuum influence Si mobility in both natural systems and agroecosystems have been 93 

overlooked, especially the contribution of biotic factors. Yet, a detailed understanding of soil-94 

plant-animal interactions influencing Si dynamics is paramount if we seek to benefit from Si-95 

related plant functioning in agriculture (Acevedo et al. 2021). 96 

Despite its ubiquity in soils (2
nd

 most abundant element of the Earth's crust ; Wedepohl 1995), 97 

long-term mineral weathering and subsequent desilication (i.e. Si loss by leaching) result in soils 98 

with low plant-available Si concentrations in many areas of the world (approximately 3500 99 

million hectares, as estimated by the land area supporting desilicated soils: Ferralsol, Podzol, 100 

Arenosol, Lixisol, Plinthosol, Acrisol and Alisol; WRB 2015), particularly in tropical and 101 

subtropical regions where soils tend to be older and leaching intensity greater (Savant et al. 102 

1999). In addition, agriculture further enhances desilication by harvesting and exporting large 103 

amount of Si  (Desplanques et al. 2006; Struyf et al. 2010; Clymans et al. 2011; Guntzer et al. 104 
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2012; Keller et al. 2012; Vandevenne et al. 2015; Carey and Fulweiler 2016; Tubana et al. 2016; 105 

Vander Linden and Delvaux 2019). These days, rock-derived Si fertilizers are routinely applied 106 

in some agroecosystems to counterbalance these detrimental effects (Savant et al. 1999; Datnoff 107 

et al. 2001; Haynes 2014; Liang et al. 2015b), and intensifying this practice might even be 108 

beneficial in less-weathered and desilicated environments (Tubana et al. 2016). However, such a 109 

practice relies on non-renewable resources, and low accessibility to common, rock-derived Si 110 

fertilizers in some tropical regions can jeopardize the Si benefits in these sensitive 111 

agroecosystems. Harnessing ecological processes that increase soil-plant Si mobility by 112 

promoting specific agricultural practices may improve the Si status of crops worldwide, while 113 

decreasing the need for non-renewable mineral fertilizers (Lambers et al. 2011; Richardson et al. 114 

2011; Mariotte et al. 2018). Indeed, recent evidence demonstrates the positive impact of certain 115 

agricultural practices such as intercropping, cover crops or integrated crop-livestock systems, on 116 

nutrient management, especially for phosphorus (P) (Hallama et al. 2019; Tang et al. 2020; 117 

Carlos et al. 2020). 118 

In this review, we aim to compile knowledge about biotic and abiotic factors that govern Si 119 

mobility in soil-plant systems and translate their potential benefits in agricultural practices. We 120 

specifically emphasize how overlooked ecological/biological processes are pivotal when favoring 121 

Si biocycling in agroecosystems, and advocate the permanent need to nurture our understanding 122 

of complex interactions between physico-chemical and biological soil processes to develop 123 

sustainable agroecosystems. 124 

Biotic and abiotic factors affecting soil-plant Si cycling 125 

Physico-chemical processes controlling soil Si dynamics 126 
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Over the past decade, many studies reported an increase in plant-available Si concentrations with 127 

increasing soil pH when multiple soils were considered together (Phonde et al. 2014; Miles et al. 128 

2014; Puppe et al. 2015; Klotzbücher et al. 2018b; Meunier et al. 2018; Schaller et al. 2018, 129 

2021; Haynes 2019; Caubet et al. 2020; de Tombeur et al. 2020b). Prolonged soil acidification 130 

during pedogenesis is associated with the loss of reactive Si-bearing minerals (through mineral 131 

dissolution and subsequent lixiviation of dissolved Si) and increased desilication (Savant et al. 132 

1999; Chadwick and Chorover 2001; Sommer et al. 2006; Henriet et al. 2008a; Liang et al. 133 

2015a; de Tombeur et al. 2020b). Consequently, plant-available Si concentrations inevitably 134 

decrease with the relative enrichment of poorly weatherable minerals and the decrease in soil pH 135 

during pedogenesis  (Savant et al. 1999; Liang et al. 2015a; Haynes 2019; de Tombeur et al. 136 

2020b). However, increasing soil pH is also associated to a decrease in plant-available Si 137 

concentrations, because Si adsorption onto the surface of oxides and silicates increases gradually 138 

to about pH 9.5, reflecting the H4SiO4/H3SiO4
- 

pKa of 9.47  (Jones and Handreck 1963; 139 

McKeague and Cline 1963; Beckwith and Reeve 1964; Hingston and Raupach 1967; Hingston et 140 

al. 1972; Obihara and Russell 1972; Philippini et al. 2006; Nguyen et al. 2017; Haynes and Zhou 141 

2018). This adsorption process is also dependent on condensation processes (Schaller et al. 2021) 142 

as adsorption of polysilicic acid is less reversible than monosilicic acid (Dietzel 2002). On the 143 

other hand, a high pH could also increase plant-available Si concentrations via increasing 144 

dissolution rates of aluminosilicates from soil pH 7.5/8 (Drever 1994; Kelly et al. 1998), together 145 

with increased phytolith dissolution rates with increasing soil pH from 3 to 10 (Fraysse et al. 146 

2006b, 2009). Overall, although the controls of soil weathering, mineralogy and texture on plant-147 

available Si are now well understood, especially for the silicate weathering domain (Cornelis and 148 
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Delvaux 2016; de Tombeur et al. 2020b), how high pH and carbonate minerals influence Si plant-149 

availability remains unclear, because they are driven by antagonistic processes (Haynes 2019). 150 

Beyond that, the complex physical organization of soil particles and accessibility to roots teach us 151 

how challenging it is to make the assessment of nutrient and Si availability accurate and 152 

reproducible. For instance, capturing the effect of condensation state of silicic acid on the 153 

measurements of plant-available Si by specific extractions (Schaller et al. 2021) is challenging. In 154 

particular, the relation between soil pH and mineralogy should be visited through the lens of 155 

polymerization and depolymerization processes influencing the equilibrium from monosilicic 156 

acid and polysilicic acid to amorphous silica precipitates over very short time scales (hours to 157 

days) (Dietzel 2000). Indeed, polymerization rates of monosilicic acid and its precipitation as 158 

amorphous silica increase strongly with increasing pH and ionic strength (Icopini et al. 2005). As 159 

suggested by Schaller et al. (2021), the activity of monosilicic acid in soil solution, which is 160 

directly related to plant-available Si concentrations, is largely dependent on solid-liquid 161 

equilibrium that vary on very short time scales (hours to days), because of daily and seasonal 162 

variations of water dynamics in soil porosity (Zabowski and Ugolini 1990). The short-term 163 

variations of water content are certainly a key driver of polymerization, complexation and 164 

adsorption reactions, which govern the availability of monosilicic acid for plants. The polymers 165 

of polysilicic acid and submicrometric colloids of amorphous silica precipitating in soil porosity 166 

could in turn influence the water holding capacity and aggregation, by clogging the porosity and 167 

cementing particles together (Schaller et al. 2021). 168 

Despite a potential role of amorphous silica on soil aggregation (Schaller et al. 2021), how the 169 

interactions between soil mineral and organic constituents (Six et al. 2004) impact the extent to 170 
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which minerals can be dissolved in aggregates is not understood. In this regard, Li et al. (2020b) 171 

showed that soil microaggregates contribute over 60% of the total phytolith stock in a Retisol. 172 

The authors proposed that entrapment of phytoliths in aggregates might slow down their 173 

dissolution, and increase their persistence in soils and sediments. In addition, soil aggregates host 174 

microbial hotspots in pores or at mineral surfaces creating specific soil micro-environments 175 

where microbial processes are accelerated as compared to the average rates in the bulk soil, i.e. 176 

the hot moments (Kuzyakov and Blagodatskaya 2015). The bio-induced weathering processes in 177 

these hotspots most likely also impact soil Si release rates into the soil solution (Uroz et al. 2009), 178 

supporting the need to further investigate the role of soil aggregation on soil Si dynamics. This is 179 

of special interest since anthropogenic land transformations (e.g., tillage) substantially impact soil 180 

aggregation processes, affecting soil structure (Mikha and Rice 2004; Wright and Hons 2005; 181 

Fonte et al. 2014; Or et al. 2021). 182 

Besides the role of soil solution chemistry on Si availability in the vicinity of roots, it is also 183 

recognized that Si compete with other ions via sorption/desorption mechanisms on soil 184 

exchangeable sites (Matychenkov and Ammosova 1996; Klotzbücher et al. 2020). In particular, 185 

research has long suggested competition between Si and phosphate ions (Smyth and Sanchez 186 

