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Empirical Orthogonal Functions for ecology1

Baptiste Alglave1,2, Benjamin Dufée1,3, Said Obakrim4, and James T. Thorson52

Abstract: Spatio-temporal data are ubiquitous in ecology. As the volume of ecological data increases,3

they encompass long time periods on large spatial domains, frequently involving multiple species and4

variables. Developing methods to summarize these data while providing ecological interpretability is5

crucial for maximizing the insights they offer.6

Empirical Orthogonal Functions (EOFs) are a well-documented and widely used method for reducing7

the dimensionality of spatio-temporal data. First, introduced in the 1950s, EOFs essentially involve8

performing Principal Component Analysis on spatio-temporal data. Subsequently, a substantial body9

of literature has developed around EOFs, primarily in the fields of meteorology and climate studies.10

While a substantial body of research has applied EOFs in meteorology and climate science, their use11

in ecology is relatively new and remains overlooked, despite their huge potential.12

In this paper, we aim at presenting the basics of EOFs and introduce new related methods that address13

specific ecological questions. To illustrate their potential, we use two different datasets: (1) satellite14

data for the Normalized Difference Vegetation Index (NDVI) over France, and (2) spatio-temporal15

predictions from an integrated species distribution model that maps several fish species in the Bay of16

Biscay.17

Since EOFs do not incorporate ecological constraints, their results may not always be directly18

interpretable from an ecological perspective. In this paper, we develop a method that incorporates a19

temporal ecological variable into EOFs to improve their interpretability. Using satellite NDVI data,20

we demonstrate how EOFs results can be informed by including a steady seasonal variable, which21

helps to better represent a North-South gradient across France.22

Finally, EOFs can be a valuable tool for investigating community and ecosystem spatio-temporal23

dynamics, though this implies to move to a multivariate framework. We illustrate several ways to24

leverage EOFs for multivariate analysis and highlight shared spatial and temporal patterns among25
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several spatio-temporal variables. Using multispecies fish data from the Bay of Biscay, we identify26

both common temporal trends and shared spatial patterns in reproduction timing and locations. A set27

of reproducible codes are provided in the manuscript to assist ecologists interested in applying these28

techniques in practice.29

Keywords: spatio-temporal data, dimension reduction, satellite data, NDVI, species distribution30

model, multivariate analysis, canonical correlation analysis.31

1 Introduction32

Spatial and temporal data are ubiquitous in ecological research, providing insights across33

various scales. Survey data, analyzed through multivariate integrated modeling, help34

understanding species distribution, ecosystem states and community dynamics (Isaac et al.,35

2020; Zipkin et al., 2021). Citizen science initiatives yield extensive opportunistic datasets36

over long periods, facilitating studies on phenomena such as bird migration (Martin et al.,37

2020; Sullivan et al., 2014). GPS data allows to track animal movements at high resolution38

(Nathan et al., 2022). Remote sensing offers high-resolution information for monitoring39

land use, habitat suitability, and the impacts of climate change in near real-time (Poggi et al.,40

2021; Garrigues, Allard, and Baret, 2008). Together, these diverse spatio-temporal data41

sources are crucial for unraveling spatial ecological processes, their temporal trends, and42

the interactions affecting ecological processes across various scales.43

Typically, integrated species distribution models (SDM) allow to infer the spatio-temporal44

distribution of species from distinct data sources and provide the common information45

shared between all these data (Isaac et al., 2020; Seaton, Jarvis, and Henrys, 2024). As46

a consequence of the massive amount of data that are gathered to feed the model, the47

spatio-temporal predictions can result in long time series of spatial maps (Alglave, Olmos,48
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et al., 2024). These still need to be analysed and processed to study the ecological processes49

structuring these outcomes.50

Given the extensive spatial and temporal coverage of these data, dimension reduction (or51

ordination) methods become critical for synthesizing the information embedded within these52

spatio-temporal data. Empirical Orthogonal Functions (EOFs) represent the keystone method53

for performing dimension reduction on spatio-temporal data. They were first introduced54

by Lorenz (1956), Obukhov (1947), and Fukuoka (1951) and they could be basically55

summarized as a Principal Component Analysis (PCA) performed on spatio-temporal data56

where individuals are locations and variables are time steps. Since their first formulation,57

EOFs methods have entailed a rich literature, particularly in meteorology and climate58

applications (Hannachi, Jolliffe, and Stephenson, 2007).59

Recently, these methods have expanded to ecology. First applications have remained close60

to their original use by analysing the output of climatic or physical models. For instance,61

Gedalof, Peterson, and Mantua (2005) explored the relationship between climatic variables62

and wildland fire data, while other studies analyzed oceanographic and soil variables to63

understand ecosystem dynamics, marine-terrestrial synchrony, and water conservation64

for ecological management (Schrum, John, and Alekseeva, 2006; Iida and Saitoh, 2007;65

Di Lorenzo et al., 2008; Woillez et al., 2010; Le Mezo et al., 2016; Berkelhammer, 2019;66

Wu et al., 2023).67

Researchers have also applied EOFs to species’ spatio-temporal distributions (with a specific68

emphasis on fish and marine ecosystems), linking them to climate variables, particularly in69

studies of sardines and anchovies in the California Current system (Norton and Mason, 2005)70

or in the Bay of Biscay (Petitgas, Masse, et al., 2006; Petitgas, 2008; Petitgas, Doray, et al.,71

2014). Some research used MFA (a derived method of PCA) to explore the spatial structure72

of the ecosystem based on multi-trophic observations (Woillez et al., 2010; Petitgas, Huret,73
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et al., 2018; Grandremy et al., 2023). Additionally, Van Audenhaege et al. (2022) examined74

vent mussel habitats based on imagery data, highlighting small-scale variability influenced75

by tidal cycles and temperature anomalies.76

These methods gained wider recognition through the development of the Vector-77

Autoregressive Spatio-temporal (VAST) package (Thorson, 2019; Thorson, Anderson,78

et al., 2024). VAST implements a joint hierarchical model with an underlying EOFs struc-79

ture. It allows (1) to integrate spatio-temporal data from several ecological variables and80

species, (2) provide a low rank representation of the ecosystem variability and (3) predict the81

effect of climate change on the ecosystems (Thorson, Ciannelli, and Litzow, 2020; Thorson,82

Cheng, et al., 2020; Thorson, Arimitsu, et al., 2021).83

At this stage, despite their huge potential these methods remain underused in ecology and84

mostly unknown in terrestrial ecology. This may be due to their perceived complexity and85

the lack of clear examples showing how they can be applied to address ecological questions.86

In this paper, we provide a comprehensive introduction to the basics of EOFs and how to87

fairly interpret them. Additionally, to further demonstrate the potential of EOFs for ecology,88

we introduce two related methods that extend EOFs: (1) a method that informs EOFs with89

an ancillary ecological variable, and (2) a method that generalizes EOFs to the multivariate90

case, enabling EOFs analyses on spcies communities or entire ecosystems.91

EOFs do not incorporate any ecological constraints, and their results may not always have a92

direct ecological interpretation due to standard PCA constraints (i.e. orthogonality). Using93

canonical correlation analysis (CCA), we impose an ecological constraint on EOFs to94

improve their ecological interpretability. Additionally, EOFs have proven to be valuable95

tools for community modeling and for ecosystem dynamics analysis (Petitgas, Huret, et al.,96

2018; Thorson, Arimitsu, et al., 2021). Here, we introduce two approaches to perform97
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multivariate EOFs, corresponding to two types of data representation: a temporally synthetic98

representation and a spatially synthetic representation. These approaches illustrate the99

flexibility of the EOFs method for multivariate modeling. While providing different insights100

into community dynamics, they allow to identify the shared spatial and temporal patterns as101

well as the distinct habitats or seasons among the species (or ecological variables) included102

in the analysis.103

To illustrate these methods, we apply them to two real ecological case studies. First, we use104

a terrestrial ecology example based on monthly Normalized Difference Vegetation Index105

