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Abstract

In this work we develop and analyze a Reynolds-semi-robust and pressure-robust Hybrid
High-Order (HHO) discretization of the incompressible Navier–Stokes equations. Reynolds-
semi-robustness refers to the fact that, under suitable regularity assumptions, the right-hand side
of the velocity error estimate does not depend on the inverse of the viscosity. This property
is obtained here through a penalty term which involves a subtle projection of the convective
term on a subgrid space constructed element by element. The estimated convergence order for
the 𝐿∞ (𝐿2)- and 𝐿2 (energy)-norm of the velocity is ℎ𝑘+

1
2 , which matches the best results for

continuous and discontinuous Galerkin methods and corresponds to the one expected for HHO
methods in convection-dominated regimes. Two-dimensional numerical results on a variety of
polygonal meshes complete the exposition.

Key words: Hybrid High-Order methods, time-dependent incompressible flow, general meshes,
Re-semi-robust error estimates, pressure robustness
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1 Introduction
We consider the time-dependent incompressible Navier–Stokes equations:

𝜕𝑡𝒖 − 𝜈Δ𝒖 + (𝒖 · ∇)𝒖 + ∇𝑝 = 𝒇 in (0, 𝑡F] ×Ω, (1a)
∇ · 𝒖 = 0 in (0, 𝑡F] ×Ω, (1b)

𝒖 = 0 on [0, 𝑡F] × 𝜕Ω, (1c)
𝒖(0, ·) = 𝒖0(·) in Ω, (1d)

where Ω ⊂ R𝑑 , for 𝑑 ∈ {2, 3}, denotes an open, bounded, simply connected polyhedral domain with
Lipschitz boundary 𝜕Ω and 𝑡F > 0 denotes the final time. In addition, 𝒖 : [0, 𝑡F] × Ω → R𝑑 is the
fluid velocity field, 𝑝 : (0, 𝑡F] × Ω → R is the (zero-average) kinematic pressure, 𝒖0 : Ω → R𝑑
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represents a given initial condition, and 𝒇 : (0, 𝑡F] × Ω → R𝑑 represents a given body force. The
fluid is assumed to be Newtonian with constant kinematic viscosity 𝜈 > 0.

In this work we propose a “Reynolds-semi robust” and pressure-robust Hybrid-High Order (HHO)
method on general meshes to approximate the solution of the weak form of problem (1). A numerical
scheme is considered “Reynolds-semi robust” [45] if its velocity error estimates are independent of
the Reynolds number (or 𝜈−1). On the other hand, pressure robustness means that the velocity error
estimates are independent of the pressure, a property whose relevance was first emphasized in [38, 40].
Recently, a detailed analysis of vortex-dominated flows has been carried out in [36], where the authors
conclude that pressure robustness is a crucial prerequisite for the accurate discretisation of non-trivial
Navier–Stokes flows; numerical tests where pressure robust methods significantly outperform non-
pressure robust methods for transient incompressible flows at high Reynolds numbers are provided,
focusing on simplicial meshes.

Reynolds-semi robust numerical schemes have recently made the object of several works. To
obtain this kind of estimates, it is standard to assume additional regularity condition on ∇𝒖. For
instance, in the analysis of a continuous interior penalty finite element method [14], assuming
𝒖 ∈ 𝐿∞(0, 𝑡F;𝑾1,∞(Ω)) a velocity error estimate in the 𝐿∞(0, 𝑡F; 𝑳2(Ω))-norm was obtained. Other
Reynolds-semi robust numerical schemes using simplicial meshes have been proposed [2, 4, 18, 31,
32, 34, 37]. In particular, we refer to [45] for an outstanding review and further insight into the
importance of Reynolds-semi robust numerical methods. At the time of the writing of this work, the
best known velocity error estimate in the 𝐿∞(0, 𝑡F; 𝑳2(Ω))-norm is of order ℎ𝑘+ 1

2 (where 𝑘 denotes
the order of the polynomial approximation and ℎ is the mesh size), for instance see the works of [4,
34, 37], where Reynolds-semi robust numerical methods are proposed which additionally satisfy the
pressure robustness property.

In recent years, the mathematical community has become interested in developing numerical
schemes that can make use of general polygonal and polyhedral meshes, as opposed to more standard
triangular/quadrilateral (tetrahedral/hexahedral) meshes. A representative but by far non exhaustive
sample concerning incompressible flow problems includes [5, 7, 10, 24, 25, 27, 35, 48]; see also
[12, 17] concerning non-Newtonian fluids and [1] concerning the coupling with the heat equation.
Regarding pressure robust methods on general meshes for the Stokes and Navier–Stokes equations,
some work has recently been done using the Virtual Element method, generalized barycentric coordi-
nates, the staggered Discontinuous Garlekin method, HHO methods, and Discrete de Rham methods;
see, e.g., [11, 16, 19, 22, 30, 39, 41, 46, 47, 49]. Pressure-robust HHO methods for the Stokes and
Navier–Stokes problem have been proposed in [15, 16, 26]; see also [9] for variants with hybrid
pressure. To the authors’ knowledge, the development of Reynolds-semi robust and pressure-robust
numerical schemes on general meshes has not yet been adressed. The present work fills this gap. To
achieve this, the proposed method uses a slight variation of the divergence-preserving velocity recon-
struction proposed by the same authors in [16]. Contrary to [16], however, we use here the convective
form of the nonlinear term in the equation (1a) in the spirit of [37, 45], where 𝑯div-conforming spaces
are used. Reynolds-semi robustness is obtained through a new term which penalizes the jumps of
a potential operator within a decomposition of some discrete piecewise polinomial spaces (cf. (14)
and (15) below). With these ingredients, we prove a velocity error estimate in the 𝐿∞(0, 𝑡F; 𝑳2(Ω))-
norm of order ℎ𝑘+ 1

2 , which equals the best known velocity error estimate on simplicial meshes and
corresponds to the typical order of convergence of HHO methods in convectoin-dominated regimes
[21].

The rest of the paper is organised as follows. In Section 2 we introduce some notations and present
the weak form of problem (1). In Section 3 we present the discrete setting. In Section 4, which
contains the statement of the discrete problem, particular emphasis is put on a novel scalar potential
reconstruction that is used to stabilize the convective term and achieve Reynolds semi-robustness.
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Section 5 contains the velocity error analysis and the main results. Finally, in Section 6 we present
numerical experiments to verify our theoretical results.

2 Continuous setting
Throughout the paper, given an open bounded set 𝐷 ⊂ R𝑑 as well as two integers 𝑚 ≥ 0 and 𝑝 ≥ 1,
we use the Sobolev space𝑊𝑚,𝑝 (𝐷) for scalar-valued functions with associated norm ∥·∥𝑊𝑚,𝑝 (𝐷) and
seminorm |·|𝑊𝑚,𝑝 (𝐷) . Spaces of vector- and tensor-valued functions are indicated with bold letters. In
the case 𝑚 = 0, we obtain the Lebesgue space 𝐿 𝑝 (𝐷) ≔ 𝑊0, 𝑝 (𝐷) and, when 𝑝 = 2, the Hilbert space
𝐻𝑚(𝐷) ≔ 𝑊𝑚,2(𝐷). Additionally, the closed subspaces 𝐻1

0 (𝐷) consisting of 𝐻1(𝐷)-functions with
vanishing trace on 𝜕𝐷, and the set 𝐿2

0(𝐷) of 𝐿2(𝐷)-functions with zero average in 𝐷 are used in what
follows. Given a Banach space 𝑋 and a real number 𝑡 > 0, we denote by 𝐿 𝑝 (0, 𝑡; 𝑋), 𝑝 ∈ [1,∞], the
classical Bochner space. In the case 𝑡 = 𝑡F, we often use the abbreviation 𝐿 𝑝 (𝑋) ≔ 𝐿 𝑝 (0, 𝑡F; 𝑋).

Letting 𝑼 ≔ 𝑯1
0(Ω) and 𝑃 ≔ 𝐿2

0(Ω), we consider the following weak form of problem (1): Find
𝒖 : [0, 𝑡F] → 𝑼 and 𝑝 : (0, 𝑡F] → 𝑃 with 𝒖(0) = 𝒖0 ∈ 𝑼, such that it holds, for all (𝒗, 𝑞) ∈ 𝑼 × 𝑃

and almost every 𝑡 ∈ (0, 𝑡F),

(𝑑𝑡𝒖(𝑡), 𝒗) + 𝜈𝑎(𝒖(𝑡), 𝒗) + 𝑡 (𝒖(𝑡), 𝒖(𝑡), 𝒗) + 𝑏(𝒗, 𝑝(𝑡)) − 𝑏(𝒖(𝑡), 𝑞) = ℓ( 𝒇 (𝑡), 𝒗), (2)

with (·, ·) denoting the standard 𝑳2(Ω)-product, while the bilinear forms 𝑎 : 𝑼×𝑼 → R, 𝑏 : 𝑼×𝑃 →
R, and ℓ : 𝑳2(Ω) ×𝑼 → R are defined by

𝑎(𝒘, 𝒗) ≔
∫
Ω

∇𝒘 : ∇𝒗, 𝑏(𝒗, 𝑞) ≔ −
∫
Ω

(∇ · 𝒗)𝑞, ℓ( 𝒇 , 𝒗) ≔
∫
Ω

𝒇 · 𝒗,

and the trilinear form 𝑡 : 𝑼 ×𝑼 ×𝑼 → R is such that

𝑡 (𝒘, 𝒗, 𝒛) ≔
∫
Ω

((𝒖 · ∇)𝒗) · 𝒛.

3 Discrete setting
3.1 Mesh

In what follows, for the sake of simplicity, we will systematically use the term polyhedral instead of
polygonal and face instead of edge also when 𝑑 = 2.

Following [20, Definition 1.4], we consider a polyhedral mesh defined as a coupleMℎ ≔ (Tℎ, Fℎ),
where Tℎ is a finite collection of polyhedral elements, while Fℎ is a finite collection of planar faces.
We assume that every element 𝑇 ∈ Tℎ is star-shaped with respect to a ball [16, Remark 2.5]. For any
mesh element or face 𝑋 ∈ Tℎ ∪Fℎ, we denote by |𝑋 | its Hausdorff measure and by ℎ𝑋 its diameter, so
that the meshsize satisfies ℎ = max𝑇∈Tℎ ℎ𝑇 . Boundary faces lying on 𝜕Ω and internal faces contained
in Ω are collected in the sets F b

ℎ
and F i

ℎ
, respectively. For each mesh element 𝑇 ∈ Tℎ, we denote by

F𝑇 the set collecting the faces that lie on the boundary 𝜕𝑇 of 𝑇 and, for all 𝐹 ∈ F𝑇 , we denote by
𝒏𝑇𝐹 the (constant) unit vector normal to 𝐹 and pointing out of 𝑇 .

It is assumed that Mℎ belongs to a regular mesh sequence (Mℎ)ℎ in the sense of [20, Definition
1.9]. This assumption entails the existence of a matching simplicial submesh 𝔐ℎ ≔ (𝔗ℎ,𝔉ℎ) of
Mℎ with the following properties: 𝔗ℎ is a finite collection of simplicial elements; for any simplex
𝜏 ∈ 𝔗ℎ, there is a unique mesh element 𝑇 ∈ Tℎ such that 𝜏 ⊂ 𝑇 ; for any simplicial face 𝜎 ∈ 𝔉ℎ and
any mesh face 𝐹 ∈ Fℎ , either 𝜎 ∩ 𝐹 = ∅ or 𝜎 ⊂ 𝐹. We additionally assume that, for any element
𝑇 ∈ Tℎ, its submesh is constructed in such way that all simplices contained in 𝑇 and collected in
the set 𝔗𝑇 (see Figure 1a) have at least one common vertex 𝒙𝑇 . This assumption is directly used in
Lemmas 3 and 6 below. Regarding the Lemma 3, we refer to [16, Remarks 2.1 and A.1] for further
insight into this assumption.
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We decompose the set of simplicial faces as 𝔉ℎ = 𝔉i
ℎ
∪𝔉b

ℎ
where 𝔉i

ℎ
and 𝔉b

ℎ
respectivaly collect

interior and boundary simplicial faces. For any 𝑇 ∈ Tℎ, we define 𝔉i
𝑇

as the set of simplicial faces of
𝔉ℎ that lie in the interior of 𝑇 . For any face 𝐹 ∈ Fℎ lying on the boundary of 𝑇 ∈ Tℎ, 𝔉𝐹 denotes
the set of simplicial faces 𝜎 for which 𝜎 ⊂ 𝐹, and we let 𝒏𝜎 ≔ 𝒏𝑇𝐹 , and 𝒏𝜏𝜎 ≔ 𝒏𝜎 for the unique
element 𝜏 ∈ 𝔗𝑇 , which contains 𝜎. Additional notations for mesh elements and faces are introduced
at the beginning of Section 4.5 below and illustrated in Figure 1b. For future use, we notice that, by
[20, Lemma 1.12], mesh regularity implies the existence of an integer 𝑁 ≥ 0 depending only on the
mesh regularity parameter such that

max
ℎ

max
𝑇∈Tℎ

card(𝔗𝑇 ) ≤ 𝑁 and max
ℎ

max
𝑇∈Tℎ

card(F𝑇 ) ≤ 𝑁. (3)

𝐹1

𝐹2

𝐹3

𝐹4𝐹5

𝐹6
𝜏1

𝜏2

𝜏3
𝜏4

(a) The elements of 𝔗𝑇 and F𝑇 .
𝐹1

𝐹3

𝐹4

𝜏1

𝜏2

𝜏3

𝐹2

𝜎1

𝜎2

𝜎3 𝜎4

𝜎5 𝜎6

𝜎7

𝒏𝑇𝐹1

𝒏𝑇𝐹2

𝒏𝑇𝐹3

𝒏𝑇𝐹4

n𝜎1

n𝜎3
n𝜎5

(b) A closer look to the right part: The simplicial faces
𝜎1, 𝜎3, 𝜎5 belong to the set of interior faces 𝔉i

𝑇
and we

have 𝜎2 = 𝐹1, 𝜎4 = 𝐹2, 𝜎6 = 𝐹3, and 𝜎7 = 𝐹4.

Figure 1: An illustration of the sets 𝔗𝑇 , F𝑇 and 𝔉i
𝑇

for a given element 𝑇 ∈ Tℎ in R2.

In order to prevent the proliferation of generic constants we write, whenever possible, 𝑎 ≲ 𝑏 in
place of 𝑎 ≤ 𝐶𝑏 with 𝐶 > 0 independent of 𝜈, ℎ and, for local inequalities, also on the mesh element
or face. The dependencies of the hidden constant will be further specified when relevant. Moreover,
we write 𝑎 ≃ 𝑏, when both 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎 hold.

3.2 Local and broken spaces and projectors

Let 𝑋 denote a mesh element or face and, for an integer 𝑙 ≥ 0, denote by P𝑙 (𝑋) the space spanned
by the restrictions to 𝑋 of polynomials in the space variables of total degree ≤ 𝑙. The 𝐿2-orthogonal
projector 𝜋𝑙

𝑋
: 𝐿1(𝑋) → P𝑙 (𝑋) is such that, for all 𝜁 ∈ 𝐿1(𝑋),∫

𝑋

(𝜁 − 𝜋𝑙𝑋𝜁)𝑤 = 0 ∀𝑤 ∈ P𝑙 (𝑋).

Vector and matrix versions of the 𝐿2-orthogonal projector are obtained by applying 𝜋𝑙
𝑋

component-
wise, and are both denoted with the bold symbol 𝝅𝑙

𝑋
in what follows. Optimal approximation

properties for the 𝐿2-orthogonal projector are proved in [28, Appendix A.2]; see also [20, Chapter 1],
where these estimates are extended to non-star shaped elements. Specifically, let 𝑠 ∈ {0, . . . , 𝑙 + 1}
and 𝑟 ∈ [1, +∞]. Then, it holds, with hidden constant only depending on 𝑙, 𝑠, 𝑟 , and the mesh
regularity parameter: For all 𝑇 ∈ Tℎ, all 𝜁 ∈ 𝑊 𝑠,𝑟 (𝑇), and all 𝑚 ∈ {0, . . . , 𝑠},

|𝜁 − 𝜋𝑙𝑇 𝜁 |𝑊𝑚,𝑟 (𝑇 ) ≲ ℎ𝑠−𝑚𝑇 |𝜁 |𝑊𝑠,𝑟 (𝑇 ) , (4)

and, if 𝑠 ≥ 1,
ℎ

1
𝑟

𝑇
∥𝜁 − 𝜋𝑙𝑇 𝜁 ∥𝐿𝑟 (𝜕𝑇 ) ≲ ℎ𝑠𝑇 |𝜁 |𝑊𝑠,𝑟 (𝑇 ) . (5)

4



At the global level, the space of broken polynomial functions on Tℎ of total degree ≤ 𝑙 is
denoted by P𝑙 (Tℎ), and 𝜋𝑙

ℎ
is the corresponding 𝐿2-orthogonal projector such that, for all 𝜁 ∈ 𝐿1(Ω),

(𝜋𝑙
ℎ
𝜁) |𝑇 ≔ 𝜋𝑙

𝑇
𝜁 |𝑇 for all 𝑇 ∈ Tℎ. Regularity requirements in error estimates will be expressed in

terms of the broken Sobolev spaces𝑊 𝑠,𝑟 (Tℎ), spanned by functions in 𝐿𝑟 (Ω) the restriction of which
to every 𝑇 ∈ Tℎ is in 𝑊 𝑠,𝑟 (𝑇). We additionally set, as usual, 𝐻𝑠 (Tℎ) ≔ 𝑊 𝑠,2(Tℎ).
3.3 Discrete spaces and norms

Let a polynomial degree 𝑘 ≥ 0 be fixed and set

𝑘★ ≔

{
𝑘 if 𝑘 ∈ {0, 1},
𝑘 + 1 otherwise.

We then define a variant of the usual HHO space as follows

𝑼𝑘
ℎ
≔

{
𝒗
ℎ
= ((𝒗𝑇 )𝑇∈Tℎ , (𝒗𝐹)𝐹∈Fℎ

) :

𝒗𝑇 ∈ P
𝑘★ (𝑇) for all 𝑇 ∈ Tℎ and 𝒗𝐹 ∈ P

𝑘 (𝐹) for all 𝐹 ∈ Fℎ

}
. (6)

The restrictions of 𝑼𝑘
ℎ

and 𝒗
ℎ
∈ 𝑼𝑘

ℎ
to a generic mesh element 𝑇 ∈ Tℎ are respectively denoted by 𝑼𝑘

𝑇

and 𝒗
𝑇
= (𝒗𝑇 , (𝒗𝐹)𝐹∈F𝑇 ). The vector of polynomials corresponding to a smooth function over Ω is

obtained via the global interpolation operator 𝑰𝑘
ℎ

: 𝑯1(Ω) → 𝑼𝑘
ℎ

such that, for all 𝒗 ∈ 𝑯1(Ω),

𝑰𝑘ℎ𝒗 ≔ ((𝝅𝑘★

𝑇 𝒗 |𝑇 )𝑇∈Tℎ , (𝝅𝑘
𝐹𝒗 |𝐹)𝐹∈Fℎ

).

Its restriction to a generic mesh element 𝑇 ∈ Tℎ, collecting the components on 𝑇 and its faces, is
denoted by 𝑰𝑘

𝑇
. We furnish 𝑼𝑘

ℎ
with the discrete 𝐻1-like seminorm such that, for all 𝒗

ℎ
∈ 𝑼𝑘

ℎ
,

∥𝒗
ℎ
∥1,ℎ ≔

( ∑︁
𝑇∈Tℎ

∥𝒗
𝑇
∥2

1,𝑇

)1/2

, (7)

where, for all 𝑇 ∈ Tℎ,

∥𝒗
𝑇
∥1,𝑇 ≔

(
∥∇𝒗𝑇 ∥2

𝑳2 (𝑇 ) + |𝒗
𝑇
|21,𝜕𝑇

)1/2
with |𝒗

𝑇
|1,𝜕𝑇 ≔

( ∑︁
𝐹∈F𝑇

ℎ−1
𝐹 ∥𝒗𝐹 − 𝒗𝑇 ∥2

𝑳2 (𝐹 )

)1/2

. (8)

The discrete spaces for the velocity and the pressure, respectively accounting for the wall boundary
condition and the zero-average condition, are

𝑼𝑘
ℎ,0 ≔

{
𝒗
ℎ
= ((𝒗𝑇 )𝑇∈Tℎ , (𝒗𝐹)𝐹∈Fℎ

) ∈ 𝑼𝑘
ℎ

: 𝒗𝐹 = 0 ∀𝐹 ∈ F b
ℎ

}
, 𝑃𝑘

ℎ ≔ P𝑘 (Tℎ) ∩ 𝑃.

For all 𝒗
ℎ
∈ 𝑼𝑘

ℎ
, we denote by 𝒗ℎ ∈ P

𝑘★ (Tℎ) the vector-valued broken polynomial function obtained
patching element-based unkowns, that is (𝒗ℎ) |𝑇 ≔ 𝒗𝑇 for all 𝑇 ∈ Tℎ. The following discrete Sobolev
embeddings in 𝑼𝑘

ℎ,0 have been proved in [28, Proposition 5.4] for the standard HHO space (the
modifications required to treat the variation considered here are straightforward): For all 𝑟 ∈ [1, 6] it
holds, for all 𝒗

ℎ
∈ 𝑼𝑘

ℎ,0,

∥𝒗ℎ∥𝑳𝑟 (Ω) ≲ ∥𝒗
ℎ
∥1,ℎ . (9)

where the hidden constant is independent of both ℎ and 𝒗
ℎ
, but possibly depends on Ω, 𝑘 , 𝑟, and the

mesh regularity parameter. It follows from (9) that the map ∥·∥1,ℎ defines a norm on𝑼𝑘
ℎ,0. Classically,

the corresponding dual norm of a linear form Lℎ : 𝑼𝑘
ℎ,0 → R is given by

∥Lℎ∥1,ℎ,∗ ≔ sup
𝒗
ℎ
∈𝑼𝑘

ℎ,0,∥𝒗ℎ ∥1,ℎ=1

��Lℎ (𝒗ℎ)
�� . (10)
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4 A pressure-robust and Reynolds semi-robust HHO scheme
4.1 Divergence-preserving local velocity reconstruction

Following [23], for any element𝑇 ∈ Tℎ we define the discrete divergence operator 𝐷𝑘
𝑇

: 𝑼𝑘
𝑇
→ P𝑘 (𝑇)

such that, for all 𝒗
𝑇
∈ 𝑼𝑘

𝑇
and all 𝑞 ∈ P𝑘 (𝑇),∫
𝑇

𝐷𝑘
𝑇𝒗𝑇 𝑞 = −

∫
𝑇

𝒗𝑇 · ∇𝑞 +
∑︁
𝐹∈F𝑇

∫
𝐹

(𝒗𝐹 · 𝒏𝑇𝐹) 𝑞. (11)

The operator 𝐷𝑘
𝑇

satisfies the following crucial commutation property (see [20, Eq. (8.21)]):

𝐷𝑘
𝑇 𝑰

𝑘
𝑇𝒗 = 𝜋𝑘

𝑇 (∇ · 𝒗) ∀𝒗 ∈ 𝑯1(𝑇). (12)

To achieve pressure robustness, we proceed similarly to [16, Section 2.4], constructing divergence-
preserving velocity test functions which are then used for the discretization of the body force and the
nonlinear term. Let an element 𝑇 ∈ Tℎ be fixed and, for 𝜏 ∈ 𝔗𝑇 , denote by RT

𝑘 (𝜏) the classical
Raviart–Thomas–Nédélec space of degree 𝑘 on 𝜏 [42, 43]. We recall that a function in RT

𝑘 (𝜏) is
uniquely determined by its polynomial moments of degree up to (𝑘 − 1) inside 𝜏 and the polynomial
moments of degree 𝑘 of its normal components on the simplicial faces of 𝜏, collected in the set 𝔉𝜏 .
We introduce the Raviart–Thomas–Nédélec space of degree 𝑘 on the matching simplicial submesh
𝔗𝑇 of 𝑇 defined as follows:

RT
𝑘 (𝔗𝑇 ) ≔

{
𝖜 ∈ 𝑯div(𝑇) : 𝖜 |𝜏 ∈ RT

𝑘 (𝜏) for all 𝜏 ∈ 𝔗𝑇

}
,

where 𝑯div(𝑇) ≔
{
𝖜 ∈ 𝑳2(𝑇) : ∇ · 𝖜 ∈ 𝐿2(𝑇)

}
.