1980; Kundu et al. 1988; Matychenkov and Ammosova 1996; Owino-Gerroh and Gascho 2004; 187 

Konhauser et al. 2007; Reithmaier et al. 2017; Hilbrandt et al. 2019; Hömberg et al. 2020; 188 

Klotzbücher et al. 2020; Schaller et al. 2020). Such mechanism could explain the benefits of Si 189 

addition on plant P nutrition (Hall and Morison 1906; Fisher 1929; Singh and Sarkar 1992; 190 

Owino-Gerroh and Gascho 2004; Eneji et al. 2008; Neu et al. 2017), even though other 191 

mechanisms were postulated (Ma and Takahashi 1990a, b, 1991a; Kostic et al. 2017; Pavlovic et 192 
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al. 2021). In addition to P, Si may also compete with dissolved organic matter (Reithmaier et al. 193 

2017; Klotzbücher et al. 2020), selenium (Jordan et al. 2009), arsenic (Christl et al. 2012) and 194 

iron (Hömberg et al. 2020). Such sorption/desorption competitive mechanisms are pH-dependent, 195 

with rates decreasing with pH given the lower chemical reactivity of monosilicic acid at acidic 196 

conditions (Owino-Gerroh and Gascho 2004; Konhauser et al. 2007; Jordan et al. 2009; Christl et 197 

al. 2012). It is therefore key to buffer the pH of the sorption/desorption isotherms because it is 198 

certainly influenced by the use of alkaline Si fertilizers (e.g., calcium silicates). 199 

Overall, although the controls of soil weathering degree and mineralogy on soil Si dynamics are 200 

now well understood (Cornelis and Delvaux 2016), more attention should be given to the process 201 

of polymerizing silicic acid from monosilicic and polysilicic acid to amorphous silica precipitates 202 

(Schaller et al. 2021). Soil porosity, as well pore tortuosity and connectivity, should also be 203 

considered for their influence on monosilicic acid activity in soil solution, as should soil 204 

aggregation. Finally, while the size and type of minerals as well as the ionic composition of pore 205 

water together control dissolution kinetics, furthering how temporal variations of water content 206 

(hourly to seasonally changes) affect plant-available Si is certainly worthwhile goal. Getting 207 

closer to the actual plant-availability of Si will therefore require to reconcile microscale soil 208 

processes with the extractable solutions used to assess Si concentrations in soil solution. 209 

Biological processes controlling soil Si dynamics 310 

Silicon biocycling: the high reactivity of phytoliths 311 

In addition to the weathering of rock-derived minerals, the dissolution of soil phytogenic silicates 312 

(phytoliths) also strongly impact Si dynamics (Bartoli 1983; Alexandre et al. 1997; Meunier et al. 313 

1999; Derry et al. 2005; Farmer et al. 2005; Sommer et al. 2013; de Tombeur et al. 2020a). 314 
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Biogeochemical mass-balance calculations have long reported that a significant fraction of Si in 315 

the soil solution is derived from the dissolution of the phytogenic Si pool (Bartoli 1983; 316 

Alexandre et al. 1997, 2011; Gérard et al. 2008), because of its high solubility compared with that 317 

of crystalline Si-bearing minerals (Fraysse et al. 2006b, 2009; Cornelis and Delvaux 2016). This 318 

challenged the common view that plant-available Si concentrations were mainly driven by soil 319 

parent material, weathering degree, and subsequent soil mineralogy/texture (Savant et al. 1999; 320 

Chadwick and Chorover 2001; Henriet et al. 2008a, b; de Tombeur et al. 2020b). To reconcile the 321 

control of geochemical and biological processes on Si release in the soil solution, Cornelis and 322 

Delvaux (2016) suggested that the biological Si feedback loop (phytolith formation in plants and 323 

dissolution in soils) takes over soil litho/pedogenic pools in advanced soil weathering stages. This 324 

contention was recently supported by the use of long-term soil chronosequences where plant-325 

available Si concentrations are mainly governed by soil-derived Si-bearing minerals (clay 326 

minerals) in early and intermediate stages of weathering (de Tombeur et al. 2020b), but 327 

increasingly by the recycling of phytoliths in old and highly-weathered soils dominated by 328 

poorly-soluble quartz minerals (de Tombeur et al. 2020a). The significant effect of vegetation on 329 

the soil-plant Si cycle explains why land-use changes and management affect the global Si cycle 330 

(Struyf et al. 2010; Clymans et al. 2011; Vandevenne et al. 2015; Carey and Fulweiler 2016). 331 

Some soil organisms also accumulate Si to form various siliceous structures (Ehrlich et al. 2010; 332 

Puppe 2020). They are classified as zoogenic Si pool (e.g., sponge spicules that get into the soils 333 

mostly from freshwaters through aeolian transport or in situ production; Łukowiak 2020), 334 

bacterial Si (e.g., Proteus mirabilis, Lauwers and Heinen 1974), fungal Si, protozoic Si (e.g., 335 

testate amoeba shells) or protophytic Si (e.g., diatom frustules) (Sommer et al. 2006; Ehrlich et 336 
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al. 2010; Puppe et al. 2015; Puppe 2020). Recent evidence suggest that these pools are of a 337 

similar magnitude as the phytogenic pool, and in turn influence the terrestrial Si cycle (Sommer 338 

et al. 2013; Puppe et al. 2014, 2015, 2016). In particular, annual biosilicification from testate 339 

amoebae ranges from 17 to 80 kg ha
-1

 yr
-1

 depending on soil and ecosystem properties which is 340 

similar to or even exceeds annual Si uptake by terrestrial vegetation (Sommer et al. 2013; Puppe 341 

et al. 2015; Vander Linden and Delvaux 2019). This pioneering work opened new perspectives 342 

on the role of Si-based life forms on soil-plant Si cycling (Puppe 2020). 343 

Biological weathering of Si-bearing minerals 344 

In addition to the production of an easily weatherable Si pool, plants are extremely active when it 345 

comes to enhancing weathering ability of different soil constituents, either directly or indirectly. 346 

Nevertheless, plants are not stand-alone entities in their ability to affect Si cycling, but should be 347 

considered as “holobionts”, which includes the microbiome associated with their development 348 

(Vandenkoornhuyse et al. 2015). There are numerous well-known mechanisms by which the 349 

actors of the soil-plant continuum contribute to the dissolution of Si-bearing minerals and 350 

extensive reviews can be found elsewhere (Finlay et al. 2020; Dontsova et al. 2020). Briefly, 351 

these mechanisms can be divided into two categories: biochemical and biophysical weathering. 352 

These processes are not mutually independent; rather, they often play cumulative or synergistic 353 

roles. 354 

The main biochemical effect on Si dissolution is the modification of the chemical conditions in 355 

the rhizosphere. This occurs through the release of organic acids, either as a by-product of 356 

cellular metabolism or as root exudates, plant excretion of H
+
 in exchange for cationic nutrients, 357 

formation of carbonic acid (Golubev et al. 2005; Brantley 2008) through the release of CO2 via 358 
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root respiration or organic matter mineralization, and the release of inorganic acids from redox 359 

reactions (e.g. sulfuric acid via pyrite oxidation). Proton-promoted dissolution is supplemented 360 

by ligand-promoted dissolution where organic acids, in addition to their pH altering ability, can 361 

act synergistically with strong chelators such as phytosiderophores or carboxylates to further 362 

enhance weathering of Si-bearing minerals by destabilizing mineral lattices through the binding 363 

of metal cations (Bennett et al. 2001; Buss et al. 2007; Pastore et al. 2020). Biophysical 364 

mechanisms include hyphal tunneling, or boring and other mechanisms of penetration by plant 365 

roots or fungi along mineral weakness points (Smits et al. 2005; van Schöll et al. 2008; Teodoro 366 

et al. 2019). This, in turn, increases substrate porosity and, therefore, increases the mineral 367 

surface exposed to chemical weathering agents (Pawlik et al. 2016; Gadd 2017). Finally, plants 368 

and associated microorganisms can also affect water movement and retention capacity through 369 

uptake and biofilms and therefore strongly influence water residence time and weathering 370 

patterns (Lucas 2001; Flemming and Wingender 2010). 371 

While the biological impact on weathering is recognized, its contribution to the mobility of 372 

nutrients in natural and agricultural systems, including Si, remains poorly understood.  In the 373 

following, we therefore aim to assess the effects of each biological agent on Si plant-availability. 374 

