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Abstract: Spatio-temporal data are ubiquitous in ecology, involving large9

spatial domains, long time periods, and multiple variables. To take10

advantage of these data for ecological analysis, it is crucial to rely on both11

efficient and ecologically interpretable statistical methods. Empirical12

Orthogonal Functions (EOFs) are a widely used method for reducing the13

dimensionality of spatio-temporal data. While EOFs are common in14

meteorology and climate studies, their use in ecology is still emerging.15

This paper introduces the basics of EOFs and presents new methods to16

specifically address key ecological questions. Since EOFs lack explicit17

ecological constraints, their results may be difficult to interpret. We propose18

a method to rotate EOFs using a temporal ecological variable, improving19

interpretability by better representing ecological patterns. We also explore20

the use of EOFs in multivariate analysis to identify shared spatial and21

temporal patterns in community and ecosystem dynamics.22

We illustrate these methods on two case studies including NDVI satellite23

data over France and spatio-temporal predictions from fish species24

distribution models.25

Our goal is to provide a clear and concise roadmap for applying EOFs to26

ecological problems. We emphasize practical guidance through code27

snippets and two worked examples, making the approach accessible to a28

broad audience of ecologists.29
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1 Introduction30

Spatial and temporal data are ubiquitous in ecological research. Survey data,31

citizen-science data, satellite data or biogeochemical model outputs provide32

huge information for unraveling ecological processes at various temporal33

and spatial scales (Hampton et al., 2013; Grémillet, Chevallier, and Guinet,34

2022). Given the extensive spatial and temporal coverage of all these35

datasets, dimension reduction (or ordination) methods become critical for36

synthesizing the information embedded within these spatio-temporal data.37

Empirical Orthogonal Functions (EOFs) represent the keystone method for38

performing dimension reduction on spatio-temporal data. EOFs were first39

introduced by Lorenz (1956). Basically, they are Principal Component40

Analysis (PCA) performed on spatio-temporal data. Since their first41

formulation, EOFs methods have entailed a rich literature, particularly in42

meteorology and climate applications (Hannachi, Jolliffe, and Stephenson,43

2007). Several extensive overviews of EOFs and derived methods are44

available in the secondary literature (Preisendorfer, 1988; Von Storch and45

Zwiers, 2002; Cressie and Wikle, 2011; Hannachi, 2021); they mainly46

address an audience of climatologists or statisticians.47

Recently, these methods have expanded to ecology. They have been applied48

to biogeochemical variables (Schrum, John, and Alekseeva, 2006; Iida and49

Saitoh, 2007; Di Lorenzo et al., 2008; Woillez et al., 2010; Le Mezo et al.,50
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2016; Berkelhammer, 2019) as well as species distribution (Norton and51

Mason, 2005; Petitgas, Masse, et al., 2006; Petitgas, 2008; Woillez et al.,52

2010; Petitgas, Doray, et al., 2014; Petitgas, Huret, et al., 2018; Petitgas,53

Renard, et al., 2020; Grandremy et al., 2023; Van Audenhaege et al., 2022).54

EOFs have gained wider recognition through the development of the55

Vector-Autoregressive Spatio-temporal (VAST) package (Thorson, 2019;56

Thorson, Anderson, et al., 2024) and the application of EOFs to represent57

the spatio-temporal variability of species communities and ecosystems58

(Thorson, Ciannelli, and Litzow, 2020; Thorson, Cheng, et al., 2020;59

Thorson, Arimitsu, et al., 2021). Still, these applications remain mainly60

focused on marine systems, with very few applications to terrestrial systems61

(Gedalof, Peterson, and Mantua, 2005; Wu et al., 2023).62

Overall, EOFs methods can address a large range of ecological questions63

from analyzing single species spatio-temporal variability to aiding64

conservation decisions in an ecosystem perspectives. They allow to detect65

seasonal signals in species distribution and shifts in phenology (Alglave,66

Olmos, et al., 2024). Additionally, EOFs are particularly useful in tracking67

long-term ecological changes, such as ecosystem restructuring or shifts in68

species composition in response to climate change (Thorson, Arimitsu,69

et al., 2021; Badger, Large, and Thorson, 2023).70

Despite their broad potential, EOFs remain underutilized in ecology,71
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particularly in terrestrial ecosystems. In this paper, to widen EOFs72