(NDVI) satellite data (MODIS) from 2000 to 2023 (MODIS, 2021). This case study aims at106

demonstrating the potential of EOFs for terrestrial systems. Second, we use spatio-temporal107

predictions from an Integrated Spatio-Temporal Species Distribution Model (IST-SDM)108

(Alglave, Vermard, et al., 2023). EOFs can be a valuable tool to analyse results of an109

integrated model, providing a synthetic representation of the information gathered from110

all the datasets. We analyze several demersal species in the Bay of Biscay between 2008111

and 2018 at a monthly time step, inferred jointly from scientific survey data and catch112

declaration data here common sole (Solea solea, Linnaeus, 1758), squid (Loligo vulgaris,113

Lamarck, 1798), and whiting (Merlangius merlangus, Linnaeus, 1758).114

In the following sections, we first summarize the basics of EOFs, introducing (1) the main115

mathematical concepts underlying EOFs and (2) how results should be interpreted (Section116

2). We then present the dataset used to illustrate these methods (Section 3) and apply117

EOFs methodology on both case studies (Section 4). Next, we introduce a method derived118

from CCA to inform EOFs with ancillary ecological temporal variables (Section 5), and119

finally, we demonstrate the flexibility of EOFs for modeling multiple species and performing120

community analysis (Section 6). Both real case studies are used throughout the manuscript121
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to illustrate the methods. Additionally, code sets are provided to guide practitioners in122

performing the analysis in the simplest way possible.123

2 Basics of EOFs124

EOFs were initially introduced by Fukuoka (1951), Obukhov (1947), and Lorenz (1956) for125

the analysis and prediction of weather. The method involves extracting the main spatial and126

temporal patterns that (1) capture the most variance and (2) are orthogonal to each other. In127

the upcoming subsections, we introduce the notations and outline the principal properties128

of EOFs through both theoretical explanations and practical applications.129

2.1 The raw spatio-temporal field130

We denote a space-time process 𝑆 such that 𝑆(𝑥, 𝑡) represents the value of the process 𝑆 at131

spatial location 𝑥 and time 𝑡. The data under consideration will be a discretized version of132

this underlying process defined on a regular grid, namely a matrix S of size 𝑛 × 𝑝, where 𝑛133

denotes the number of discrete spatial positions, and 𝑝 denotes the number of time steps,134

with the time stepping denoted by (𝑡1, ..., 𝑡𝑝).135

From these data, for a given spatial location 𝑥, the temporal average can be calculated as:

s𝑡 (𝑥) = 1
𝑝

𝑝∑︁
𝑘=1

𝑆(𝑥, 𝑡𝑘). (1)
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The time-centered space-time field, also referred to as the anomaly matrix, is then represented

by:

S′ =

©«

𝑆′ (𝑥1, 𝑡1) 𝑆′ (𝑥1, 𝑡2) · · · 𝑆′ (𝑥1, 𝑡𝑝)

𝑆′ (𝑥2, 𝑡1) 𝑆′ (𝑥2, 𝑡2) · · · 𝑆′ (𝑥2, 𝑡𝑝)
...

...
. . .

...

𝑆′ (𝑥𝑛, 𝑡1) 𝑆′ (𝑥𝑛, 𝑡2) · · · 𝑆′ (𝑥𝑛, 𝑡𝑝)

ª®®®®®®®®®®¬
where

𝑆′ (𝑥𝑙 , 𝑡𝑘) = 𝑆(𝑥𝑙 , 𝑡𝑘) − s𝑡 (𝑥) for 𝑙 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑝. (2)

Examples of both the raw spatio-temporal data and anomalies are available for satellite136

NDVI data and IST-SDM predictions in Figure 1 and S1. Codes below are provided to137

compute the anomaly matrix (S′) from spatio-temporal data contained in a matrix S.138

Compute the anomaly matrix in R

# S is the spatio-temporal matrix (n . p)

# 1/ Compute the temporal average map.

Smean <- sweep( S, MARGIN=2, STATS=colMeans(S), FUN="-" )

# 2/ Center the spatio-temporal dataset and

# obtain the anomaly matrix Sprim

Sprim <- S - outer(rep(1, ncol(S), Smean)

139
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2.2 EOFs formalism: decomposing the spatio-temporal field140

2.2.1 The model underlying EOFs141

When dealing with EOFs, we assume that the spatio-temporal field can be decomposed into

a (purely) spatial term and a (purely) temporal term. This decomposition can be expressed

as:

𝑆′ (𝑥, 𝑡) =
𝑟∑︁

𝑚=1
𝑢𝑚 (𝑥) · 𝑣𝑚 (𝑡) + 𝜖𝑚 (𝑥, 𝑡). (3)

Here, 𝑟 represents the number of dimensions of the EOFs with 𝑟 ≤ min(𝑛, 𝑝) being the142

rank of the matrix S′, 𝑢𝑚 (𝑥) denotes the spatial term of the EOFs for dimension 𝑚, 𝑣𝑚 (𝑡)143

represents the temporal term of the EOFs for dimension 𝑚, and 𝜖𝑚 (𝑥, 𝑡) is an error term. In144

some cases, 𝜖𝑚 (𝑥, 𝑡) may not be explicitly defined in the equation (3), and the 𝑟 dimensions145

capture all the variability in S′.146

The key aspect of EOFs analysis lies in the constraints imposed on the spatial terms 𝑢𝑚 (𝑥)147

or the temporal terms 𝑣𝑚 (𝑡) because they are crucial for the inference and interpretation148

of these indices. The most straightforward and natural constraints involve (1) maximising149

the variance explained by each spatial pattern 𝑝𝑚 (𝑥) which is equivalent to minimizing the150

global error, defined as 𝐸 =
∑

𝑚

∑
𝑥

∑
𝑦 𝜖𝑚 (𝑥, 𝑡); (2) setting orthogonal constraints for both151

the spatial and temporal terms.152
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2.2.2 Writing EOFs in matrix form153

To obtain the terms 𝑢𝑚 (𝑥) and 𝑣𝑚 (𝑡) of equation (3), it is possible to decompose S′ through

Singular Value Decomposition (SVD), namely:

S′ = U𝚲V𝑇 (4)

with U a 𝑛 × 𝑟 matrix and V𝑇 a 𝑟 × 𝑝 matrix, 𝑟 ≤ min(𝑛, 𝑝) being the rank of the matrix154

S′. 𝚲 is a 𝑟 × 𝑟 diagonal matrix with non-increasing positive coefficients on the diagonal,155

denoted as 𝚲 = Diag(𝜆1, ..., 𝜆𝑟 ) with 𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝑟 > 0. This is essentially the same156

computation that is performed when conducting PCA on any type of multivariate data.157

Here, the columns of U = (u1, ..., u𝑟 ) are referred to as the Empirical Orthogonal Function158

(EOF) maps of the anomaly matrix S′. In PCA terms, they are often called factors; in the159

following, they will be referred to as spatial factors.160

The columns of V = (v1, · · · , v𝑟 ) are often referred to as loading factors in PCA terms.161

Here, they will be called either loadings or temporal loadings of the anomaly matrix S′.162

These columns contain the terms 𝑣𝑚 (𝑡) from Equation (3).163

As stated previously, the spatial factors are constructed to be spatially orthogonal, and the

loading factors are also temporally orthogonal, meaning that:

⟨u𝑖; u 𝑗⟩R𝑛 = 0 𝑖 ≠ 𝑗

⟨v𝑖; v 𝑗⟩R𝑝 = 0 𝑖 ≠ 𝑗

(5)

where ⟨·, ·⟩ denotes the euclidean scalar product.164

Finally, 𝚲 contains the singular values of S′ along the diagonal. It represents the amount of
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variance captured by each dimension of the EOFs also called the inertia in standard PCA. If

we note 𝐼𝑚 the variance (or inertia) related to dimension 𝑚, we obtain:

𝐼𝑚 = 𝜆2
𝑚

The matrix decomposition of equation (4) coincides with equation (3) provided the spatial165

factors u𝑚 are normalized by the singular values. Below are the codes to perform SVD in R166

and the corresponding R objects related to the EOFs equations.167

Perform SVD on the anomaly matrix

E <- svd(Sprim)