Root exudates Plant roots secrete a wide range of exudates that mobilize poorly-available 375 

nutrients in the rhizosphere (Dakora and Phillips 2002; Lambers et al. 2006; Finlay et al. 2020). 376 

A long history of experimental studies has shown the increase of silicate dissolution by root 377 

exudates, through organic acids (Stillings et al. 1996; Drever and Stillings 1997; Cama and Ganor 378 

2006; Bray et al. 2015) or forest floor extracts (van Hees et al. 2002). Increasing dissolution of 379 

silicates or pedogenic oxides in the presence of siderophores was also demonstrated, whether 380 
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they are microbial (Liermann et al. 2000; Buss et al. 2007) or root-derived (Reichard et al. 2005). 381 

However, despite their importance for plant nutrient acquisition, the role of root exudates in 382 

mobilizing Si for plant uptake has been overlooked. Yet root-released carboxylates do increase 383 

the mobility of P, K, Fe, Al, Ca, P and numerous micronutrients (Gerke et al. 1994; Ström et al. 384 

2005; Wang et al. 2011; Houben and Sonnet 2012; Abrahão et al. 2014; Colombo et al. 2014; 385 

Kabas et al. 2017; Teodoro et al. 2019), and there could be similar effects on soil-plant Si 386 

mobility. 387 

Early work by Hinsinger et al. (2001) has shown the impact of banana (Musa paradisiaca), maize 388 

(Zea mays), canola (Brassica napus), and white lupin (Lupinus albus) on the weathering of a 389 

basaltic rock. After 36 days of growth, the amount of Si released from basalt in the presence of 390 

hydroponically grown plants was increased two-fold compared with the abiotic control. More 391 

recently, Burghelea et al. (2015) and Zaharescu et al. (2019) showed that buffalo grass 392 

(Bouteloua dactyloides) grown on schist and rhyolite for 124 to 603 days, respectively, increased 393 

the mobility of Si compared with that of an abiotic control. Furthermore, Gattullo et al. (2016) 394 

showed that Fe-deprived barley (Hordeum vulgare) plants rapidly released more exudates into 395 

the rhizosphere to mobilize Fe from amorphous Fe oxides. Then, when the soil-plant contact was 396 

extended to 12 days, plants overcame Fe nutritional stress and the exudation of organic ligands 397 

mobilized Si from smectite (Gattullo et al. 2016). These results demonstrate that root exudates 398 

are primarily influenced by macro- or micronutrients limitation, but that co-solubilization of Si is 399 

very likely (de Tombeur et al. 2021b). In support of this claim, recent studies showed an increase 400 

in leaf Si concentrations with decreasing soil P concentrations and Si plant-availability along a 401 

long-term soil chronosequence (de Tombeur et al. 2020a, 2021c), particularly in old and highly-402 
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weathered environments where carboxylate-releasing strategies are common (Lambers et al. 403 

2008; Zemunik et al. 2015). This result suggests a role for carboxylates in mobilizing soil Si from 404 

poorly-soluble forms for plant uptake, as it is the case for manganese (Mn) along the Jurien Bay 405 

chronosequence (Hayes et al. 2014; Lambers et al. 2015; de Tombeur et al. 2021b). Future 406 

research is required to elucidate to which extent Si is co-mobilized by different nutrient-407 

acquisition strategies. In addition, future studies should test if root exudation patterns are directly 408 

influenced by low Si availability. 409 

Mycorrhizal associations With nearly 90% of plants harbouring either arbuscular mycorrhizal 410 

(AM) or ectomycorrhizal fungi (EM) symbionts (Brundrett 2002; Smith and Read 2008), 411 

mycorrhizas exhibit strong control over major ecosystem processes including plant nutrient 412 

acquisition (Marschner and Dell 1994; Clark and Zeto 2000; Richardson et al. 2009), 413 

biogeochemical cycles (Högberg et al. 2001; van Hees et al. 2006), plant diversity and 414 

productivity (Van Der Heijden et al. 1998, 2008) and weathering potential (Leake and Read 415 

2017; Smits and Wallander 2017). Plants enable mycorrhizal fungal growth and activity by 416 

translocating various organic compounds (sugars, lipids) into the roots (Jiang et al. 2017; Rich et 417 

al. 2017). In exchange of plant photosynthates, fungi develop hyphal networks into the soil and 418 

enhance weathering processes for lithogenic nutrient acquisition (Van Breemen et al. 2000; van 419 

Schöll et al. 2006, 2008). In 1990, Kothari et al. provided the first evidence of Si mobilization by 420 

mycorrhizal fungi by showing an increase in maize (Zea mays) root Si concentrations after 421 

inoculation with an arbuscular mycorrhizal fungi (Kothari et al. 1990). Since then, other studies 422 

have shown that the presence of mycorrhizal fungi may significantly increase the Si 423 

concentrations of different species (maize, sugarcane, banana, chickpea, pigeon pea, soybean), 424 
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and in different plant organs (roots, leaves, stems) (Table 1) (Yost and Fox 1982; Clark and Zeto 425 

1996; Garg and Bhandari 2016; Oye Anda et al. 2016; Frew et al. 2017b, a, 2020; Garg and 426 

Singh 2018; Gbongue et al. 2019). Root Si concentrations are positively correlated with the 427 

degree of arbuscular mycorrhizal colonization, which reduces root herbivory (Frew et al. 2017a). 428 

Moreover, mycorrhizal colonization increases root Si concentrations, but uniquely for plants 429 

growing on soils with low concentrations of plant-available Si (Frew et al. 2017a). This pattern 430 

was confirmed by other studies where the effects of mycorrhizal fungi on plant Si concentrations 431 

were less important, or even absent, when Si was supplied to plants (Oye Anda et al. 2016; Frew 432 

et al. 2017b). 433 

Even if the effects of mycorrhizas on plant Si concentration depend on initial Si availability in 434 

soil, these results reveal that root mycorrhizal colonization can be a significant driver of plant Si 435 

uptake and concentrations in plants, with a direct impact on herbivory. In some cases, plant Si 436 

concentrations have indeed more than doubled after inoculation with mycorrhizal fungi (Oye 437 

Anda et al. 2016). More broadly, although phylogenetic variation and the presence or absence of 438 

Si transporters remain the main explanations for variation in plant Si accumulation (Hodson et al. 439 

2005; Ma et al. 2006, 2007; Deshmukh and Bélanger 2016; Deshmukh et al. 2020), nutrient-440 

acquisition strategies like mycorrhizal associations and root-released carboxylates could play a 441 

significant, but so far overlooked role. This is of special interest since both strategies increase 442 

with decreasing P availability (Abbott et al. 1984; Tang et al. 2001; Covacevich et al. 2007; He et 443 

al. 2020), and P-depleted soils are often also Si-depleted, due to high weathering degree. 444 

 445 
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 450 

Table 1 – Effect of arbuscular mycorrhizal fungi on plant silicon (Si) concentrations in a range of plant species. We 451 

used WebPlotDigitizer to extract data published as figures (Rohatgi 2012). 452 

Plant Organ AM fungi Increase in plant [Si] (%) Reference 

Maize (Zea mays) Shoot Glomus sp. +3% to +66% for acid soils 

-28% to -6% for alkaline soils 

+78% to +252% of Si content (weight by plant) 
for acid soils 

-9% to +25% of Si content (weight by plant) for 

alkaline soils 

Clark and Zeto 

(1996) 

Chickpea (Cicer arietinum) Shoot Funneliformis 

mosseae 

+17-20% Garg and Bhandari 

(2016) 

Banana (Musa acuminata) Pseudostem Rhizophagus 
irregularis 

+149% without Si 
+88% with Si 

Oye Anda et al. 
(2016) 

Banana (Musa acuminata) Leaves Rhizophagus 

irregularis 

+84% without Si 

+70% with Si 

Oye Anda et al. 

(2016) 

Banana (Musa acuminata) Roots Rhizophagus 

irregularis 

+109% without Si 

+30% with Si 

Oye Anda et al. 