applications and promote their use in ecology, we provide a thorough and73

accessible introduction to EOFs. Additionally, we describe two derived74

methods to address specific ecological questions: (1) a method that sets75

ecological constraints on EOFs to better disentangle the information of the76

different dimensions of the EOFs and improve their interpretability, and (2)77

a multivariate version of EOFs that enables to apply EOFs methodology on78

species communities or whole ecosystems.79

We illustrate these methods based on two real applications. First, we use a80

terrestrial ecology example based on monthly Normalized Difference81

Vegetation Index (NDVI) satellite data (MODIS) from 2000 to 202382

(MODIS, 2021). As a second case study, we use spatio-temporal predictions83

from an Integrated Spatio-Temporal Species Distribution Model (IST-SDM)84

(Alglave, Vermard, et al., 2023). We analyze the spatio-temporal predictions85

spanning from 2008 to 2018 for three demersal species in the Bay of Biscay:86

common sole (Solea solea, Linnaeus, 1758), squid (Loligo vulgaris,87

Lamarck, 1798), and whiting (Merlangius merlangus, Linnaeus, 1758). In88

the case of the IST-SDM, when the method is univariate (i.e. single species)89

we focus the analysis on common sole.90

Our goal is to provide a clear and concise roadmap for applying EOFs to91

ecological problems. We emphasize practical guidance through code92
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snippets and two worked examples, making the approach accessible to a93

broad audience of ecologists.94

2 Basics of EOFs95

EOFs were initially introduced by Lorenz (1956) for the analysis and96

prediction of weather. The method involves extracting the main spatial and97

temporal patterns that (1) capture the most variance of spatio-temporal data98

and (2) are orthogonal to each other. In the upcoming subsections, we99

introduce the notations and outline the principal properties of EOFs through100

both theoretical explanations and practical applications.101

2.1 Continuous formulation of EOFs102

We denote a space-time process 𝑆 such that 𝑆(𝑥, 𝑡) represents the value of103

the process 𝑆 at spatial location 𝑥 ∈ D (with D a continuous domain) and104

discrete time step denoted 𝑡. When dealing with EOFs, we assume that the105

spatio-temporal field can be decomposed into a (purely) spatial term and a106

(purely) temporal term. In its continuous formulation, this decomposition107

can be expressed as:108

𝑆(𝑥, 𝑡) =
∞∑︁
𝑚=1

𝛼𝑚 (𝑡) · 𝜙𝑚 (𝑥) (1)

6



where 𝜙𝑚 (𝑥) denotes the spatial term of the EOFs for dimension 𝑚 and109

𝛼𝑚 (𝑡) represents the temporal term of the EOFs for dimension 𝑚.110

Furthermore, var (𝛼1(𝑡)) > var (𝛼2(𝑡)) > . . ., and cov (𝛼𝑘 (𝑡), 𝛼𝑚 (𝑡)) = 0,111

for all 𝑘 ≠ 𝑚. A known solution of this problem is obtained through a112

Karhunen-Loève expansion. Both formulation and practical estimation of113

the EOFs in the continous case are detailed in Cressie and Wikle (2011)114

(p.266).115

2.2 Discrete formulation of EOFs116

The most common and straightforward way to perform EOFs on 𝑆 is to117

consider a discretized version of this process. Let’s introduce the matrix S of118

size 𝑛 × 𝑝, where 𝑛 denotes the number of discrete spatial positions, and 𝑝119

denotes the number of time steps, with the time stepping denoted by120

(𝑡1, ..., 𝑡𝑝).121

In practice, to decompose S through EOFs, these data are centered and then122

decomposed through Singular Value Decomposition (SVD).123

From these data, for a given spatial location 𝑥, the temporal average can be124

calculated as:125

𝑆
𝑡 (𝑥) = 1

𝑝

𝑝∑︁
𝑘=1

𝑆(𝑥, 𝑡𝑘 ). (2)
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The time-centered space-time field, also referred to as the anomaly matrix,126

is then obtained by:127

S′ = S − S
𝑡
1⊤, (3)

where S
𝑡
is an 𝑛 × 1 column vector of row means 𝑆

𝑡 (𝑥) and 1⊤ is a 1 × 𝑝128

row vector of ones. Codes to compute the anomaly matrix are available in129

Supplementary Material (SM S1.1). Examples of both the raw130

spatio-temporal data and anomalies are available in Figure 1 for satellite131

NDVI data and in Figure S3.1 (SM3) for the IST-SDM case study.132

In this case, the decomposition can be written as:133

𝑆′(𝑥, 𝑡) =
𝑟∑︁

𝑚=1
𝜆𝑚 · 𝑢𝑚 (𝑥) · 𝑣𝑚 (𝑡) (4)