Recalling from Section 3.1 that, for a given element 𝑇 ∈ Tℎ, we denote by 𝒙𝑇 the common vertex
of all simplices in 𝔗𝑇 , we introduce the following spaces generated by the Koszul operator (see [3,
Section 7.2]):

G
c,𝑘 (𝑇) ≔ (𝒙 − 𝒙𝑇 ) ⊥ P𝑘−1(𝑇), G

c,𝑘 (𝔗𝑇 ) ≔ (𝒙 − 𝒙𝑇 ) ⊥ P𝑘−1(𝔗𝑇 ) for 𝑘 ≥ 1, 𝑑 = 2,
G

c,𝑘 (𝑇) ≔ (𝒙 − 𝒙𝑇 ) × P
𝑘−1(𝑇), G

c,𝑘 (𝔗𝑇 ) ≔ (𝒙 − 𝒙𝑇 ) × P
𝑘−1(𝔗𝑇 ) for 𝑘 ≥ 1, 𝑑 = 3,

(13)

where 𝒚 ⊥ 𝛼 ≔ 𝛼[−𝑦2, 𝑦1]𝑇 ∈ R2 for 𝒚 ∈ R2 and a scalar 𝛼, and × is the usual cross product in R3.
In addition, we define G

c,−1(𝑇) ≔ G
c,0(𝑇) ≔ G

c,−1(𝔗𝑇 ) ≔ G
c,0(𝔗𝑇 ) ≔ {0}. Observe that we

have the following direct decompositions (see [3, Corollary 7.4]):

P
𝑘 (𝑇) = G

𝑘 (𝑇) ⊕ G
c,𝑘 (𝑇) and P

𝑘 (𝔗𝑇 ) = G
𝑘 (𝔗𝑇 ) ⊕ G

c,𝑘 (𝔗𝑇 ), (14)

where P
𝑘 (𝔗𝑇 ) is the broken polynomial spaces of total degree ≤ 𝑘 on 𝔗𝑇 and

G
𝑘 (𝑇) ≔ ∇P𝑘+1(𝑇) and G

𝑘 (𝔗𝑇 ) ≔ ∇P𝑘+1(𝔗𝑇 ), (15)

and the direct sums in (14) are not necessarily orthogonal. Notice that, with a little abuse of notation,
in the definition (15) of G𝑘 (𝔗𝑇 ) we have used the symbol ∇ for the piecewise gradient on 𝔗𝑇 . This
abuse of notation will be kept throughout the rest of the paper.

We denote the 𝐿2-orthogonal projectors onto the spaces G𝑘 (𝑇), G𝑘 (𝔗𝑇 ), Gc,𝑘 (𝑇), and G
c,𝑘 (𝔗𝑇 )

by 𝝅𝑘
G ,𝑇

, 𝝅𝑘
G ,𝔗𝑇

, 𝝅c,𝑘
G ,𝑇

and 𝝅c,𝑘
G ,𝔗𝑇

, respectively. Then the divergence-preserving velocity reconstruc-
tion 𝑹𝑘

𝑇
: 𝑼𝑘

𝑇
→ RT

𝑘 (𝔗𝑇 ) is defined, for all 𝒗
𝑇
∈ 𝑼𝑘

𝑇
, as the first component of the solution of the
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following mixed problem: Find (𝑹𝑘
𝑇
𝒗
𝑇
, 𝜓, 𝜽) ∈ RT

𝑘 (𝔗𝑇 ) × P𝑘 (𝔗𝑇 )×Gc,𝑘−1(𝔗𝑇 ) such that

(𝑹𝑘
𝑇𝒗𝑇 ) |𝜎 · 𝒏𝜎 = (𝒗𝐹 · 𝒏𝑇𝐹) |𝜎 ∀𝜎 ∈ 𝔉𝐹 , ∀𝐹 ∈ F𝑇 , (16a)∫

𝑇

(∇ · 𝑹𝑘
𝑇𝒗𝑇 ) 𝜙 =

∫
𝑇

(𝐷𝑘
𝑇𝒗𝑇 ) 𝜙 ∀𝜙 ∈ P𝑘 (𝔗𝑇 ), (16b)∫

𝑇

𝑹𝑘
𝑇𝒗𝑇 · 𝝃 =

∫
𝑇

𝒗𝑇 · 𝝃 ∀𝝃 ∈ G
c,𝑘−1(𝔗𝑇 ), (16c)∫

𝑇

𝑹𝑘
𝑇𝒗𝑇 · 𝖜 +

∫
𝑇

(∇ · 𝖜)𝜓+
∫
𝑇

𝖜 · 𝜽 =

∫
𝑇

𝒗𝑇 · 𝖜 ∀𝖜 ∈ RT
𝑘
0 (𝔗𝑇 ), (16d)

with RT
𝑘
0 (𝔗𝑇 ) denoting the subspace of RT

𝑘 (𝔗𝑇 ) spanned by functions whose normal component
vanishes on 𝜕𝑇 .
Remark 1 (Comparison with the 𝑯div(Ω)-conforming reconstruction of [16]). The above definition
of the operator 𝑹𝑘

𝑇
is a variant of the one originally proposed in [16, Section 2.4]. Specifically, there

are two differences: the first one consists in changing the last component of the trial and test spaces
from G

c,𝑘−1(𝑇) to G
c,𝑘−1(𝔗𝑇 ); the second one is the use of the HHO space variant defined in (6).

Lemma 2 (Properties of 𝑹𝑘
𝑇

). For all 𝑇 ∈ Tℎ, it holds:

(i) Well-posedness. For a given 𝒗
𝑇
∈ 𝑼𝑘

𝑇
, there exists a unique 𝑹𝑘

𝑇
𝒗
𝑇
∈ RT

𝑘 (𝔗𝑇 ) that solves (16)
and satisfies

∥𝒗𝑇 − 𝑹𝑘
𝑇𝒗𝑇 ∥𝑳2 (𝑇 ) ≲ ℎ𝑇 ∥𝒗𝑇 ∥1,𝑇 . (17)

(ii) Approximation in 𝑾𝑠, 𝑝. Let an integer 𝑝 ∈ [1,∞] be given. Then, for all 𝑠 ∈ {1, . . . , 𝑘 + 1},
𝑚 ∈ {0, 1}, and all 𝒗 ∈ 𝑾𝑠, 𝑝 (𝑇), it holds

|𝒗 − 𝑹𝑘
𝑇 (𝑰𝑘𝑇𝒗) |𝑾𝑚,𝑝 (𝔗𝑇 ) ≲ ℎ𝑠−𝑚𝑇 |𝒗 |𝑾 𝑠,𝑝 (𝑇 ) . (18)

(iii) Consistency. For all 𝑘 ≥ 1 and all 𝒗
𝑇
∈ 𝑼𝑘

𝑇
, it holds

𝝅𝑘−1
𝑇 (𝑹𝑘

𝑇𝒗𝑇 ) = 𝝅𝑘−1
𝑇 (𝒗𝑇 ). (19)

The proof makes use of the following Lemma, whose proof is given in [16, Appendix]

Lemma 3 (Raviart–Thomas–Nédélec lifting of the projection on G
c,𝑘−1(𝔗𝑇 )). Let 𝑇 ∈ Tℎ and a

function 𝒗 ∈ 𝑳2(𝑇) be given. Then, for any integer 𝑘 ≥ 0, there exists �̃�
𝑘

𝑇 (𝒗) ∈ RT
𝑘
0 (𝔗𝑇 ) such that

𝝅c,𝑘−1
G ,𝔗𝑇

�̃�
𝑘

𝑇 (𝒗) = 𝝅c,𝑘−1
G ,𝔗𝑇

𝒗,

∇ · �̃�𝑘

𝑇 (𝒗) = 0,

�̃�
𝑘

𝑇 (𝒗) · 𝒏𝜎 = 0 ∀𝜎 ∈ 𝔉i
𝑇 ,

∥ �̃�𝑘

𝑇 (𝒗)∥𝑳2 (𝑇 ) ≲ ∥𝒗∥𝑳2 (𝑇 ) ,

where we remind the reader that 𝔉i
𝑇

is the set of the interior faces of the submesh of 𝑇 .

Proof of Lemma 2. (i) Existence, uniqueness, and boundedness. The proof of existence and unique-
ness of 𝑹𝑘

𝑇
𝒗
𝑇

are the same as in [16, Lemma 2.i] using Lemma 3 above. We now prove the bound
(17). Using essentially the same steps as in [16], it is inferred that

∥𝑹𝑘
𝑇𝒗𝑇 ∥𝑳2 (𝑇 ) ≲ ∥𝒗𝑇 ∥𝑳2 (𝑇 ) + ℎ𝑇 ∥𝒗𝑇 ∥1,𝑇 +

∑︁
𝐹∈F𝑇

ℎ
1
2
𝐹
∥𝒗𝐹 ∥𝑳2 (𝐹 ) . (20)
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Using a triangle inequality after inserting ±(𝝅𝑘
𝑇
𝒗𝑇 − 𝑹𝑘

𝑇
(𝑰𝑘

𝑇
𝝅𝑘
𝑇
𝒗𝑇 )) into the norm in the left-hand

side, we have

∥𝒗𝑇 − 𝑹𝑘
𝑇𝒗𝑇 ∥𝑳2 (𝑇 ) ≤ ∥𝒗𝑇 − 𝝅𝑘

𝑇𝒗𝑇 ∥𝑳2 (𝑇 ) + ∥𝝅𝑘
𝑇𝒗𝑇 − 𝑹𝑘

𝑇 (𝑰𝑘𝑇𝝅
𝑘
𝑇𝒗𝑇 )∥𝑳2 (𝑇 )

+ ∥𝑹𝑘
𝑇 (𝑰𝑘𝑇𝝅

𝑘
𝑇𝒗𝑇 ) − 𝑹𝑘

𝑇𝒗𝑇 ∥𝑳2 (𝑇 ) ≕ 𝔗1 + 𝔗2 + 𝔗3.
(21)

To bound 𝔗1, we use the approximation properties (4) of 𝝅𝑘
𝑇

with (𝑙, 𝑚, 𝑟, 𝑠) = (𝑘, 0, 2, 1) to get

𝔗1 ≲ ℎ𝑇 |𝒗𝑇 |𝑯1 (𝑇 )
(8)
≲ ℎ𝑇 ∥𝒗𝑇 ∥1,𝑇 . (22)

Letting �̂�𝑇 ≔ 𝑹𝑘
𝑇
(𝑰𝑘

𝑇
𝝅𝑘
𝑇
𝒗𝑇 ) and using the same arguments as in [16], we obtain

𝔗2 = 0. (23)

By linearity, 𝔗3 = ∥𝑹𝑘
𝑇
(𝑰𝑘

𝑇
𝝅𝑘
𝑇
𝒗𝑇 − 𝒗

𝑇
)∥𝑳2 (𝑇 ) . Thus, using the bound (20) with 𝒗

𝑇
replaced by

𝑰𝑘
𝑇
𝝅𝑘
𝑇
𝒗𝑇 − 𝒗

𝑇
, the fact that (𝑰𝑘

𝑇
𝝅𝑘
𝑇
𝒗𝑇 − 𝒗

𝑇
)𝑇 = (𝝅𝑘

𝑇
𝒗𝑇 − 𝒗𝑇 ) and (𝑰𝑘

𝑇
𝝅𝑘
𝑇
𝒗𝑇 − 𝒗

𝑇
)𝐹 = (𝝅𝑘

𝑇
𝒗𝑇 − 𝒗𝐹) for

all 𝐹 ∈ F𝑇 , and recalling the definition (8) of the ∥·∥1,𝑇 -norm, we can write

𝔗3 ≲ ∥𝝅𝑘
𝑇𝒗𝑇 − 𝒗𝑇 ∥𝑳2 (𝑇 ) + ℎ𝑇 ∥𝑰𝑘𝑇𝝅

𝑘
𝑇𝒗𝑇 − 𝒗

𝑇
∥1,𝑇 +

∑︁
𝐹∈F𝑇

ℎ
1
2
𝐹
∥𝝅𝑘

𝑇𝒗𝑇 − 𝒗𝐹 ∥𝑳2 (𝐹 )

≲ ℎ𝑇 |𝒗𝑇 |𝑯1 (𝑇 ) + ℎ𝑇 |𝝅𝑘
𝑇𝒗𝑇 − 𝒗𝑇 |𝑯1 (𝑇 ) +

∑︁
𝐹∈F𝑇

ℎ
1
2
𝐹

(
∥𝝅𝑘

𝑇𝒗𝑇 − 𝒗𝑇 ∥𝑳2 (𝐹 ) + ∥𝝅𝑘
𝑇𝒗𝑇 − 𝒗𝐹 ∥𝑳2 (𝐹 )

)
≲ ℎ𝑇 |𝒗𝑇 |𝑯1 (𝑇 ) +

∑︁
𝐹∈F𝑇

ℎ
1
2
𝐹
∥𝝅𝑘

𝑇𝒗𝑇 − 𝒗𝑇 ∥𝑳2 (𝐹 ) +
∑︁
𝐹∈F𝑇

ℎ
1
2
𝐹
∥𝒗𝑇 − 𝒗𝐹 ∥𝑳2 (𝐹 )

≲ ℎ𝑇 |𝒗𝑇 |𝑯1 (𝑇 ) + ℎ𝑇 |𝒗𝑇 |1,𝜕𝑇 ≲ ℎ𝑇

(
|𝒗𝑇 |2𝑯1 (𝑇 ) + |𝒗

𝑇
|21,𝜕𝑇

) 1
2

where, in the second step, we have used the approximation properties (4) of 𝝅𝑘
𝑇

with (𝑙, 𝑚, 𝑟, 𝑠) =

(𝑘, 0, 2, 1) for the first addend, expanded the second addend using the definition (8) of ∥·∥1,𝑇 , and
used a triangle inequality in the boundary term; in the third step, we have used (4) with (𝑙, 𝑚, 𝑟, 𝑠) =
(𝑘, 1, 2, 1) for the second addend, added ±𝒗𝑇 inside the norm of the last term, and used a triangle
inequality; in the fourth step, we have used for the second addend the trace approximation properties
(5) of 𝝅𝑘

𝑇
with (𝑙, 𝑟, 𝑠) = (𝑘, 2, 1) along with ℎ𝐹 ≃ ℎ𝑇 and the definition (8) of |·|1,𝜕𝑇 for the third

addend; finally, in the last step, we have used the inequality(
𝑛∑︁
𝑖=1

𝑎𝑖

)2

≃
𝑛∑︁
𝑖=1

𝑎2
𝑖 , (24)

valid for any integer 𝑛 ≥ 1 and non-negative real numbers 𝑎𝑖 . This gives

𝔗3 ≲ ℎ𝑇 ∥𝒗𝑇 ∥1,𝑇 , (25)

Plugging (22), (23), and (25) into (21), and using the definition (8) of the ∥·∥1,𝑇 -norm, we obtain
(17).

(ii) Approximation in 𝑾𝑠, 𝑝. For the sake of brevity, set 𝚷𝑘
𝑇 ≔ 𝑹𝑘

𝑇
◦ 𝑰𝑘

𝑇
. To prove (18), we use [20,

Theorem 1.43], which requires to prove the following relations:

(a) Polynomial consistency. 𝚷𝑘
𝑇𝒒 = 𝒒 for all 𝒒 ∈ P

𝑘 (𝑇).
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(b) Boundedness. For all integer 𝑝 ∈ [1,∞] and all 𝒗 ∈ 𝑾1, 𝑝 (𝑇), it holds

∥𝚷𝑘
𝑇𝒗∥𝑳𝑝 (𝑇 ) ≲ ∥𝒗∥𝑳𝑝 (𝑇 ) + ℎ𝑇 |𝒗 |𝑾 1, 𝑝 (𝑇 ) , (26)

|𝚷𝑘
𝑇𝒗 |𝑾 1, 𝑝 (𝔗𝑇 ) ≲ |𝒗 |𝑾 1, 𝑝 (𝑇 ) . (27)

We prove Point (a) using the same arguments that lead to (23) along with the fact that 𝝅𝑘
𝑇

is a projection
onto P

𝑘 (𝑇). To prove (26), let 𝒗 ∈ 𝑾1, 𝑝 (𝑇) and set, for the sake of brevity, �̂�
𝑇
≔ 𝑰𝑘

𝑇
𝒗. We have that

∥𝚷𝑘
𝑇𝒗∥2

𝑳𝑝 (𝑇 ) = ∥𝑹𝑘
𝑇 �̂�𝑇 ∥

2
𝑳𝑝 (𝑇 )

≲ ℎ
2𝑑

(
1
𝑝
− 1

2

)
𝑇

∥𝑹𝑘
𝑇 �̂�𝑇 ∥

2
𝑳2 (𝑇 )

≲ ℎ
2𝑑

(
1
𝑝
− 1

2

)
𝑇

(
∥ �̂�𝑇 ∥2

𝑳2 (𝑇 ) + ℎ2
𝑇 ∥ �̂�𝑇 ∥

2
1,𝑇

)
≲ ∥ �̂�𝑇 ∥2

𝑳𝑝 (𝑇 ) + ℎ2
𝑇ℎ

2𝑑
(

1
𝑝
− 1

2

)
𝑇

∥ �̂�
𝑇
∥2

1,𝑇

≲ ∥ �̂�𝑇 ∥2
𝑳𝑝 (𝑇 ) + ℎ2

𝑇 ∥∇�̂�𝑇 ∥2
𝑳𝑝 (𝑇 ) + ℎ2

𝑇

∑︁
𝐹∈F𝑇

ℎ
2𝑑

(
1
𝑝
− 1

2

)
𝑇

ℎ−1
𝐹 ∥ �̂�𝐹 − �̂�𝑇 ∥2

𝑳2 (𝐹 ) ,

(28)

where: in the second step, we have used the discrete local Lebesgue embeddings (93) below with
(𝛼, 𝛽, 𝑋) = (𝑝, 2, 𝑇); in the third step, we have inserted ±�̂�𝑇 into the norm and used a triangle
inequality followed by (17) with 𝒗

𝑇
= �̂�

𝑇
; in the fourth step, we have used again the local discrete

Lebesgue embeddings (93) below, this time with (𝛼, 𝛽, 𝑋) = (2, 𝑝, 𝑇), for the first term; the last step
follows from the definition (8) of ∥·∥1,𝑇 along with (93) with (𝛼, 𝛽, 𝑋) = (2, 𝑝, 𝑇) for the gradient
term. To bound the last term in the right hand side of (28), we observe that, for all 𝐹 ∈ F𝑇 , it holds

ℎ
2𝑑

(
1
𝑝
− 1

2

)
𝑇

ℎ−1
𝐹 ∥ �̂�𝐹 − �̂�𝑇 ∥2

𝑳2 (𝐹 ) ≲ ℎ
2𝑑

(
1
𝑝
− 1

2

)
𝑇

ℎ−1
𝐹 |𝐹 |2

(
1
2 −

1
𝑝

)
∥ �̂�𝐹 − �̂�𝑇 ∥2

𝑳𝑝 (𝐹 )

≲ ℎ
2
(

1−𝑝

𝑝

)
𝐹

∥ �̂�𝐹 − �̂�𝑇 ∥2
𝑳𝑝 (𝐹 ) , (29)

where in the first step we have used (94) below with (𝛼, 𝛽, 𝑋) = (2, 𝑝, 𝐹), and in the last step the
relations |𝐹 | ≃ ℎ

(𝑑−1)
𝐹

and ℎ𝑇 ≃ ℎ𝐹 valid for regular meshes. Moreover, using (24) with 𝑛 = 2 along
with the idempotency of 𝝅𝑘

𝐹
, we have

∥ �̂�𝐹 − �̂�𝑇 ∥2
𝑳𝑝 (𝐹 ) ≲ ∥𝝅𝑘

𝐹 (𝒗 − 𝝅𝑘
𝑇𝒗)∥2

𝑳𝑝 (𝐹 ) + ∥𝝅𝑘
𝑇𝒗 − �̂�𝑇 ∥2

𝑳𝑝 (𝐹 )

≲ ∥𝒗 − 𝝅𝑘
𝑇𝒗∥2

𝑳𝑝 (𝐹 ) + ∥𝒗 − �̂�𝑇 ∥2
𝑳𝑝 (𝐹 ) ,

where, in the second line, we have used the 𝑳𝑝-boundedness of 𝝅𝑘
𝐹

(cf. [20, Lemma 1.44]) for the
first term, inserted ±𝒗 and used a triangle inequality followed by (24) with 𝑛 = 2 for the second term.
Plugging the inequality above into (29), then using the result into (28), taking the square root, and
then using (24), we obtain

∥𝚷𝑘
𝑇𝒗∥𝑳𝑝 (𝑇 ) ≲ ∥ �̂�𝑇 ∥𝑳𝑝 (𝑇 ) + ℎ𝑇 ∥∇�̂�𝑇 ∥𝑳𝑝 (𝑇 ) + ℎ𝑇

∑︁
𝐹∈F𝑇

ℎ
1−𝑝

𝑝

𝐹

(
∥𝒗 − 𝝅𝑘

𝑇𝒗∥𝑳𝑝 (𝐹 ) + ∥𝒗 − �̂�𝑇 ∥𝑳𝑝 (𝐹 )
)
.

Therefore, using, respectively, the 𝑳𝑝- and 𝑾1, 𝑝-boundedness of 𝝅𝑘∗
𝑇

for the first and second term,
a triangle inequality along with ℎ𝑇 ≲ 1 followed by the trace approximation properties (5) of the
𝐿2-orthogonal projector with (𝑙, 𝑟, 𝑠) = (𝑘, 𝑝, 1) for the first term in brackets, and with (𝑙, 𝑟, 𝑠) =
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(𝑘★, 𝑝, 1) for the second term in brackets, and, finally, using the geometric bound (3) for F𝑇 , we
obtain (26).
Let us now prove (27). First of all we notice that, by the discrete inverse inequality (95) below, it
holds

∥∇𝑹𝑘
𝑇𝒗𝑇 ∥𝑳2 (𝑇 ) ≲ ℎ−1

𝑇 ∥𝑹𝑘
𝑇𝒗𝑇 ∥𝑳2 (𝑇 ) . (30)

Thus, recalling that 𝚷𝑘
𝑇 ≔ 𝑹𝑘

𝑇
◦ 𝑰𝑘

𝑇
, we infer

|𝚷𝑘
𝑇𝒗 |𝑾 1, 𝑝 (𝑇 ) = |𝚷𝑘

𝑇 (𝒗 − 𝝅0
𝑇𝒗) |𝑾 1, 𝑝 (𝑇 )

(30)
≲ ℎ−1

𝑇 ∥𝚷𝑘
𝑇 (𝒗 − 𝝅0

𝑇𝒗)∥𝑳𝑝 (𝑇 )
(26)
≲ ℎ−1

𝑇 ∥𝒗 − 𝝅0
𝑇𝒗∥𝑳𝑝 (𝑇 ) + |𝒗 − 𝝅0

𝑇𝒗 |𝑾 1, 𝑝 (𝑇 ) ≲ |𝒗
𝑇
|𝑾 1, 𝑝 (𝑇 ) ,

where in the last step we have used the approximation properties (4) of 𝝅0
𝑇

with (𝑙, 𝑚, 𝑟, 𝑠) = (0, 0, 𝑝, 1)
for the first term and with (𝑙, 𝑚, 𝑟, 𝑠) = (0, 1, 𝑝, 1) for the second term along with a triangle inequality
and the fact that ℎ𝑇 ≲ 1.