(2016) 

Sugarcane (Saccharum spp. 
hybrid) 

Roots Glomus sp. +50% to +102% without Si 
-4% to +22% with Si 

 

Frew et al. (2017b) 

Sugarcane (Saccharum spp. 
hybrid) 

Roots Glomus sp. +42% to +71% for the low Si soil 
+0% to +18% for the high Si soil (ns) 

Frew et al. (2017a) 

Sugarcane (Saccharum spp. 

hybrid) 

Leaves Glomus sp. -29% to -21% for the low Si soil (ns) 

-20% to -4% for the low Si soil (ns) 
 

Frew et al. (2017a) 

Pigeon pea (Cajanus cajan) Leaves Rhizophagus 

irregularis 

+10% Garg and Singh 

(2018) 
Banana (Musa acuminata) Roots Rhizophagus 

irregularis 

+30% (Si content; weight by plant) Gbongue et al. (2019) 

Banana (Musa acuminata) Leaves Rhizophagus 
irregularis 

+14% (Si content; weight by plant) Gbongue et al. (2019) 

Soybean (Glycine max) Leaves Unknown +28% to +208% (depending on P supply) Yost and Fox (1982) 

‘ns’ stands for “not significant”  453 
 454 

Bacteria Bacteria may colonize mineral surfaces, initiate or accelerate weathering, and stimulate 455 

plant growth (Jackson 1971; Bosecker 1997; Banfield et al. 1999; Bennett et al. 2001; Vessey 456 

2003; Calvaruso et al. 2006; Uroz et al. 2009; Burghelea et al. 2015; Zaharescu et al. 2019; 457 
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Finlay et al. 2020; Pastore et al. 2020). Bacteria often associate with fungi in soil to form biofilms 458 

on substrate surfaces via excretion of extracellular polymeric substances (EPS) which causes very 459 

localized weathering “hotspots” (Flemming and Wingender 2010; Deveau et al. 2018; Guennoc 460 

et al. 2018; Finlay et al. 2020). The subsequent dissolution of lithogenic nutrients can therefore 461 

be used by all organisms of these hotspots including plants, making the soil-plant continuum a 462 

very effective biogeochemical engineer and enhancing overall plant nutrition. Increased rates of 463 

weathering and Si release in the presence of certain bacteria have been demonstrated for different 464 

mineralogical contents such as feldspar (Barker et al. 1998; Welch and Ullman 1999; Wang et al. 465 

2015), hornblende (Liermann et al. 2000), mica (Barker et al. 1998; Liu et al. 2006; Wang et al. 466 

2015), smectite (Dong et al. 2003; Kim et al. 2004), amorphous silica (diatoms and sponge) 467 

(Bidle and Azam 1999; Schröer et al. 2003), granite (Song et al. 2007; Wu et al. 2008), basalt 468 

(Pastore et al. 2020), gneiss (Pastore et al. 2020) and saprolite (Brucker et al. 2020). These days, 469 

a large number of silicate-solubilizing bacteria (SSB) have been identified, belonging to different 470 

genera: Aeromonas, Aminobacter, Azotobacter, Bacillus, Burkholderia, Cellvibrio, Collimonas, 471 

Dyella, Ensifer, Enterobacter, Flavobacterium, Frateuria, Janthinobacterium, Kosakonia, 472 

Labrys, Microbacterium, Paracoccus, Proteus, Pseudomonas, Rhizobium and Sphingomonas 473 

(Uroz et al. 2009; Meena et al. 2014; Hu et al. 2018). Recently, Raturi et al. (2021) reviewed the 474 

role of SSB on the Si biogeochemical cycle and their role as potential biofertilizers. 475 

In a pioneering work, Zahra et al. (1984) showed that soil inoculation with Bacillus circulans 476 

significantly increases Si release from different minerals and subsequent Si uptake by different 477 

crop species (barley, maize and clover), demonstrating a key role of bacteria in increasing plant-478 

available Si. More recently, an increasing number of studies demonstrated the impact of SSB on 479 
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Si dissolution rates, plant Si uptake, and a potential positive effect on plant growth (Table 2 and 480 

references therein). In these studies, soluble Si concentrations increased by up to 60%, while 481 

plant Si content increased by up to 78% (Table 2). Besides the role of SSB in increasing silicates 482 

dissolution, bacteria could also increase phytoliths dissolution and soluble Si through the 483 

breaking down and mineralization of phytolith-occluded carbon (Hodson 2019). Future research 484 

is needed to identify the abundance, diversity and functions of SSB in different geopedoclimatic 485 

contexts, as well as their ability to stimulate soil-plant Si mobility.  486 

Table 2 – Effect of silicate-solubilizing bacteria on soluble/plant-available Si and leaf Si concentrations from the 487 

literature. We used WebPlotDigitizer to extract data published as figures (Rohatgi 2012). 488 

Plant Organ Bacteria Increase in soluble [Si] 

(%) 

Increase in plant [Si] (%) Reference 

Rice (Oryza 

sativa) 

Leaf Enterobacter ludwigii 

GAK2 

Not determined +24% Lee et al. (2019) 

Rice (Oryza 

sativa) 

Leaf Rhizobium sp. (IIRR-

1) 

from +12.4 to +60.2%, 

depending on silicates 

from +9.0% to +78.5% of Si content 

(weight by plant), depending on 

silicates 

Chandrakala et al. 

(2019) 

Maize (Zea 

mays) 

Leaf and 

root 

Kosakonia sp. +10% +23% for both leaf and root Hu et al. (2019) 

Rice (Oryza 
sativa) 

Leaf Bacillus 
amyloliquefaciens 

Not determined +29% Bist et al. (2020) 

Rice (Oryza 

sativa) 

Whole 

plant 

Burkholderia eburnea 

CS4-2 

Not determined +24% Kang et al. (2017) 

Maize (Zea 

mays) 

Leaf and 

root 

Flavobacterium sp. +16% ns for leaves; +20% for roots Hu et al. (2018) 

‘ns’ stands for “not significant”  489 
 490 
Soil macrofauna 491 

Soil macrofauna like earthworms, beetles and termites contribute to nutrient cycling, soil 492 

formation or primary production (Jouquet et al. 2011; Blouin et al. 2013), but little is known 493 

about their effect on soil Si dynamics. Yet, soil macrofauna enhances the mineralization of 494 

organic matter (Ingham et al. 1985; Schulmann and Tiunov, Alexei 1999), which might in turn 495 

accelerate Si release in soil solution through enhanced phytoliths dissolution (Fraysse et al. 496 

2006a, 2010; Vandevenne et al. 2013). Macrofauna also increase the chemical (Jouquet et al. 497 
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2002; Carpenter et al. 2007) and physical (Suzuki et al. 2003) weathering of silicate minerals. 498 

Recently, Bityutskii et al. (2016) showed that earthworm casts in a sandy and sandy loam soils 499 

had a significantly higher soluble Si concentration than the non-bioturbed soil (up to 12 times for 500 

Lumbricus terrestris casts in the sandy soil). Moreover, the concentrations and translocation rates 501 

of Si in the xylem sap of maize and cucumber plants significantly increased when plants grew on 502 

a soil previously bioturbed by earthworms. Following this research, Hu et al. (2018) isolated SSB 503 

from the gut of Pheretima guillelmi, and showed that they markedly increased the release of Si 504 

from feldspar and quartz powder, enhanced the uptake and accumulation of Si by maize, and 505 

promoted seedling growth. In addition, significantly more SSB were found in the earthworm gut 506 

than in the surrounding soil. The authors thus demonstrated that the increased soil-to-plant 507 

translocation of Si following earthworm activity was at least in part explained by the presence of 508 

SSB in earthworm guts (Hu et al. 2018). In accordance with this, Georgiadis et al. (2019) showed 509 

that the release of dissolved Si from quartz, which is highly resistant to weathering (Goldich 510 

1938), was much greater after passage through the gut of Eisenia andrei. They discussed this as 511 

resulting from a combination of mechanical alteration (Suzuki et al. 2003), and the presence of 512 

SSB in the earthworm gut (Hu et al. 2018). In addition, soil macrofauna strongly impact the 513 

redistribution of material in the soil profile (Jouquet et al. 2011; Blouin et al. 2013). For instance, 514 

Jouquet et al. (2020) showed that termite activity impacted the distribution of phytoliths and clay 515 

minerals type (1:1 versus 2:1) in south Indian forest soils which could, in turn, impact the 516 

concentration of plant-available Si in soil profiles. Overall, soil macrofauna have a significant but 517 

overlooked effect on soil Si dynamics, whose magnitude still needs to be determined. 518 

Large herbivores 519 



20 
 
 

 

Large herbivores can cause important changes in ecosystem-scale nutrient cycling (Bardgett and 520 