Here, 𝑟 represents the number of dimensions of the EOFs with134

𝑟 = min(𝑛, 𝑝) being the rank of the matrix S′. 𝑢𝑚 (𝑥) is a spatial term and135

𝑣𝑚 (𝑡) is a temporal term; both u𝑚 and v𝑚 have unit norm. 𝜆𝑚 quantifies the136

amplitude of the 𝑚𝑡ℎ dimension of the EOFs. The 𝜆𝑚 are called the singular137

values hereafter (see section 2.2.1).138

The key aspect of EOFs analysis lies in the constraints imposed on the139

spatial terms 𝑢𝑚 (𝑥) or the temporal terms 𝑣𝑚 (𝑡) because they are crucial for140

the computation and interpretation of these indices. The most141
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straightforward and natural constraints involve (1) maximising the variance142

explained by each spatial pattern 𝑝𝑚 (𝑥); (2) setting orthogonal constraints143

for both the spatial and temporal terms.144

2.2.1 EOFs as a solution of Singular Value Decomposition145

To obtain the terms 𝑢𝑚 (𝑥) and 𝑣𝑚 (𝑡) of equation (4), it is possible to146

decompose S′ through Singular Value Decomposition (SVD), namely:147

S′ = U𝚺V𝑇 (5)

with U a 𝑛 × 𝑟 matrix and V𝑇 a 𝑟 × 𝑝 matrix, 𝑟 = min(𝑛, 𝑝) being the rank148

of the matrix S′. 𝚺 is a 𝑟 × 𝑟 diagonal matrix with non-increasing positive149

coefficients on the diagonal, denoted as 𝚺 = Diag(𝜆1, ..., 𝜆𝑟) and150

𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝑟 > 0. This is essentially the same computation that is151

performed when conducting PCA on any type of multivariate data.152

The columns of U = (u1, ..., u𝑟) are referred to as the EOFs maps of the153

anomaly matrix S′. In the following, they will be referred to as factors; here154

the factors are spatial. The columns of V = (v1, · · · , v𝑟) contain the terms155

𝑣𝑚 (𝑡) from Equation (4). They will be called loadings; here the loadings are156

temporal. Finally, 𝚺 contains the singular values of S′ along the diagonal.157

Note that here, singular values cannot be related to variance because the158
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centering of S is realized on rows. Codes to perform the svd are available in159

SM1 (Section S1.2).160

2.2.2 Interpretation of EOFs161

The construction of EOFs discussed in the previous subsection implies that162

the first EOFs map u1 is the factor that captures the most variance in S′. The163

second EOFs, u2 is the next factor that captures most variance while being164

orthogonal to u1. This applies to the next 𝑗 𝑡ℎ factors.165

The loadings contained in v 𝑗 , where 𝑗 ∈ 1, · · · , 𝑟, are temporal indices.166

Each is associated with a corresponding factor u 𝑗 . When the loading 𝑣 𝑗 (𝑡) is167

positive, the anomaly field is distributed according to the factor u 𝑗 .168

Conversely, if 𝑣 𝑗 (𝑡) is negative, the anomaly field is distributed according to169

−u 𝑗 .170

Also it is well known that identifying EOFs dimensions with specific171

ecological (or physical) processes should be done with care (Monahan et al.,172

2009). Indeed, because there is no explicit ecological criteria in the173

computation of EOFs, the signal related to an ecological process could be174

found on several dimensions. Besides, a single dimension could gather the175

signal of different ecological processes. As so, methods derived from EOFs176
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that integrate ecological knowledge would help to better disentangle the177

signal related to some specific ecological process.178

Other details to interpret EOFs are provided in SM2 (e.g. computation of179

the variance related to each EOFs dimension, number of dimensions to180

retain in the analysis, whether specific dimensions can be related to physical181

or ecological processes).182

3 Applying EOFs to the case studies183

In order to illustrate EOFs, we use two spatio-temporal datasets to serve as a184