(iii) Consistency. The proof follows the same steps as in [16] along with Lemma 3 above and the fact
that 𝝅c,𝑘−1

G ,𝑇
◦ 𝝅c,𝑘−1

G ,𝔗𝑇
= 𝝅c,𝑘−1

G ,𝑇
, since G

c,𝑘−1(𝑇) ⊂ G
c,𝑘−1(𝔗𝑇 ). □

Let now RT
𝑘 (𝔗ℎ) denote the global (𝑯div(Ω)-conforming) Raviart–Thomas–Nédélec space

on 𝔗ℎ. We define the global velocity reconstruction 𝑹𝑘
ℎ

: 𝑼𝑘
ℎ
→ RT

𝑘 (𝔗ℎ) patching the local
contributions: For all 𝒗

ℎ
∈ 𝑼𝑘

ℎ
,

(𝑹𝑘
ℎ𝒗ℎ) |𝑇 ≔ 𝑹𝑘

𝑇𝒗𝑇 ∀𝑇 ∈ Tℎ .

Notice that 𝑹𝑘
ℎ
𝒗
ℎ

is well-defined, since its normal components across mesh interfaces are continuous
as a consequence of (16a) combined with the single-valuedness of interface unknowns.

To discretize the unsteady term in (2), for all 𝑇 ∈ Tℎ we introduce the bilinear form 𝑎R,𝑇 :
𝑼𝑘

𝑇
×𝑼𝑘

𝑇
→ R defined as follows:

𝑎R,𝑇 (𝒗𝑇 , 𝒘𝑇
) ≔

∫
𝑇

𝑹𝑘
𝑇𝒗𝑇 · 𝑹𝑘

𝑇𝒘𝑇
+ 𝑠R,𝑇 (𝒗𝑇 , 𝒘𝑇

), (31)

where the second term is the following stabilisation bilinear form:

𝑠R,𝑇 (𝒗𝑇 , 𝒘𝑇
) ≔

∫
𝑇

𝜹𝑘R,𝑇𝒗𝑇 · 𝜹𝑘R,𝑇𝒘𝑇
+

∑︁
𝐹∈F𝑇

ℎ𝐹

∫
𝐹

𝜹𝑘R,𝑇𝐹𝒗𝑇 · 𝜹𝑘R,𝑇𝐹𝒘𝑇
,

with difference operators 𝜹𝑘R,𝑇 : 𝑼𝑘
𝑇
→ P

𝑘★ (𝑇) and, for all 𝐹 ∈ F𝑇 , 𝜹
𝑘
R,𝑇𝐹 : 𝑼𝑘

𝑇
→ P

𝑘 (𝐹) such that,
for all 𝒗

𝑇
∈ 𝑼𝑘

𝑇
,

𝜹𝑘R,𝑇 (𝒗𝑇 ) ≔ 𝝅𝑘★

𝑇 (𝑹𝑘
𝑇𝒗𝑇 − 𝒗𝑇 ) and 𝜹𝑘R,𝑇𝐹 (𝒗𝑇 ) ≔ 𝝅𝑘

𝐹 (𝑹𝑘
𝑇𝒗𝑇 − 𝒗𝐹) ∀𝐹 ∈ F𝑇 . (32)

We also introduce the 𝑳2-like norm ∥·∥R,𝑇 : 𝑼𝑘
𝑇
→ R induced by 𝑎R,𝑇 (·, ·), i.e.,

∥𝒗
𝑇
∥R,𝑇 ≔ 𝑎R,𝑇 (𝒗𝑇 , 𝒗𝑇 )

1
2 . (33)

Finally, we introduce the global bilinear form 𝑎R,ℎ : 𝑼𝑘
ℎ
× 𝑼𝑘

ℎ
→ R, and the corresponding global

norm ∥·∥R,ℎ : 𝑼𝑘
ℎ
→ R defined, respectively, by: For all (𝒗

ℎ
, 𝒘

ℎ
) ∈ 𝑼𝑘

ℎ
×𝑼𝑘

ℎ
,

𝑎R,ℎ (𝒗ℎ, 𝒘ℎ
) ≔

∑︁
𝑇∈Tℎ

𝑎R,𝑇 (𝒗𝑇 , 𝒘𝑇
), and ∥𝒗

ℎ
∥2

R,ℎ ≔
∑︁
𝑇∈Tℎ

∥𝒗
𝑇
∥2

R,𝑇 .

The following Lemma summarizes some key properties relevant for the analysis.
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Lemma 4 (Properties of ∥·∥R,𝑇 ). For all 𝑇 ∈ Tℎ and all 𝒗
𝑇
∈ 𝑼𝑘

𝑇
, it holds

∥𝒗𝑇 ∥𝑳2 (𝑇 )+ℎ𝑇 ∥𝒗𝑇 ∥1,𝑇 ≲ ∥𝒗
𝑇
∥R,𝑇 . (34)

Remark 5 (Norm ∥·∥R,ℎ). A straightforward consequence of the above results is that the map ∥·∥R,ℎ :
𝑼𝑘

ℎ
→ R is a norm in the space 𝑼𝑘

ℎ,0.

Proof of Lemma 4. Using the fact that 𝒗𝑇 ∈ P
𝑘★ (𝑇) along with (24) for 𝑛 = 2, we get

∥𝒗𝑇 ∥2
𝑳2 (𝑇 ) = ∥𝝅𝑘★

𝑇 𝒗𝑇 ∥2
𝑳2 (𝑇 ) ≲ ∥𝝅𝑘★

𝑇 (𝒗𝑇 − 𝑹𝑘
𝑇𝒗𝑇 )∥

2
𝑳2 (𝑇 ) + ∥𝝅𝑘★

𝑇 𝑹𝑘
𝑇𝒗𝑇 ∥

2
𝑳2 (𝑇 )

≤ ∥𝝅𝑘★

𝑇 (𝒗𝑇 − 𝑹𝑘
𝑇𝒗𝑇 )∥

2
𝑳2 (𝑇 ) + ∥𝑹𝑘

𝑇𝒗𝑇 ∥
2
𝑳2 (𝑇 ) ≤ ∥𝒗

𝑇
∥2

R,𝑇 ,

where we have used the 𝑳2-boundedness of 𝝅𝑘★

𝑇
in the second line and the definition (33) of ∥·∥R,𝑇

to conclude.
To bound the second term in the left-hand side of (34) we preliminarily observe that, for any face

𝐹 ∈ F𝑇 , it holds

∥𝒗𝐹 − 𝒗𝑇 ∥𝑳2 (𝐹 ) = ∥𝒗𝐹 − 𝝅𝑘
𝐹𝑹

𝑘
𝑇𝒗𝑇 + 𝝅𝑘

𝐹𝑹
𝑘
𝑇𝒗𝑇 − 𝒗𝑇 ∥𝑳2 (𝐹 )

≤ ∥𝝅𝑘
𝐹 (𝒗𝐹 − 𝑹𝑘

𝑇𝒗𝑇 )∥𝑳2 (𝐹 ) + ∥𝝅𝑘
𝐹𝑹

𝑘
𝑇𝒗𝑇 − 𝒗𝑇 ∥𝑳2 (𝐹 ) ≕ ℑ1 + ℑ2,

where, in the second step, we have used triangle inequalities and then 𝝅𝑘
𝐹
𝒗𝐹 = 𝒗𝐹 (since 𝒗𝐹 ∈ P

𝑘 (𝐹))
in the first term. Squaring the above inequality, using (24) with 𝑛 = 2 in the right hand side, and
multiplying by ℎ𝐹 both sides, we get

ℎ𝐹 ∥𝒗𝐹 − 𝒗𝑇 ∥2
𝑳2 (𝐹 ) ≲ ℎ𝐹ℑ

2
1 + ℎ𝐹ℑ

2
2. (35)

The first term above is bounded as follows:

ℎ𝐹ℑ
2
1

(32)
= ℎ𝐹 ∥𝜹𝑘R,𝑇𝐹 (𝒗𝑇 )∥

2
𝑳2 (𝐹 )

(33)
≤ ∥𝒗

𝑇
∥2

R,𝑇 . (36)

For the second term in (35), we begin as follows:

ℑ2 = ∥𝝅𝑘
𝐹𝑹

𝑘
𝑇𝒗𝑇 + 𝝅𝑘★

𝑇 𝑹𝑘
𝑇𝒗𝑇 − 𝝅𝑘★

𝑇 𝑹𝑘
𝑇𝒗𝑇 − 𝒗𝑇 ∥𝑳2 (𝐹 )

≲ ∥𝑹𝑘
𝑇𝒗𝑇 ∥𝑳2 (𝐹 ) + ∥𝝅𝑘★

𝑇 𝑹𝑘
𝑇𝒗𝑇 ∥𝑳2 (𝐹 ) + ∥𝜹𝑘R,𝑇 (𝒗𝑇 )∥𝑳2 (𝐹 ) ,

where in the last step, we have used triangle inequalities, the 𝑳2-boundedness of 𝝅𝑘
𝐹

, and the definition
(32) of 𝜹𝑘R,𝑇 . Denoting by 𝜏𝜎 the simplex in 𝔗𝑇 which contains 𝜎 ∈ 𝔉𝐹 and using a discrete trace
inequality along with ℎ𝐹 ≤ ℎ𝑇 ≲ ℎ𝜏𝜎 (the second bound being a consequence of mesh regularity),
we get

ℎ𝐹 ∥𝑹𝑘
𝑇𝒗𝑇 ∥

2
𝑳2 (𝐹 ) ≲

∑︁
𝜎∈𝔉𝐹

ℎ𝜏𝜎 ∥𝑹𝑘
𝑇𝒗𝑇 ∥

2
𝑳2 (𝜎) ≲

∑︁
𝜎∈𝔉𝐹

∥𝑹𝑘
𝑇𝒗𝑇 ∥

2
𝑳2 (𝜏𝜎 ) ≤ ∥𝑹𝑘

𝑇𝒗𝑇 ∥
2
𝑳2 (𝑇 ) ,

where, in the last step, we have used the fact that
⋃

𝜎∈𝔉𝐹
𝜏𝜎 ⊂ 𝑇 . Using the same process, we get

ℎ𝐹 ∥𝝅𝑘★

𝑇
𝑹𝑘
𝑇
𝒗
𝑇
∥𝑳2 (𝐹 )

2 ≲ ∥𝝅𝑘★

𝑇
𝑹𝑘
𝑇
𝒗
𝑇
∥2
𝑳2 (𝑇 ) ≤ ∥𝑹𝑘

𝑇
𝒗
𝑇
∥2
𝑳2 (𝑇 ) , where we have used the 𝑳2-boundedness

of 𝝅𝑘★

𝑇
to conclude. Thus,

ℎ𝐹ℑ
2
2 ≲ ∥𝑹𝑘

𝑇𝒗𝑇 ∥
2
𝑳2 (𝑇 ) + ℎ𝐹 ∥𝜹𝑘R,𝑇 (𝒗𝑇 )∥

2
𝑳2 (𝐹 ) ≲ ∥𝑹𝑘

𝑇𝒗𝑇 ∥
2
𝑳2 (𝑇 ) + ∥𝜹𝑘R,𝑇 (𝒗𝑇 )∥

2
𝑳2 (𝑇 )

(33)
≤ ∥𝒗

𝑇
∥2

R,𝑇 ,
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where, in the second step, we have used a discrete trace inequality. Using this bound along with (36)
in (35), we get

ℎ𝐹 ∥𝒗𝐹 − 𝒗𝑇 ∥2
𝑳2 (𝐹 ) ≲ ∥𝒗

𝑇
∥2

R,𝑇 . (37)

Recalling the definition (8) of ∥𝒗
𝑇
∥1,𝑇 and using a discrete inverse inequality, we have that

ℎ2
𝑇 ∥𝒗𝑇 ∥

2
1,𝑇≲∥𝒗𝑇 ∥

2
𝑳2 (𝑇 ) +

∑︁
𝐹∈F𝑇

ℎ𝐹 ∥𝒗𝐹 − 𝒗𝑇 ∥2
𝑳2 (𝐹 ) ≲ ∥𝒗

𝑇
∥2

R,𝑇

where, in the second step, we have used additionally the inequality ℎ𝑇 ≲ ℎ𝐹 valid for regular meshes
while, in the last, step we have used (34) to bound the first term above and (37) for the second. Taking
the square root, we conclude. □

4.2 Viscous term and pressure-velocity coupling

Let an element 𝑇 ∈ Tℎ be fixed. We define the local gradient reconstruction 𝑮𝑘
𝑇 : 𝑼𝑘

𝑇
→ P

𝑘 (𝑇) such
that, for all 𝒗

𝑇
∈ 𝑼𝑘

𝑇
and all 𝝉 ∈ P

𝑘 (𝑇),∫
𝑇

𝑮𝑙
𝑇𝒗𝑇 : 𝝉 = −

∫
𝑇

𝒗𝑇 · (∇ · 𝝉) +
∑︁
𝐹∈F𝑇

∫
𝐹

𝒗𝐹 · 𝝉𝒏𝑇𝐹 .

A global gradient reconstruction 𝑮𝑘
ℎ : 𝑼𝑘

ℎ
→ P

𝑘 (Tℎ) can be defined setting, for all 𝒗
ℎ
∈ 𝑼𝑘

ℎ
,

(𝑮𝑘
ℎ𝒗ℎ) |𝑇 ≔ 𝑮𝑘

𝑇𝒗𝑇 for all 𝑇 ∈ Tℎ.
The viscous term and the pressure-velocity coupling are essentially the same as in the standard

HHO method; see, e.g., [10, 27]. We briefly recall them here to make the exposition self-contained.
The viscous bilinear form 𝑎ℎ: 𝑼𝑘

ℎ
×𝑼𝑘

ℎ
→ R is such that, for all 𝒘

ℎ
, 𝒗

ℎ
, ∈ 𝑼𝑘

ℎ
,

𝑎ℎ (𝒘ℎ
, 𝒗

ℎ
) ≔

∑︁
𝑇∈Tℎ

[∫
𝑇

𝑮𝑘
𝑇𝒘𝑇

: 𝑮𝑘
𝑇𝒗𝑇 + 𝑠𝑇 (𝒘𝑇

, 𝒗
𝑇
)
]
,

where, for any 𝑇 ∈ Tℎ, 𝑠𝑇 : 𝑼𝑘
𝑇
× 𝑼𝑘

𝑇
→ R denotes a local stabilization bilinear form designed

according to the principles of [20, Assumption 2.4], so that the following properties hold:

(i) Stability and boundedness. There exists 𝐶𝑎 > 0 independent of ℎ (and, clearly, also of 𝜈) such
that, for all 𝒗

ℎ
∈ 𝑼𝑘

ℎ
,

𝐶𝑎∥𝒗ℎ∥
2
1,ℎ ≤ 𝑎ℎ (𝒗ℎ, 𝒗ℎ) ≤ 𝐶−1

𝑎 ∥𝒗
ℎ
∥2

1,ℎ . (38)

(ii) Consistency. For all 𝒘 ∈ 𝑼 ∩ 𝑯𝑘+2(Tℎ) such that Δ𝒘 ∈ 𝑳2(Ω), it holds

∥E𝑎,ℎ (𝒘; ·)∥1,ℎ,∗ ≲ ℎ𝑘+1 |𝒘 |𝑯 𝑘+2 (Tℎ ) , (39)

where the linear form E𝑎,ℎ (𝒘; ·) : 𝑼𝑘
ℎ,0 → R representing the consistency error is such that

E𝑎,ℎ (𝒘; 𝒗
ℎ
) ≔ −

∫
Ω

Δ𝒘 · 𝒗ℎ − 𝑎ℎ (𝑰𝑘ℎ𝒘, 𝒗ℎ) ∀𝒗
ℎ
∈ 𝑼𝑘

ℎ,0. (40)

A classical example of stabilization bilinear form along with the proofs of properties (38) and (39)
can be found in [20, Section 5.1], to which we refer for further details.

Recalling the definition (11) of the local divergence 𝐷𝑘
𝑇

, the global pressure-velocity coupling
bilinear form 𝑏ℎ : 𝑼𝑘

ℎ,0 × P𝑘 (Tℎ) → R is such that, for all (𝒗
ℎ
, 𝑞ℎ) ∈ 𝑼𝑘

ℎ,0 × P𝑘 (Tℎ),

𝑏ℎ (𝒗ℎ, 𝑞ℎ) := −
∑︁
𝑇∈Tℎ

∫
𝑇

𝐷𝑘
𝑇𝒗𝑇 𝑞𝑇 , (41)

where 𝑞𝑇 ≔ 𝑞ℎ |𝑇 . The properties of 𝑏ℎ relevant for the analysis can be found in [20, Lemma 8.12].
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4.3 Body force

The discretization of the body force uses the divergence-preserving velocity reconstruction introduced
in Section 4.1. Specifically, we define the bilinear form ℓℎ : 𝑳2(Ω) × 𝑼𝑘

ℎ
→ R such that, for any

𝝓 ∈ 𝑳2(Ω) and any 𝒗
ℎ
∈ 𝑼𝑘

ℎ
,

ℓℎ (𝝓, 𝒗ℎ) ≔
∫
Ω

𝝓 · 𝑹𝑘
ℎ𝒗ℎ . (42)

Proceeding as in the proof of [16, Lemma 4] (the only difference being the definition of 𝑹𝑘
𝑇

, as
discussed in Remark 1), we can prove the following consistency property: For all 𝝓 ∈ 𝑳2(Ω)∩𝑯𝑘 (Tℎ),

∥Eℓ,ℎ (𝝓; ·)∥1,ℎ,∗ ≲ ℎ𝑘+1 |𝝓 |𝑯 𝑘 (Tℎ ) ,

where the linear form Eℓ,ℎ (𝝓; ·) : 𝑼𝑘
ℎ
→ R, representing the consistency error associated with ℓℎ, is

such that
Eℓ,ℎ (𝝓; 𝒗

ℎ
) ≔ ℓℎ (𝝓, 𝒗ℎ) −

∫
Ω

𝝓 · 𝒗ℎ =
∑︁
𝑇∈Tℎ

∫
𝑇

𝝓 · (𝑹𝑘
𝑇𝒗𝑇 − 𝒗𝑇 ).

4.4 Scalar potential operator for convective stabilization

Recall the fact that, for a given element 𝑇 ∈ Tℎ, we denote by 𝒙𝑇 the common vertex of all simplices
in 𝔗𝑇 , as well as the definitions (13) and (15) of G

c,𝑘 (𝔗𝑇 ) and G
𝑘 (𝔗𝑇 ) along with the respective

𝐿2-orthogonal projectors 𝝅c,𝑘
G ,𝑇

and 𝝅𝑘
G ,𝔗𝑇

. We introduce, for any polynomial degree 𝑙 ≥ 0, the
potential operator 𝜚𝑙+1

𝔗𝑇
: P𝑙 (𝔗𝑇 ) → P𝑙+1(𝔗𝑇 ) such that, for all 𝒒 ∈ P

𝑙 (𝔗𝑇 ),

∇𝜚𝑙+1
𝔗𝑇

𝒒 = (Id−𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)−1(𝝅𝑙
G ,𝔗𝑇

𝒒 − 𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

𝒒)

and (𝜚𝑙+1
𝔗𝑇

𝒒) |𝜏 (𝒙𝑇 ) = 0 for all 𝜏 ∈ 𝔗𝑇 ,
(43)

where Id is the identity operator. Observe that, by definition (15), we have ∇𝜚𝑙+1
𝔗𝑇

𝒒 ∈ G
𝑙 (𝔗𝑇 ). The

relevant properties of the potential operator 𝜚𝑙+1
𝔗𝑇

are stated in Lemma 6 below.

Lemma 6 (Properties of 𝜚𝑙+1
𝔗𝑇

). The potential operator 𝜚𝑙+1
𝔗𝑇

defined in (43) is a linear operator with
the following properties:

(i) For all 𝒃 ∈ G
𝑙 (𝔗𝑇 ) and all 𝒄 ∈ G

c,𝑙 (𝔗𝑇 ),

∇𝜚𝑙+1
𝔗𝑇

𝒃 = 𝒃 and 𝜚𝑙+1
𝔗𝑇

𝒄 ≡ 0. (44)

(ii) Boundedness. For all 𝒒 ∈ P
𝑙 (𝔗𝑇 ),

∥𝜚𝑙+1
𝔗𝑇

𝒒∥𝐿2 (𝑇 ) + ℎ𝑇 ∥∇𝜚𝑙+1
𝔗𝑇

𝒒∥𝑳2 (𝑇 ) ≲ ℎ𝑇 ∥𝒒∥𝑳2 (𝑇 ) . (45)

(iii) For all 𝒒 ∈ P
𝑙 (𝔗𝑇 ), it holds,

(Id−∇𝜚𝑙+1
𝔗𝑇

)𝒒 ∈ G
c,𝑙 (𝔗𝑇 ). (46)

(iv) For all 𝒒 ∈ P
𝑙 (𝑇),

𝜚𝑙+1
𝔗𝑇

𝒒 ∈ P𝑙+1(𝑇). (47)
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The proof of Lemma 6 requires some preliminary results. We start by introducing the recovery
operator (see [19, Section 2.5]) ℜ𝑙

G ,𝔗𝑇
: G𝑙 (𝔗𝑇 ) × G

c,𝑙 (𝔗𝑇 ) → P
𝑙 (𝔗𝑇 ) defined by

ℜ𝑙
G ,𝔗𝑇

(𝒃, 𝒄) ≔ 𝚪𝑙
G ,𝔗𝑇

(𝒃 − 𝝅𝑙
G ,𝔗𝑇

(𝒄)) + 𝚪c,𝑙
G ,𝔗𝑇

(𝒄 − 𝝅c,𝑙
G ,𝔗𝑇

(𝒃)), (48)

where 𝚪𝑙
G ,𝔗𝑇

and 𝚪c,𝑙
G ,𝔗𝑇

are linear functions P
𝑙 (𝔗𝑇 ) → P

𝑙 (𝔗𝑇 ) defined by

𝚪𝑙
G ,𝔗𝑇

≔ (Id−𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)−1 and 𝚪c,𝑙
G ,𝔗𝑇

≔ (Id−𝝅c,𝑙
G ,𝔗𝑇

𝝅𝑙
G ,𝔗𝑇

)−1. (49)

By definition, ∇𝜚𝑙+1
𝔗𝑇

𝒒 = 𝚪𝑙
G ,𝔗𝑇

(𝝅𝑙
G ,𝔗𝑇

𝒒 − 𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

𝒒).