Wardle 2003; Veldhuis et al. 2018; Forbes et al. 2019; Hwang and Metcalfe 2021). They can 521 

either accelerate nutrient cycling through the conversion of aboveground biomass into labile 522 

waste products, or decrease  it through selective foraging and subsequent shifts towards species 523 

that decompose more slowly (Bardgett and Wardle 2003; Forbes et al. 2019). Compared with N, 524 

P and C (e.g., Veldhuis et al. 2018; le Roux et al. 2020; Sitters et al. 2020), the impact of large 525 

herbivores on Si dynamics is poorly quantified. Yet faeces of large herbivores exhibit high silica 526 

concentrations (from 17 to 163 g silica kg
-1

 for large African herbivores ; Hummel et al. 2011), as 527 

does sheep urine (up to 259 mg silica L
-1

 ; Nottle and Armstrong 1966). As a consequence, large 528 

herbivores strongly impact the land-to-ocean Si transfer by foraging grasses and transporting 529 

phytoliths from land ecosystems directly to rivers (Schoelynck et al. 2019). For instance, hippos 530 

of south-western Kenya contribute to 32% to the biogenic Si flux and more than 76% to the total 531 

Si flux to watercourses (Schoelynck et al. 2019). Given the abundance of Si-accumulating species 532 

in grassland ecosystems, the impact of large herbivores on phytolith redistribution within the 533 

same ecosystem (not land-to-river transfer; Schoelynck et al. 2019) is probably also significant. 534 

We estimate that large herbivores in a savanna ecosystem ingest and displace from 0.005 ± 0.002 535 

kg Si ha
-1

 yr
-1

 (grey duiker) to 23.2 ± 3.8 kg Si ha
-1

 yr
-1

 (buffalo) (Table 3). The higher value 536 

corresponds to yearly litterfall of a short grass ecosystem of the Central Great Plains, USA 537 

(Blecker et al. 2006). This redistribution of phytoliths could, in turn, modify the spatial variability 538 

of plant-available Si given their high reactivity in soil environments (Alexandre et al. 1997; 539 

Blecker et al. 2006; Sommer et al. 2013; de Tombeur et al. 2020a). 540 

 541 
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 542 

 543 

Table 3 – Estimation of yearly silicon (Si) inputs into soil by large herbivores in a savanna ecosystem, and their 544 

potential effect on Si cycling. 545 

Species Scientific name Dung produceda  Dung [BSi]b Dung Si inputc 
MRTparticle

d Effect on Si cyclinge 

  g ha-1 day-1 g kg-1 kg Si ha-1 yr-1 hours  

Buffalo (ruminant) Syncerus caffer 1018 134 ± 22 23.2 ± 3.8 49 +++ 

Elephant Loxodonta Africana 432 53 ± 11 3.9 ± 0.8 30 ++ 

Grey duiker (ruminant) Giraffa camelopardalis 1.3 22 ± 9 0.0 ± 0.0 45 +/- 

Impala (ruminant) Aepyceros melampus 200 123 ± 49 4.2 ± 1.7 - ++ 

Nyala (ruminant) Tragelaphus angasii 8.6 38 ± 13 0.1 ± 0.0 - +/- 

White rhino Ceratotherium simum 124 75 ± 13 1.6 ± 0.3 44 + 

Wildebeest (ruminant) Connochaetes taurinus 53 135 ± 15 1.2 ± 0.1 - + 

Zebra Equus burchellii 77 126 ± 18 1.6 ± 0.2 28 + 
aData from Veldhuis et al. (2018) 546 
bData from Hummel et al. (2011). Means of wet and dry season data were considered. 547 
cBSi was converted to Si by dividing by 2.14. 548 
dFood particles’ mean retention time (MRT) comes from Steuer et al. (2011) for Buffalo, Elephant, and Zebra, and from Müller et al. (2011) for 549 
Grey duiker and White rhino 550 
eEstimated through the combination of yearly dung Si input and MRTparticle control on phytolith turnover rates (Vandevenne et al. 2013). 551 
 552 
 553 
Although silica ingestion can reduce the apparent digestibility of herbage (Shewmaker et al. 554 

1989; Hartley and DeGabriel 2016; Johnson et al. 2021), how phytoliths are processed during 555 

digestion remains poorly known. Some herbivores have a neutral to slightly alkaline stomach 556 

(e.g., pH 7.3 for Lama guanicoe ; Beasley et al. 2015) and phytolith dissolution rates increase 557 

significantly from pH 5 to pH 8 (Fraysse et al. 2009). In 1971, Blackman & Bailey showed that 558 

up to 39% of silica was dissolved after 24 h of ingestion in a cow rumen (Blackman and Bailey 559 

1971). More recently, Vandevenne et al. (2013) showed that phytolith concentrations in cow, 560 

sheep, horse and donkey faeces were two to four times higher than those in the plants prior to 561 

ingestion and from which the faeces were derived. They also showed that readily-soluble Si 562 

concentrations increased in faeces compared with pasture forage (except for horse faeces). 563 

Moreover, relative to the initial phytolith content in dungs, 60%, 16% and 8% of Si was 564 

mobilized in rain water after 24 h for cow, horse and sheep faeces, respectively, but only 4% for 565 
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the corresponding pasture forage. These results demonstrate that herbivores have a strong 566 

potential to increase Si mobility in soil-plant systems by releasing dissolved Si in urine and 567 

increasing phytolith turnover rates, probably through the degradation of plant tissues and an onset 568 

of phytolith dissolution in the digestive tract (Vandevenne et al. 2013). 569 

Vandevenne et al. (2013) suggested that ruminants (sheep and cows), which achieve greater 570 

particle size reduction through higher food particles’ mean retention time (MRT) (Johnson et al. 571 

2021), have a greater potential to quickly mobilize the highly-soluble fraction of phytoliths, 572 

partly via urine, compared to non-ruminants (horse and donkey). Following this idea, ruminants 573 

(that have longer food particles’ MRT), such as buffalo or duiker, would increase the phytoliths 574 

turnover more strongly than non-ruminants such as elephant or zebra do (Table 3). Therefore, 575 

ruminants that produce large amounts of dung – which largely depends on body mass (Veldhuis 576 

et al. 2018) – will have a greater impact on soil-plant Si dynamics, and eventually on land-to-577 

ocean Si transfer (Vandevenne et al. 2013), compared with non-ruminants that produce moderate 578 

amounts of dung (Table 3). Overall, large herbivores play a significant but overlooked role in Si 579 

biogeochemistry (but see Hwang and Metcalfe 2021) by affecting phytolith turnover rates and 580 

distribution in terrestrial ecosystems. 581 

Silicon and agricultural practices 582 

Knowledge acquired from complex natural systems can be used to increase the resource-use 583 

efficiency and productivity of modern agroecosystems (Lambers et al. 2011; Mariotte et al. 584 

2018). After highlighting biotic and abiotic factors influencing soil-plant Si mobility (Fig. 2), 585 

next we discuss the potential of certain agricultural practices to impact soil Si dynamics and 586 

stimulate soil-plant Si cycling. 587 
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 588 

Leveraging the high reactivity of phytoliths: recycling crop residues 589 

Recycling agricultural residues such as leaves, stems or grain husks is key to improve the crop Si 590 

status and limit long-term desilication (Guntzer et al. 2012; Meharg and Meharg 2015; Haynes 591 

2017; Puppe et al. 2021). Annual Si uptake by crop species may be an order of magnitude higher 592 

than that in natural ecosystems (Vander Linden and Delvaux 2019) and removing crop residues at 593 

harvest is common in some parts of the world (Klotzbücher et al. 2015) which lowers the soil 594 

phytolith pool (Desplanques et al. 2006; Guntzer et al. 2012; Keller et al. 2012). 595 

The application of different crop residues to soil increases Na2CO3-extractable Si (up to 37% in 596 

Yang et al. 2020), water-soluble Si concentrations (up to 15% in Ma and Takahashi 1991b; up to 597 

50% in Watanabe et al. 2017; up to 44% in Yang et al. 2020), plant Si concentration (up to 17% 598 

in Ma and Takahashi 1991b; up to 136% in Sistani et al. 1997; up to 168% in Hossain et al. 2001; 599 

up to 57% in Yang et al. 2020), and plant Si uptake (up to 25% in Ma and Takahashi 1991b; up to 600 