case study: (1) NDVI data from MODIS Vegetation Index Products (satellite185

data on terrestrial ecosystems) and (2) spatio-temporal predictions from the186

IST-SDM for sole in the Bay of Biscay (IST-SDM). A full description of the187

case studies is given in SM S3.2 and S3.3. We retain the first two dimensions188

for the NDVI case study and the first four dimensions in the IST-SDM case189

study based on the angle identified in the scree plot (left, Figure S4.1).190

Both satellite NDVI data as well as the IST-SDM case study emphasize191

strong seasonality 2. In the case of the NDVI, the first and second192

dimensions bring out seasonal cycles that can be related to temperature and193

precipitation. For the IST-SDM, the two first dimensions highlight a signal194

related to reproduction (onshore-offshore migration) and the second195
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dimension emphasize a signal related to northward migration. Additional196

analysis on the EOFs results are available in SM S4.2.197

As mentioned previously, ecological signals are mixed between the several198

dimensions of the EOFs. For instance, both the first and second dimensions199

for the two case studies capture similar seasonal signals (Figure 2). Also,200

some loadings seem to mix both long term trends and seasonnal trends (see201

the second EOFs dimension of the IST-SDM case study). Disentangling the202

ecological signals from these dimensions would benefit the ecological203

analysis of these datasets.204

4 Informing EOFs with an ancillary temporal variable205

As mentioned in previous sections, EOFs may not effectively disentangle206

the ecological processes that structure the data. To address this limitation,207

informing EOFs with a temporal variable (or ancillary variable) that is208

ecologically meaningful can improve the interpretability of EOFs patterns.209

This section describes the methodology for extracting EOFs patterns that210

exhibit the highest correlation with some ancillary temporal variable. This211

process involves projecting the spatio-temporal data onto the EOFs basis212

and then performing a Canonical correlation analysis (CCA) between a213

selected set of EOFs loadings and the ancillary variable. We first introduce214
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the CCA method, demonstrate how to adapt it to our specific issue, and215

finally present applications of this technique.216

4.1 Basics of canonical correlation analysis217

CCA was first proposed by Hotelling (1992). It is a method used to identify218

and measure the associations among two sets of variables. Consider two219

space-time processes 𝑆(1) (𝑥, 𝑡) and 𝑆(2) (𝑥, 𝑡) at location 𝑥 and time 𝑡. CCA220

aims at identifying pairs of spatial basis vectors, w1 and w2, for the two221

processes, 𝑆(1) and 𝑆(2) , that maximize the correlation between their222

projections onto these vectors. Consider the corresponding observed223

space-time matrices denoted S(1) and S(2) of size 𝑛1 × 𝑝 and 𝑛2 × 𝑝,224

respectively.225

The CCA maximizes the following correlation coefficient 𝜌 between226

y1 = S(1)w1 and y2 = S(2)w2:227

𝜌 =
E(y1y2)√︃
E(y2

1)E(y
2
2)

=
E(w𝑇

1 S(1) 𝑇S(2)w2)√︃
E(w𝑇

1 S(1) 𝑇S(1)w1)E(w𝑇
2 S(2) 𝑇S(2)w2)

. (6)

Here y1 and y2 are the temporal variables that arise from the linear228

combination of S(1)w1 and S(2)w2 and whose correlation coefficient is to be229

maximised. Then, the spatial basis vectors w1 and w2 describe which areas230

contribute to this correlation in the dataset S(1) and S(2) respectively.231
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In order to find the vectors w1 and w2 that maximize 𝜌, we resort to the232

method of Lagrange multipliers, leading to a generalized eigenvalue233

problem (Weenink, 2003).234


(C−1

11 C12C−1
22 C21 − 𝜌2)w1 = 0

(C−1
22 C21C−1

11 C12 − 𝜌2)w2 = 0
(7)

Here, the eigenvalues 𝜌2 represent the squared canonical correlations, and235

the eigenvectors w1 and w2 are the canonical correlation basis vectors.236

4.2 Coupling CCA with EOFs237

To inform the EOFs with a single ancillary variable, it is possible to perform238

a CCA on the matrix V (Equation 5) composed of the loadings and an239

ancillary variable that we denote An(𝑡), 𝑡 ∈ {1, · · · , 𝑝}. Usually, to apply240