Lemma 7 (Properties of ℜ𝑙
G ,𝔗𝑇

, 𝚪𝑙
G ,𝔗𝑇

, and 𝚪c,𝑙
G ,𝔗𝑇

). The following holds:

(i) For all 𝒒 ∈ P
𝑙 (𝔗𝑇 ),

𝒒 = ℜ𝑙
G ,𝔗𝑇

(𝝅𝑙
G ,𝔗𝑇

𝒒, 𝝅c,𝑙
G ,𝔗𝑇

𝒒). (50)

(ii) For all 𝒃 ∈ G
𝑙 (𝔗𝑇 ), 𝒄 ∈ G

c,𝑙 (𝔗𝑇 ), and 𝒒 ∈ P
𝑙 (𝔗𝑇 ),

𝚪𝑙
G ,𝔗𝑇

(𝒃 − 𝝅𝑙
G ,𝔗𝑇

𝒒) ∈ G
𝑙 (𝔗𝑇 ) and 𝚪c,𝑙

G ,𝔗𝑇
(𝒄 − 𝝅c,𝑙

G ,𝔗𝑇
𝒒) ∈ G

c,𝑙 (𝔗𝑇 ). (51)

(iii) For all 𝒃 ∈ G
𝑙 (𝔗𝑇 ), and 𝒄 ∈ G

c,𝑙 (𝔗𝑇 ),

𝚪𝑙
G ,𝔗𝑇

(𝒃 − 𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

(𝒃)) = 𝒃 and 𝚪c,𝑙
G ,𝔗𝑇

(𝒄 − 𝝅c,𝑙
G ,𝔗𝑇

𝝅𝑙
G ,𝔗𝑇

(𝒄)) = 𝒄. (52)

(iv) For all 𝒒 ∈ P
𝑙 (𝔗𝑇 ),

∥𝚪𝑙
G ,𝔗𝑇

𝒒∥𝑳2 (𝑇 ) ≲ ∥𝒒∥𝑳2 (𝑇 ) and ∥𝚪c,𝑙
G ,𝔗𝑇

𝒒∥𝑳2 (𝑇 ) ≲ ∥𝒒∥𝑳2 (𝑇 ) . (53)

Proof. (i-ii) The identity (50) is a straightforward consequence of [19, Lemma 1]. We now proceed
to prove the first relation in (51). The second one follows using entirely similar arguments. By [19,
Lemma 1], it holds ∥𝝅𝑙

G ,𝔗𝑇
𝝅c,𝑙
G ,𝔗𝑇

∥L(P𝑙 (𝔗𝑇 ) ,P𝑙 (𝔗𝑇 ) ) < 1 for the norm induced by the 𝑳2(𝑇)-norm,
so we have the following well-defined expansion:

𝚪𝑙
G ,𝔗𝑇

(𝒃 − 𝝅𝑙
G ,𝔗𝑇

𝒒) =
∞∑︁
𝑛=0

(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛
(𝒃 − 𝝅𝑙

G ,𝔗𝑇
𝒒)

= (𝒃 − 𝝅𝑙
G ,𝔗𝑇

𝒒) +
{ ∞∑︁
𝑛=1

(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛
(𝒃 − 𝝅𝑙

G ,𝔗𝑇
𝒒)

}
≕ 𝔗1 + 𝔗2.

Since 𝝅𝑙
G ,𝔗𝑇

is a projector into the space G
𝑙 (𝔗𝑇 ), we have that 𝔗1 ∈ G

𝑙 (𝔗𝑇 ). Observe that the
infinite sum contained in 𝔗2 is well-defined and, to compute it, let �̃� ≔ 𝒃 − 𝝅𝑙

G ,𝔗𝑇
𝒒 ∈ G

𝑙 (𝔗𝑇 ) and
write

𝔗2 =

∞∑︁
𝑛=1

(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛
�̃� =

∞∑︁
𝑛=1

𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛−1
�̃�

=

∞∑︁
𝑛=1

𝝅𝑙
G ,𝔗𝑇

𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛−1
�̃� =

∞∑︁
𝑛=1

𝝅𝑙
G ,𝔗𝑇

((
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛
�̃�
)
,
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where in the third step we have used the idempotency property 𝝅𝑙
G ,𝔗𝑇

= 𝝅𝑙
G ,𝔗𝑇

◦ 𝝅𝑙
G ,𝔗𝑇

. Thus, 𝔗2

is equal to a convergent infinite sum where each term of this sum is in G
𝑙 (𝔗𝑇 ), but this subspace is

closed (since it is finite dimensional), thus the limit of the partial sum is in G
𝑙 (𝔗𝑇 ), i.e.,𝔗2 ∈ G

𝑙 (𝔗𝑇 ).
Therefore, 𝔗1 + 𝔗2 ∈ G

𝑙 (𝔗𝑇 ) and we conclude.

(iii) We now proceed to prove the first relation in (52). The second one is proved similarly. For any
𝒃 ∈ G

𝑙 (𝔗𝑇 ), expanding 𝚪𝑙
G ,𝔗𝑇

as in the previous point, we have that

𝚪𝑙
G ,𝔗𝑇

(𝒃 − 𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

𝒃) =
∞∑︁
𝑛=0

(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛
(𝒃 − 𝝅𝑙

G ,𝔗𝑇
𝝅c,𝑙
G ,𝔗𝑇

𝒃)

=

∞∑︁
𝑛=0

(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛
𝒃 −

∞∑︁
𝑛=0

(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

𝒃

= 𝒃 +
((((((((((((((((((((((([ ∞∑︁
𝑛=1

(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛
𝒃 −

∞∑︁
𝑛=0

(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛+1
𝒃

]
= 𝒃.

(iv) We prove the first relation in (53). The second one follows from a similar reasoning. Observe
first that, for all 𝒒 ∈ P

𝑙 (𝔗𝑇 ), we can express 𝝅𝑙
G ,𝔗𝑇

𝒒 as 𝝅𝑙
G ,𝔗𝑇

𝒒 =
∑

𝜏∈𝔗𝑇
𝜒𝜏𝝅

𝑙
G ,𝜏

𝒒 |𝜏 , where 𝜒𝜏 is
the characteristic function of 𝜏 ∈ 𝔗𝑇 ; similarly, we have 𝝅c,𝑙

G ,𝔗𝑇
𝒒 =

∑
𝜏∈𝔗𝑇

𝜒𝜏𝝅
c,𝑙
G ,𝜏

𝒒 |𝜏 . Thus,

𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

𝒒 = 𝝅𝑙
G ,𝔗𝑇

( ∑︁
𝜏∈𝔗𝑇

𝜒𝜏𝝅
c,𝑙
G ,𝜏

𝒒 |𝜏

)
=

∑︁
𝜏′∈𝔗𝑇

𝜒𝜏′𝝅
𝑙
G ,𝜏′

( ∑︁
𝜏∈𝔗𝑇

𝜒𝜏𝝅
c,𝑙
G ,𝜏

𝒒 |𝜏

)
|𝜏′

=
∑︁
𝜏∈𝔗𝑇

𝜒𝜏𝝅
𝑙
G ,𝜏

𝝅c,𝑙
G ,𝜏

𝒒 |𝜏 ,

and, using the same procedure recursively, we obtain(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛
𝒒 =

∑︁
𝜏∈𝔗𝑇

𝜒𝜏

(
𝝅𝑙
G ,𝜏

𝝅c,𝑙
G ,𝜏

)𝑛
𝒒 |𝜏 ,

thus it is inferred that

𝚪𝑙
G ,𝔗𝑇

𝒒 =

∞∑︁
𝑛=0

(
𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

)𝑛
𝒒 =

∞∑︁
𝑛=0

∑︁
𝜏∈𝔗𝑇

𝜒𝜏

(
𝝅𝑙
G ,𝜏

𝝅c,𝑙
G ,𝜏

)𝑛
𝒒 |𝜏 =

∑︁
𝜏∈𝔗𝑇

𝜒𝜏

∞∑︁
𝑛=0

(
𝝅𝑙
G ,𝜏

𝝅c,𝑙
G ,𝜏

)𝑛
𝒒 |𝜏 ,

where, in the last step, we have used Fubini’s theorem to exchange the order of the sums and the fact
that the infinite expansion of 𝚪𝑙

G ,𝔗𝑇
is well-defined. Now, using a triangle inequality and the fact that

|𝜒𝜏 (𝒙) | = 1 for all 𝒙 ∈ 𝜏, we get

∥𝚪𝑙
G ,𝔗𝑇

𝒒∥𝑳2 (𝑇 ) ≤
∑︁
𝜏∈𝔗𝑇

 ∞∑︁
𝑛=0

(
𝝅𝑙
G ,𝜏

𝝅c,𝑙
G ,𝜏

)𝑛
𝒒 |𝜏


𝑳2 (𝜏 )

≲
∑︁
𝜏∈𝔗𝑇

∥𝒒 |𝜏 ∥𝑳2 (𝜏 ) ≤
∑︁
𝜏∈𝔗𝑇

∥𝒒∥𝑳2 (𝑇 )
(3)
≲ ∥𝒒∥𝑳2 (𝑇 ) ,

where we have used the inequality ∥(Id−𝝅𝑙
G ,𝜏

𝝅c,𝑙
G ,𝜏

)−1∥L(P𝑙 (𝜏 ) ,P𝑙 (𝜏 ) ) ≲ 1 (see [19, Proof of Lemma
2]) in the second step and the fact that 𝜏 ⊂ 𝑇 for 𝜏 ∈ 𝔗𝑇 in third step. □
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The second intermediate result needed in the proof of Lemma 6 is the following local Poincaré
inequality.

Lemma 8 (Poincaré inequality over a simplex). Let a mesh element 𝑇 ∈ Tℎ, a simplex 𝜏 ∈ 𝔗𝑇 , and
integer 𝑙 ≥ 0 be given. Then, for any 𝑞 ∈ P𝑙 (𝜏) vanishing at one of the vertices of 𝜏, the following
holds:

∥𝑞∥𝐿2 (𝜏 ) ≲ ℎ𝜏 ∥∇𝑞∥𝑳2 (𝜏 ) . (54)

Proof. The case 𝑙 = 0 is trivial. Then we separate the remaining cases when 𝑙 = 1, and 𝑙 > 1. We
begin with 𝑙 = 1. By assumption, there exists a vertex of 𝜏 denoted by 𝒙𝜏 ∈ R𝑑 such that 𝑞(𝒙𝜏) = 0.
Thus, 𝑞 can be expressed as 𝑞(𝒙) = ∑𝑑

𝑖=1 𝑎𝑖 (𝑥𝑖 − 𝑥𝜏,𝑖) where 𝑎𝑖 ∈ R, and 𝑥𝑖 and 𝑥𝜏,𝑖 are the Cartesian
coordinates of 𝒙, and 𝒙𝜏 , respectively. We write

∥𝑞∥2
𝐿2 (𝜏 ) =

∫
𝜏

(
𝑑∑︁
𝑖=1

𝑎𝑖 (𝑥𝑖 − 𝑥𝜏,𝑖)
)2

(24)
≲

𝑑∑︁
𝑖=1

∫
𝜏

𝑎2
𝑖 (𝑥𝑖 − 𝑥𝜏,𝑖)2 ≤ ℎ2

𝜏

𝑑∑︁
𝑖=1

∫
𝜏

𝑎2
𝑖 = ℎ𝜏 ∥∇𝑞∥2

𝑳2 (𝜏 ) .

Passing to the square root, we get (54). Now, to prove the case 𝑙 > 1, let 𝑞 ∈ P𝑙 (𝜏) and denote by 𝑞

the standard nodal interpolate of 𝑞 on P1(𝜏) (see, e.g., [29, Eq. (1.36)]). Then, it is inferred that

∥𝑞∥𝐿2 (𝜏 )≤∥𝑞 − 𝑞∥𝐿2 (𝜏 ) + ∥𝑞∥𝐿2 (𝜏 ) ≲ ℎ𝜏 |𝑞 |𝐻1 (𝜏 ) + ∥𝑞∥𝐿2 (𝜏 ) ≲ ℎ𝜏 ∥∇𝑞∥𝑳2 (𝜏 ) ,

where in the first step we have used a triangle inequality, in the second step standard approximation
properties of 𝑞 ([29, Theorem (1.103)]) followed by an inverse inequality to write ∥𝑞 − 𝑞∥𝐿2 (𝜏 ) ≲
ℎ2
𝜏 |𝑞 |𝐻2 (𝜏 ) ≲ ℎ𝜏 |𝑞 |𝐻1 (𝜏 ) , and in the last step the fact that 𝑞 ∈ P1(𝜏) and 𝑞(𝒙𝜏) = 0, so we can use

(54), since this case has already been proved. □

Proof of Lemma 6. We first prove that 𝜚𝑙+1
𝔗𝑇

is well defined. By the definitions (43) of 𝜚𝑙+1
𝔗𝑇

and (49)
of 𝚪𝑙

G ,𝔗𝑇
, it holds, for all 𝒒 ∈ P

𝑙 (𝔗𝑇 ),

∇𝜚𝑙+1
𝔗𝑇

𝒒 = 𝚪𝑙
G ,𝔗𝑇

(𝝅𝑙
G ,𝔗𝑇

𝒒 − 𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

𝒒). (55)

By the first equation of (51), 𝚪𝑙
G ,𝔗𝑇

(𝝅𝑙
G ,𝔗𝑇

𝒒 − 𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

𝒒) ≕ 𝒈 ∈ G
𝑙 (𝔗𝑇 ). Thus, there exists

𝑔 ∈ P
𝑙+1(𝔗ℎ) such that ∇𝑔 = 𝒈. Let 𝜚𝑙+1

𝔗𝑇
𝒒 ≔ 𝑔 − 𝑔(𝒙𝑇 ). Clearly, 𝜚𝑙+1

𝔗𝑇
𝒒 satisfies (55) as well as the

condition at the common vertex 𝒙𝑇 required by (43). Using this process and the fact that the operators
𝚪𝑙
G ,𝔗𝑇

, 𝝅𝑙
G ,𝔗𝑇

and 𝝅c,𝑙
G ,𝔗𝑇

are all linear, it is easy to prove the linearity of 𝜚𝑙+1
𝔗𝑇

.

(i) Proof of (44). The first identity in (44) comes from (55) taking 𝒒 = 𝒃 ∈ G
𝑙 (𝔗𝑇 ) ⊂ P

𝑙 (𝔗𝑇 ) and
using the first identity in (52) and the fact that 𝝅𝑙

G ,𝔗𝑇
𝒃 = 𝒃. To prove the second identity in (44), we

write (55) with 𝒒 = 𝒄 ∈ G
c,l(𝔗𝑇 ) ⊂ P

𝑙 (𝔗𝑇 ) to get

∇𝜚𝑙+1
𝔗𝑇𝔗𝑇

𝒄 = 𝚪𝑙
G ,𝔗𝑇

(𝝅𝑙
G ,𝔗𝑇

𝒄 − 𝝅𝑙
G ,𝔗𝑇

𝝅c,𝑙
G ,𝔗𝑇

𝒄) = 𝚪𝑙
G ,𝔗𝑇

(𝝅𝑙
G ,𝔗𝑇

𝒄 − 𝝅𝑙
G ,𝔗𝑇

𝒄) = 0,

where, in the third step, we have used the fact that 𝝅c,𝑘−1
G ,𝔗𝑇

is a projection onto G
c,𝑘−1(𝔗𝑇 ) (so that

𝝅c,𝑙
G ,𝔗𝑇

𝒄 = 𝒄) and, in the last step, the linearity of 𝚪𝑙
G ,𝔗𝑇

. The conclusion follows from the condition
at the common vertex 𝒙𝑇 required by (43).

(ii) Proof of (45). We first prove the bound for the first term in the left-hand side of (45). We observe
that

∥𝜚𝑙+1
𝔗𝑇

𝒒∥2
𝐿2 (𝑇 ) =

∑︁
𝜏∈𝔗𝑇

∥𝜚𝑙+1
𝔗𝑇

𝒒∥2
𝐿2 (𝜏 ) ≲

∑︁
𝜏∈𝔗𝑇

ℎ2
𝜏 ∥∇𝜚𝑙+1

𝔗𝑇
𝒒∥2

𝐿2 (𝜏 ) ≲
∑︁
𝜏∈𝔗𝑇

ℎ2
𝜏 ∥𝒒∥2

𝐿2 (𝜏 ) ≤ ℎ2
𝑇 ∥𝒒∥2

𝐿2 (𝑇 ) ,

(56)
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where, in the second step, we have used the local Poincaré inequality (54) for all 𝜏 ∈ 𝔗𝑇 (this is made
possible by the condition at the common vertex 𝒙𝑇 in (43)), in the third step we have used first (55),
then the first bound in (53) along with a triangle inequality and then the 𝑳2-boundedness of 𝝅c,𝑙

G ,𝔗𝑇

and 𝝅𝑙
G ,𝔗𝑇

, and in the last step the fact that 𝜏 ⊂ 𝑇 (so that, by mesh regularity, ℎ−1
𝜏 ≲ ℎ−1

𝑇
). Taking

the square root yields the bound for the first term in the left-hand side of (45). The bound for the
second term in the left-hand side of (45) is a straightforward consequence of (56) combined with the
discrete inverse inequality (95) below with 𝑝 = 2.
(iii) Proof of (46). To prove (46), we use the identities 𝒒 = ∇𝜚𝑙+1

𝔗𝑇
𝒒 + (Id−∇𝜚𝑙+1

𝔗𝑇
)𝒒 and (50) along

with the definitions (48) of ℜ𝑙
G ,𝔗𝑇

and (49) of 𝚪𝑙
G ,𝔗𝑇

and 𝚪c,𝑙
G ,𝔗𝑇

, and use (55) to write

(Id−∇𝜚𝑙+1
𝔗𝑇

)𝒒 = 𝒒 − ∇𝜚𝑙+1
𝔗𝑇

𝒒
(50), (48), (55)

= 𝚪c,𝑙
G ,𝔗𝑇

(𝝅c,𝑙
G ,𝔗𝑇

𝒒 − 𝝅c,𝑙
G ,𝔗𝑇

𝝅𝑙
G ,𝔗𝑇

𝒒).

Using (51) with (𝒄, 𝒒) = (𝝅c,𝑙
G ,𝔗𝑇

𝒒, 𝝅𝑙
G ,𝔗𝑇

𝒒), we obtain (Id−∇𝜚𝑙+1
𝔗𝑇

)𝒒 ∈ G
c,𝑙 (𝔗𝑇 ).

(iv) Proof of (47). Let 𝒒 ∈ P
𝑙 (𝑇) and write 𝒒

(14)
= 𝒈𝑇 + 𝒈c

𝑇
, where 𝒈𝑇 ∈ G

𝑙 (𝑇) and 𝒈c
𝑇
∈ G

c,𝑙 (𝑇).
Using the fact that G𝑙 (𝑇) ⊂ G

𝑙 (𝔗𝑇 ) and G
c,𝑙 (𝑇) ⊂ G

c,𝑙 (𝔗𝑇 ) along with the definition (43) of 𝜚𝑙+1
𝔗𝑇

,
(44), and its linearity, it is readily seen that

G
𝑘−1(𝔗𝑇 ) ∋ ∇𝜚𝑙+1

𝔗𝑇
𝒒 = ∇𝜚𝑙+1

𝔗𝑇
(𝒈𝑇 + 𝒈c

𝑇 ) = ∇𝜚𝑙+1
𝔗𝑇

𝒈𝑇 + ∇𝜚𝑙+1
𝔗𝑇

𝒈c
𝑇 = 𝒈𝑇 + 0 = 𝒈𝑇 ∈ G

𝑘−1(𝑇),

thus 𝜚𝑙+1
𝔗𝑇

(𝒒) = 𝑔𝑇 +𝑔0,𝔗𝑇
, where 𝑔𝑇 ∈ P𝑙+1(𝑇) and 𝑔0,𝔗𝑇

∈ P0(𝔗𝑇 ). But, using the second condition
in (43), we have that 𝑔𝑇 (𝒙𝑇 ) = −𝑔0,𝔗𝑇

(𝒙𝑇 ) for all 𝜏 in 𝔗𝑇 , thus 𝑔0,𝔗𝑇
∈ P0(𝑇), since 𝑔𝑇 (𝒙𝑇 ) is

independent of 𝜏, and we conclude. □

4.5 Convective term

Let an element 𝑇 ∈ Tℎ be fixed. For every simplicial face 𝜎 ∈ 𝔉ℎ, we introduce an arbitrary but fixed
ordering of the simplicial elements 𝜏1 and 𝜏2 such that 𝜎 ⊂ 𝜕𝜏1 ∩ 𝜕𝜏2, and let 𝒏𝜎 ≔ 𝒏𝜏1𝜎 = −𝒏𝜏2𝜎 ,
where 𝒏𝜏𝑖𝜎 , 𝑖 ∈ {1, 2}, denotes the unit vector normal to 𝜎 pointing out of 𝜏𝑖 (see Figure 1b). With
this convention, for every scalar-valued function 𝜁 admitting a possibly two-valued trace on 𝜎, we
define the jump and average of 𝜁 across 𝜎 respectively as

J𝜁K𝜎 ≔ 𝜁 |𝜏1 − 𝜁 |𝜏2 and {𝜁 }𝜎 ≔
1
2

(
𝜁 |𝜏1 + 𝜁 |𝜏2

)
. (57)

For any boundary simplicial face 𝜎 ⊂ 𝐹 ∈ F b
ℎ

, we set J𝜁K𝜎 ≔ {𝜁 }𝜎 ≔ 𝜁 . When applied to vector-
or tensor-valued functions, the jump and average operators act component-wise.

We introduce the global function 𝑡ℎ :
[
𝑼𝑘

ℎ

]3 → R such that, for all (𝒘
ℎ
, 𝒗

ℎ
, 𝒛

ℎ
) ∈

[
𝑼𝑘

ℎ

]3,

𝑡ℎ (𝒘ℎ
, 𝒗

ℎ
, 𝒛

ℎ
) ≔

∫
Ω

(𝑹𝑘
ℎ𝒘ℎ

· ∇)𝑹𝑘
ℎ𝒗ℎ · 𝑹

𝑘
ℎ𝒛ℎ −

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

(𝑹𝑘
ℎ𝒘ℎ

· 𝒏𝜎)J𝑹𝑘
ℎ𝒗ℎK𝜎 · {𝑹𝑘

ℎ𝒛ℎ}𝜎

+
∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

1
2
|𝑹𝑘

ℎ𝒘ℎ
· 𝒏𝜎 |J𝑹𝑘

ℎ𝒗ℎK𝜎 · J𝑹𝑘
ℎ𝒛ℎK𝜎 +

∑︁
𝑇∈Tℎ

∑︁
𝜎∈𝔉i

𝑇

𝑡𝑘𝑇,𝜎 (𝒘𝑇
, 𝒗

𝑇
, 𝒛

𝑇
).