SpFactors <- E$u # spatial factors, dimension (n . p)

TempLoadings <- E$v # temporal loadings, dimension (p . p)

SgValues <- E$d # singular values, vector of dimension (p)

168

Finally, note that in standard multivariate statistics, PCA is often combined with clustering169

analysis (e.g., k-means, Hierarchical Clustering on Principal Components - HCPC) to group170

individuals into homogeneous clusters. A similar approach can be applied to EOFs to either171

group locations with similar temporal trends or time steps with similar spatial patterns172

(Lindegren et al., 2022; Alglave, Olmos, et al., 2024). This will be discussed later, as it173

can be particularly useful for identifying functional habitats from species spatio-temporal174

distributions (Alglave, Olmos, et al., 2024).175

10



2.2.3 Interpretation of EOFs176

The construction of EOFs discussed in the previous subsection implies that the first EOFs177

map is the spatial pattern u1 that captures the most variance in S′. The second EOFs, u2,178

captures the next most variance while being orthogonal to u1.179

The loading factors contained in v 𝑗 , where 𝑗 ∈ 1, · · · , 𝑟, are temporal indices. Each is180

associated with a corresponding spatial factor u 𝑗 . When the loading 𝑣 𝑗 (𝑡) is positive, S′ is181

distributed according to the spatial factor u 𝑗 . Conversely, if 𝑣 𝑗 (𝑡) is negative, S′ is distributed182

according to −u 𝑗 . It is important to note that the signs of the loading factors and spatial183

factors are arbitrary, meaning that switching the sign of both v 𝑗 and u 𝑗 does not change184

the overall model. This label/sign indeterminacy is common in factor models and should185

be kept in mind when interpreting the results, as the sign of the factors may flip between186

different analyses or software implementations.187

An important consideration is the number of dimensions retained for interpretation. Several188

rules of thumb can guide this decision. Many are based on the proportion of variance189

captured by each dimension 𝑚 of the EOFs denoted 𝑃𝑉𝑚 =
𝐼𝑚∑𝑟
𝑘=1 𝐼𝑘

and that is often190

represented through a scree plot. One approach is to keep the dimensions that capture191

the variance of more than what a single variable would capture if all the variables were192

independent. This means retaining dimensions that capture more than 1 out of the number of193

variables. Another method involves examining the variance graph and selecting dimensions194

up to the point where there is a noticeable drop in variance explained, indicating a significant195

change in the slope of the scree plot. Finally, one may choose to retain only the dimensions196

that are interpretable from an ecological point of view. These criteria are not mutually197

exclusive. For simplicity, in the following text, we represent only the first two dimensions,198

with additional dimensions being provided in the Supplementary Material.199
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EOFs should be interpreted as statistically significant spatial patterns. However, each200

individual EOFs may not necessarily represent a physically or dynamically relevant spatial201

pattern (Monahan et al., 2009; Roundy, 2015). For example, a single EOFs dimension may202

not correspond directly to a specific physical phenomenon; instead, such process might203

be captured by a linear combination of multiple EOFs. Additionally, there is no constraint204

separating long-term and short-term signals, so both could be combined within a single205

dimension. Identifying individual EOFs with underlying processes should be done with206

great care, always keeping in mind that EOFs capture variance rather than represent an207

ecological process per se.208

An example of EOFs interpretation in climate science is the North Atlantic Oscillation209

(NAO) index (Hurrell and Deser, 2010), which is often analyzed through EOFs. The NAO210

is a weather phenomenon in the North Atlantic Ocean characterized by fluctuations in the211

atmospheric pressure difference at sea level between the Icelandic Low and the Azores High.212

The NAO has been shown to influence ecological dynamics in both marine and terrestrial213

systems (Ottersen et al., 2001). The first EOFs dimension of the sea-level pressure field over214

the North Atlantic typically represents the NAO pattern (Figure 8 in Saeed, Kucharski, and215

Almazroui, 2023). When the loading factor associated with this dimension is positive, it216

indicates a strong Azores high and a deep Icelandic low, corresponding to the positive phase217

of the NAO. Conversely, a negative loading factor indicates the negative phase of the NAO,218

characterized by a deep Azores low and a strong Icelandic high. This EOFs dimension219

captures the primary mode of variability in the North Atlantic sea-level pressure field and is220

crucial for understanding and predicting regional climate variations.221
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3 Data and case study for illustration222

In order to illustrate the various methods, we introduce two spatio-temporal datasets to223

serve as a case study: (1) NDVI data from MODIS Vegetation Index Products (satellite data224

on terrestrial ecosystems) and (2) spatio-temporal predictions from a IST-SDM for fishes in225

the Bay of Biscay (IST-SDM on a marine case study).226

3.1 Satellite NDVI data227

For NDVI data, we use the one kilometer monthly product available through MODIS228

(Busetto and Ranghetti, 2016). These are satellite observations data, which provide high-229

resolution information of the Earth’s surface. By capturing reflected light in various spectral230

bands, these data allows to compute Normalized Difference Vegetation Index (NDVI),231

a key indicator of vegetation health and density. NDVI values range from -1 to 1, with232

higher values indicating healthier and denser vegetation. This index is particularly useful for233

monitoring changes in vegetation over time, assessing drought conditions, and understanding234

ecosystem dynamics. We filter the data over France and aggregated the data on a grid cell235

with resolution of 10 km (Figure 1). These data range from 2000 to 2023 with a monthly236

time step and consist of 288 maps.237

NDVI spatio-temporal variability is strongly related to temperature and precipitation,238

with significant heterogeneity in these relationships across regions (Piao et al., 2003;239

Vicente-Serrano et al., 2013). Consequently, the seasonal cycle is expected to have a strong240

influence on NDVI through fluctuations in both precipitation and temperature, with possible241

heterogeneity depending on local climatic conditions (Eisfelder et al., 2023). Specifically in242

France, as noted by Eastman et al. (2013), the main pattern should exhibit higher NDVI243

values during spring, summer, and early autumn, corresponding to higher temperatures244
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during these periods and increased precipitation in spring and early autumn. In contrast,245

NDVI is expected to be lower in late autumn and winter due to lower temperatures and246

vegetation senescence.247

3.2 Species distribution model predictions248

For the IST-SDM, we use monthly spatio-temporal predictions for three key species in the249

Bay of Biscay (common sole, Solea solea - squids, Loligo vulgaris - whiting, Merlangius250

merlangus) spanning a decade from 2008 to 2018 (Figure S1). These predictions were251

derived from a hierarchical model that integrates data from fishers’ declarations and scientific252

surveys (Alglave, Rivot, et al., 2022; Alglave, Vermard, et al., 2023). These spatio-temporal253

predictions consist of 132 spatial fields over time.254

When the method is univariate (single species) we only retain sole for the analysis. Sole255

spatio-temporal distribution is strongly structured by reproduction phenology (Arbault,256

Camus, and Bec, 1986; Alglave, Olmos, et al., 2024). Sole migrates offshore during257

reproduction from January to March and then returns to nearshore areas for feeding. It is258

expected that reproduction will be reflected through EOFs. Also, one could constrain EOFs259

with steady seasonality to better emphasize such process.260

In some scenarios, multiple ecological variables must be analyzed together to identify261

shared dynamics. In such cases, EOFs must be tailored to multivariate data to infer the262

common patterns shaping these species (Thorson, Scheuerell, et al., 2015). To illustrate this,263

we consider several species in the Bay of Biscay, including sole, whiting, and squids. These264

species live in relatively coastal areas and share similar ecological niches (Alglave, Vermard,265

et al., 2023). Consequently, they are expected to exhibit shared spatio-temporal patterns,266

such as synchronous reproductive periods from January to March (Moreno et al., 2002;267
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Arbault, Camus, and Bec, 1986; Houise, 1993). Our objective is to identify and quantify268

these patterns using multivariate EOFs.269

In the following sections, we illustrate various EOFs and EOF-related methods using these270

case studies.271

4 Applying EOFs to the case studies272

The EOFs method is applied to satellite NDVI data and the IST-SDM dataset (Figure 1, S1).273