CCA we only retain the dimensions of the EOFs that capture the process241

and leave apart the remaining dimensions (see the rule of thumb in SM2). In242

this case, w1 are coefficients that allow to rotate the loadings as well as the243

related factors to obtain:244

• one temporal variable that closely fit the ancillary variable. This is the245

combination of the EOFs loadings that maximizes the correlation246

with the ancillary variable.247
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• the related factor (or spatial basis vector) that is a combination of the248

first EOFs factors. It will capture as much variance as the first pattern249

of the EOFs but will not be orthogonal to the following EOFs.250

Note that the two datasets S(1) and S(2) do not necessarily have the same251

spatial extent, but they must have the same time stepping.252

Such procedure will not necessarily bring out strongly different patterns253

compared with EOFs; it will rather help to disentangle the processes254

identified in the EOFs to ease interpretation.255

4.3 Illustration256

In this section, we inform EOFs of the NDVI satellite data with an ancillary257

variable representing seasonality. The ancillary variable chosen here is a258

steady seasonal signal evidencing seasonality with positive peaks in summer259

(July) and negative peaks in winter (January - red variable in Figure 3). This260

variable aims at disentangling the common seasonal signal shared by the261

two first dimensions of the EOFs (Figure 2). The seasonal signal is262

parameterized as An(𝑡) = 𝐴 · 𝑠𝑖𝑛( 𝑓 · 𝑡 + 𝐷).263

To have a ancillary variable that match seasonal cycles (opposite peaks in264

January and July) we set 𝐴 = 1 (the amplitude of the signal), 𝑓 = 1/12 × 2𝜋265

the frequency of the signal components and the delay component 𝐷 = 1.266
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Note that this procedure is not invariant to a change in the phase of the267

seasonal signal and should be fixed with care. We then perform a CCA268

between the first two loadings of the EOFs (components of the matrix V in269

Section 2.2) and the seasonal signal. Codes to perform the analysis are270

available in the SM section S1.3.271

The loadings obtained from the CCA emphasize a very good fit to the272

ancillary variable (R2 = 0.98, Figure 3, top right). By comparison, the first273

two EOFs loadings have positive, but lower correlation coefficient (R2 =274

0.82 and R2 = 0.57). The spatial basis obtained through CCA displays a275

stronger North/South gradient of NDVI compared with the two first EOFs276

(Figure 2). NDVI are high in orange/red areas during summer (i.e. the center277

and mountain part of France) which corresponds to high NDVI in278

mountains and all the southern part and eastern part of France. In these279

areas, either ice melt and temperatures become favorable for vegetation280

growth (mountains), either temperature are high and rains remain frequent281

which increases vegetation coverage (eastern and south western part of282

France). In winter, these areas are colder and they can be covered by snow283

which do not favor vegetation growth. In blue areas, NDVI is relatively284

higher during winter. These areas have a cooler climate during winter and285

strong precipitation which favors vegetation growth.286

A similar analysis is performed on the IST-SDM outputs. It allows to better287
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evidence the seasonal cycle of sole reproduction and the offshore-onshore288

gradients that shapes sole migration (Figure S4.3)289

5 EOFs for multivariate analysis290

When studying entire ecosystems or community dynamics, multiple291

variables need to be analyzed jointly using multivariate statistical methods292

(Ovaskainen and Abrego, 2020; Thorson, Ciannelli, and Litzow, 2020). The293

EOFs framework is flexible and adapts to the multivariate case. It allows to294

identify the main modes of variability across several variables and to detect295

shared spatial patterns and temporal trends. In such cases, the underlying296

EOFs theory remains unchanged (Section 2); only the matrix to be297

diagonalized S′ is modified.298

5.1 Two alternatives for conducting multivariate EOFs299

Let 𝑣 ∈ {1, · · · , 𝑠} denotes the index of the different variables in the300

analysis, and let 𝑆(𝑣) (𝑥, 𝑡) denotes the value of the space-time process for301

location 𝑥, time 𝑡, and variable 𝑣. We denote by S′(𝑣) the 𝑛 × 𝑝 matrix of the302

spatio-temporal variable 𝑣. Two options are available when conducting303

multivariate EOFs:304
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1. Construct the matrix by stacking the matrices row-wise. In this case,305

the matrix is denoted as S′(𝑟𝑜𝑤)
𝑚𝑢𝑙𝑡𝑖

with dimensions (𝑛 · 𝑠) × 𝑝, and it has306

the following structure:307

S′(𝑟𝑜𝑤)
𝑚𝑢𝑙𝑡𝑖

=

©­­­­­­«
S′(1)

...