212% in Marxen et al. 2016). The same pattern occurs for manure, which increases acetic acid-601 

extractable Si and NaOH-extractable Si concentrations by 101% and 32%, respectively, after 10 602 

years of application to a Gleysol (Song et al. 2014). Klotzbücher et al. (2018b) also found that 603 

manure application tends to increase acetate-extractable Si concentrations, especially together 604 

with liming. These results highlight the benefit of returning phytoliths to topsoil because of their 605 

fast dissolution rates to replenish the soil solution in dissolved Si (Wickramasinghe and Rowell 606 

2006; Seyfferth et al. 2013; Marxen et al. 2016; Klotzbücher et al. 2018a; Puppe et al. 2021), 607 

with subsequent positive impacts on plant Si uptake. On the other hand, returning carbon-rich 608 
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phytoliths to topsoil could also possibly contribute to C sequestration, even though many 609 

questions about the phytoliths ability to sequester C on the long-term remain (Hodson 2019). 610 

Recently, the use of pyrolyzed Si-rich crop residues (i.e. Si-rich biochar) as a potential alternative 611 

to common Si fertilizers has attracted a lot of attention (Xiao et al. 2014; Li and Delvaux 2019; 612 

Wang et al. 2019b for reviews). According to Li and Delvaux (2019), the pyrolysis has the 613 

advantage of (1) concentrating Si in biochar compared with unpyrolyzed crop residues; (2) 614 

providing the same effect as liming and (3) enhancing the reactive surface area; both (2) and (3) 615 

contribute to increasing phytolith dissolution. Numerous recent studies show that the application 616 

of different biochars increases soil soluble Si and/or plant Si concentrations (Houben et al. 2014; 617 

Liu et al. 2014; Ibrahim et al. 2016; Qian et al. 2016; Koyama and Hayashi 2017; Abbas et al. 618 

2017; Alvarez-Campos et al. 2018; Li et al. 2018; Limmer et al. 2018; Leksungnoen et al. 2019; 619 

Li et al. 2019; Seleiman et al. 2019; Wang et al. 2019a; Huang et al. 2020; Wang et al. 2020; de 620 

Tombeur et al. 2021a), confirming its potential as a suitable Si fertilizer (Li and Delvaux 2019). 621 

The types of biochar used, application rates (on a Si basis), and increase in percentages of soil 622 

soluble Si and/or plant Si concentrations are reported in Table S1. 623 

Recycling crop residues via direct incorporation, burning or biochar/manure/compost production 624 

and subsequent application has therefore a strong potential to increase crop Si uptake. However, 625 

the application rates used in most studies largely exceed coherent annual crop yields. For 626 

instance, considering biochar, the application of pyrolyzed material to concentrations of 1% 627 

(w/w) or more (bulk density of 1.3 g cm
-3

; depth incorporation of 10 cm), which corresponds to 628 

yearly crop yields of approximately 43 t ha
-1

 (taking into account a pyrolysis yield of 30%) is 629 

common. This generally exceeds mean cereal yields worldwide (up to about 13 t ha
-1

; Ritchie and 630 
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Roser 2013), except for sugarcane (up to about 120 t ha
-1

; Ritchie and Roser 2013), and the 631 

fraction not available for pyrolysis has to be considered. Li and Delvaux (2019) calculated that a 632 

realistic application rate of biochar in the tropics would be around 1.7 t ha
-1 

yr
-1

, which is about 633 

an order of magnitude lower than what was applied in some studies. We, therefore, stress the 634 

importance of performing long-term studies in agroecosystems with minimal inputs from external 635 

sources and outputs of crop residues (Hughes et al. 2020), to better assess the long-term 636 

sustainability of such recycling practices. In these systems, detailed analyses of soil and plant Si 637 

pools must be conducted, as well as mass-balance calculations, to study the magnitude of 638 

desilication as a function of crop residue management. For example, Hughes et al. (2020) 639 

recently showed that enhanced Si accumulation in rice grain (including husks) in highly-640 

weathered soil environments could further contribute to long-term desilication. Furthermore, the 641 

effect of crop residue quality on organic matter decomposition rates in contrasting soil, climatic 642 

and agricultural contexts should be considered because of its key role in dissolved Si release rates 643 

(Fraysse et al. 2006a, 2010; Marxen et al. 2016; Nakamura et al. 2020). 644 

Harnessing Si biocycling and recycling using cover crops 645 

Cover crops are grown specifically for covering the soil during the off-season to reduce soil 646 

erosion, increase soil organic matter content and microbial diversity, and improve nutrient 647 

cycling (Reeves 1994; Adetunji et al. 2020). The positive impact of cover crops on N, P and C 648 

cycles has been extensively demonstrated (Abdalla et al. 2019; Hallama et al. 2019), while their 649 

effects on soil Si dynamics for different cover crops species are unknown. In the short term, 650 

cover crops could have detrimental effects by consuming the pool of soil readily-soluble Si 651 

during the winter, lowering Si plant availability for main crops in summer. However, in the long 652 
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term, the yearly transfer of Si stored in the cover crop via plant residues will significantly 653 

increase the soil phytogenic Si pool, and the cover crop will reduce phytolith losses through 654 

erosion (Fig. 3a). This conversion of litho/pedogenic Si-bearing minerals to phytoliths could 655 

significantly stimulate Si mobility in agroecosystems since the dissolution rates of phytoliths are 656 

an order of magnitude greater than those of typical soil clay minerals (Fraysse et al. 2009). Such 657 

positive effect would be particularly significant in highly-desilicated soils, where phytolith 658 

dissolution has a major effect on the soil-plant Si cycle (Alexandre et al. 1997; Sommer et al. 659 

2013; de Tombeur et al. 2020a). 660 

Based on shoot biomass data of common cover crop species (Hallama et al. 2019), we estimated 661 

Si stocks in aboveground biomass of cover crops (Table 4). For legumes and Brassica sp. cover 662 

crops, from 2 to 56 kg Si ha
-1

 could annually be brought to soil via crop residues. This range, 663 

despite being very large, approximately corresponds with the annual Si uptake in major forest 664 

ecosystems worldwide, expect bamboo forests (Vander Linden and Delvaux 2019). The use of 665 

Poaceae sp. as cover crops would allow an extreme degree of annual Si inputs, up to 360 kg Si 666 

ha
-1 

for Lolium sp., which approximately corresponds to Si uptake in sugarcane agroecosystems 667 

(Vander Linden and Delvaux 2019). In addition, cover crops may also impact Si dynamics by 668 

providing a legacy of increased mycorrhizal abundance, modifying rhizosphere physico-chemical 669 

properties (e.g., pH, soil aggregation, root exudates) or changing soil microbial communities and 670 

earthworms abundance (Roarty et al. 2017; Hallama et al. 2019; Adetunji et al. 2020; Euteneuer 671 

et al. 2020). Finally, Si-rich cover crops could diminish herbivore populations, with beneficial 672 

legacy effects on the main crop (Vernavá et al. 2004). 673 

 674 
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 675 

Table 4 – Estimation of shoot Si stocks in common cover crop species. 676 

 677 
 678 
 679 
 680 
 681 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
aData from Hallama et al. (2019) 689 
bData from Hodson et al. (2005) for all species. Additional data from Xiao et al. (2016) for Pisum sativum, Hasan et al. (2020) for Vicia sp., 690 
Soratto et al. (2012) for Avena sp. and Song et al. (2009) for Brassica sp. 691 
 692 

Facilitative interactions: cereal-legume intercropping systems 693 

Intercropping (Smith and McSorley 2000) has the potential to globally increase yields, reduce 694 

fertilizer inputs and save land (Martin-Guay et al. 2018; Li et al. 2020a), while increasing soil C 695 

and N content, improving mineral nutrition and reducing effects of pests (Hinsinger et al. 2011; 696 

Brooker et al. 2015; Cong et al. 2015; Xue et al. 2016; Tang et al. 2020). To our knowledge, the 697 

impact of intercropping systems on Si dynamics has been considered only once, through the 698 

study of rice (Oryza sativa) intercropped with water spinach (Ipomoea aquatic) (Ning et al. 699 

2017). Plant-available Si concentrations in soil were not markedly impacted by the intercropped 700 

system compared with rice monoculture, yet they significantly increased when water spinach was 701 

cultivated alone, likely because spinach accumulates less Si than rice (Ning et al. 2017). 702 

However, leaf Si concentrations and stocks (i.e. Si concentration × leaf dry weight) of rice plants 703 

significantly increased in the intercropping system compared with the rice monoculture (up to 704 

~25% for Si concentrations and ~75% for Si stocks) (Ning et al. 2017). Moreover, the disease 705 

index of rice sheath and the incidence of leaf folders significantly decreased in the intercropped 706 

