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Exploring the Interdependence of Vertical Extrapolation 

Uncertainties in Repowering Wind Farms

INTRODUCTION

Assessing a wind farm's annual energy production (AEP) involves using a physics-driven 
model (PDM). By adjusting and combining this PDM with historical power records of the 
existing farm, we can improve the accuracy of energy yield assessments for a repowered 
farm [1]. This process includes running the PDM for both the existing and repowered 
farms using the same wind data input, specifically from the existing farm's development 
mast, eliminating the need for a new measurement campaign.
In a Monte Carlo framework, this involves considering the input uncertainty distributions 
for both wind farms and their potential correlation. The uncertainty samples for both farms 
must reflect a certain level of correlation due to their common origins. For instance, using 
the same mast data implies that the measurement uncertainty samples are identical for 
both farms. Figure 1 depicts such a process of sampling bivariate distributions. 
Correlation of uncertainty for the vertical profile modeling have not been investigated 
however repowered farm turbines are generally taller than existing farm turbines. 
Therefore, the joint Monte Carlo simulation of the production model for both farms must 
account for the uncertainty in vertical extrapolation, which intuitively includes a certain 
level of correlation. This work demonstrates that the bivariate structure of the power law 
model [2] is Gaussian with correlation values ranging from 82% to 97%.

METHOD

Power law extrapolates the wind speed at hub heights either for the existing or repowered 
farm (see ℎ𝑒and ℎ𝑟 on figure 2), using two wind measurements at lower heights (see ℎ1 
and ℎ2 on figure 2). The error is the difference between the mean modelled wind speed 
(see 𝑈𝑒 and 𝑈𝑟 on figure 2) and the mean real wind speed over a multi-month period:

Δ𝑈e = 𝑈𝑒 − 𝑈𝑟𝑒𝑎𝑙(ℎ𝑒) 

Δ𝑈r = 𝑈𝑟 − 𝑈𝑟𝑒𝑎𝑙(ℎ𝑟) 

The method to investigate the uncertainty distribution consists of:
1. Regression of a model 𝑓 that explains the error based on the shear coefficient and 
the ratio of heights. The regression minimizes the residuals ξ:
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2. Model the cumulative distribution function (C.D.F.) 𝐹 of the residuals ξ,
3. Obtain a dataset of transformed residuals {𝐹 ξe , 𝐹 ξr } using (ξe, ξ𝑟) for each pairs
of observed errors (see Figure 3),
4. Identify the best matching copula C [3] to the dataset {𝐹 ξe , 𝐹 ξr }.

Sampling of the uncertainty distribution follows the inverse path: sampling of the 
residuals from the copula 𝐶, transformation using the inverse C.D.F.s 𝐹−1 to obtain two 
joint samples of the residuals, addition of the bias terms to obtain joint samples of the 
error (Δ𝑈e , Δ𝑈R), and finally, repetition of this operation to obtain a representative 
sampling.
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Fig 1. The Monte Carlo scheme for assessing the energy yield of a repowered farm, along with 
an example graph of the sampled bivariate distribution of energy production. The identified 
correlation model is used in the "sampler of uncertainty distribution" block.

Fig 2. Vertical extrapolation for repowering project: 
the mast measurement are extrapolated at heights of 
interests for both the existing and repowered farms

DATASET

The experimental dataset consists of 12 wind measurement campaigns at different 
locations in France, covering from 4 to 12 months. The sites range from simple to 
moderately complex and include patches of forests close to the device. Data were quality-
checked using expert-based visual analysis. The real wind speed 𝑈𝑟𝑒𝑎𝑙  is the 
measurement. The lower heights are used to model the upper heights wind speeds 𝑈: 
figure 3 depicts this process. Depending on measurement devices, multiple combinations 
of heights are available (up to 100 for a Lidar). Finally, the dataset contains 843 observed 
errors.

UNIVARIATE DISTRIBUTION OF POWER LAW MODEL ERROR

Figures 4 and 5 show the relationship between the error and the atmospheric (shear) and 
farm (ratio of height) parameters. There is a linear trend for the latter and a noisy linear 
trend for the former. A bi-linear model captures the influence of these parameters on the 
error. It achieves a determination coefficient (R2) of 60%:
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Figure 6 shows the distribution of the residuals 
along with the best Gaussian fit: 
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The residuals have a null-mean Gaussian 
distribution with a standard deviation of 
0.47%.  A Shapiro normality test achieves a p-
value of 10% and further confirms that the 
distribution is likely Gaussian.  The standard 
deviation is modeled using the model of [4]. A 
calibration using the maximum likelihood 
estimation approach confirmed the 
parameters found in [4]. 

BI-VARIATE DISTRIBUTION OF POWER LAW MODEL ERROR

C.D.F. transformation consists of applying the C.D.F. 𝐹 to the residuals ξ: the resulting set 
{𝐹 ξ } is uniformly distributed over [0,1]. This allows the fit of a copula C independently of 
the marginal distribution. Figure 7 shows the pairs of transformed power law modeling 
error: there is a clear linear correlation with a slight asymmetry. The Gaussian copula C 
provides the best Akike Information Criterion [5] value on the dataset: the Gaussian 
copula best fits the power law modeling error. Given that the marginal and the Copula are 
Gaussian, Sklar’s theorem states that the bivariate distribution is Gaussian. The correlation 
coefficient parametrizes this distribution. To reflect the decrease of coherence with height, 
we categorize the projects with the height ratio ℎ𝑟/ℎ𝑒. For a height ratio less than 1.2, the 
coefficient is 97%. It is 90% for a ratio between 1.2 and 1.4 and 82% for  a ratio between 
1.4 and 1.6.

CONCLUSION

The Gaussian distribution effectively characterizes the bi-variate structure of errors in 
power law modeling. As anticipated, the correlation between modeled and observed 
values diminishes with increasing height, ranging from a correlation coefficient of 97% at 
proximate extrapolation heights to 82% at more distant heights. Regarding the marginal 
distribution, power law modeling errors exhibit increasing bias and variance with greater 
shear and extrapolation heights. This model's applicability is limited to simple terrain and 
typical Western European climate conditions. Figure 8 illustrates the uncertainty sampling 
in vertical profile modeling for a wind farm repowering scenario: despite the high 
correlation, the scatter plot reveals significant dispersion, indicating a non-negligible 
probability of observing errors with different magnitudes or opposite signs.

Fig 4. Scatter plot of error vs shear 
coefficient. Dashed line is the mean error 
and full lines represent the 1-sigma 
interval. 

Fig 5. Scatter plot of error vs the inter-
range ratio (IR) defined as ℎ/ℎ2. Dashed 
line is the mean error and full lines 
represent the 1-sigma interval.

Fig 6. The experimental probability 
density function of the residuals (full 
line) and the best Gaussian fit (dashed 
line).
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Fig 7.  Observation: scatter plot of 
the transformed residuals using the 
C.D.F. 𝐹

Fig 8.  Simulation: sampling of power law
errors for existing and repowered farms of 60 
and 100 meters hub heights, a mean shear
coefficient of 0.2 and a 40 meters mast. It 
includes a 1% measurement uncertainty.  

Fig 3. Method to observe power law model 
errors: the extrapolated wind speed are 
compared to upper heights measurements.
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