S′(𝑠)

ª®®®®®®¬
(8)

2. Alternatively, one can construct the matrix by stacking the matrices308

column-wise. In this case, the matrix is denoted as S′(𝑐𝑜𝑙)
𝑚𝑢𝑙𝑡𝑖

with309

dimensions 𝑛 × (𝑝 · 𝑠) and is structured as follows:310

S′(𝑐𝑜𝑙)
𝑚𝑢𝑙𝑡𝑖

=

(
S′(1) ; · · · ; S′(𝑠)

)
(9)

Similar to standard EOFs, SVD enables to compute the factors U and the311

loadings V (Section 2). However, depending on the data stacking of the312

anomaly matrix, these matrices do not have the same dimensions and do not313

lead to the same interpretation. The first case is a temporally synthetic314

representation of the multivariate data. For each dimension, there is only315

one single time series of loadings and there are as many factors as there are316

variables. The loadings quantify how the different factors evolve over time.317

This allows to summarize the temporal variation of all the variables in one318

single temporal variable. A similar approach is adopted in the VAST319
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package (Thorson, 2019). The second case, is a spatially synthetic320

representation of the data. For each dimension, there is only one factor that321

summarizes the variability of all the variables and as many time series of322

loadings as there are variables. The loadings of the different variables323

quantify how these variables are related to the factor at a specific time step.324

Note finally that in some cases, multivariate EOFs can be applied on a325

single variable with some time-lag. In this case the different variables are326

the lagged version of the spatio-temporal data. This typically allows for a327

better identification of temporal patterns such as periodicity or long-term328

trends. It is referred to as lag EOFs in this paper; it is also often referred as329

extended EOFs in the literature (Weare and Nasstrom, 1982).330

5.2 Illustration331

To illustrate multivariate EOFs analysis, we apply the two alternative332

approaches to the three species in the Bay of Biscay: sole, whiting, and333

squids. These are coastal species with potentially shared spatio-temporal334

dynamics e.g. same reproduction period (Alglave, Vermard, et al., 2023).335

The temporally synthetic multivariate EOFs (EOFs on S′(𝑟𝑜𝑤)
𝑚𝑢𝑙𝑡𝑖

) provides336

seasonal loadings that represent the reproduction phenology for all the337

species. We only retain the first two dimensions for the analysis (Figure338

S4.1). For sole, the reproduction areas are generally consistent with those339
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identified when conducting univariate EOFs (Figure 4). For squids and340

whitings, reproduction areas are observed along the Landes coast (45°N -341

1.5°W), on the Vendée coast (46.5°N - 2°W), and in the north of the Bay of342

Biscay (47.5°N - 3°W).343

The spatially synthetic multivariate EOFs is provided in SM S4.5 as well as344

the lag EOFs (SM S4.6). The spatially synthetic representation allows to345

identify the common spatial patterns among each three species as well as346

synchrony in the spatio-temporal variation of the species. The lag EOFs is347

applied to the NDVI case study. Compared with standard EOFs (Section 3),348

it allows to identify an additional periodic signal with a 6-months phase349

related to an alternance of high growth of vegetation in spring and autumn350

and lower growth in summer and winter.351

6 Discussion352

Towards a wider use of EOFs in ecology353

EOFs have tremendous potential for ecology. As massive and diverse354

datasets become available (satellite data, IST-SDM, satellite data and355

biogeochemical models), these decomposition methods will play a growing356

role in (1) reducing data dimensionality and (2) extracting ecologically357

relevant and interpretable information. In this paper, we demonstrate their358
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potential for both terrestrial and marine systems. We argue that EOFs should359

be systematically used to analyze spatio-temporal ecological datasets.360

We presented two extensions of EOFs, one to better disentangle the361

processes identified through EOFs and improve ecological interpretability362

of the factor and another to apply EOFs to multivariate data. Many other363

methods derived from EOFs could be used to perform spatio-temporal364

analysis on ecological data and are available in the literature (Preisendorfer,365

1988; Von Storch and Zwiers, 2002; Cressie and Wikle, 2011; Hannachi,366

2021).367

Accounting for spatio-temporal correlation in EOFs368

One might argue that EOFs do not explicitly account for spatial or temporal369

correlations and then are not per se a spatio-temporal method. It is true that370