Respectively, we see an angle in the graph of variance after the second dimension (NDVI)274

and the fourth dimension (IST-SDM - left, Figure 2). Figure 3 illustrates both the spatial275

factors (top) and the temporal loadings (bottom) of the first two dimensions for both case276

studies. The third and fourth dimensions of the IST-SDM case study are presented in Figure277

S2.278

For satellite NDVI data, both the first and second dimensions emphasize seasonality on279

two different phases. The first dimension is related to the winter/summer seasonality with280

a positive peak in June and a progressive decrease until February/March. This signal is281

mainly related to the mountainous and eastern part of France. It is basically the signal that282

represents (1) the decrease of vegetation in winter (especially in mountainous areas) due283

to smaller primary production and snow falls and (2) an increase starting in March when284

temperatures are higher and conditions are favorable for the growth of vegetation.285

By contrast, the second dimension emphasizes another phase in seasonality. Temporal286

loadings are negative from March to June (spring and early summer), which corresponds287

to high NDVI in the western and northern part of France. This can be related to both rain288

and higher temperature conducting to high primary production in this area. From July to289
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November, temporal loadings are positive. NDVI is high in mountains (similar to the first290

dimension) and low in the western and northern part of France.291

For the IST-SDM case study, the first dimension highlights strong seasonality. The loadings292

exhibit highly positive values in winter (January to February) and strongly negative values293

during summer (April to August), indicating that soles are concentrated in red/orange areas294

during winter and in blue areas during summer. The second dimension also emphasizes295

some seasonality but primarily depicts a long-term decreasing trend. It suggests that fish296

progressively migrate northward over the period and become more concentrated in Northern297

red areas. Note that dimension 3 also emphasizes seasonal patterns (Figure S2) related to298

reproduction and dimension 4 highlights an important hotspot of sole distribution in the299

south of the Bay of Biscay (2°W - 45.5°N).300

EOFs do not disentangle the information between the different dimensions and relevant301

ecological signals are mixed between the several dimensions of the EOFs. For instance, both302

the first and second dimensions for the two case studies capture a similar though different303

seasonal signal (Figure 3). Also, some loadings seem to mix both long term trends and304

seasonnal trends (see the second EOFs dimension of the IST-SDM case study). Finally,305

some spatial areas appear to be shared between both spatial factors (mountain areas in the306

satellite NDVI case study and reproduction areas in the IST-SDM case study).307

5 Informing EOFs with an ancillary temporal variable308

As mentioned in previous sections, EOFs may not effectively disentangle a single process309

in each dimension. There are no constraints on the ecological relevance of the spatial310

factors or temporal loadings, and a single process might be represented across several EOFs311

dimensions. To address this limitation, it is useful to inform the spatio-temporal dimension312
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reduction of EOFs with temporal variables that are ecologically meaningfully (also referred313

to as ancillary variables in the following) to inform the spatio-temporal dimension reduction314

of EOFs.315

This section describes the methodology for extracting EOFs patterns that exhibit the316

highest correlation with an ancillary temporal variable. This process involves projecting the317

spatio-temporal data onto the EOFs basis and then performing a CCA between a selected318

set of EOFs loading factors and the ancillary variable. We first review the CCA method,319

demonstrate how to adapt it to our specific context, and finally present an application of this320

technique.321

5.1 Basics of Canonical correlation analysis322

CCA was first proposed by Hotelling (1992). It is a method used to identify and measure the323

associations among two sets of variables. Consider two space-time processes 𝑆 (1) (𝑥, 𝑡) and324

𝑆 (2) (𝑥, 𝑡) at location 𝑥 and time 𝑡. CCA aims at identifying pairs of spatial basis vectors, w1325

and w2, for the two processes, 𝑆 (1) and 𝑆 (2) , that maximize the correlation between their326

projections onto these vectors. Consider the corresponding observed space-time matrices327

denoted S(1) and S(2) of size 𝑛1 × 𝑝 and 𝑛2 × 𝑝, respectively.328
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The CCA maximizes the following correlation function 𝜌 between y1 = S(1)w1 and

y2 = S(2)w2:

𝜌 =
E(y1y2)√︁
E(y1)E(y2)

=
E(w𝑇

1 S(2) 𝑇S(2)w2)√︃
E(w𝑇

1 S(2) 𝑇S(1)w1)E(w𝑇
2 S(1) 𝑇S(2)w2)

(6)

=
w𝑇

1 C12w2√︃
w𝑇

1 C11w1w𝑇
2 C22w2

Here y1 and y2 are the temporal variables that arise from the linear combination of S(1)w1329

and S(2)w2 and which correlation coefficient is to be maximised. Then, the spatial basis330

vectors w1 and w2 describe which areas contribute to this correlation in the dataset S(1) and331

S(2) respectively.332

In order to find the vectors w1 and w2 that maximize 𝜌, we resort to the method of Lagrange

multipliers, leading to a generalized eigenvalue problem (Weenink, 2003).


(C−1

11 C12C−1
22 C21 − 𝜌2)w1 = 0

(C−1
22 C21C−1

11 C12 − 𝜌2)w2 = 0
(7)

Here, the eigenvalues 𝜌2 represent the squared canonical correlations, and the eigenvectors333

w1 and w2 are the canonical correlation basis vectors.334

5.2 Coupling CCA with EOFs335

Note that the two datasets S(1) and S(2) do not necessarily have the same spatial extent, but336

they must have the same time stepping. Then, to constrain the EOFs with a single ancillary337
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variable, it is possible to perform a CCA on the matrix V (Equation 4) composed of the338

temporal loading factors and an ancillary variable that we denote An(𝑡), 𝑡 ∈ {1, · · · , 𝑝}.339

Usually, we only retain the dimensions of the EOFs that capture the process and leave apart340

the dimension that capture noise (see the rule of thumb in section 2.2.3). In this case, w1 are341

coefficients that allow to rotate the temporal loadings as well as the related spatial factors to342

obtain:343

• one variable that closely fit the ancillary variable. This is the combination of loadings344

that maximise the correlation with the ancillary variable.345

• the related spatial factor (or spatial basis vector) that is a combination of the first346

spatial factors. It will capture as much variance as the first pattern of the EOFs but347

will not be orthogonal to the following EOFs.348

5.3 Illustration349

In this section, we inform EOFs of the NDVI satellite data with an ancillary variable

representing seasonality. The ancillary variable chosen here is a steady seasonal signal

evidencing seasonality with positive peaks in summer (July) and negative peaks in winter

(January - red variable in Figure 4). This variable aims at extracting part of the common

seasonal signal shared by the two first dimensions of the EOFs (Figure 3). The seasonal

signal is parameterized as:

An(𝑡) = 𝐴 · 𝑠𝑖𝑛( 𝑓 · 𝑡 + 𝐷) (8)

To have a ancillary variable that match seasonal cycles (opposite peaks in January and350

July) we set 𝐴 = 1 (the amplitude of the signal), 𝑓 = 1/12 × 2𝜋 the frequency of the signal351
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components and the delay component 𝐷 = 1. Note that this procedure is not invariant to a352

change in the phase of the seasonal signal and should be fixed with care.353

We then perform a CCA between the first two loading factors of the EOFs (components of354

the matrix V in Section 2.2) and the seasonal signal. The aim is to identify spatial pattern of355

NDVI related to the cycle of seasons (driven by precipitation and temperature in France).356

The outcomes of this method are presented in Figure 4.357
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Perform CCA between EOFs results and a seasonnal time series

## Construct the seasonnal variable

p <- ncol(S) # number of time steps

ts <- seq(1,p,1) # sequence of time steps

component.strength = 1 # amplitude of the signal

component.freqs = 1/12 # frequency of signal (month^-1)

f.0 = 2 * pi # fundamental frequency (month^-1)

component.delay = 1 # delay of signal components (radians)