(58)
The first term in the second line is the usual upwind stabilization. The form 𝑡𝑘

𝑇,𝜎
: 𝑼𝑘

𝑇
×𝑼𝑘

𝑇
×𝑼𝑘

𝑇
→ R

also works as a penalty term and, setting 𝒘0
𝑇
≔ 𝝅0

𝑇
𝒘𝑇 , it is defined as follows:

𝑡𝑘𝑇,𝜎 (𝒘𝑇
, 𝒗

𝑇
, 𝒛

𝑇
) ≔

{
0 if 𝑘 = 0,∫
𝜎
J𝜚𝑘

𝔗𝑇
(𝝅𝑘−1

𝔗𝑇
((𝒘0

𝑇
· ∇)𝑹𝑘

𝑇
𝒗
𝑇
))K𝜎J𝜚𝑘

𝔗𝑇
(𝝅𝑘−1

𝔗𝑇
((𝒘0

𝑇
· ∇)𝑹𝑘

𝑇
𝒛
𝑇
))K𝜎 if 𝑘 ≥ 1

.

(59)
Notice that 𝑡𝑘

𝑇,𝜎
in (59) is linear only in its second and third arguments.
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Remark 9 (Comparison with Virtual Elements). In [6], the authors propose a Virtual Element dis-
cretization of the Oseen equation which includes a penalization term somewhat similar to 𝑡𝑘

𝑇,𝜎
(see,

in particular, [6, Eq. (4.18)]). The penalization term 𝑡𝑘
𝑇,𝜎

used here appears, however, more subtle,
since the factor (𝒘0

𝑇
· ∇)𝑹𝑘

𝑇
𝒗
𝑇

is in P
𝑘 (𝔗𝑇 ), and does not necessarily belong to P

𝑘 (𝑇). How to deal
with this difficulty is one of the main contributions of this paper, as detailed in Section 5 below.

4.6 Discrete problem

The HHO discrete formulation of problem (2) then reads: Find 𝒖
ℎ

: [0, 𝑡F] → 𝑼𝑘
ℎ,0 with 𝒖

ℎ
(0) =

𝑰𝑘
ℎ
𝒖0 ∈ 𝑼𝑘

ℎ,0 and 𝑝ℎ : (0, 𝑡F] → 𝑃𝑘
ℎ

such that it holds, for all (𝒗
ℎ
, 𝑞ℎ) ∈ 𝑼𝑘

ℎ,0 × P𝑘 (Tℎ) and almost
every 𝑡 ∈ (0, 𝑡F),

𝑎𝑅,ℎ (𝑑𝑡𝒖ℎ
(𝑡), 𝒗

ℎ
) + 𝜈𝑎ℎ (𝒖ℎ

(𝑡), 𝒗
ℎ
) + 𝑡ℎ (𝒖ℎ

(𝑡), 𝒖
ℎ
(𝑡), 𝒗

ℎ
) + 𝑏ℎ (𝒗ℎ, 𝑝ℎ (𝑡))
− 𝑏ℎ (𝒖ℎ

(𝑡), 𝑞ℎ) = ℓℎ ( 𝒇 (𝑡), 𝒗ℎ). (60)

5 Velocity error analysis
Most of the relations that we will write in this section hold for almost every 𝑡 ∈ (0, 𝑡F). To simplify
the notation, we omit the dependence on 𝑡 and write, e.g., 𝒖 and 𝒖

ℎ
instead of 𝒖(𝑡) and 𝒖

ℎ
(𝑡). Let 𝒖

solve the continuous problem (2) and 𝒖
ℎ

the discrete problem (60). We define the velocity error as

𝒆
ℎ
≔ 𝒖

ℎ
− �̂�

ℎ
, (61)

where �̂�
ℎ
= 𝑰𝑘

ℎ
𝒖. It will be also useful to define 𝜼ℎ ∈ 𝑳2(𝔗ℎ) such that

(𝜼ℎ) |𝑇 ≔𝜼𝑇 ≔ 𝑹𝑘
𝑇 �̂�𝑇

− 𝒖 for all 𝑇 ∈ Tℎ. (62)

We now present the two main results of this manuscript, which bound the velocity error (61).

Theorem 10 (Velocity error estimate). Let the pair (𝒖, 𝑝) be the solution of the continuous problem
(2), and let the pair (𝒖

ℎ
, 𝑝ℎ) be the solution of the discrete problem (60). Suppose that 𝒖 ∈

𝐿2(𝑾1,∞(Ω)) ∩ 𝐿∞(𝑯1(Ω)) ∩ 𝐿2(𝑯2(Ω)), 𝑑𝑡𝒖 ∈ 𝐿2(𝑯1(Ω)), and 𝑝 : (0, 𝑡F) → 𝑃∩𝐻1(Ω). Then,
we have the following error estimate:

∥𝒆
ℎ
∥2
𝐿∞ ( ∥ · ∥𝑅,ℎ ) + 𝜈

∫ 𝑡F

0
∥𝒆

ℎ
∥2

1,ℎ ≲ 𝑒𝐺 (𝒖,𝑡F )
∫ 𝑡F

0
𝐻 (𝒖), (63)

where 𝐺 (𝒖, 𝑡F) ≔ 𝑡F +
∫ 𝑡F

0

(
|𝒖 |𝑾 1,∞ (Ω) + ℎ𝛾𝑘 ∥𝒖∥𝑳∞ (Ω) + ℎ�̃�0𝑘 |𝒖 |2𝑾 1,∞ (Ω)

)
and

𝐻 (𝒖) ≔
∑︁
𝑇∈Tℎ

𝜈ℎ2
𝑇 ∥Δ𝒖 − 𝝅𝑘−1

𝑇 Δ𝒖∥2
𝑳2 (𝑇 ) + 𝜈∥E𝑎,ℎ (𝒖; ·)∥2

1,ℎ,∗ +𝔑1 +𝔑2, (64)

where, denoting by 𝛿0𝑘 the Kronecker delta, we have let

�̃�0𝑘 ≔ 1 − 𝛿0𝑘 , (65)

while 𝛾𝑘 is defined by

𝛾𝑘 ≔

{
0, if 𝑘 ∈ {0, 1}
1, otherwise

, (66)
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and the terms 𝔑1 and 𝔑2 are respectively such that, for almost every 𝑡 ∈ (0, 𝑡F),

𝔑1 ≔
∑︁
𝑇∈Tℎ

(
|𝒖 |𝑾 1,∞ (𝑇 ) ∥�̂�𝑇 − 𝒖∥2

𝑳2 (𝑇 ) + 𝛾𝑘ℎ
−3
𝑇 ∥𝒖∥𝑳∞ (𝑇 ) ∥�̂�𝑇 − 𝒖∥2

𝑳2 (𝑇 )

)
+

∑︁
𝑇∈Tℎ

∥𝒖∥𝑾 1,∞ (𝑇 )

(
ℎ−1
𝑇 ∥𝜼𝑇 ∥2

𝑳2 (𝑇 ) + ℎ𝑇 |𝜼𝑇 |2𝑯1 (𝔗𝑇 )
+ ∥𝜼𝑇 ∥2

𝑳2 (𝑇 )

)
+ �̃�0𝑘

∑︁
𝑇∈Tℎ

ℎ𝑇 ∥𝒖∥2
𝑳∞ (𝑇 )

(
∥∇𝜼𝑇 ∥2

𝑳2 (𝑇 ) + ∥∇(𝒖 − 𝝅𝑘
𝑇𝒖)∥2

𝑳2 (𝑇 )

)
,

(67)

and
𝔑2 ≔

∑︁
𝑇∈Tℎ

(
∥𝑹𝑘

𝑇 (𝑑𝑡𝒖𝑇
) − 𝑑𝑡𝒖∥2

𝑳2 (𝑇 ) + ∥𝑑𝑡𝒖 − (𝑑𝑡𝒖)𝑇 ∥2
𝑳2 (𝑇 )

)
+

∑︁
𝑇∈Tℎ

ℎ2
𝑇 ∥∇((𝑑𝑡𝒖)𝑇 − 𝑑𝑡𝒖)∥2

𝑳2 (𝑇 ) +
∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

ℎ𝐹 ∥𝑑𝑡𝒖 − (𝑑𝑡𝒖)𝐹 ∥2
𝑳2 (𝐹 ) ,

(68)

where 𝑑𝑡𝒖
𝑇
≔ 𝑰𝑘

𝑇
(𝑑𝑡𝒖) for all 𝑇 ∈ Tℎ.

Using the theorem above, the approximation properties of the local operator 𝑹𝑘
𝑇

presented in
Lemma 2, and the approximation properties (4) of 𝝅𝑘★

𝑇
for all 𝑇 ∈ Tℎ, along with the following

standard property of the 𝐿2-projector 𝝅𝑘
𝐹

on 𝐹 ∈ Fℎ:

∥𝝅𝑘
𝐹𝒗 − 𝒗∥𝑳2 (𝐹 ) = inf

𝒘∈P𝑘 (𝐹 )
∥𝒘 − 𝒗∥𝑳2 (𝐹 ) ≤ ∥𝝅𝑘

𝑇𝒗 − 𝒗∥𝑳2 (𝐹 ) ,

we have the following corollary.

Corollary 11 (Velocity convergence rates). Under the notations and the assumptions of the pre-
vious theorem, and additionally assuming 𝒖 ∈ 𝐿∞(𝑯𝑘+1(Tℎ)) ∩ 𝐿2(𝑯𝑘+2(Tℎ)) for 𝑘 ∈ {0, 1},
𝒖 ∈ 𝐿∞(𝑯𝑘+2(Tℎ)) for 𝑘 > 1, and 𝑑𝑡𝒖 ∈ 𝐿2(𝑯𝑘+1(Tℎ)), it holds:

∥𝒆
ℎ
∥2
𝐿∞ ( ∥ · ∥𝑅,ℎ ) + 𝜈

∫ 𝑡F

0
∥𝒆

ℎ
∥2

1,ℎ ≲ 𝑒𝐺1 (𝒖,𝑡F )𝐻1(𝒖, 𝑡F), (69)

where 𝐺1(𝒖, 𝑡F) ≔ 𝑡F + ∥∇𝒖∥𝐿1 (𝑳∞ ) + ℎ𝛾𝑘 ∥𝒖∥𝐿1 (𝑳∞ ) + ℎ�̃�0𝑘 ∥∇𝒖∥2
𝐿2 (𝑳∞ ) and

𝐻1(𝒖, 𝑡F) ≔𝜈ℎ (2𝑘+2) ∥𝒖∥2
𝐿2 (𝑯 𝑘+2 (Tℎ ) )

+ ℎ (2𝑘+1) ∥𝒖∥𝐿1 (𝑾 1,∞ )

(
∥𝒖∥2

𝐿∞ (𝑯 𝑘+1 (Tℎ ) )
+ 𝛾𝑘 ∥𝒖∥2

𝐿∞ (𝑯 𝑘+2 (Tℎ ) )

)
+ �̃�0𝑘ℎ

(2𝑘+1) ∥𝒖∥2
𝐿2 (𝑳∞ ) ∥𝒖∥

2
𝐿∞ (𝑯 𝑘+1 (Tℎ ) )

+ ℎ (2𝑘+2) ∥𝑑𝑡𝒖∥2
𝐿2 (𝑯 𝑘+1 (Tℎ ) )

.

Remark 12 (No dependency on 𝜈−1 or 𝑝). The right-hand sides of (63) and (69) do not depend on
𝜈−1 or on the pressure 𝑝, thus we have indeed a Reynolds-semi-robust and pressure-robust method.
Remark 13 (Formulation using only 𝑯div(𝔗ℎ)). One may wonder why we do not use a formulation
completely based on a discrete conforming subspace of 𝑯div(𝔗ℎ). The main reason is that the func-
tions in this space are not fully continuous at interfaces, hence jump penalization for the discretization
of the viscous term would be required for stability. This would, in turn, result in a stronger coupling
among the degrees of freedom of neighbouring elements and, thus, in a larger stencil.
Remark 14 (Estimate including the upwind-norm). Following the same steps in the proof of Theorem
10, and similar steps in the proof of Lemma 16, we can include the upwind norm in the left hand side
of the inequalities (63) and (69), and have the following estimate instead

∥𝒆
ℎ
∥2
𝐿∞ ( ∥ · ∥𝑅,ℎ ) +

∫ 𝑡F

0

(
𝜈∥𝒆

ℎ
∥2

1,ℎ +
1 − 𝜖

2

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

|𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎 | |J𝑹𝑘
ℎ𝒆ℎK𝜎 |

2
)
≲ 𝑒𝐺1 (𝒖,𝑡F )𝐻1(𝒖, 𝑡F),

where 𝜖 is a real number such that 0 < 𝜖 ≤ 1.
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Remark 15 (Error in the 𝐿∞(𝑳2)-norm). Using the inequality (34) for 𝑇 ∈ Tℎ, we obtain an order of
convergence of 𝑘 + 1

2 in the 𝐿∞(0, 𝑡F; 𝑳2(Ω))-norm for the velocity in (69). This order of convergence
equals, e.g., the one obtained in [37, Corollary 5.7] on simplicial meshes. However, in Corollary
11 above, we do not need to require dominating convection, whereas in [37] the condition 𝜈 ≲ ℎ

is necessary. Specifically, observe that in the definition (64) of 𝐻 (𝒖) in Theorem 10 includes the
consistency error (39) which, under the regularity conditions stated in Corollary 11, gives an order
of convergence of 𝑘 + 1, thus no further assumptions on 𝜈 are needed, in order to make the error
∥𝒆

ℎ
∥𝐿∞ ( ∥ · ∥𝑅,ℎ ) in (69) of order 𝑘 + 1

2 . In contrast, the consistency error of the diffusion term using
𝑯div-conforming discontinous Galerkin elements, such as the ones used in [37], is of order 𝑘 , which
increases to 𝑘 + 1

2 assuming dominating convection, thus making this assumption essential to obtain
a convergence error of 𝑘 + 1

2 for the overall numerical scheme.

Proof of Theorem 10. Recalling that 𝒆
ℎ
= 𝒖

ℎ
− �̂�

ℎ
(cf. (61)), we take (𝒗

ℎ
, 𝑞ℎ) = (𝒆

ℎ
, 0) in (60)

and, after subtracting the quantity (𝑎𝑅,ℎ (𝑑𝑡 �̂�ℎ
, 𝒆

ℎ
) + 𝜈𝑎ℎ (�̂�ℎ

, 𝒆
ℎ
)) from both sides, we get, for almost

every 𝑡 ∈ (0, 𝑡F),

𝑎𝑅,ℎ (𝑑𝑡 𝒆ℎ, 𝒆ℎ) + 𝜈𝑎ℎ (𝒆ℎ, 𝒆ℎ) = ℓℎ ( 𝒇 , 𝒆ℎ) − 𝑡ℎ (𝒖ℎ
, 𝒖

ℎ
, 𝒆

ℎ
) − 𝑏ℎ (𝒆ℎ, 𝑝ℎ)

− 𝑎𝑅,ℎ (𝑑𝑡 �̂�ℎ
, 𝒆

ℎ
) − 𝜈𝑎ℎ (�̂�ℎ

, 𝒆
ℎ
).

Recalling that 𝒇 = 𝑑𝑡𝒖 − 𝜈Δ𝒖 + (𝒖 · ∇)𝒖 + ∇𝑝 almost everywhere in (0, 𝑡F) ×Ω, we go on writing

𝑎𝑅,ℎ (𝑑𝑡 𝒆ℎ, 𝒆ℎ) =
(
ℓℎ ((𝒖 · ∇)𝒖, 𝒆

ℎ
) − 𝑡ℎ (𝒖ℎ

, 𝒖
ℎ
, 𝒆

ℎ
)
)︸                                        ︷︷                                        ︸

ℑ1

+
(
ℓℎ (𝑑𝑡𝒖, 𝒆ℎ) − 𝑎𝑅,ℎ (𝑑𝑡 �̂�ℎ

, 𝒆
ℎ
)
)︸                                   ︷︷                                   ︸

ℑ2

−
(
𝜈ℓℎ (Δ𝒖, 𝒆ℎ) + 𝜈𝑎ℎ (�̂�ℎ

, 𝒆
ℎ
) + 𝜈𝑎ℎ (𝒆ℎ, 𝒆ℎ)

)︸                                                    ︷︷                                                    ︸
ℑ3

+
(
ℓℎ (∇𝑝, 𝒆ℎ) − 𝑏ℎ (𝒆ℎ, 𝑝ℎ)

)
.︸                              ︷︷                              ︸

ℑ4

We next bound the terms in the right-hand side.

(i) Estimate of ℑ1. As we will see, the first term is the most difficult to estimate, so the details of the
following bound are provided in the separate Lemma 16 below:

ℑ1 ≲
∑︁
𝑇∈Tℎ

∥𝒆
𝑇
∥2

R,𝑇

(
|𝒖 |𝑾 1,∞ (𝑇 ) + ℎ𝑇𝛾𝑘 ∥𝒖∥𝑳∞ (𝑇 ) + ℎ𝑇 �̃�0𝑘 |𝒖 |2𝑾 1,∞ (𝑇 )

)
+𝔑1. (70)

(ii) Estimate of ℑ2. Let us now prove that

ℑ2 ≲
∑︁
𝑇∈Tℎ

∥𝒆
𝑇
∥2

R,𝑇 +𝔑2. (71)

Using the definition of the 𝐿2-orthogonal projections 𝝅𝑘★

𝑇
and 𝝅𝑘

𝐹
, it can bee seen that 𝑑𝑡 �̂�𝑇

=

𝑰𝑘
𝑇
(𝑑𝑡𝒖) ≕ 𝑑𝑡𝒖

𝑇
for all 𝑇 ∈ Tℎ (assuming that 𝑑𝑡𝒖 : (0, 𝑡F) → 𝑯1(𝑇)) and, by the definitions

(31)–(32) of 𝑎R,𝑇 and (42) of the linear form ℓℎ, we get

ℑ2 =
∑︁
𝑇∈Tℎ

∫
𝑇

(
𝑑𝑡𝒖 − 𝑹𝑘

𝑇 (𝑑𝑡𝒖𝑇
)
)
· 𝑹𝑘

𝑇 𝒆𝑇

−
∑︁
𝑇∈Tℎ

∫
𝑇

𝝅𝑘★

𝑇

(
𝑹𝑘
𝑇 (𝑑𝑡𝒖𝑇

) − (𝑑𝑡𝒖)𝑇
)
· 𝝅𝑘★

𝑇 (𝑹𝑘
𝑇 𝒆𝑇 − 𝒆𝑇 )

−
∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

ℎ𝐹

∫
𝐹

𝝅𝑘
𝐹

(
𝑹𝑘
𝑇 (𝑑𝑡𝒖𝑇

) − (𝑑𝑡𝒖)𝐹
)
· 𝝅𝑘

𝐹 (𝑹𝑘
𝑇 𝒆𝑇 − 𝒆𝐹) ≕ ℑ2,1 + ℑ2,2 + ℑ2,3.

(72)
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To bound ℑ2,1 we use Cauchy–Schwarz and Young inequalities followed by the definition (33) of
∥·∥R,𝑇 to write

ℑ2,1 ≲
∑︁
𝑇∈Tℎ

∥𝑑𝑡𝒖 − 𝑹𝑘
𝑇 (𝑑𝑡𝒖𝑇

)∥2
𝑳2 (𝑇 ) +

∑︁
𝑇∈Tℎ

∥𝒆
𝑇
∥2

R,𝑇
(68)
≤ 𝔑2 +

∑︁
𝑇∈Tℎ

∥𝒆
𝑇
∥2

R,𝑇 .

We bound ℑ2,2 in (72) using similar steps along with the 𝑳2-boundedness of 𝝅𝑘★

𝑇
, (33), and (34) to

write ∥𝑹𝑘
𝑇
𝒆
𝑇
− 𝒆𝑇 ∥𝑳2 (𝑇 ) ≤ ∥𝑹𝑘

𝑇
𝒆
𝑇
∥𝑳2 (𝑇 ) + ∥𝒆𝑇 ∥𝑳2 (𝑇 ) ≲ ∥𝒆

𝑇
∥R,𝑇 , and then adding and subtracting

𝑑𝑡𝒖 and using (24) with 𝑛 = 2 to infer

ℑ2,2 ≲
∑︁
𝑇∈Tℎ

(
∥𝑹𝑘

𝑇 (𝑑𝑡𝒖𝑇
) − 𝑑𝑡𝒖∥2

𝑳2 (𝑇 ) + ∥𝑑𝑡𝒖 − (𝑑𝑡𝒖)𝑇 )∥2
𝑳2 (𝑇 )

)
+

∑︁
𝑇∈Tℎ

∥𝒆
𝑇
∥2

R,𝑇

(68)
≤ 𝔑2 +

∑︁
𝑇∈Tℎ

∥𝒆
𝑇
∥2

R,𝑇 .

The term ℑ2,3 in (72) is treated similarly to obtain

ℑ2,3 ≲
∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

ℎ𝐹 ∥𝑹𝑘
𝑇 𝒆𝑇 − 𝒆𝐹 ∥2

𝑳2 (𝐹 ) +
∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

ℎ𝐹 ∥𝑹𝑘
𝑇 (𝑑𝑡𝒖𝑇

) − (𝑑𝑡𝒖)𝐹 ∥2
𝑳2 (𝐹 ) ≕ ℑ2,3,1+ℑ2,3,2.

By definition (33) of the ∥·∥R,𝑇 -norm, we have

ℑ2,3,1 ≤
∑︁
𝑇∈Tℎ

∥𝒆
𝑇
∥2

R,𝑇 .

To bound ℑ2,3,2, we use repeatedly (24) with 𝑛 = 2, the discrete trace inequality (96) below valid for
piecewise polynomial functions, and the bound (3) for card(F𝑇 ) as follows:

ℑ2,3,2

≲
∑︁
𝑇∈Tℎ

( ∑︁
𝐹∈F𝑇

ℎ𝐹 ∥𝑹𝑘
𝑇 (𝑑𝑡𝒖𝑇

) − (𝑑𝑡𝒖)𝑇 ∥2
𝑳2 (𝐹 ) +

∑︁
𝐹∈F𝑇

ℎ𝐹 ∥(𝑑𝑡𝒖)𝑇 − (𝑑𝑡𝒖)𝐹 ∥2
𝑳2 (𝐹 )

)
≲

∑︁
𝑇∈Tℎ

[
∥𝑹𝑘

𝑇 (𝑑𝑡𝒖𝑇
) − (𝑑𝑡𝒖)𝑇 ∥2

𝑳2 (𝑇 ) +
∑︁
𝐹∈F𝑇

(
ℎ𝐹 ∥(𝑑𝑡𝒖)𝑇 − 𝑑𝑡𝒖∥2

𝑳2 (𝐹 ) + ℎ𝐹 ∥𝑑𝑡𝒖 − (𝑑𝑡𝒖)𝐹 ∥2
𝑳2 (𝐹 )

)]
≲

∑︁
𝑇∈Tℎ

(
∥𝑹𝑘

𝑇 (𝑑𝑡𝒖𝑇
) − 𝑑𝑡𝒖∥2

𝑳2 (𝑇 ) + ∥𝑑𝑡𝒖 − (𝑑𝑡𝒖)𝑇 ∥2
𝑳2 (𝑇 ) + ℎ2

𝑇 ∥∇((𝑑𝑡𝒖)𝑇 − 𝑑𝑡𝒖)∥2
𝑳2 (𝑇 )

)
+

∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

ℎ𝐹 ∥𝑑𝑡𝒖 − (𝑑𝑡𝒖)𝐹 ∥2
𝑳2 (𝐹 )

(68)
= 𝔑2,

where, in the last bound, we have used a continuous trace inequality. Plugging this last estimate along
with those obtained before for ℑ2,1,ℑ2,2, and ℑ2,3,1 into (72) concludes the proof of (71).