EOFs is basically a PCA representation of spatio-temporal data; the371

spatio-temporal aspects of the method comes from the data rather than from372

the mathematical formulation of the method per se.373

In a spatial context, methods have been developed to better handle spatial374

correlations and to propose multiscale decompositions of ecological data375

(P. Legendre and L. Legendre, 2012). Specifically, ‘spatial eigenfunction376

analysis’ (e.g., Moran’s eigenvector maps, asymmetric eigenvector maps,377

multiscale ordination) estimate sets of eigenvectors based on spatial378
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configuration matrices. These methods could potentially be extended to379

spatio-temporal data to identify distinct spatio-temporal scales that structure380

ecological data.381

More recently, Petitgas, Renard, et al. (2020) and Bez, Renard, and382

Ahmed-Babou (2023) have proposed a method (Min-max Autocorrelation383

Factor - MAF - or Empirical Orthogonal Maps - EOM) to provide spatially384

decorrelated factors. EOM provide maps with stronger orthogonality385

constraints and aims to better separate the information carried by the factors.386

Still, such approach is very sensitive to the choice of the spatial lag chosen387

in the analysis and does not account for temporal correlation.388

Non-stationary, non-linear EOFs for spatio-temporal analysis under389

climate change390

Finally, some important hypotheses underlie EOFs, namely stationarity and391

linearity (Hannachi, Jolliffe, and Stephenson, 2007; Alglave, Olmos, et al.,392

2024). EOFs can not be used to describe propagating patterns such as range393

expansion or contraction as is common in species redistribution (Melles394

et al., 2011; Scheele et al., 2017). Also, as in standard PCA, all non-linear395

processes will not be detected and captured through EOFs while it is largely396

recognized that ecosystems are strongly structured by non-linear397

relationships and sometimes switching dynamics (Scheffer et al., 2001).398

More generally speaking, handling non-stationarity in a changing399
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environment is a key challenge for statistical ecology (Litzow et al., 2019;400

Astigarraga et al., 2020; Bueno de Mesquita et al., 2021).401

Although some techniques, such as Hilbert complex EOFs or non-linear402

PCA (Esquivel and Messina, 2008; Bueso, Piles, and Camps-Valls, 2020),403

allow to handle non-linear relationship and to evidence propagating patterns,404

these have been scarcely used in practice to investigate the effect of climate405

change on ecosystems. Developing and applying approaches to handle406

non-linearity and non-stationarity is critical in analysing the effect of407

climate change on ecosystems; it constitues an open research avenue for408

future study to track the effect of climate change on ecosystems.409
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Fig. 1: NDVI data. (left) Monthly spatial data of NDVI 𝑆(𝑥, 𝑡). (right) Monthly
anomalies of the spatial predictions 𝑆∗(𝑥, 𝑡). Each panel corresponds to the average
predictions or anomalies for a month over the period 2000 - 2023.



Fig. 2: EOFs results for satellite NDVI data (left) and IST-SDM predictions (right).
(Top) Factors for the two first dimensions of the EOFs. (Bottom) Loadings for the
two first dimensions of the EOFs. Blue dashed vertical lines correspond to the
month of January for each year. The third and fourth dimensions of the IST-SDM
case study are presented in Figure S4.2.



Fig. 3: Satellite NDVI data. Results of the canonical correlation analysis. (Top left)
Spatial basis vector that maximize the correlation between the temporal variables
y1 and y2. (Top right) Correlation matrix between the two first EOFs loadings, the
CCA y1, and the ancillary variable. (Bottom) Comparison of the EOFs loadings
with the ecological ancillary variable, and the CCA variable with the ecological
ancillary variable. These time series are standardized. Blue dashed vertical lines
correspond to the month of January for each year.



Fig. 4: IST-SDM predictions. Results for the multivariate temporally synthetic EOFs
(EOFs on S′(𝑟𝑜𝑤)

𝑚𝑢𝑙𝑡𝑖
). (Top) Factor maps for each species and first two dimensions.

(Bottom) Loadings for the first two dimensions. Blue dashed vertical lines correspond
to the month of January for each year. The loadings emphasize the seasonality of the
reproduction for each three species. Orange areas in both dimensions correspond to
the reproduction grounds.