# Create the seasonal signal

signal_vec = - component.strength *

sin(component.freqs * f.0 * ts + component.delay)

## Filter EOFs dimensions and apply CCA

ndim <- 2 # number of dimension to filter in the EOFs

EOFset1 <- E$v[,1:ndim] # filter the loadings

cca_res = stats::cancor(EOFset1, signal_vec) # perform CCA

## Rotate the temporal loadings and spatial factors

## with CCA results

# Rotate the temporal loadings of the EOFs

ccavar1_t <- (as.matrix(EOFset1) %*% cca_res$xcoef)[,1]

# Rotate the spatial factor of the EOFs

ccavar1_x <- as.matrix(E$u[,1:ndim) %*% cca_res$xcoef[,1]

358

The loadings obtained from the CCA emphasize a very good fit to the ancillary variable (R2359
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= 0.98, Figure 4, top right). By comparison, the first two EOFs loadings have positive, but360

lower correlation coefficient (R2 = 0.82 and R2 = 0.57). The spatial basis obtained through361

CCA displays a stronger North/South gradient of NDVI compared with the two first EOFs362

(Figure 3). NDVI are high in orange/red areas during summer (i.e. the center and mountain363

part of France) which corresponds to high NDVI in mountains and all the southern part and364

eastern part of France. In these areas, either ice melt and temperatures become favorable for365

vegetation growth (mountains), either temperature are high and rains remain frequent which366

increases vegetation coverage (eastern and south western part of France). In winter, these367

areas are colder and they can be covered by snow which do not favor vegetation growth.368

In blue areas, NDVI is relatively higher during winter. These areas have a cooler climate369

during winter and strong precipitation which favors vegetation growth.370

A similar analysis is performed on the IST-SDM outputs. It allows to better evidence the371

seasonal cycle of sole reproduction and the offshore-onshore gradients that shapes sole372

migration (Figure S3)373

6 EOFs for multivariate analysis374

When studying entire ecosystems or community dynamics, multiple variables need to be375

analyzed jointly using multivariate modeling approaches (Ovaskainen and Abrego, 2020;376

Thorson, Ciannelli, and Litzow, 2020). The EOFs framework is flexible and adapts to the377

multivariate case. It allows to identify the main modes of variability across several variables378

(or ecosystem compartments) and to detect shared temporal trends and related habitats. In379

such cases, the underlying EOFs theory remains unchanged (Section 2); only the matrix to380

be diagonalized S′ is modified.381
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6.1 The two approaches for conducting multivariate EOFs382

Let 𝑣 ∈ {1, · · · , 𝑠} denotes the index representing the number of variables in the analysis,383

and let 𝑆 (𝑣) (𝑥, 𝑡) denotes the value of the space-time process for location 𝑥, time 𝑡, and384

variable 𝑣. We denote by S′(𝑣) the 𝑛 × 𝑝 matrix of the spatio-temporal variable 𝑣.385

Two options are available when conducting multivariate EOFs:386

1. Construct the matrix by stacking the matrices row-wise. In this case, the matrix is387

denoted as S′(𝑟𝑜𝑤)
𝑚𝑢𝑙𝑡𝑖

with dimensions (𝑛 · 𝑠) × 𝑝, and it has the following structure:388

S′(𝑟𝑜𝑤)
𝑚𝑢𝑙𝑡𝑖

=

©«

S′(1)

S′(2)

...

S′(𝑠)

ª®®®®®®®®®®¬
2. Alternatively, one can construct the matrix by stacking the matrices column-wise. In389

this case, the matrix is denoted as S′(𝑐𝑜𝑙)
𝑚𝑢𝑙𝑡𝑖

with dimensions 𝑛× (𝑝 · 𝑠) and is structured390

as follows:391

S′(𝑐𝑜𝑙)
𝑚𝑢𝑙𝑡𝑖

=

(
S′(1) ; S′(2) ; · · · ; S′(𝑠)

)
Similar to standard EOFs, SVD enables to infer the spatial factors u𝑖 and the temporal392

loadings v𝑖 (Section 2). However, depending on the data stacking before EOFs, they do not393

have the same dimensions and do not lead to the same interpretation.394

The first case is a temporally synthetic representation of the variability in the multivariate395

data. For each dimension, there is only one single time series of temporal loading and there396

are as many spatial factors as there are variables. The temporal loadings describe how the397

different spatial factors evolve over time. This allows to summarize the temporal variation398
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of all the variables in one single temporal variable. A similar approach is adopted in the399

VAST package (Thorson, 2019).400

The second case, is a spatially synthetic representation of the variability in the data. For401

each dimension, there is only one spatial factor that summarizes the variability of all the402

variables and as many time series of temporal loadings as there are variables. The loadings403

of the different variables describe how these variables are related to the spatial factor at a404

specific time step.405

Note finally that in some cases, multivariate EOFs can be applied on a single variable with406

some time-lag (Wikle, Zammit-Mangion, and Cressie, 2019). In this case the different407

variables are the lagged version of the spatio-temporal data. This typically allows for a better408

identification of temporal patterns such as periodicity or long-term trends and is referred to409

as lag EOFs in this paper. This approach is often referred to as extended EOFs (Weare and410

Nasstrom, 1982; Wikle, 2002; Dey et al., 2019).411

6.2 Illustration412

To illustrate multivariate EOFs analysis, we apply the two alternative approaches to the413

three species in the Bay of Biscay: sole, whiting, and squids. These are coastal species414

(Alglave, Vermard, et al., 2023) with potentially shared spatio-temporal dynamics e.g.415

same reproduction period (Arbault, Camus, and Bec, 1986; Houise, 1993; Moreno et al.,416

2002). From an ecological perspective, a critical issue involves identifying shared spatial or417

temporal dynamics among different species (Thorson, Scheuerell, et al., 2015; Ovaskainen418

and Abrego, 2020; Thorson, Arimitsu, et al., 2021). Additionally, one can seek to identify419

combinations of ’areas x seasons’ that can be interpreted as multispecies functional habitats420

(Delage and Le Pape, 2016). To do this, we combine the EOFs (both representations)421
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with a clustering analysis (HCPC) to identify clusters of locations and time steps that422

can be interpreted as habitats and seasons from a multispecies perspective. For a detailed423

description of the clustering analysis performed on the EOFs results, see S.1.6 and Alglave,424

Olmos, et al. (2024).425

The temporally synthetic multivariate EOFs (EOFs on S′(𝑟𝑜𝑤)
𝑚𝑢𝑙𝑡𝑖

) provides seasonal temporal426

loadings that represent the reproduction phenology for all the species (as mentioned in427

Section 3). We select the first two dimensions (Figure 2). For sole, the reproduction areas428

are generally consistent with those identified when conducting univariate EOFs (Figure 5).429

For squids and whitings, reproduction areas are observed along the Landes coast (45°N -430

1.5°W), on the Vendée coast (46.5°N - 2°W), and in the north of the Bay of Biscay (47.5°N431

- 3°W). The clustering confirms these results (Figure S10) with an additional potential432

reproduction area off the continental shelf on the slope (3°W - 45°N).433

On the other hand, the spatially synthetic multivariate EOFs (EOFs on S′(𝑐𝑜𝑙)
𝑚𝑢𝑙𝑡𝑖

) provides one434

single spatial pattern per dimension and as many temporal loadings as variables. An angle435

appears after the fourth dimension (Figure 2). Interestingly, the first spatial factor gathers436

the main reproduction areas for sole and squids that were previously identified (Figure 6437

and S7). Also for all three species a summer area appears on the coast consistently with the438

clustering analysis (Figure S13). The second dimension emphasizes an overall increase in439

the loadings, illustrating a general drift towards the North of the Bay of Biscay and in the440

offshore areas (Figure S8). The loadings are correlated among species, highlighting that441

they share common temporal dynamics relatively to the spatial factors of these dimensions442