(iii) Estimate of ℑ3. We next show that

ℑ3 ≤ 𝐶𝐻 (𝒖) − 1
2
𝜈𝐶𝑎∥𝒆ℎ∥

2
1,ℎ, (73)

where 𝐶 is a constant independent of 𝜈 and ℎ and 𝐶𝑎 is the coercivity constant of 𝑎ℎ (cf. (38)). We
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use the definition (42) of ℓℎ with 𝝓 = Δ𝒖 and add and subtract 𝜈
∫
Ω
Δ𝒖 · 𝒆ℎ to get

ℑ3 = −𝜈
∫
Ω

Δ𝒖 · (𝑹𝑘
ℎ𝒆ℎ − 𝒆ℎ) − 𝜈

∫
Ω

Δ𝒖 · 𝒆ℎ − 𝜈𝑎ℎ (�̂�ℎ
, 𝒆

ℎ
) − 𝜈𝑎ℎ (𝒆ℎ, 𝒆ℎ)

(40)
= −𝜈

∑︁
𝑇∈Tℎ

∫
𝑇
(((((((((((
𝝅𝑘−1
𝑇 Δ𝒖 · (𝑹𝑘

𝑇 𝒆𝑇 − 𝒆𝑇 ) − 𝜈
∑︁
𝑇∈Tℎ

∫
𝑇

(Δ𝒖 − 𝝅𝑘−1
𝑇 Δ𝒖) · (𝑹𝑘

𝑇 𝒆𝑇 − 𝒆𝑇 )

+ E𝑎,ℎ (𝒖; 𝒆
ℎ
) − 𝜈𝑎ℎ (𝒆ℎ, 𝒆ℎ)

≤ 𝜈
∑︁
𝑇∈Tℎ

ℎ𝑇 ∥Δ𝒖 − 𝝅𝑘−1
𝑇 Δ𝒖∥𝑳2 (𝑇 ) ∥𝒆𝑇 ∥1,𝑇 + ∥E𝑎,ℎ (𝒖; ·)∥1,ℎ,∗∥𝒆ℎ∥1,ℎ − 𝜈𝐶𝑎∥𝒆ℎ∥

2
1,ℎ

≤ 𝐶𝜈

( ∑︁
𝑇∈Tℎ

ℎ2
𝑇 ∥Δ𝒖 − 𝝅𝑘−1

𝑇 Δ𝒖∥2
𝑳2 (𝑇 ) + ∥E𝑎,ℎ (𝒖; ·)∥2

1,ℎ,∗

)
− 1

2
𝜈𝐶𝑎∥𝒆ℎ∥

2
1,ℎ,

where we have used (19) in the cancellation, Cauchy–Schwarz inequalities along with (17) for the
first term, the definition (10) of ∥·∥1,ℎ,∗ for the second term, and the coercivity (38) for the last term,
while the conclusion follows using the generalized Young inequality

𝑎𝑏 ≤ 𝜖𝑎2 + 1
4𝜖

𝑏2 (74)

for the first and second term with 𝜖 selected so as to make the contribution 1
2𝐶𝑎∥𝒆ℎ∥2

1,ℎ appear.
Observe that the constant 𝐶 appearing in the last inequality is indeed independent of 𝜈 and ℎ and
recall the definition (64) of 𝐻 (𝒖) to obtain (73).

(iv) Estimate of ℑ4. We finally show that
ℑ4 = 0. (75)

Using the definitions (41) of 𝑏ℎ and (42) of ℓℎ, we get

ℑ4 =
∑︁
𝑇∈Tℎ

{∫
𝑇

∇𝑝 · 𝑹𝑘
𝑇 𝒆𝑇 +

∫
𝑇

𝐷𝑘
𝑇 𝒆𝑇 𝑝𝑇

}
=

∑︁
𝑇∈Tℎ

{
−

∫
𝑇

𝑝������(∇ · 𝑹𝑘
𝑇 𝒆𝑇 ) +

∫
𝑇
���
𝐷𝑘

𝑇 𝒆𝑇 𝑝𝑇

}
= 0,

where, in the second step, we have integrated by parts element by element the first term and used the
fact that, for all 𝜎 ∈ 𝔉i

ℎ
, J𝑝K𝜎 = 0 (because 𝑝 : (0, 𝑡F) → 𝐻1(Ω) ∩ 𝑃) and J𝑹𝑘

ℎ
𝒆
ℎ
K𝜎 · 𝒏𝜎 = 0, as

well as 𝑹𝑘
ℎ
𝒆
ℎ
· 𝒏𝜎 = 0 on 𝜕Ω (consequence of (16a)), while, to conclude, we have used the fact that

∇ · 𝑹𝑘
𝑇
𝒆
𝑇
= 𝐷𝑘

𝑇
𝒆
𝑇

by (16b) and 𝐷𝑘
𝑇
𝒆
𝑇

(61)
= 𝐷𝑘

𝑇
𝒖
𝑇
− 𝐷𝑘

𝑇
�̂�
𝑇
= 0, the conclusion being a consequence

of (60) (test with (0, 𝑞ℎ) and let 𝑞ℎ span P𝑘 (Tℎ) to infer 𝐷𝑘
𝑇
𝒖
𝑇
= 0 for all 𝑇 ∈ Tℎ) and of (12) along

with ∇ · 𝒖 = 0 (which give 𝐷𝑘
𝑇
�̂�
𝑇
= 𝜋𝑘

𝑇
(∇ · 𝒖) = 0 for all 𝑇 ∈ Tℎ).

(v) Conclusion. Using the fact that 1
2𝑑𝑡 ∥𝒆ℎ∥

2
𝑅,ℎ

= 𝑎𝑅,ℎ (𝑑𝑡 𝒆ℎ, 𝒆ℎ) and gathering the estimates (70),
(71), (73), and (75), we obtain

1
2
𝑑

𝑑𝑡
∥𝒆

ℎ
∥2
𝑅,ℎ +

1
2
𝜈𝐶𝑎∥𝒆ℎ∥

2
1,ℎ

≲
∑︁
𝑇∈Tℎ

∥𝒆
𝑇
∥2

R,𝑇

(
1 + |𝒖 |𝑾 1,∞ (𝑇 ) + ℎ𝑇𝛾𝑘 ∥𝒖∥𝑳∞ (𝑇 ) + ℎ𝑇 �̃�0𝑘 |𝒖 |2𝑾 1,∞ (𝑇 )

)
+ 𝜈

( ∑︁
𝑇∈Tℎ

ℎ2
𝑇 ∥Δ𝒖 − 𝝅𝑘−1

𝑇 Δ𝒖∥2
𝐿2 (𝑇 ) + ∥E𝑎,ℎ (𝒖; ·)∥2

1,ℎ,∗

)
+𝔑1 +𝔑2.

Applying a Gronwall inequality (see, e.g., [29, Lemma 6.9]) and observing that 𝒖
ℎ
(0) = 𝑰𝑘

ℎ
𝒖0 implies

𝒆
ℎ
(0) = 0 concludes the proof of (63). □
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The rest of this section is devoted to the proof of (70).

Lemma 16 (Estimate of ℑ1). Estimate (70) holds.

Proof. We begin by expanding ℓℎ and 𝑡ℎ according to the respective definitions (42) and (58), then add
and subtract

∑
𝑇∈Tℎ

∫
𝑇
(𝑹𝑘

𝑇
�̂�
𝑇
· ∇)𝒖 · 𝑹𝑘

𝑇
𝒆
𝑇
+∑

𝑇∈Tℎ
∫
𝑇
(𝑹𝑘

𝑇
𝒖
𝑇
· ∇)𝒖 · 𝑹𝑘

𝑇
𝒆
𝑇

and recall the definitions
(61) of 𝒆

ℎ
and (62) of 𝜼𝑇 to write

ℑ1 = ℓℎ ((𝒖 · ∇)𝒖, 𝒆
ℎ
) − 𝑡ℎ (𝒖ℎ

, 𝒖
ℎ
, 𝒆

ℎ
)

= −
∑︁
𝑇∈Tℎ

∫
𝑇

(𝜼𝑇 · ∇)𝒖 · 𝑹𝑘
𝑇 𝒆𝑇 −

∑︁
𝑇∈Tℎ

∫
𝑇

(𝑹𝑘
𝑇 𝒆𝑇 · ∇)𝒖 · 𝑹𝑘

𝑇 𝒆𝑇

−
∑︁
𝑇∈Tℎ

∫
𝑇

(𝑹𝑘
𝑇𝒖𝑇

· ∇)(𝑹𝑘
𝑇𝒖𝑇

− 𝒖) · 𝑹𝑘
𝑇 𝒆𝑇

+
∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

(𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎)J𝑹𝑘
ℎ𝒖ℎ

− 𝒖K𝜎 · {𝑹𝑘
ℎ𝒆ℎ}𝜎

−
∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

1
2
|𝑹𝑘

ℎ𝒖ℎ
· 𝒏𝜎 |J𝑹𝑘

ℎ𝒖ℎ
− 𝒖K𝜎 · J𝑹𝑘

ℎ𝒆ℎK𝜎 −
∑︁
𝑇∈Tℎ

∑︁
𝜎∈𝔉i

𝑇

𝑡𝑘𝑇,𝜎 (𝒖𝑇
, 𝒖

𝑇
, 𝒆

𝑇
)

≕ ℑ1,1 + ℑ1,2 + ℑ1,3 + ℑ1,4 + ℑ1,5 + ℑ1,6,

(76)

where we have additionally used the fact that J𝒖K𝜎 = 0 for all 𝜎 ∈ 𝔉i
ℎ

to insert this quantity into the
fourth and fifth terms.

(i) Estimate of ℑ1,1 + ℑ1,2. Using a Hölder inequality with exponents (2,∞, 2) followed by Young’s
inequality, we obtain

ℑ1,1 ≲
∑︁
𝑇∈Tℎ

|𝒖 |𝑾 1,∞ (𝑇 ) ∥𝜼𝑇 ∥
2
𝑳2 (𝑇 ) +

∑︁
𝑇∈Tℎ

|𝒖 |𝑾 1,∞ (𝑇 ) ∥𝒆𝑇 ∥
2
R,𝑇

where we have additionally used the definition (33) of ∥·∥R,𝑇 in the second addend. We bound |ℑ1,2 |
using a Hölder inequality with exponents (2,∞, 2) to get

ℑ1,2 ≤
∑︁
𝑇∈Tℎ

|𝒖 |𝑾 1,∞ (𝑇 ) ∥𝒆𝑇 ∥
2
R,𝑇 .

Gathering the above bounds and recalling the definition (67) of 𝔑1, we obtain

ℑ1,1 + ℑ1,2 ≲ 𝔑1 +
∑︁
𝑇∈Tℎ

|𝒖 |𝑾 1,∞ (𝑇 ) ∥𝒆𝑇 ∥
2
R,𝑇 . (77)

(ii) Estimate of ℑ1,3 + ℑ1,4 + ℑ1,5 + ℑ1,6. Using an element-by-element integration by parts along
with the fact that ∇ · 𝑹𝑘

𝑇
𝒖
𝑇
= 0 for all 𝑇 ∈ Tℎ (use (0, 𝑞ℎ) with 𝑞ℎ ∈ P𝑘 (Tℎ) in (60) and recall the

definition (41) of 𝑏ℎ to infer 𝐷𝑘
𝑇
𝒖
𝑇
= 0 for all 𝑇 ∈ Tℎ, and plug this result into (16b) to conclude),

we get

ℑ1,3 + ℑ1,4 =
∑︁
𝑇∈Tℎ

∫
𝑇

(𝑹𝑘
𝑇𝒖𝑇

· ∇)𝑹𝑘
𝑇 𝒆𝑇 · (𝑹𝑘

𝑇𝒖𝑇
− 𝒖)

−
∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

(𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎)J𝑹𝑘
ℎ𝒆ℎK𝜎 · {𝑹𝑘

ℎ𝒖ℎ
− 𝒖}𝜎 .
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Adding and subtracting∑︁
𝑇∈Tℎ

∫
𝑇

(𝑹𝑘
𝑇𝒖𝑇

· ∇)𝑹𝑘
𝑇 𝒆𝑇 · 𝑹𝑘

𝑇 �̂�𝑇
+

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

(𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎)J𝑹𝑘
ℎ𝒆ℎK𝜎 · {𝑹𝑘

ℎ�̂�ℎ
}𝜎 ,

recalling the definitions (61) of 𝒆
ℎ

and (62) of 𝜼ℎ, the following is obtained:

ℑ1,3 + ℑ1,4 =

���������������∑︁
𝑇∈Tℎ

∫
𝑇

(𝑹𝑘
𝑇𝒖𝑇

· ∇)𝑹𝑘
𝑇 𝒆𝑇 · 𝑹𝑘

𝑇 𝒆𝑇 −
∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

(𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎)J𝑹𝑘
ℎ𝒆ℎK𝜎 · {𝜼ℎ}𝜎

−
(((((((((((((((((((∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

(𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎)J𝑹𝑘
ℎ𝒆ℎK𝜎 · {𝑹𝑘

ℎ𝒆ℎ}𝜎 +
∑︁
𝑇∈Tℎ

∫
𝑇

(𝑹𝑘
𝑇𝒖𝑇

· ∇)𝑹𝑘
𝑇 𝒆𝑇 · 𝜼𝑇 ,

where the first and third terms are cancelled using the integration by parts formula [10, Eq. (2)]
and the fact that ∇ · 𝑹𝑘

𝑇
𝒆
𝑇
= 0. Summing ℑ1,5 to the previous expression, adding and subtracting

1
2
∑

𝜎∈𝔉i
ℎ

∫
𝜎
|𝑹𝑘

ℎ
𝒖
ℎ
· 𝒏𝜎 |J𝑹𝑘

ℎ
�̂�
ℎ
K𝜎 · J𝑹𝑘

ℎ
𝒆
ℎ
K𝜎 , and rearranging, it is inferred that

ℑ1,3 + ℑ1,4 + ℑ1,5

=
∑︁
𝑇∈Tℎ

∫
𝑇

(𝑹𝑘
𝑇𝒖𝑇

· ∇)𝑹𝑘
𝑇 𝒆𝑇 · 𝜼𝑇 −

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

(𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎)J𝑹𝑘
ℎ𝒆ℎK𝜎 · {𝜼ℎ}𝜎

− 1
2

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

|𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎 | |J𝑹𝑘
ℎ𝒆ℎK𝜎 |

2 − 1
2

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

|𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎 |J𝜼ℎK𝜎 · J𝑹𝑘
ℎ𝒆ℎK𝜎

≤
∑︁
𝑇∈Tℎ

∫
𝑇

(𝑹𝑘
𝑇𝒖𝑇

· ∇)𝑹𝑘
𝑇 𝒆𝑇 · 𝜼𝑇 +

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

|𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎 |
��J𝑹𝑘

ℎ𝒆ℎK𝜎 · {𝜼ℎ}𝜎
��

− 1
2

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

|𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎 | |J𝑹𝑘
ℎ𝒆ℎK𝜎 |

2 + 1
2

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

|𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎 |
��J𝜼ℎK𝜎 · J𝑹𝑘

ℎ𝒆ℎK𝜎
�� .

Using the generalized Young inequality (74) for the second and fourth terms with 𝜖 respectively equal
to 1 and 1

2 , so that the third term cancels out, we finally get

ℑ1,3 + ℑ1,4 + ℑ1,5 ≤
∑︁
𝑇∈Tℎ

∫
𝑇

(𝑹𝑘
𝑇𝒖𝑇

· ∇)𝑹𝑘
𝑇 𝒆𝑇 · 𝜼𝑇 +

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

|𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎 | |{𝜼ℎ}𝜎 |2

+ 1
4

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

|𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎 | |J𝜼ℎK𝜎 |2,
(78)

Denote by T𝜎 ⊂ Tℎ the set collecting the (one or two) mesh elements that share 𝜎 ∈ 𝔉i
ℎ
. To bound

the second term in the right hand side of (78), we recall the definition (61) of 𝒆
ℎ

and use a triangle
inequality to write∫

𝜎

|𝑹𝑘
ℎ𝒖ℎ

· 𝒏𝜎 | |{𝜼ℎ}𝜎 |2

≤
∫
𝜎

|𝑹𝑘
ℎ𝒆ℎ · 𝒏𝜎 | |{𝜼ℎ}𝜎 |2 +

∫
𝜎

|𝑹𝑘
ℎ�̂�ℎ

· 𝒏𝜎 | |{𝜼ℎ}𝜎 |2

≲ ∥𝜼ℎ∥𝑳∞ (T𝜎 ) ∥𝑹𝑘
ℎ𝒆ℎ·𝒏𝜎 ∥𝑳2 (𝜎) ∥{𝜼ℎ}𝜎 ∥𝑳2 (𝜎) + ∥𝑹𝑘

ℎ�̂�ℎ
∥𝑳∞ (T𝜎 ) ∥{𝜼ℎ}𝜎 ∥2

𝑳2 (𝜎)

≲ ℎ𝜎 |𝒖 |𝑾 1,∞ (T𝜎 ) ∥𝑹
𝑘
ℎ𝒆ℎ·𝒏𝜎 ∥2

𝐿2 (𝜎) + ∥𝒖∥𝑾 1,∞ (T𝜎 ) ∥{𝜼ℎ}𝜎 ∥2
𝑳2 (𝜎) ,
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where we have used Hölder inequalities with exponents (∞, 2, 2) along with the fact that ∥𝒏𝜎 ∥𝑳∞ (𝜎) ≤
1 in the second step and Young’s inequality for the first term together with the approximation proper-
ties (18) of 𝑹𝑘

𝑇
◦ 𝑰𝑘

𝑇
with (𝑚, 𝑝, 𝑠) = (0,∞, 1) and the fact that ℎ𝑇 ≲ 1 for𝑇 ∈ T𝜎 in the third step. We

continue using a discrete trace inequality on 𝜎 to write ∥𝑹𝑘
ℎ
𝒆
ℎ
· 𝒏𝜎 ∥2

𝐿2 (𝜎) ≲ ℎ−1
𝜎 ∥𝑹𝑘

ℎ
𝒆
ℎ
∥2
𝑳2 (T𝜎 )

(33)
≲

ℎ−1
𝜎 ∥𝒆

ℎ
∥2

R,T𝜎 and a continuous trace inequality followed by ℎ−1
𝜎 ≲ ℎ−1

𝑇
(consequence of mesh regu-

larity) to infer

∥{𝜼𝑇𝜎
}𝜎 ∥2

𝑳2 (𝜎)
(57), (24)
≲

∑︁
𝜏∈𝔗𝜎

∥(𝜼ℎ) |𝜏 ∥2
𝑳2 (𝜎)

≲
∑︁
𝜏∈𝔗𝜎

(
ℎ−1
𝜎 ∥𝜼𝜏 ∥2

𝑳2 (𝜏 ) + ℎ𝜎 |𝜼𝜏 |2𝑯1 (𝜏 )

)
≲

∑︁
𝑇∈T𝜎

(
ℎ−1
𝑇 ∥𝜼𝑇 ∥2

𝑳2 (𝑇 ) + ℎ𝑇 |𝜼𝑇 |2𝑯1 (𝔗𝑇 )

)
.

(79)

This gives∫
𝜎

|𝑹𝑘
ℎ𝒖ℎ

·𝒏𝜎 | |{𝜼ℎ}𝜎 |2 ≲ |𝒖 |𝑾 1,∞ (T𝜎 ) ∥𝒆ℎ∥
2
R,T𝜎+

∑︁
𝑇∈T𝜎

∥𝒖∥𝑾 1,∞ (𝑇 )

(
ℎ−1
𝑇 ∥𝜼𝑇 ∥2

𝑳2 (𝑇 ) + ℎ𝑇 |𝜼𝑇 |2𝑯1 (𝔗𝑇 )

)
.

Plugging this bound into (78), observing that card(𝔉i
𝑇
) + card(F𝑇 ) ≲ card(𝔗𝑇 ) ≲ 1 by (3), and

bounding the last term in the right hand side of (78) similarly as we just did with the second term, it
is seen that

ℑ1,3 + ℑ1,4 + ℑ1,5 ≲
∑︁
𝑇∈Tℎ

∫
𝑇

(𝑹𝑘
𝑇𝒖𝑇

· ∇)𝑹𝑘
𝑇 𝒆𝑇 · 𝜼𝑇 +

∑︁
𝑇∈Tℎ

|𝒖 |𝑾 1,∞ (𝑇 ) ∥𝒆𝑇 ∥
2
R,𝑇

+
∑︁
𝑇∈Tℎ

∥𝒖∥𝑾 1,∞ (𝑇 )

(
ℎ−1
𝑇 ∥𝜼𝑇 ∥2

𝑳2 (𝑇 ) + ℎ𝑇 |𝜼𝑇 |2𝑯1 (𝔗𝑇 )

)
.

(80)

We use the following bound, proved at the end of this section, for the first term in the right hand side
of (80):����∫

𝑇

(𝑹𝑘
𝑇𝒖𝑇

· ∇)𝑹𝑘
𝑇 𝒆𝑇 · 𝜼𝑇

���� ≲ ∥𝒆
𝑇
∥2

R,𝑇

(
|𝒖 |𝑾 1,∞ (𝑇 ) + ℎ𝑇𝛾𝑘 ∥𝒖∥𝑳∞ (𝑇 )

)
+ |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝜼𝑇 ∥

2
𝑳2 (𝑇 )

+
(
|𝒖 |𝑾 1,∞ (𝑇 ) + 𝛾𝑘ℎ

−3
𝑇 ∥𝒖∥𝑳∞ (𝑇 )

)
∥�̂�𝑇 − 𝒖∥2

𝑳2 (𝑇 )

+ �̃�0𝑘
∑︁
𝜎∈𝔉i

𝑇

∥J𝜚𝑘
𝔗𝑇

((𝒖0
𝑇 · ∇)𝑹𝑘

𝑇 𝒆𝑇 )K𝜎 ∥𝐿2 (𝜎) ∥𝜼𝑇 · 𝒏𝜎 ∥𝐿2 (𝜎) ,

(81)

to finally get

ℑ1,3 + ℑ1,4 + ℑ1,5 ≲
∑︁
𝑇∈Tℎ

[
∥𝒆

𝑇
∥2

R,𝑇

(
|𝒖 |𝑾 1,∞ (𝑇 ) + ℎ𝑇𝛾𝑘 ∥𝒖∥𝑳∞ (𝑇 )

)
+ |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝜼𝑇 ∥

2
𝑳2 (𝑇 )

]
+

∑︁
𝑇∈Tℎ

(
|𝒖 |𝑾 1,∞ (𝑇 ) + 𝛾𝑘ℎ

−3
𝑇 ∥𝒖∥𝑳∞ (𝑇 )

)
∥�̂�𝑇 − 𝒖∥2

𝑳2 (𝑇 )

+
∑︁
𝑇∈Tℎ

∥𝒖∥𝑾 1,∞ (𝑇 )

(
ℎ−1
𝑇 ∥𝜼𝑇 ∥2

𝑳2 (𝑇 ) + ℎ𝑇 |𝜼𝑇 |2𝑯1 (𝔗𝑇 )

)
+ �̃�0𝑘

∑︁
𝑇∈Tℎ

∑︁
𝜎∈𝔉i

𝑇

∥J𝜚𝑘
𝔗𝑇

((𝒖0
𝑇 · ∇)𝑹𝑘

𝑇 𝒆𝑇 )K𝜎 ∥𝐿2 (𝜎) ∥𝜼𝑇 · 𝒏𝜎 ∥𝐿2 (𝜎) .