 Family Shoot biomassa (t ha-1) Shoot Si concentrationb (g kg-1) Shoot Si stocks (kg ha-1) 

Legume cover crops     
Lupinus sp. Fabaceae 0.7-12.4 (n=6) 2.8-4.5 2-56 

Pisum sativum Fabaceae 3.7-3.9 (n=3) 2.8-5.6 10-22 

Vicia sp. Fabaceae 4.3-8.0 (n=7) 2.4-4.8 10-38 

Non-legume cover crops     
Avena sp. Poaceae 7.9-13.2 (n=6) 11.5-15.1 91-200 

Lolium sp. Poaceae 1.4-10.0 (n=3) 9.7-36.4 14-364 

Secale cereale Poaceae 1.5-12.7 (n=11) 12.6 19-160 
Brassica sp. Brassicaceae 2.2-4.1(n=4) 2.3-11.2 5-46 
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system, which could be explained by (1) a role of physical barrier played by the strip distribution 707 

in intercropping system, (2) a more favorable field microclimate in the intercropping system, (3) 708 

the release of allelochemicals by water spinach, and/or (4) higher concentrations of silica-based 709 

defenses (Ning et al. 2017). 710 

The pioneering work of Ning et al. has opened up new compelling directions in intercropping-Si 711 

research. Here, we propose different processes that could affect soil-plant Si dynamics in cereal-712 

legume intercropping agroecosystems (Fig. 3b). First, more Si would be available for cereal crop 713 

uptake since grasses accumulate more Si than legumes. In the long term, cereal-legume 714 

intercropping might even slow down soil desilication, even though mass-balance calculations 715 

should be performed to estimate Si stocks in biomass and export from harvests. However, the 716 

opposite effect might occur for legume crops, for which less Si would be available than in a 717 

monoculture system (Ning et al. 2017). This is important to consider since Si has beneficial 718 

effects also for legumes, and may promote the symbiotic relationship with nitrogen-fixing 719 

bacteria in root nodules (Putra et al. 2020). Second, cereal-legume intercropping might induce a 720 

wide range of facilitative interactions (Li et al. 2014). Under conditions of Fe and Zn 721 

deficiencies, cereals such as wheat, barley, maize or rice secrete phytosiderophores in the soil 722 

solution that mobilize Fe and Zn (Ahmed and Holmström 2014), which can then be transferred to 723 

both crops (Zuo et al. 2000; Xue et al. 2016). The same mechanism applies to legumes that may 724 

secrete carboxylates to mobilize P, especially under P deficiency (Lambers et al. 2006, 2015; 725 

Pang et al. 2018), which could in turn benefit both crops (Xue et al. 2016; Lambers et al. 2018). 726 

As discussed above, Si co-solubilization or desorption by root exudates such as 727 

phytosiderophores and carboxylates is likely, but this needs to be further assessed to determine if 728 
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such facilitative interactions also occur for this element. Similarly, facilitation via common 729 

mycorrhizal networks and nutrient transfer can occur for N and P (Walder et al. 2012), but has 730 

not been addressed for Si. Third, earthworm abundance and biomass can greatly increase in 731 

cereal-legume intercropping systems compared with monocultures (Schmidt et al. 2001, 2003) 732 

which could increase plant-available Si concentrations and Si soil-plant mobility (Fig. 2). Finally, 733 

intercropping might also impact Si dynamics by changing soil microbial diversity and modifying 734 

the physico-chemical properties of the rhizosphere (Brooker et al. 2015), but the direction of 735 

these processes needs to be elucidated. 736 

Grazers as biocatalysts of Si cycling: crop-livestock systems 737 

Despite recent simplification and specialization of agricultural systems worldwide, integrated 738 

crop-livestock systems have been employed for millennia and remain the main agriculture model 739 

for over two thirds of global farmers, and represent about half of the world’s food (Russelle et al. 740 

2007; Herrero et al. 2010; Lemaire et al. 2014). Integrated crop-livestock systems have the 741 

potential to improve carbon and nutrient cycling/use efficiency (Alves et al. 2019; Brewer and 742 

Gaudin 2020; Carlos et al. 2020). Based on the evidence of Si mobilization by large herbivores 743 

(Fig. 2), we suggest several benefits of integrated crop-livestock systems on soil-plant Si 744 

dynamics, based on a simple pasture/crop rotation (Fig. 3c). First, large ruminants strongly 745 

increase biogenic silica turnover rates (Blackman and Bailey 1971; Vandevenne et al. 2013). For 746 

instance, Vandevenne et al. (2013) estimated that a cow-based pasture mobilizes between 18 and 747 

28 kg Si ha
-1

 yr
-1

, against 1.3-1.8 kg Si ha
-1

 yr
-1

 in ungrazed pastures. In the long term, greater Si 748 

mobilization potentially accelerates soil desilication through Si leaching (Vandevenne et al. 749 

2013). However, in the short term, it will most likely increase plant-available Si concentrations 750 
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for the subsequent crop, especially if soil texture-related leaching potential is low. Second, 751 

pasture/crop rotations will reduce long-term soil desilication because Si exports through crop 752 

harvest will occur only once every two years. Finally, integrating crops and livestock impacts 753 

numerous aspects of soil-plant systems such as soil aggregation, microbial community 754 

structure/biomass and annual net primary production (Brewer and Gaudin 2020), which could 755 

ultimately also affect the soil-plant Si cycle. Crop-livestock systems are promising to enhance Si 756 

mobility in soil-plant systems, particularly through the effects of ruminants on phytolith turnover, 757 

and therefore deserve further investigations, including the time scales of different processes. 758 

Liming and soil-plant Si dynamics: a gap between theory and practice 759 

The effect of liming on soil pH in agroecosystems may affect Si dynamics through antagonistic 760 

processes (Fig. 3d), as discussed above. Therefore, the liming effect is still unclear because it 761 

strongly depends on the initial pedological context in terms of soil pH, mineralogy, buffering 762 

capacity and phytolith content (Haynes 2019; Vander Linden and Delvaux 2019). Previous 763 

studies showed either an increase (Castro and Crusciol 2013; Klotzbücher et al. 2018b) or a 764 

decrease (Kostic et al. 2017; Keeping et al. 2017; Haynes and Zhou 2018) in soil Si availability 765 

with liming, while others found no significant effect (Mathews et al. 2009; Bhat et al. 2010). 766 

However, different extractants were used to estimate plant-available Si concentrations in these 767 

studies (e.g., CaCl2, acetic acid). In fact, liming is expected to increase the pool of adsorbed Si, 768 

often associated with acetate and acetic acid extractants, while decreasing the soluble Si pool, 769 

often associated with CaCl2 or water extractants (Sauer et al. 2006; Georgiadis et al. 2013). 770 

Haynes and Zhou (2018) confirmed this pattern by showing an increase of Si-acetic acid by about 771 

75-110% and a decrease of Si-CaCl2 by about 25-35% for the pH range 5.0-6.5 in limed Podzol 772 
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and Gleysol. The authors also found a decrease of alkali-extractable Si, suggesting a loss of 773 

phytoliths following increasing dissolution rates (Haynes and Zhou 2018). More recently, Caubet 774 

et al. (2020) showed that French agricultural soils had higher Si-CaCl2 concentrations than non-775 

cultivated soils. The authors interpreted this difference as resulting from the pH increase after 776 

liming that could modify clay mineralogy (Cornu et al. 2012) and increase phytolith dissolution 777 

for soils with clay size mineral contents ranging between 5 and 32%. In their study, soils were 778 

classified by parent material types, where soils developed on sediments were separated into two 779 

groups: carbonated soils (>1% carbonates) and non-carbonated soils (<1% carbonates). In the 780 

non-carbonated group, Si-CaCl2 also correlates with the 2-µm fraction cation exchange capacity, 781 

used as a proxy of the nature of clay-size minerals. This supports a possible effect of clay 782 

mineralogy on Si availability that can be superimposed on the liming effect in cultivated land 783 

compared with non-cultivated land (forests, wetlands, pastures, parks). Indeed, soils with higher 784 

weatherable mineral reserves and subsequently higher Si availability are preferred for agriculture. 785 

As soil extractants are only proxies for plant-available Si concentrations (e.g., Wu et al. 2020), 786 

the liming effect on soil Si dynamics should be addressed by quantifying plant Si concentrations. 787 

Although some studies showed that liming had no significant effect on plant Si uptake (Bhat et al. 788 