(Figure 6). The third dimension is mainly characterized by whiting reproduction areas and443

the fourth dimension by sole reproduction areas (Figure S9).444

Illustration of the lag EOFs is realised on the satellite NDVI data and is presented in S.1.4445

as a complement of the multispecies analysis. Compared with standard EOFs, they allow to446
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identify an additional periodic signal with a 6-months phase related to an alternance of high447

growth of vegetation in spring and autumn and lower growth in summer and winter.448

7 Discussion449

Towards a wider use of EOFs in ecology450

EOFs have tremendous potential for ecology. As massive and diverse datasets become451

available through various data sources (such as satellite data, IST-SDM, and biogeochemical452

models), these decomposition methods will play a growing role in (1) reducing data453

dimensionality and (2) extracting ecologically relevant and interpretable information.454

While these methods have been frequently used in marine ecology (Norton and Mason, 2005;455

Petitgas, Doray, et al., 2014; Thorson, Cheng, et al., 2020), they have remained underutilized456

in terrestrial ecology. In this paper, we demonstrate their potential for both terrestrial and457

marine systems. We argue that these methods should be systematically applied whenever458

the time span of the data necessitates post-processing to summarize the information.459

Accounting for spatio-temporal correlation in EOFs460

One might argue that EOFs do not explicitly account for spatial or temporal correlations461

and then are not per se a spatio-temporal method. It is true that EOFs is basically a PCA462

representation of spatio-temporal data; the spatio-temporal aspects of the method comes463

from the characteristic of the data rather than from the mathematical formulation of the464

method per se.465

In a spatial context, methods have been developed to better handle spatial correlations466

in data and to propose multiscale decompositions of ecological data (Dray et al., 2012;467

P. Legendre and L. Legendre, 2012b). P. Legendre and L. Legendre (2012a) provides an468
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overview of ’spatial eigenfunction analysis’ (e.g., Moran’s eigenvector maps, asymmetric469

eigenvector maps, multiscale ordination), which estimate sets of eigenvectors based on470

spatial configuration matrices. These eigenvectors can be used as predictors in linear models,471

canonical analysis, or redundancy analysis. They help identify different spatial scales of472

variation in ecological data and the related spatial patterns. These methods could potentially473

be extended to spatio-temporal data to identify distinct spatio-temporal scales that structure474

the ecological processes.475

More recently, Petitgas, Renard, et al. (2020) and Bez, Renard, and Ahmed-Babou (2023)476

have proposed a method (Empirical Orthogonal Maps - EOM) based on EOFs that accounts477

for spatial correlation by rotating the spatial factors to provide spatially decorrelated patterns.478

EOM provide maps with stronger orthogonality constraints to better separate the information479

carried by different spatial factors. Alternatively, spatial correlations can be represented480

as spatial latent variables, and EOFs can be applied to those within a hierarchical model481

(Thorson, 2019).482

Although these methods are sensitive to the choice of the distance matrix or the spatial lags483

used in the analysis, they represent promising avenues for enhancing EOFs to explicitly484

account for spatial and temporal correlation.485

Informing EOFs with ancillary variables for a better ecological interpretation486

A significant drawback of EOFs is their limited interpretability regarding the processes487

underlying the spatio-temporal field particularly in the dimensions up to the second dimension488

(Mestas-Nuñez, 2000; Monahan et al., 2009). This issue can be attributed to the orthogonal489

constraints, which do not have per se an ecological meaning. Under Gaussian assumptions,490

orthogonal constraints allow for the extraction of independent information across different491

dimensions and facilitate the separation of information along the axes. However, in ecology,492
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(1) processes are frequently non-Gaussian and (2) can be highly correlated, non-linear, and493

non-stationary (Ciannelli, Bartolino, and Chan, 2012). Consequently, standard EOFs may494

not always provide the best ecological representation of the data.495

Here drawing on CCA theory (Hotelling, 1992), we propose an approach that enhances the496

interpretability of the spatial factors by informing the EOFs with an ecological ancillary497

temporal variable. A key consideration is the type of ecological ancillary variable that498

can be used to constrain the EOFs. Ideally, any temporal variable with the same temporal499

extent as the spatio-temporal dataset can be used, provided it has ecological relevance to the500

ecological question under study. For example, many studies have explored the relationship501

between EOFs and oceanographic processes, such as the cold pool extent in the Bering502

Sea (Thorson, Ciannelli, and Litzow, 2020; Thorson, Arimitsu, et al., 2021). Constraining503

the EOFs with the cold pool extent would likely improve the interpretability of the spatial504

patterns. In other contexts, ancillary variables could include other oceanographic processes,505

such as upwelling intensity (Sydeman et al., 2014), or any covariates (or sets of covariates)506

that drive the spatio-temporal variability of populations and ecosystems (Petitgas, Doray,507

et al., 2014).508

EOFs for community and ecosystem analysis509

The use of EOFs for multivariate data has gained significant importance over the past510

decade. Initially, research focused on synthesizing information from temperature-salinity511

diagrams to reduce the complexity of data representation (Fukumori and Wunsch, 1991;512

Sparnocchia, Pinardi, and Demirov, 2003). More recently, EOFs have been applied to study513

ecosystem structure and community dynamics (Woillez et al., 2010; Petitgas, Huret, et al.,514

2018; Grandremy et al., 2023) and to forecast these communities and ecosystems (Thorson,515

Arimitsu, et al., 2021).516
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Using three coastal fish species in the Bay of Biscay, we demonstrated the ability of EOFs517

to (1) identify shared spatial and temporal patterns among species, (2) evaluate correlations518

among species, and (3) identify seasons and functional zones common to these species. Two519

kind of representation are presented in this paper: a spatially synthetic representation and a520

temporally synthetic presentation. The latter approach aligns with the VAST framework521

(Thorson, Ciannelli, and Litzow, 2020; Thorson, 2019), while the former is less commonly522

seen in the literature but remains valuable for identifying shared spatial patterns across523

multiple variables or species.524

Developing multivariate EOFs that are both spatially and temporally synthetic is crucial to525

enhance the interpretability of results. EOFs can be applied to any set of variables (species526

or ecological variable), potentially encompassing many more than three, to represent several527

communities or entire ecosystems. The methodological steps and interpretations presented528

here would remain applicable. However, as the number of variables increases, either the529

number of variables contained in the temporal loadings or in the spatial factors increases,530

leading to results that are difficult to interpret. For example, recent studies by Thorson,531

Ciannelli, and Litzow (2020) and Thorson, Arimitsu, et al. (2021) proposed multivariate532

EOFs to investigate ecosystem variability by including respectively seven and eighteen533

variables. In this case, it results in a set of seven and eighteen maps per EOFs dimension534

and visual inspection does not allow to have a meaningful and synthetic view of the535

information. New methods based on multidimensional array SVD could be employed to536

develop multivariate spatio-temporal EOFs with more synthetic representations of the537

temporal and spatial components (Bi et al., 2021). In particular, future research could538

incorporate multiple loadings, representing separate the expansion across spatial, temporal,539

and multivariate dimensions.540
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Non-stationary, non-linear EOFs for spatio-temporal analysis under climate change541

Finally, some important hypotheses underlie EOFs that can be an important drawback542

in a context of climate change, namely stationarity and linearity (Hannachi, Jolliffe, and543

Stephenson, 2007). Indeed, the spatial patterns identified through EOFs remain unchanged544

throughout the period. The spatial EOFs factors may decrease or increase in intensity545

through the linear combination with the temporal loadings, but they will remain the same546

over the period (Alglave, Olmos, et al., 2024). Consequently, EOFs can not be used to547

describe propagating patterns such as range expansion or contraction as is common in548

species redistribution (Cheung et al., 2009; Melles et al., 2011; Scheele et al., 2017). Also,549

as in standard PCA, all non-linear processes will not be detected and captured through550

EOFs while it is largely recognized that ecosystems are strongly structured by non-linear551

relationships and sometimes switching dynamics (Levin, 1998; Scheffer et al., 2001). More552

generally speaking, handling non-stationarity in a changing environment is a key challenge553

for statistical ecology (Litzow et al., 2019; Astigarraga et al., 2020; Bueno de Mesquita554

et al., 2021). Although some techniques, such as Hilbert complex EOFs or non-linear555

PCA (Bueso, Piles, and Camps-Valls, 2020; Esquivel and Messina, 2008), allow to handle556

non-linear relationship and to evidence propagating patterns, these have been scarcely557

used in practice to investigate the effect of climate change on ecosystems. Developing and558

applying approaches that can handle such non-linearities and non-stationarity is critical in559

analysing the effect of climate change on ecosystems; it constitues an open research avenue560

for future study of threatened ecosystems in a perspective of conservation and adaptation to561

climate change (Sala et al., 2000; Parmesan, 2006; Grebmeier et al., 2006).562
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Fig. 1: NDVI data. (left) Monthly spatial data of NDVI 𝑆(𝑥, 𝑡). (right) Monthly anomalies of the
spatial predictions 𝑆∗ (𝑥, 𝑡). Each panel corresponds to the average predictions or anomalies for a
month over the period 2000 - 2023.