(82)
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To bound ℑ1,6 in (76), we use the definition (61) of 𝒆
ℎ

and the linearity of 𝑡𝑘
𝑇,𝜎

in its second
argument to write

ℑ1,6 = −
∑︁
𝑇∈Tℎ

∑︁
𝜎∈𝔉i

𝑇

𝑡𝑘𝑇,𝜎 (𝒖𝑇
, 𝒖

𝑇
, 𝒆

𝑇
) = −

∑︁
𝑇∈Tℎ

∑︁
𝜎∈𝔉i

𝑇

(
𝑡𝑘𝑇,𝜎 (𝒖𝑇

, �̂�
𝑇
, 𝒆

𝑇
) + 𝑡𝑘𝑇,𝜎 (𝒖𝑇

, 𝒆
𝑇
, 𝒆

𝑇
)
)

≤
∑︁
𝑇∈Tℎ

∑︁
𝜎∈𝔉i

𝑇

(
|𝑡𝑘𝑇,𝜎 (𝒖𝑇

, �̂�
𝑇
, 𝒆

𝑇
) | − 𝑡𝑘𝑇,𝜎 (𝒖𝑇

, 𝒆
𝑇
, 𝒆

𝑇
)
)

≤ �̃�0𝑘
2

∑︁
𝑇∈Tℎ

∑︁
𝜎∈𝔉i

𝑇

∥J𝜚𝑘
𝔗𝑇

((𝒖0
𝑇 · ∇)𝑹𝑘

𝑇 �̂�𝑇
)K𝜎 ∥2

𝐿2 (𝜎)

− �̃�0𝑘
2

∑︁
𝑇∈Tℎ

∑︁
𝜎∈𝔉i

𝑇

∥J𝜚𝑘
𝔗𝑇

((𝒖0
𝑇 · ∇)𝑹𝑘

𝑇 𝒆𝑇 )K𝜎 ∥
2
𝐿2 (𝜎) ,

(83)

where, in the last step, we have used the definitions (59) of 𝑡𝑘
𝑇,𝜎

and (65) of �̃�0𝑘 , Young’s inequality,
and the fact that 𝑹𝑘

𝑇
�̂�
𝑇

and 𝑹𝑘
𝑇
𝒆
𝑇

both belong to P
𝑘 (𝔗𝑇 ) (as proved in the item (iv.b) below),

thus 𝝅𝑘−1
𝔗𝑇

((𝒖0
𝑇
· ∇)𝑹𝑘

𝑇
�̂�
𝑇
) = (𝒖0

𝑇
· ∇)𝑹𝑘

𝑇
�̂�
𝑇

, and 𝝅𝑘−1
𝔗𝑇

((𝒖0
𝑇
· ∇)𝑹𝑘

𝑇
𝒆
𝑇
) = (𝒖0

𝑇
· ∇)𝑹𝑘

𝑇
𝒆
𝑇

. Using the
generalized Young inequality (74) in the last term of (82) with 𝜖 selected so as to compensate the
boxed term in (83) and summing the resulting relation to (83), we obtain

ℑ1,3 + ℑ1,4 + ℑ1,5 + ℑ1,6

≲
∑︁
𝑇∈Tℎ

[
∥𝒆

𝑇
∥2

R,𝑇

(
|𝒖 |𝑾 1,∞ (𝑇 ) + ℎ𝑇𝛾𝑘 ∥𝒖∥𝑳∞ (𝑇 )

)
+ |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝜼𝑇 ∥

2
𝑳2 (𝑇 )

]
+

∑︁
𝑇∈Tℎ

(
|𝒖 |𝑾 1,∞ (𝑇 ) + 𝛾𝑘ℎ

−3
𝑇 ∥𝒖∥𝑳∞ (𝑇 )

)
∥�̂�𝑇 − 𝒖∥2

𝑳2 (𝑇 )

+
∑︁
𝑇∈Tℎ

∥𝒖∥𝑾 1,∞ (𝑇 )

(
ℎ−1
𝑇 ∥𝜼𝑇 ∥2

𝑳2 (𝑇 ) + ℎ𝑇 |𝜼𝑇 |2𝑯1 (𝔗𝑇 )

)
+ �̃�0𝑘

∑︁
𝑇∈Tℎ

∑︁
𝜎∈𝔉i

𝑇

[
∥𝜼𝑇 · 𝒏𝜎 ∥2

𝐿2 (𝜎)︸              ︷︷              ︸
≕𝔄 (𝜎)

+ ∥J𝜚𝑘
𝔗𝑇

((𝒖0
𝑇 · ∇)𝑹𝑘

𝑇 �̂�𝑇
)K𝜎 ∥2

𝐿2 (𝜎)︸                                     ︷︷                                     ︸
≕𝔅(𝜎)

]
.

(84)

We now proceed to bound the last term in the the right-hand side of (84). We bound the first
contribution as we did with ∥{𝜼𝑇𝜎

}𝜎 ∥2
𝑳2 (𝜎) in (79), that is,

𝔄(𝜎) ≲
∑︁
𝑇∈T𝜎

(
ℎ−1
𝑇 ∥𝜼𝑇 ∥2

𝑳2 (𝑇 ) + ℎ𝑇 |𝜼𝑇 |2𝑯1 (𝔗𝑇 )

)
. (85)

To bound 𝔅(𝜎) in (84), observe that, since (𝒖0
𝑇
· ∇)𝝅𝑘

𝑇
𝒖 ∈ P

𝑘−1(𝑇), using (47), we have
𝜚𝑘
𝔗𝑇

((𝒖0
𝑇
· ∇)𝝅𝑘

𝑇
𝒖) ∈ P

𝑘 (𝑇), and then J𝜚𝑘
𝔗𝑇

(𝒖0
𝑇
· ∇)𝝅𝑘

𝑇
𝒖)K𝜎 ≡ 0 for all simplicial faces 𝜎 ∈ 𝔉i

𝑇

internal to any mesh element 𝑇 ∈ Tℎ. Therefore, denoting by 𝜏1 and 𝜏2 the simplices in 𝔗𝑇 that share
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𝜎 ∈ 𝔉i
𝑇

, it is inferred, letting for the sake of brevity 𝜚𝑘𝜏𝑖 ≔ (𝜚𝑘
𝔗𝑇

) |𝜏𝑖 ,

𝔅(𝜎) = ∥J𝜚𝑘
𝔗𝑇

((𝒖0
𝑇 · ∇)(𝑹𝑘

𝑇 �̂�𝑇
− 𝝅𝑘

𝑇𝒖))K𝜎 ∥2
𝐿2 (𝜎)

(57), (24)
≲

2∑︁
𝑖=1

∥𝜚𝑘𝜏𝑖 ((𝒖
0
𝑇 · ∇)(𝑹𝑘

𝑇 �̂�𝑇
− 𝝅𝑘

𝑇𝒖))∥2
𝐿2 (𝜎)

≲
2∑︁
𝑖=1

ℎ−1
𝜏𝑖
∥𝜚𝑘𝜏𝑖 ((𝒖

0
𝑇 · ∇)(𝑹𝑘

𝑇 �̂�𝑇
− 𝝅𝑘

𝑇𝒖))∥2
𝐿2 (𝜏𝑖 )

≲ ℎ−1
𝑇 ∥𝜚𝑘

𝔗𝑇
((𝒖0

𝑇 · ∇)(𝑹𝑘
𝑇 �̂�𝑇

− 𝝅𝑘
𝑇𝒖))∥2

𝐿2 (𝑇 )
(45)
≲ ℎ𝑇 ∥((𝒖0

𝑇 · ∇)(𝑹𝑘
𝑇 �̂�𝑇

− 𝝅𝑘
𝑇𝒖))∥2

𝑳2 (𝑇 )
(61), (24)
≲ ℎ𝑇 ∥𝒆0

𝑇 · ∇(𝑹𝑘
𝑇 �̂�𝑇

− 𝝅𝑘
𝑇𝒖)∥2

𝑳2 (𝑇 ) + ℎ𝑇 ∥�̂�0
𝑇 · ∇(𝑹𝑘

𝑇 �̂�𝑇
− 𝝅𝑘

𝑇𝒖)∥2
𝑳2 (𝑇 ) ,

where we have used a discrete trace inequality in the third step and the fact that ℎ−1
𝜏𝑖
≲ ℎ−1

𝑇
by mesh

regularity along with 𝜏1 ∪ 𝜏2 ⊂ 𝑇 in the fourth step. We continue adding and subtracting 𝒖 and using
(24) with 𝑛 = 2 to write

𝔅(𝜎) ≲ ℎ𝑇 ∥𝒆0
𝑇 · ∇(𝑹𝑘

𝑇 �̂�𝑇
− 𝒖)∥2

𝑳2 (𝑇 ) + ℎ𝑇 ∥𝒆0
𝑇 · ∇(𝒖 − 𝝅𝑘

𝑇𝒖)∥2
𝑳2 (𝑇 )

+ ℎ𝑇 ∥�̂�0
𝑇 · ∇(𝑹𝑘

𝑇 �̂�𝑇
− 𝒖)∥2

𝑳2 (𝑇 ) + ℎ𝑇 ∥�̂�0
𝑇 · ∇(𝒖 − 𝝅𝑘

𝑇𝒖)∥2
𝑳2 (𝑇 )

≲ ℎ𝑇 ∥∇(𝑹𝑘
𝑇 �̂�𝑇

− 𝒖)∥𝑳∞ (𝑇 ) ∥𝒆𝑇 ∥2
𝑳2 (𝑇 ) + ℎ𝑇 ∥∇(𝒖 − 𝝅𝑘

𝑇𝒖)∥2
𝑳∞ (𝑇 ) ∥𝒆𝑇 ∥

2
𝑳2 (𝑇 )

+ ℎ𝑇 ∥�̂�𝑇 ∥2
𝑳∞ (𝑇 ) ∥∇(𝑹

𝑘
𝑇 �̂�𝑇

− 𝒖)∥2
𝑳2 (𝑇 ) + ℎ𝑇 ∥�̂�𝑇 ∥2

𝑳∞ (𝑇 ) ∥∇(𝒖 − 𝝅𝑘
𝑇𝒖)∥2

𝑳2 (𝑇 )

≲ ℎ𝑇 |𝒖 |2𝑾 1,∞ (𝑇 ) ∥𝒆𝑇 ∥
2
R,𝑇 + ℎ𝑇 ∥𝒖∥2

𝑳∞ (𝑇 ) |𝜼𝑇 |𝑯1 (𝑇 ) + ℎ𝑇 ∥𝒖∥2
𝑳∞ (𝑇 ) ∥∇(𝒖 − 𝝅𝑘

𝑇𝒖)∥2
𝑳2 (𝑇 ) ,

(86)

where in the second step we have used Hölder inequalities with exponents (2,∞) for the first two
terms and with exponents (∞, 2) for last two terms, then the 𝑳2-boundedness of 𝝅0

𝑇
in all terms.

In the last step we have used: for the first term the approximation properties (18) of 𝑹𝑘
𝑇
◦ 𝑰𝑘

𝑇
with

(𝑚, 𝑝, 𝑠) = (1,∞, 1) along with (34); for the second term, the 𝑯1-boundedness of 𝝅𝑘
𝑇

and again (34);
for the third term, the definition (62) of 𝜼𝑇 , and invoked the 𝑳∞-boundedness of 𝝅𝑇 for the third and
fourth terms.

(iii) Estimate of ℑ1. Plugging (86) along with (85) into (84), then using the fact that card(𝔉i
𝑇
) ≲

card(𝔗𝑇 ) ≲ 1 for 𝑇 ∈ Tℎ by (3), and using additionally the bound (77), we obtain in (76)

ℑ1 ≲
∑︁
𝑇∈Tℎ

∥𝒆
𝑇
∥2

R,𝑇

(
|𝒖 |𝑾 1,∞ (𝑇 ) + ℎ𝑇𝛾𝑘 ∥𝒖∥𝑳∞ (𝑇 ) + ℎ𝑇 �̃�0𝑘 |𝒖 |2𝑾 1,∞ (𝑇 )

)
+𝔑1,

which is precisely (70).

(iv) Proof of (81). To conclude the proof of Lemma 16, it only remains to prove (81), which we do
next. We begin using a triangle inequality as follows:����∫

𝑇

(𝑹𝑘
𝑇𝒖𝑇

· ∇)𝑹𝑘
𝑇 𝒆𝑇 · 𝜼𝑇

����
≤

����∫
𝑇

(
(𝑹𝑘

𝑇𝒖𝑇
− 𝒖𝑇 ) · ∇

)
𝑹𝑘
𝑇 𝒆𝑇 · 𝜼𝑇

���� + ����∫
𝑇

(𝒖𝑇 · ∇)𝑹𝑘
𝑇 𝒆𝑇 · 𝜼𝑇

���� ≕ 𝔗1 + 𝔗2. (87)
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(iv.a) Estimate of 𝔗1. Adding the terms ±(𝑹𝑘
𝑇
�̂�
𝑇
− �̂�𝑇 ) in the inner parentheses of 𝔗1, then recalling

that 𝒆
ℎ
= 𝒖

ℎ
− �̂�

ℎ
(cf. (61)) and using a triangle inequality, we get

𝔗1 ≤
����∫

𝑇

(
(𝑹𝑘

𝑇 𝒆𝑇 − 𝒆𝑇 ) · ∇
)
𝑹𝑘
𝑇 𝒆𝑇 · 𝜼𝑇

���� + ����∫
𝑇

(
(𝑹𝑘

𝑇 �̂�𝑇
− �̂�𝑇 ) · ∇

)
𝑹𝑘
𝑇 𝒆𝑇 · 𝜼𝑇

���� ≕ 𝔗1,1 + 𝔗1,2.

To bound 𝔗1,1, we use a Hölder inequality with exponents (2, 2,∞) to obtain

𝔗1,1 ≤ ∥𝑹𝑘
𝑇 𝒆𝑇 − 𝒆𝑇 ∥𝑳2 (𝑇 ) ∥∇𝑹

𝑘
𝑇 𝒆𝑇 ∥𝑳2 (𝑇 ) ∥𝜼𝑇 ∥𝑳∞ (𝑇 )

≲ ℎ2
𝑇 ∥𝒆𝑇 ∥1,𝑇 ∥∇𝑹𝑘

𝑇 𝒆𝑇 ∥𝑳2 (𝑇 ) |𝒖 |𝑾 1,∞ (𝑇 ) ,

where, in the second step, we have used (17) and (18) with (𝑚, 𝑝, 𝑠) = (0,∞, 1) for the first and
third factors, respectively, after recalling, for the latter, that 𝜼𝑇 = 𝑹𝑘

𝑇
�̂�
𝑇
− 𝒖 by (62). To proceed, we

bound ∥𝒆
𝑇
∥1,𝑇 with (34), then use the inverse inequality (30) along with the definition (33) of ∥·∥R,𝑇

to write ∥∇𝑹𝑘
𝑇
𝒆
𝑇
∥𝑳2 (𝑇 ) ≲ ℎ−1

𝑇
∥𝑹𝑘

𝑇
𝒗
𝑇
∥𝑳2 (𝑇 ) ≤ ℎ−1

𝑇
∥𝒆

𝑇
∥R,𝑇 . Thus, we get

𝔗1,1 ≲ ∥𝒆
𝑇
∥2

R,𝑇 |𝒖 |𝑾 1,∞ (𝑇 ) .

We bound 𝔗1,2 using a Hölder inequality with exponents (2, 2,∞), then using the inverse inequality
(30) along with the definition (33) of ∥·∥R,𝑇 for the second factor, and recalling that 𝜼𝑇 = 𝑹𝑘

𝑇
�̂�
𝑇
− 𝒖

by (62) to use the approximation properties (18) of 𝑹𝑘
𝑇
◦ 𝑰𝑘

𝑇
with (𝑚, 𝑝, 𝑠) = (0,∞, 1) for the third

factor, thus obtaining

𝔗1,2 ≲ ∥𝑹𝑘
𝑇 �̂�𝑇

− �̂�𝑇 ∥𝑳2 (𝑇 ) ∥𝒆𝑇 ∥R,𝑇 |𝒖 |𝑾 1,∞ (𝑇 )

≲ |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝑹
𝑘
𝑇 �̂�𝑇

− �̂�𝑇 ∥2
𝑳2 (𝑇 ) + |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝒆𝑇 ∥

2
R,𝑇

≲ |𝒖 |𝑾 1,∞ (𝑇 )

(
∥𝜼𝑇 ∥2

𝑳2 (𝑇 ) + ∥𝒖 − �̂�𝑇 ∥2
𝑳2 (𝑇 )

)
+ |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝒆𝑇 ∥

2
R,𝑇 ,

where in the second step we have used Young’s inequality while, in the third step, we have added ±𝒖
into the second term, used (24) with 𝑛 = 2, and recalled (62). Gathering the above bounds for 𝔗1,1
and 𝔗1,2, we obtain

𝔗1 ≲ |𝒖 |𝑾 1,∞ (𝑇 )

(
∥𝜼𝑇 ∥2

𝑳2 (𝑇 ) + ∥𝒖 − �̂�𝑇 ∥2
𝑳2 (𝑇 )

)
+ |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝒆𝑇 ∥

2
R,𝑇 . (88)

(iv.b) Estimate of 𝔗2 and conclusion. To bound 𝔗2 in (87), recalling that 𝒖0
𝑇
≔ 𝝅0

𝑇
𝒖𝑇 and using a

triangle inequality, we have that

𝔗2 ≤
����∫

𝑇

((𝒖𝑇 − 𝒖0
𝑇 ) · ∇)𝑹

𝑘
𝑇 𝒆𝑇 ) · 𝜼𝑇

���� + ����∫
𝑇

(𝒖0
𝑇 · ∇)𝑹𝑘

𝑇 𝒆𝑇 · 𝜼𝑇
���� ≕ 𝔗2,1 + 𝔗2,2. (89)

To treat 𝔗2,1, we add and subtract (�̂�𝑇 − �̂�0
𝑇 ), use (61), and apply a triangle inequality to obtain

𝔗2,1 ≤
����∫

𝑇

((𝒆𝑇 − 𝒆0
𝑇 ) · ∇)𝑹

𝑘
𝑇 𝒆𝑇 ) · 𝜼𝑇

���� + ����∫
𝑇

((�̂�𝑇 − �̂�0
𝑇 ) · ∇)𝑹

𝑘
𝑇 𝒆𝑇 ) · 𝜼𝑇

���� ≕ 𝔗2,1,1 + 𝔗2,1,2. (90)

To bound𝔗2,1,1, we use a Hölder inequality with exponents (2, 2,∞), the approximation properties (4)
of 𝝅0

𝑇
with (𝑙, 𝑚, 𝑟, 𝑠) = (0, 0, 2, 1) followed by the definition (8) of ∥·∥1,𝑇 to write ∥𝒆𝑇 − 𝒆0

𝑇
∥𝑳2 (𝑇 ) ≲

ℎ𝑇 ∥∇𝒆𝑇 ∥𝑳2 (𝑇 ) ≤ ℎ𝑇 ∥𝒆𝑇 ∥1,𝑇 , the inverse inequality (30), and the approximation properties (18) of
𝑹𝑘
𝑇
◦ 𝑰𝑘

𝑇
with (𝑚, 𝑝, 𝑠) = (0,∞, 1) to write ∥𝜼𝑇 ∥𝑳∞ (𝑇 ) ≲ ℎ𝑇 |𝒖 |𝑾 1,∞ (𝑇 ) and thus get

𝔗2,1,1 ≲ ℎ𝑇 ∥𝒆𝑇 ∥1,𝑇 ∥𝑹𝑘
𝑇 𝒆𝑇 ∥𝑳2 (𝑇 ) |𝒖 |𝑾 1,∞ (𝑇 )

(34)
≲ ∥𝒆

𝑇
∥2

R,𝑇 |𝒖 |𝑾 1,∞ (𝑇 ) .
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Similarly, using a Hölder inequality with exponents (∞, 2, 2) followed by a triangle inequality, we
obtain

𝔗2,1,2 ≤
(
∥�̂�𝑇 − 𝒖∥𝑳∞ (𝑇 ) + ∥𝒖 − �̂�0

𝑇 ∥𝑳∞ (𝑇 )
)
∥∇𝑹𝑘

𝑇 𝒆𝑇 ∥𝑳2 (𝑇 ) ∥𝜼𝑇 ∥𝑳2 (𝑇 )

≲ |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝑹
𝑘
𝑇 𝒆𝑇 ∥𝑳2 (𝑇 ) ∥𝜼𝑇 ∥𝑳2 (𝑇 ) ≲ |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝒆𝑇 ∥

2
R,𝑇 + |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝜼𝑇 ∥

2
𝑳2 (𝑇 ) ,

where, in the second step, we have used the approximation properties (4) of 𝝅𝑘★

𝑇
and 𝝅0

𝑇
with

(𝑙, 𝑚, 𝑟, 𝑠) = (𝑘★, 0,∞, 1) and (𝑙, 𝑚, 𝑟, 𝑠) = (0, 0,∞, 1), respectively, and then the inverse inequality
(30) while, in the last step, we have used the definition (33) of ∥·∥R,𝑇 and Young’s inequality.