2010; Castro and Crusciol 2013; Keeping et al. 2017), others found a marked decrease (Mathews 789 

et al. 2009; Tavakkoli et al. 2011). In particular, Mathews et al. (2009) noted a decrease in Si 790 

concentrations of Pennisetum clandestinum of about 30% with increasing calcium carbonate 791 

application, and in the pH range of 5.2-6.2. This study could highlight that raising soil pH above 792 

6.0 may reduce plant Si uptake, possibly because of increased Si adsorption and subsequent 793 

decline of Si plant-availability. In addition, raising pH will increase polymerization rates of 794 



32 
 
 

 

monosilicic acid and its precipitation as amorphous silica, which could also decrease Si plant-795 

availability (Icopini et al. 2005; Schaller et al. 2021). Besides, phytolith dissolution rates strongly 796 

increase in this pH range (Fraysse et al. 2009) which possibly enhances plant Si uptake (Guntzer 797 

et al. 2012), but the size of the phytogenic Si pool is low compared with the litho/pedogenic-Si 798 

pool (Alexandre et al. 1997, 2011; Sommer et al. 2013). Phytoliths can, therefore, not be the main 799 

factor of Si plant-availability and subsequent plant uptake in certain pedological contexts (Keller 800 

et al. 2021). Overall, the effect of liming on soil-plant Si dynamics is still unclear because 801 

numerous antagonistic processes occur on different time scales (Fig. 3d) (Haynes 2019; Vander 802 

Linden and Delvaux 2019). 803 

Conclusions and perspectives 804 

Soil-plant Si cycling is mainly studied through the prism of abiotic mineral weathering or plant Si 805 

uptake followed by soil phytoliths dissolution (e.g., Bartoli 1983; Lucas et al. 1993; Alexandre et 806 

al. 1997; de Tombeur et al. 2020a), while biotic factors tend to be overlooked. Besides, numerous 807 

studies on biological weathering have been conducted, on different scales (Barker et al. 1998; 808 

Banfield et al. 1999; Lucas 2001; Uroz et al. 2009; Finlay et al. 2020), but rarely in the 809 

framework of plant Si nutrition and subsequent positive influence on plant performance or crop 810 

yield. We have stressed the importance of biotic factors such as mycorrhizal associations, SSB, 811 

soil macrofauna, large herbivores and root exudates on soil-plant Si mobility, and suggest 812 

different mechanisms by which these processes may affect Si dynamics and stimulate soil-plant 813 

Si cycling in agroecosystems. The time has come to seriously consider biotic factors, both in 814 

natural and agricultural systems, because Si is involved in numerous functions that contribute to 815 
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plant performance and stress regulation, which may impact plant productivity and crop yield. We 816 

suggest the following aspects to be considered in the near future: 817 

1. What is the abundance and diversity of SSB in soils? In which soil types/mineralogy are 818 

they found most? To what extent do SSB contribute to the plant-available Si pool and 819 

subsequent plant Si uptake compared with abiotic mineral weathering, and by what 820 

mechanisms? How do agricultural practices and cropping systems impact SSB abundance, 821 

diversity, and functions? 822 

2. By which mechanisms do mycorrhizal fungi increase plant Si concentrations? Can plant 823 

Si nutrition be improved through common mycorrhizal networks? Does an increase in 824 

plant Si concentrations as affected by mycorrhizal fungi mostly occur in nutrient-depleted 825 

soils? 826 

3. To what extent do non-mycorrhizal nutrient-acquisition strategies influence soil Si 827 

mobilization and plant Si uptake? By which mechanisms? If root exudates mobilize Si 828 

from soil minerals, does this occur only in P-depleted soils and without P fertilization? 829 

Can we exploit these strategies to improve crop Si nutrition in cropping systems such as 830 

cereal-legume intercropping? 831 

4. Is the earthworms-related increase in soil-plant Si mobility significant at soil profile 832 

scales? Do cover crops, intercropping or integrated crop-livestock systems influence this 833 

process by modifying earthworm abundance and diversity? 834 

5. What is the impact of large herbivores on global Si biogeochemistry? To what extent do 835 

they stimulate soil-plant Si mobility in natural ecosystems and integrated crop-livestock 836 
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systems? Do integrated crop-livestock systems influence Si dynamics though changes in 837 

microbial community and biomass, soil aggregation or organic matter dynamics? 838 

6. Does the long-term recycling of crop residues significantly increase plant-available and 839 

plant Si concentrations, and slow down long-term soil desilication? What are the long-840 

term advantages and disadvantages of different residue management practices (i.e. direct 841 

incorporation, burning, or biochar/manure/compost production and subsequent 842 

application)? How does decomposition dynamics influence Si release from phytolith 843 

dissolution in different geopedoclimatic contexts, and for different plant species?  844 

7. What are the short- and long-term effects of cover crops on soil-plant Si mobility? Can 845 

legume cover crops significantly stimulate Si mobility compared with grass cover crops? 846 

Does the absence of cover crops significantly increase soil phytolith losses through soil 847 

erosion? 848 

8. How do soil aggregation and soil structure impact soil-plant Si dynamics? Do microbial 849 

hotspots in soil aggregate fractions and at surfaces of minerals affect soil Si dynamics and 850 

release into the soil solution? Is it significant at the soil profile scale? How do 851 

modifications of soil structure and aggregation by anthropogenic land transformations 852 

(ploughing, soil pH-induced modification by liming, clay dispersion associated with high 853 

sodium content in saline-sodic soils) influence these processes? 854 

 855 

 856 

 857 
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Fig. 1 – Global production of the eight most important crops in 2018, from 1961 to 2018 (source 1758 

= FAOSTAT). 1759 
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 1762 

Fig. 2 – Biotic and abiotic factors influencing soil-plant Si dynamics. This figure was created 1763 

using BioRender. 1764 
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 1765 

Fig. 3 – Effects of agricultural practices on soil-plant silicon (Si) dynamics. (a) The transfer of Si 1766 

stored in the cover crop to soil via plant residues may substantially increase the soil phytogenic Si 1767 

pool (PhSi), thus contributing to increase plant-available Si concentrations (available Si) (# 1). 1768 
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Cover crops could also lower phytolith losses though reduced erosion (Adetunji et al. 2020) (# 2), 1769 

modify microbial diversity and earthworm abundance (Roarty et al. 2017; Euteneuer et al. 2020) 1770 

(# 3), and provide a legacy of increased mycorrhizal abundance/root exudates (Hallama et al. 1771 

2019) (# 4), thereby impacting soil-plant Si dynamics. (b) Cereal-legume intercropping may 1772 

increase plant-available Si concentrations for the cereal crops, but decrease it for the legume 1773 

crops (Ning et al. 2017) (# 1). Numerous facilitation processes with beneficial effects on soil-1774 

plant Si mobility may also occur (# 2): taking advantage of different nutrient-acquisition 1775 

strategies (Li et al. 2014; Xue et al. 2016), sharing nutrients via common mycorrhizal network 1776 

(Walder et al. 2012), or modifying microbial diversity (Brooker et al. 2015), including silicate-1777 

solubilizing bacteria (SSB). Cereal-legume intercropping may also increase plant-available Si 1778 

concentrations and plant Si uptake through enhanced earthworm abundance and biomass 1779 

(Schmidt et al. 2001, 2003) (# 3). (c) Integrating crops and livestock will increase Si release from 1780 

phytoliths in animal dung (Vandevenne et al. 2013), which will provide Si for the main crop and 1781 

pasture grass (# 1). Pasture/crop rotation could also reduce long-term soil desilication by 1782 

reducing Si export from harvest (once every two year) (# 2). Crop-livestock systems modify 1783 

physical, chemical and biological properties of the rhizosphere (Brewer and Gaudin 2020), that 1784 

could, in turn, influence soil-plant Si dynamics (# 3). (d) Increase in soil pH after liming 1785 

increases Si adsorption on soil colloids, which, in turn, reduces Si concentrations in the soil 1786 

solution. Raising pH above 4.5-5.0 decreases aluminosilicate dissolution rates, while raising pH 1787 

above 7.5-8.0 increases those rates (Drever 1994; Kelly et al. 1998; Haynes 2019). Raising pH in 1788 

the range 3.0-9.0 increases phytolith dissolution rates (Fraysse et al. 2009). The pH/liming effects 1789 
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on Si absorption by soil living organisms and plants is unknown. This figure was created using 1790 

BioRender. 1791 