Fig. 2: Proportion of variance explained by each method for each case study. Top: NDVI satellite
data, bottom: IST-SDM predictions for sole. (Left) Univariate analysis. (Right) Multivariate analysis.
EOFs_lag is the lagged version of EOFs. EOFs_multi_row is the multivariate EOFs conducted on
S(𝑟𝑜𝑤)
𝑚𝑢𝑙𝑡𝑖

(temporally synthetic representation). EOFs_multi_col is the multivariate EOFs conducted on

S(𝑐𝑜𝑙)
𝑚𝑢𝑙𝑡𝑖

(spatially synthetic representation).



Fig. 3: EOFs results for satellite NDVI data (left) and IST-SDM predictions (right). (Top) Spatial
factors for the two first dimensions of the EOFs. (Bottom) Loadings for the two first dimensions of the
EOFs. Blue dashed vertical lines correspond to the month of January for each year.



Fig. 4: Satellite NDVI data. Results of the canonical correlation analysis. (Top left) Spatial basis
vector that maximize the correlation between the temporal variables y1 and y2. (Top right) Correlation
matrix between the two first loading factors of the EOFs, the CCA y1, and the ancillary variable.
(Bottom) Comparison of the EOFs loadings with the ecological ancillary variable (showing that
both variables capture some seasonal pattern), and the CCA variable with the ecological ancillary
variable (showing that the CCA now captures seasonality in a single variable). These time series are
standardized. Blue dashed vertical lines correspond to the month of January for each year.



Fig. 5: IST-SDM predictions. Results for the multivariate temporally synthetic EOFs (EOFs on
S′(𝑟𝑜𝑤)
𝑚𝑢𝑙𝑡𝑖

). (Top) Factor maps for each species and first two dimensions. (Bottom) Loadings for the
first two dimensions. For each dimension, loadings represent when the several species of the analysis
follow their related spatial distribution. Blue dashed vertical lines correspond to the month of January
for each year. The temporal loadings emphasize the seasonality of the reproduction for each three
species. Orange areas in both dimensions correspond to the reproduction grounds.



Fig. 6: IST-SDM predictions. Results for multivariate spatially synthetic EOFs (EOFs on S′(𝑐𝑜𝑙)
𝑚𝑢𝑙𝑡𝑖

).
(Top) Factor maps for the first two dimensions. (Bottom) Loadings of each species for the first two
dimensions. For each dimension, the loadings of the species represent when the several species of
the analysis follow the related spatial factor. Blue dashed vertical lines correspond to the month of
January for each year. There is a strong offshore-onshore gradient emphasized on both dimensions
with coastal areas being summer grounds. All the species emphasize strong correlation relatively to
the two first spatial factors.



S.1 Supplementary material780

S.1.1 IST-SDM spatio-temporal predictions and anomalies781

Fig. S1: IST-SDM predictions. (left) Monthly spatial predictions for sole in the log-scale log 𝑆(𝑥, 𝑡).
(right) Monthly anomalies of the spatial predictions 𝑆∗ (𝑥, 𝑡). Each panel corresponds to the average
anomalies for a month over the period 2008 - 2018.



S.1.2 Additionnal dimensions for EOFs782

Fig. S2: IST-SDM predictions. (Top) Spatial factors for the dimensions three and four of the EOFs.
(Bottom) Loadings for dimensions three and four of the EOFs. Blue dashed vertical lines correspond
to the month of January for each year.

S.1.3 CCA for the IST-SDM case study783

For IST-SDM predictions, we use the same parameterisation for the ancillary variable784

thought the delay 𝐷 is fixed to 𝐷 = 0 so that the peak of the seasonal variable falls in March785

(the peak of the reproduction period). This way we aim at disentangling the seasonnal786



signal related to the alternance of reproduction/feeding that can be found in the four first787

dimensions.788

The top-left panel of Figure S3 shows the resulting spatial basis vector, which reinforces789

the offshore-onshore gradient observed in the EOFs results (Figure 3). The inclusion of790

the ancillary variable enhances the clarity of these spatially distinct positive and negative791

regions within the canonical vector. The first three EOFs show a positive correlation with792

the ancillary variable, with the highest correlation coefficient being observed between CCA793

and the ancillary variable. This indicates that the CCA effectively extracts the temporal794

variation from the first three dimensions, resulting in a new variable that best aligns with795

the ancillary variable.796



Fig. S3: IST-SDM predictions. Results of the canonical correlation analysis. (Top left) Spatial basis
vectors w1 that maximize the correlation between the temporal variables y1 and y2. (Top right)
Correlation matrix between the four first loading factors of the EOFs, the CCA y1, and the ancillary
variable. (Bottom) Comparison of the EOFs loadings with the ancillary variable and the CCA variables
with the ancillary variable. These time series are standardized. Blue dashed vertical lines correspond
to the month of January for each year.



S.1.4 Lag EOFs on satellite NDVI data797

S.1.4.1 Data and matrix structure798

In the case of lag EOF, the matrix that is diagonalized contains the spatio-temporal data and799

lagged versions of the data.800

Let’s denote a vector of lags 𝝉 = {𝜏1, · · · , 𝜏𝑗 , · · · , 𝜏T}. Then, the matrices to bind take the

form:

S′(𝜏 𝑗 ) =

©«

𝑆′ (𝑥1, 𝑡1 + 𝜏𝑗 ) 𝑆′ (𝑥1, 𝑡2 + 𝜏𝑗 ) · · · 𝑆′ (𝑥1, 𝑡𝑝 + 𝜏𝑗 − 𝜏T)

𝑆′ (𝑥2, 𝑡1 + 𝜏𝑗 ) 𝑆′ (𝑥2, 𝑡2 + 𝜏𝑗 ) · · · 𝑆′ (𝑥2, 𝑡𝑝 + 𝜏𝑗 − 𝜏T)
...

...
. . .

...

𝑆′ (𝑥𝑛, 𝑡1 + 𝜏𝑗 ) 𝑆′ (𝑥𝑛, 𝑡2 + 𝜏𝑗 ) · · · 𝑆′ (𝑥𝑛, 𝑡𝑝 + 𝜏𝑗 − 𝜏T)

ª®®®®®®®®®®¬
with 𝑗 ∈ {1, 2, · · · ,T }801

Then the more usual is to bind the T matrices by row (Weare and Nasstrom, 1982).802

S′
𝑙𝑎𝑔 =

©«

S′(𝜏1 )

S′(𝜏2 )

...