To bound 𝔗2,2 in (89), we use the fact that ∇ · 𝒖 = 0, the commutation property (12), and (16b) to
infer that ∇ · 𝑹𝑘

𝑇
�̂�
𝑇
= 0. In addition, we have ∇ · 𝑹𝑘

𝑇
𝒖
𝑇
= 0 (take 𝒗

ℎ
= 0 and 𝑞ℎ ∈ P𝑘 (Tℎ) supported

in 𝑇 in (60) and use (41) and (16b)). By (61), the above relations yield ∇ · 𝑹𝑘
𝑇
𝒆
𝑇
= 0; this implies that

𝑹𝑘
𝑇
𝒆
𝑇
∈ P

𝑘 (𝔗𝑇 ) (see [8, Corollary 2.3.1, p. 90]), thus (𝒖0
𝑇
· ∇)𝑹𝑘

𝑇
𝒆
𝑇
∈ P

𝑘−1(𝔗𝑇 ), and the proof is
finished for 𝑘 = 0, since 𝑹0

𝑇
𝒆
𝑇
∈ P

0(𝔗𝑇 ) and thus (𝒖0
𝑇
· ∇)𝑹0

𝑇
𝒆
𝑇
= 0, i.e., 𝔗2,2 = 0. If 𝑘 ≥ 1, on

the other hand, we recall the definition (43) of 𝜚𝑘
𝔗𝑇

and observe that

P
𝑘−1(𝔗𝑇 ) ∋ (𝒖0

𝑇 · ∇)𝑹𝑘
𝑇 𝒆𝑇 = ∇𝑔 + 𝒄,

with 𝑔 ≔ 𝜚𝑘
𝔗𝑇

((𝒖0
𝑇
· ∇)𝑹𝑘

𝑇
𝒆
𝑇
) and 𝒄 ≔ (Id−∇𝜚𝑘

𝔗𝑇
) ((𝒖0

𝑇
· ∇)𝑹𝑘

𝑇
𝒆
𝑇
). Using a triangle inequality, we

split 𝔗2,2 as follows:

𝔗2,2 ≤
����∫

𝑇

∇𝑔 · 𝜼𝑇
���� + ����∫

𝑇

𝒄 · 𝜼𝑇
���� ≕ 𝔗2,2,1 + 𝔗2,2,2. (91)

Applying an integration by parts to the integral contained in 𝔗2,2,1 and using the fact that 𝜼𝑇 has
continuous normal trace across simplicial faces 𝜎 ∈ 𝔉i

𝑇
, we obtain

𝔗2,2,1 ≤
∑︁
𝜎∈𝔉i

𝑇

����∫
𝜎

J𝑔K𝜎 (𝜼𝑇 · 𝒏𝜎)
���� + ∑︁

𝐹∈F𝑇

∑︁
𝜎∈𝔉𝐹

�����������
∫
𝜎

𝑔 (𝜼𝑇 · 𝒏𝜎)
���� + �����

�
���

���∫
𝑇

𝑔 (∇ · 𝜼𝑇 )
�����

≤
∑︁
𝜎∈𝔉i

𝑇

∥J𝑔K𝜎 ∥𝐿2 (𝜎) ∥𝜼𝑇 · 𝒏𝜎 ∥𝐿2 (𝜎)

= �̃�0𝑘
∑︁
𝜎∈𝔉i

𝑇

∥J𝜚𝑘
𝔗𝑇

((𝒖0
𝑇 · ∇)𝑹𝑘

𝑇 𝒆𝑇 )K𝜎 ∥𝐿2 (𝜎) ∥𝜼𝑇 · 𝒏𝜎 ∥𝐿2 (𝜎) ,

where the cancellations in the first step follow using the fact that ∇ · 𝜼𝑇 = ∇ · (𝑹𝑘
𝑇
�̂�
𝑇
− 𝒖) = 0

(since ∇ · 𝒖 = ∇ · 𝑹𝑘
𝑇
�̂�
𝑇
= 0) and the boundary condition (16a), while the second step follows from

a Cauchy–Schwarz inequality. We now proceed to bound 𝔗2,2,2 in (91). By (46) with 𝑙 = 𝑘 − 1, we
have that 𝒄 ∈ G

c,𝑘−1(𝔗𝑇 ) and, recalling that, by definition, Gc,𝑘−1(𝔗𝑇 ) is the trivial space when
𝑘 = 1, we get 𝔗2,2,2 = 0. For 𝑘 ≥ 2, on the other hand, recalling the definition (66) of 𝛾𝑘 , the fact
that 𝜼𝑇 ≔ 𝑹𝑘

𝑇
�̂�
𝑇
− 𝒖, and using the condition (16c), we obtain

𝔗2,2,2 = 𝛾𝑘

����∫
𝑇

𝒄 · (�̂�𝑇 − 𝒖)
����

≤ 𝛾𝑘 ∥𝒄∥𝑳2 (𝑇 ) ∥�̂�𝑇 − 𝒖∥𝑳2 (𝑇 )

≲ 𝛾𝑘 ∥(𝒖0
𝑇 · ∇)𝑹𝑘

𝑇 𝒆𝑇 )∥𝑳2 (𝑇 ) ∥�̂�𝑇 − 𝒖∥𝑳2 (𝑇 )

≤ 𝛾𝑘

(
∥𝒆0

𝑇 ∥𝑳∞ (𝑇 ) + ∥�̂�0
𝑇 ∥𝑳∞ (𝑇 )

)
∥∇𝑹𝑘

𝑇 𝒆𝑇 ∥𝑳2 (𝑇 ) ∥�̂�𝑇 − 𝒖∥𝑳2 (𝑇 )

≲ 𝛾𝑘ℎ
− 𝑑

2
𝑇

∥𝒆𝑇 ∥𝑳2 (𝑇 ) ∥∇𝑹
𝑘
𝑇 𝒆𝑇 ∥𝑳2 (𝑇 ) ∥�̂�𝑇 − 𝒖∥𝑳2 (𝑇 )

+ 𝛾𝑘 ∥𝒖∥𝑳∞ (𝑇 )ℎ
3
2
𝑇
∥∇𝑹𝑘

𝑇 𝒆𝑇 ∥𝑳2 (𝑇 )ℎ
− 3

2
𝑇

∥�̂�𝑇 − 𝒖∥𝑳2 (𝑇 ) ,

(92)
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where we have used the Cauchy–Schwarz inequality in the second step, the fact that ∥(Id−∇𝜚𝑘
𝔗𝑇

)𝒒∥𝑳2 (𝑇 ) ≤
∥𝒒∥𝑳2 (𝑇 ) + ∥∇𝜚𝑘

𝔗𝑇
𝒒∥𝑳2 (𝑇 ) for 𝒒 ∈ P

𝑘−1(𝔗𝑇 ) along with the bound (45) with 𝑙 = 𝑘 − 1 in the third
step, a Hölder inequality with exponents (∞, 2) for the first factor along with (61) and then a triangle
inequality in the fourth step, and, for the fifth step, we have used the discrete Lebesgue inequality (93)
with (𝛼, 𝛽, 𝑋) = (∞, 2, 𝑇) and the 𝐿2-boundeness of 𝝅0

𝑇
for the first addend and the 𝐿∞-boundeness

of 𝝅0
𝑇

for the second addend. To further bound the first term in the right-hand side of (92), we use
the inverse inequality (30) along with the definition (33) of ∥·∥R,𝑇 to write

𝛾𝑘ℎ
− 𝑑

2
𝑇

∥𝒆𝑇 ∥𝑳2 (𝑇 ) ∥∇𝑹
𝑘
𝑇 𝒆𝑇 ∥𝑳2 (𝑇 ) ∥�̂�𝑇 − 𝒖∥𝑳2 (𝑇 )

≲ 𝛾𝑘ℎ
− 𝑑

2 −1
𝑇

∥𝒆𝑇 ∥𝑳2 (𝑇 ) ∥𝒆𝑇 ∥R,𝑇 ∥�̂�𝑇 − 𝒖∥𝑳2 (𝑇 ) ≲ ∥𝒆
𝑇
∥2

R,𝑇 |𝒖 |𝑾 1,∞ (𝑇 ) ,

where, in the last step, we have used the fact that 𝛾𝑘 ≤ 1, the inequality (34) for the first factor,
and the approximation properties (4) of 𝝅𝑘★

𝑇
with (𝑙, 𝑚, 𝑟, 𝑠) = (𝑘★, 0, 2, 1) along with ∥∇𝒖∥𝐿2 (𝑇 ) ≲

ℎ
𝑑
2
𝑇
∥∇𝒖∥𝐿∞ (𝑇 ) for the last factor. For the second term in the right-hand side of (92), we use the inverse

inequality (30) along with the definition (33) of ∥·∥R,𝑇 , and then Young’s inequality, thus we obtain

𝛾𝑘 ∥𝒖∥𝑳∞ (𝑇 )ℎ
3
2
𝑇
∥∇𝑹𝑘

𝑇 𝒆𝑇 ∥𝑳2 (𝑇 )ℎ
− 3

2
𝑇

∥�̂�𝑇 − 𝒖∥𝑳2 (𝑇 )

≲ 𝛾𝑘ℎ𝑇 ∥𝒖∥𝑳∞ (𝑇 ) ∥𝒆𝑇 ∥
2
R,𝑇 + 𝛾𝑘ℎ

−3
𝑇 ∥𝒖∥𝑳∞ (𝑇 ) ∥�̂�𝑇 − 𝒖∥2

𝑳2 (𝑇 ) .

Using the above estimates in (92), we get

𝔗2,2,2 ≲ |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝒆𝑇 ∥
2
R,𝑇 + 𝛾𝑘ℎ𝑇 ∥𝒖∥𝑳∞ (𝑇 ) ∥𝒆𝑇 ∥

2
R,𝑇 + 𝛾𝑘ℎ

−3
𝑇 ∥𝒖∥𝑳∞ (𝑇 ) ∥�̂�𝑇 − 𝒖∥2

𝑳2 (𝑇 ) .

Therefore plugging the bounds for 𝔗2,2,1 and 𝔗2,2,2 into (91), the bounds 𝔗2,1,1 and 𝔗2,1,2 into (90),
and then using the result in (89), we get

𝔗2 ≲ |𝒖 |𝑾 1,∞ (𝑇 ) ∥𝒆𝑇 ∥
2
R,𝑇 + ∥𝒖∥𝑳∞ (𝑇 ) ∥𝜼𝑇 ∥2

𝑳2 (𝑇 ) + 𝛾𝑘ℎ𝑇 ∥𝒖∥𝑳∞ (𝑇 ) ∥𝒆𝑇 ∥
2
R,𝑇

+ 𝛾𝑘ℎ
−3
𝑇 ∥𝒖∥𝑳∞ (𝑇 ) ∥�̂�𝑇 − 𝒖∥2

𝑳2 (𝑇 ) + �̃�0𝑘
∑︁
𝜎∈𝔉i

𝑇

∥J𝜚𝑘
𝔗𝑇

((𝒖0
𝑇 · ∇)𝑹𝑘

𝑇 𝒆𝑇 )K𝜎 ∥𝐿2 (𝜎) ∥𝜼𝑇 · 𝒏𝜎 ∥𝐿2 (𝜎) .

Thus, plugging the above estimate along with (88) into (87), we conclude the proof of (81). □

6 Numerical tests
In this section we verify numerically the proposed method for general meshes of the unit square
domain Ω = (0, 1)2. The analytical solution (𝒖, 𝑝) in (1) is taken from [33, 37], with velocity
components and pressure as follows

𝒖(𝒙) ≔ 6 + 4 cos(4𝑡)
10

(
8 sin2(𝜋𝑥1) (2𝑥2(1 − 𝑥2) (1 − 2𝑥2))

−8𝜋 sin(2𝜋𝑥1) (𝑥2(1 − 𝑥2))2

)
,

𝑝(𝒙) ≔ 6 + 4 cos(4𝑡)
10

sin(𝜋𝑥1) cos(𝜋𝑥2).

For each element 𝑇 ∈ Tℎ, we construct its simplicial submesh 𝔗𝑇 by adding an internal node which
corresponds to the geometrical center 𝒙𝑇 of the element 𝑇 and construct the simplicial mesh 𝔗𝑇

in such a way that all simplices in 𝔗𝑇 have the vertex 𝒙𝑇 in common (this construction fulfills the
assumptions made in Section 3.1). We set 𝑘 = 1 and consider computations over three ℎ-refined
mesh families (Cartesian, hexagonal and Voronoi type). Figure 2 shows the coarsest mesh for each
family. As for the temporal discretization, an implicit/explicit (IMEX) BDF2 scheme is used, in
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which 𝑡ℎ (2𝒖𝑛−1
ℎ

− 𝒖𝑛−2
ℎ

, 𝒖𝑛
ℎ
, 𝒗

ℎ
) is used in the convective term (58). The interpolate of the analytical

solution is used in the first two steps as the initialization of the algorithm. We set as a time step
Δ𝑡 = 10−3, and the final time as 𝑡F = 2. This choice has been numerically verified to make the error in
time negligible with respect to the error in space for all the considered meshes. Our implementation is
based on the HArDCore library1 which makes extensive use of the linear algebra Eigen open-source
library (see http://eigen.tuxfamily.org), and we use the linear direct solver Pardiso [44]. We
monitor the following quantities in Table 1: 𝑁dof denoting the number of discrete unknowns and
nonzero entries of the global system; ∥𝒆

ℎ
∥𝐿∞ (𝑳2 ) , the discrete infinity 𝐿2(Ω)-norm of the velocity

error 𝒆
ℎ
≔ 𝒖

ℎ
− 𝑰𝑘

ℎ
𝒖; ∥𝒆

ℎ
∥♯,Δ𝑡 , the discrete 𝐿2-energy-upwind-norm of the velocity error defined as

follows

∥𝒆
ℎ
∥2
♯,Δ𝑡

≔ Δ𝑡

𝑁𝑡F∑︁
𝑛=2

©«𝜈∥𝒆𝑛ℎ∥2
1,ℎ +

1
2

∑︁
𝜎∈𝔉i

ℎ

∫
𝜎

|𝑹𝑘
ℎ (2𝒖

𝑛−1
ℎ

− 𝒖𝑛−2
ℎ

) · 𝒏𝜎 | |J𝑹𝑘
ℎ𝒆

𝑛
ℎ
K𝜎 |2

ª®®¬ ,
where 𝑁𝑡F is the total number of time steps. The error norms are accompanied by their corresponding
spatial Estimated Order of Convergence (EOC) computed using successive spatial refinement steps.
To confirm the independence of the velocity error on 𝜈−1, we solve numerically the problem for
𝜈 ∈ {10−2, 10−4, 10−6, 10−10}. Recalling the Corollary 11, and the Remarks 14 and 15, we expect
to get a convergence rate of 1.5 in both norms (since we have set 𝑘 = 1). The results collected in
Table 1 show that the convergence rate of ∥𝒆

ℎ
∥𝐿∞ (𝑳2 ) is always greater than 1.5 for all values of 𝜈,

and the convergence rate of ∥𝒆
ℎ
∥♯,Δ𝑡 is asymptotically close to 1.5. Moreover for small values of 𝜈,

the velocity errors hold practically unchanged, that is to say, they are independent of 𝜈−1. This is
consistent with our theoretical results, see Theorem 10 and its Corollary 11.

(a) Cartesian. (b) Hexagonal. (c) Voronoi.

Figure 2: Coarsest meshes used in Section 6.
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Figure 3: Velocity solution at 𝑡 = 𝑡F of Section 6.

A Local inequalities for piecewise polynomials on a submesh
Lemma 17 (Local discrete Lebesgue embedding for piecewise polynomials). Let 𝑇 ∈ Tℎ and, for
an integer 𝑙 ≥ 0, let 𝑞 ∈ P𝑙 (𝔗𝑇 ). Then, for all (𝛼, 𝛽) ∈ [1, +∞], it holds, with the convention that
1
∞ ≔ 0,

∥𝑞∥𝐿𝛼 (𝑇 ) ≃ ℎ
𝑑

(
1
𝛼
− 1

𝛽

)
𝑇

∥𝑞∥𝐿𝛽 (𝑇 ) , (93)

where the hidden constant is independent of ℎ𝑇 , 𝑇 , and 𝑞, but possibly depends on 𝑙, 𝛼, 𝛽, and the
mesh regularity parameter.

Proof. We first recall the discrete Lebesgue embedding proved in [20, Lemma 1.25], which establishes
that for all (𝛼, 𝛽) ∈ [1, +∞], all 𝑋 ∈ Tℎ ∪ 𝔗ℎ ∪ Fℎ ∪ 𝔉ℎ, and all 𝜁 ∈ P𝑙 (𝑋)

∥𝜁 ∥𝐿𝛼 (𝑋) ≃ |𝑋 |
1
𝛼
− 1

𝛽 ∥𝜁 ∥𝐿𝛽 (𝑋) , (94)

where |𝑋 | is the Lebesgue measure of 𝑋 , and the hidden constant is independent of 𝑋 , and 𝜁 , but
possibly depends on 𝑙, 𝛼, 𝛽, and the mesh regularity parameter. Then, for 𝛼 ∈ [1, +∞), we obtain
that

∥𝑞∥𝛼
𝐿𝛼 (𝑇 ) =

∑︁
𝜏∈𝔗𝑇

∥𝑞∥𝛼
𝐿𝛼 (𝜏 ) ≃

∑︁
𝜏∈𝔗𝑇

|𝜏 |𝛼
(

1
𝛼
− 1

𝛽

)
∥𝑞∥𝛼

𝐿𝛽 (𝜏 )

≃
∑︁
𝜏∈𝔗𝑇

|𝜏 |𝛼
(

1
𝛼
− 1

𝛽

)
∥𝑞∥𝛼

𝐿𝛽 (𝑇 )

≃ ℎ
𝛼𝑑

(
1
𝛼
− 1

𝛽

)
𝑇

∥𝑞∥𝛼
𝐿𝛽 (𝑇 ) ,

where in the second step we have used (94) with 𝑋 = 𝜏, in the third step the fact that 𝜏 ⊂ 𝑇 , and in the
fourth step the fact that |𝜏 | ≃ ℎ𝑑𝜏≃ ℎ𝑑

𝑇
by mesh regularity along with (3) for 𝔗𝑇 . Raising to the power
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of 1
𝛼

the above inequality, we obtain (93). If 𝛼 = +∞, we use similar steps as before to obtain that

∥𝑞∥𝐿∞ (𝑇 ) = sup
𝜏∈𝔗𝑇

∥𝑞∥𝐿∞ (𝜏 ) ≲ sup
𝜏∈𝔗𝑇

|𝜏 |−
1
𝛽 ∥𝑞∥𝐿𝛽 (𝑇 ) ≲ ℎ

− 𝑑
𝛽

𝑇
∥𝑞∥𝐿𝛽 (𝑇 ) . □

Lemma 18 (Local inverse inequalities for piecewise polynomials). Let 𝑇 ∈ Tℎ and, for an integer
𝑙 ≥ 0, let 𝑞 ∈ P𝑙 (𝔗𝑇 ). Then, for all 𝑝 ∈ [1, +∞], it holds

∥𝑞∥𝐿𝑝 (𝑇 ) ≲ ℎ−1
𝑇 ∥∇𝑞∥𝑳𝑝 (𝑇 ) , (95)

where we remind the reader that here ∇ stands for the piecewise gradient on 𝔗𝑇 .

Proof. For 𝑝 ∈ [1, +∞), we write

∥𝑞∥ 𝑝
𝐿𝑝 (𝑇 ) =

∑︁
𝜏∈𝔗𝑇

∥𝑞∥ 𝑝
𝐿𝑝 (𝜏 ) ≲

∑︁
𝜏∈𝔗𝑇

ℎ
−𝑝
𝜏 ∥∇𝑞∥ 𝑝

𝑳𝑝 (𝜏 ) ≲ ℎ
−𝑝

𝑇
∥∇𝑞∥ 𝑝

𝑳𝑝 (𝑇 ) ,

where we have used a standard discrete inverse inequality on simplices (cf., e.g., [13]) in the second
passage and the fact that ℎ𝜏 ≃ ℎ𝑇 by mesh regularity to conclude. If 𝑝 = +∞, the proof is similar
with sums over 𝜏 ∈ 𝔗𝑇 replaced by maximums over 𝜏 ∈ 𝔗𝑇 . □

Lemma 19 (Local trace inequality for piecewise polynomials). Let 𝑇 ∈ Tℎ, 𝐹 ∈ F𝑇 , and, for an
integer 𝑙 ≥ 0, let 𝑞 ∈ P𝑙 (𝔗𝑇 ). Then, for all 𝑝 ∈ [1, +∞], it holds

∥𝑞∥𝐿𝑝 (𝐹 ) ≲ ℎ
− 1

𝑝

𝐹
∥𝑞∥𝐿𝑝 (𝑇 ) . (96)

Proof. Recalling that 𝔉𝐹 collects the simplicial faces contained in 𝐹 and denoting, for all 𝜎 ∈ 𝔉𝐹 ,
by 𝜏𝜎 ∈ 𝔗𝑇 the simplex to which 𝐹 belongs, we write

∥𝑞∥ 𝑝
𝐿𝑝 (𝐹 ) =

∑︁
𝜎∈𝔉𝐹

∥𝑞∥ 𝑝
𝐿𝑝 (𝜎) ≲

∑︁
𝜎∈𝔉𝐹

ℎ−1
𝜎 ∥𝑞∥ 𝑝

𝐿𝑝 (𝜏𝜎 ) ≲ ℎ−1
𝑇 ∥𝑞∥ 𝑝

𝐿𝑝 (𝑇 ) ,

where we have used a standard discrete trace inequality on simplices in the second step and the fact
that ℎ−1

𝜎 ≲ ℎ−1
𝑇

, 𝜏𝜎 ⊂ 𝑇 for all 𝜎 ∈ 𝔉𝐹 , and card(𝔉𝐹) ≲ 1 to conclude. Taking the 𝑞-th root yields
(96). □
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𝑁dof ∥𝒆
ℎ
∥𝐿∞ (𝑳2 ) EOC ∥𝒆

ℎ
∥♯,Δ𝑡 EOC ∥𝒆

ℎ
∥𝐿∞ (𝑳2 ) EOC ∥𝒆

ℎ
∥♯,Δ𝑡 EOC

Cartesian, 𝜈 = 10−2 Cartesian, 𝜈 = 10−4

385 1.88E-01 – 2.58E-01 – 3.69E-01 – 2.09E-01 –
1620 2.64E-02 2.82 1.04E-01 1.30 7.21E-02 2.34 9.86E-02 1.08
6640 3.24E-03 3.04 3.74E-02 1.48 1.30E-02 2.48 3.87E-02 1.36
26880 3.95E-04 3.04 1.30E-02 1.53 2.25E-03 2.54 1.43E-02 1.43
108160 4.88E-05 3.02 4.36E-03 1.57 3.85E-04 2.54 5.17E-03 1.47

Cartesian, 𝜈 = 10−6 Cartesian, 𝜈 = 10−10

385 3.72E-01 – 2.07E-01 – 3.72E-01 – 2.07E-01 –
1620 7.45E-02 2.31 9.82E-02 1.07 7.45E-02 2.31 9.82E-02 1.07
6640 1.51E-02 2.31 3.85E-02 1.35 1.51E-02 2.31 3.85E-02 1.35
26880 3.22E-03 2.23 1.43E-02 1.43 3.25E-03 2.22 1.43E-02 1.43
108160 6.85E-04 2.23 5.18E-03 1.46 7.16E-04 2.19 5.18E-03 1.46

Hexagonal, 𝜈 = 10−2 Hexagonal, 𝜈 = 10−4

386 3.01E-01 – 4.14E-01 – 5.77E-01 – 3.54E-01 –
1436 5.68E-02 2.42 1.88E-01 1.14 1.48E-01 1.97 1.79E-01 0.99
5560 8.67E-03 2.70 7.17E-02 1.39 2.48E-02 2.57 7.05E-02 1.34
21872 1.14E-03 2.93 2.54E-02 1.50 3.48E-03 2.83 2.57E-02 1.46

Hexagonal, 𝜈 = 10−6 Hexagonal, 𝜈 = 10−10

386 5.83E-01 – 3.53E-01 – 5.83E-01 – 3.53E-01 –
1436 1.51E-01 1.95 1.79E-01 0.98 1.51E-01 1.95 1.79E-01 0.98
5560 2.64E-02 2.51 7.03E-02 1.34 2.64E-02 2.51 7.03E-02 1.34
21872 4.25E-03 2.63 2.56E-02 1.46 4.27E-03 2.63 2.56E-02 1.46

Voronoi, 𝜈 = 10−2 Voronoi, 𝜈 = 10−4

276 3.61E-01 – 3.63E-01 – 5.66E-01 – 3.02E-01 –
1228 5.11E-02 3.29 1.61E-01 1.37 1.15E-01 2.68 1.49E-01 1.19
5136 6.19E-03 2.95 5.99E-02 1.38 1.94E-02 2.49 5.67E-02 1.35
21032 7.60E-04 2.94 2.11E-02 1.46 3.01E-03 2.62 2.02E-02 1.45

Voronoi, 𝜈 = 10−6 Voronoi, 𝜈 = 10−10

276 5.70E-01 – 3.01E-01 – 5.70E-01 – 3.01E-01 –
1228 1.17E-01 2.66 1.48E-01 1.19 1.17E-01 2.66 1.48E-01 1.19
5136 2.05E-02 2.44 5.64E-02 1.35 2.05E-02 2.44 5.64E-02 1.35
21032 3.55E-03 2.46 2.00E-02 1.45 3.56E-03 2.46 2.00E-02 1.45

Table 1: Convergence rates for the numerical test of Section 6 for 𝑘 = 1 using the Cartesian, hexagonal
and the Voronoi mesh families for values of 𝜈 ∈ {10−2, 10−4, 10−6, 10−10}.
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