S′(𝜏T )

ª®®®®®®®®®®¬
An open question is the choice of the lags. If the data is monthly defined over several years,803

lags 𝝉 can be months of the year to evidence some sequence of maps that repeat over the804

full time series. For instance, 𝝉 = {0, 3, 6, 9} evidence sequence with quarterly lags over a805



full year. 𝝉 = {0, 1, 2, · · · , 11} would evidence sequence with monthly lags over a full year.806

The matrix S′
𝑙𝑎𝑔

is then diagonalized like standard EOFs.807

In this case, the spatial factors (u1 for instance) are composed of T maps and the temporal808

loadings (e.g. v1) are vectors of length 𝑝 − T .809

S.1.5 Illustration with NDVI data810

We take NDVI satellite data to illustrate lag EOFs. In the example, we consider quarterly811

lags, so 𝝉 = {0, 3, 6, 9}. Based on the scree plot (Figure 2, top right), we select the three812

first dimensions that represents respectively 20%, 20% and 10% of the variance.813

The first and second dimension have an annual period while the third one have a six-month814

period. This last cycle was not evidenced by the standard EOF.815

First and second dimension of the lag EOFs are very similar to the one of the standard EOFs816

with a 3-months offset. They outline the annual variation of NDVI throughout the year with817

high values of NDVI in summer specifically in mountains and low values during winter.818

In the third dimension, loadings are high in February/March as well as August/September819

and low in May/June as well as November/December (Figure S5). The areas that contribute820

most to the sequence of maps are areas in the North of France (Figure S6). This dimension821

highlights that there are peaks of vegetation in spring (April/May) and later in autumn822

(September/October) that can be related to the higher growth of vegetation due most likely823

to rain and moderate temperatures in these areas at this period of the year. By contrast,824

NDVI is low in July and November which are either dry periods for summer or cold period825

which tend to reduce the growth of vegetation.826



Fig. S4: Satellite NDVI data. (Top) Spatial factors for the three first dimensions of the lag EOFs.
(Bottom) Loadings for the three first dimensions of the lag EOFs. Blue dashed vertical lines correspond
to the month of January for each year.



Fig. S5: Satellite NDVI data. Monthly boxplot of the temporal loadings.

Fig. S6: Satellite NDVI data. Local variance explained by the lag EOFs for the third dimension.



S.1.6 Multispecies analysis827

S.1.6.1 EOFs raw results828

Fig. S7: IST-SDM predictions. Loadings of the multivariate analysis (Figure 6) aggregated over
months.



Fig. S8: IST-SDM predictions. Loadings of the multivariate analysis aggregated over years.



Fig. S9: IST-SDM predictions. Multivariate EOFs on the matrix S′(𝑐𝑜𝑙)
𝑚𝑢𝑙𝑡𝑖

. (Top) Spatial factors for
dimensions three and four. (Bottom) Loadings of each species for dimensions three and four. For each
dimension, the loadings of the species represent when the several species of the analysis follow the
related spatial factor. Blue dashed vertical lines correspond to the month of January for each year.



S.1.6.2 Clustering analysis results829

As mentioned in Alglave, Olmos, et al. (2024), to identify distinct essential habitats and830

to relate these to the ecological seasons, two complementary clustering analyses can be831

performed: one on the spatial factors (spatial dimension) and one on the loading factors832

(temporal dimension).833

While the clustering in the temporal dimension identifies groups of time steps that have834

similar spatial patterns, the clustering in the spatial dimension identifies locations with835

similar fish density at the same time step. Clusters of locations can be interpreted as distinct836

functional habitats and clusters of time steps can be interpreted as ecological seasons. Both837

can be represented on a single graph and locations can be related to seasons when they are838

in the same direction on the graph (similarly as is done in PCA).839

In a multivariate perspective, depending whether we choose the temporal synthetic repre-840

sentation or the spatially synthetic representation, the information that comes out can be841

different.842

When adopting the temporally synthetic representation (EOFs on S′(𝑟𝑜𝑤)
𝑚𝑢𝑙𝑡𝑖

), a set of seasons843

(i.e. temporal clusters) is identified for all the species based on the joint temporal loadings.844

By contrast, the spatial clusters are built based on the spatial factors of the different species.845

Thus there is not only one map of spatial cluster, but as many maps of spatial clusters as846

there are species.847

When adopting the spatially synthetic representation (EOFs on S′(𝑐𝑜𝑙)
𝑚𝑢𝑙𝑡𝑖

), a single map of848

spatial clusters (functional areas) is obtained. By contrast, the temporal clusters are based849

on the loadings of the different species.850

These differences affect the ecological interpretation of the clustering. Developing both851



temporally and spatially synthetic multivariate EOFs method would be relevant to provide a852

tighter representation of the data. We believe this goes beyond the scope of the paper and853

we let this for future research.854

Temporally synthetic representation855

The spatial clusters 3 and 5 are related to seasons B and D which are mainly winter and856

spring months. These are reproduction period for the species under study (Arbault, Camus,857

and Bec, 1986; Houise, 1993; Moreno et al., 2002); the related spatial clusters can be858

interpreted as reproduction areas for these species. This is consistent with the previous859

studies investigating the reproduction areas of these species (Alglave, Vermard, et al.,860

2023). Interestingly, the spatial cluster 5 is only found for whiting and highlights a specific861

reproduction dynamics in the North of the Bay of Biscay during winter (4.5°W - 4°N).862

The spatial clusters 1 and 4 are summer grounds. They are related to seasons C and E that863

mainly gather late spring, summer and autumn months. The spatial cluster 1 is mainly related864

to late spring and summer months. The cluster 4 is related to a longer season spanning from865

summer to end autumn just before reproduction happens for sole and whiting.866



Fig. S10: Clustering analysis for the EOFs outputs of the temporally synthetic representation (EOFs
on S′(𝑟𝑜𝑤)

𝑚𝑢𝑙𝑡𝑖
). (Top row) Spatial clusters representing the functional zones in space for each three

species. (Bottom left) Temporal loadings and spatial clusters projected in the two first dimensions of
the PCA. (Bottom right) Repartition of the different temporal clusters over the year. Each column
sums to eleven i.e. the number of year in the analysis. Clustering trees are available below in Figure
S11 (locations) and S12 (time steps).



Fig. S11: Clustering tree of the spatial locations for the EOFs outputs of the temporally synthetic
representation (EOFs on S′(𝑟𝑜𝑤)

𝑚𝑢𝑙𝑡𝑖
).



Fig. S12: Clustering tree of the temporal loadings for the EOFs outputs of the temporally synthetic
representation (EOFs on S′(𝑟𝑜𝑤)

𝑚𝑢𝑙𝑡𝑖
).



Spatially synthetic representation867

Five spatial clusters are identified through the spatially synthetic representation of the EOFs.868

The spatial cluster 1 is related to season B that fall mainly in summer and autumn for each869

three species. The related functional area (spatial cluster 1) can be considered as a summer870

grounds for each three species.871

The spatial cluster 4 can be related to the time cluster A that mainly fall in late winter to872

early summer for squids, which includes the period of squids reproduction (January to873

March). For sole it falls in summer during feeding.874

Interestingly, the temporal cluster D falls in winter to spring for each three species (January875

to June depending on the species) and coincides with the reproduction period of the different876

species. For whiting, the cluster E too falls during reproduction. For sole, this coincides877

with the migration off the coast and to the North i.e. off spatial cluster 1 and 4 towards878

spatial clusters 2 and 5.879



Fig. S13: Clustering analysis for the EOFs outputs of the spatially synthetic representation (EOFs on
S′(𝑐𝑜𝑙)
𝑚𝑢𝑙𝑡𝑖

). (Left) Spatial clusters representing the functional zones in space. (Top row) Projection of the
temporal loadings and spatial locations in the two first dimensions of the PCA. The clusters of the
locations are the distinct functional zones and the clusters of the temporal loadings can be seen as
ecological seasons. (Bottom row) Repartition of the different temporal clusters over the year. Each
column sums to eleven i.e. the number of year in the analysis. Clustering trees are available below in
Figure S14 (locations) and S15 (time steps).



Fig. S14: Clustering tree of the spatial locations for the EOFs outputs of the spatially synthetic
representation (EOFs on S′(𝑐𝑜𝑙)

𝑚𝑢𝑙𝑡𝑖
).



Fig. S15: Clustering tree of the temporal loadings for the EOFs outputs of the spatially synthetic
representation (EOFs on S′(𝑐𝑜𝑙)

𝑚𝑢𝑙𝑡𝑖
).


