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Abstract.Bifacial photovoltaic (PV)modules, capable of capturing solar energy from both sides of the cells, are
becoming increasingly popular as their manufacturing costs approach those of traditional monofacial modules.
Accurate estimation of their power generation capacity is essential for optimizing their use. This study evaluates
a power production model for bifacial PV modules using local irradiance data from Razon+ in Sherbrooke,
Canada, and Solcast irradiance data derived from satellite imagery and weather models. The model’s
performance was assessed throughout the year, with particular attention to the impact of snow coverage during
winter. To address computational efficiency, the study evaluated ray tracing and a 2D view factor model,
selecting the more time-efficient method. Experimental validation showed that, using local irradiance data, the
model achieved Normalized RootMean Square Errors (NRMSE) of 18.77%, 4.94%, 3.93%, and 6.22% for winter,
spring, summer, and fall, respectively. With Solcast data, the NRMSEs were 22.76%, 15.32%, 14.72%, and
17.78% for the corresponding seasons. While the model performed satisfactorily in spring, summer, and fall, it
was less accurate in winter. To enhance winter accuracy, the model incorporated snow coverage, using snow
depth as a metric to detect snow on the front surface. This adjustment improved the accuracy by 51.1%.

Keywords: Photovoltaic / bifacial PV panels / power model / raytracing technique / view factor approach /
snow losses
1 Introduction

It has been reported in the literature that the use of bifacial
panels can improve the energy yield of power plants by
25–30% [1]. Due to their promising efficiency, bifacial
panels have been widely deployed in a variety of
applications, such as green roofs, agriculture and highways
[2–6]. The rated power of bifacial modules is not
straightforward to define, since it depends on various
factors, such as the nature of the ground, the mounting
configuration, and the bifaciality factor. The higher this
factor is, the higher the module output power. Current
PERC cells’ bifaciality factors measure at 0.7, with SHJ
cells exhibiting the highest values of up to 0.92 [7].
Accurate estimation of the energy production of photovol-
taic (PV) modules is a crucial part of achieving optimal
system sizing [8], as evidenced by a high-Performance
has2002@usherbrooke.ca
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Ratio (PR). A study [9] has demonstrated that ignoring
soiling effects in the region, PR can be reduced by up to
26%. Furthermore, the validity of this statement was
reinforced by [10], which indicated that the monthly losses
due to snow coverage in severe climates can reach as high as
100% which reduces significantly the system’s performance
ratio. Numerous studies have delved into the effects of
snowfall on monofacial photovoltaic (PV) modules. For
instance, the authors of one such study [11] discovered that
energy losses in PV systems due to snow accumulation
could reach up to 90% on a monthly basis and fluctuate
between 1% and 12% annually. A comprehensive review
[12] paper further corroborates these findings, indicating
that while annual electricity generation losses were
generally less than 10% in most climates, monthly losses
during winter months typically exceeded 25%. Bifacial PV
panels, on the other hand, present a unique advantage.
They are capable of producing an additional 10–15% of
electrical energy by harnessing reflected light from the
ground [13], This capability is particularly pronounced
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Fig. 1. Model for the power production estimation.
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when the albedo is high due to snow cover. This distinctive
feature enables bifacial PV panels to recover more swiftly
from snowfall events and resume normal operation. In
contrast, monofacial PV panels may remain obstructed by
snow for extended periods.

Recent studies have examined the accuracy of predict-
ing power production from bifacial solar panels utilizing
various methods, such as view factors and the ray-tracing
technique. Results demonstrated high accuracy in com-
parison to field measurements. In [14], a simple model was
proposed to consider received irradiance and module
temperature. The authors reported an 8% maximum
residual error. Validation of this model was conducted
with 25 days’ data, the model displaying an overestimation
of power at higher temperatures. In [15], a model based on
the configuration factor was introduced, which calculations
focused solely on back-side irradiance. This model was
validated using data from a 6-month period. In [16], an
electro-thermal model was proposed to assess the energy
yield of bifacial modules and their dependence on
parameters such as albedo. It was reported that a ground
albedo of 0.5 could increase the global bifacial gain by
about 20%. To eliminate the effects of snowing, only data
from 3 months was used for validation. The purpose of [17]
is to evaluate the performance of a range of irradiance tools,
by assessing their predictions against measurements. In
particular, it was shown that the bifacial gain for Fixed-Tilt
systems varied between 5.5% and 7.5%, compared with an
experimental result of 6%.

This research work differs from previous studies by
three significant contributions to the field of bifacial
photovoltaic (PV) modules. Firstly, it introduces a power
model for bifacial PVmodules, capable of estimating power
output based on various factors such as irradiance on the
front and rear surfaces, cell temperature, and more.
Secondly, the model is validated through a year-long
experiment involving 12 bifacial PV modules installed at
Université de Sherbrooke in Canada. The validation
process involves a comparison of the model’s results with
measured data, evaluated using metrics like the normalized
root mean square error (NRMSE) and bifacial gain. Lastly,
the authors conduct a sensitivity analysis of the model,
examining its response to different sources of weather data
and reducing the probability of overestimating the power
production by considering the impact of snow coverge.

2 Methodology

The power model of the bifacial module is presented in
Figure 1. It is a model that employs two different
approaches to estimate the module irradiance; either we
can employ the view factor method by using pvfactors or
the raytracing technique by using bifacial_radiance. The
module bifaciality coefficient is then multiplied by the rear
irradiance and added to the front irradiance. The cell
temperature is computed using Homer Pro model. By
selecting the irradiance model presented in [18] carefully,
onemay choose between accuracy and execution speed. For
example, bifacial_radiance can be used to analyze the
irradiance on a specific segment of the module, the
influence of the torque tube, or the nature of the ground
on panel production. pvfactors, on the other hand, enables
quick simulations. The power equation of the bifacial
module is expressed as:

Pbif ¼ Pmp

Ff þ hFr

� �
Fref

1þ ap T cell � Tc;stc

� �� �
1þDð Þ

ð1Þ
where h is the bifaciality factor, fr[W/m2] and ff[W/m2]
are the rear and front irradiance respectively, ap:
temperature coefficient of power,Fref: reference irradiance,
Pmp: module maximum power, Tc,stc: cell temperature at
STC, Tcell: module cell temperature, and D is the derate
coefficient. The cell temperature of the PV module is



Fig. 2. Raytracing Technique applied to UdeS PV Array.
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critical for estimating the power production of the module.
The equation used by Homer Pro for estimating the cell
temperature is [19]:

Tcell ¼
Ta þ Tc;noct � Ta;noct

� �
Ft

Ft;noct
1� hp;stc 1�aT Tcstcð Þ

gt

� �

1þ Ft Tc;noct�Ta;noctð ÞaT hp;stc
Frefgt

ð2Þ
whereTa: ambient temperature,Tc,noct∶ nominal operating
cell temperature [C], Ta,noct ambient temperature at which
Ta,noct is defenied, Ft total received irradiance, Ft,noct solar
irradiance at which Tc,noct is defined, hp,stc: maximum
power efficiency under standard test conditions [%], aT:
temperature coefficient [%/C], t∶ solar transmittance [%],
and g∶ solar absorptance [%]. The Homer model sets the
value of the product gt to 0.9, and the rest of the
coefficients are obtained from the module’s datasheet.

The Power production data of 12 PV modules (Fig. 2)
was collected from Université de Sherbrooke for all seasons
of the year 2021, this amount of data will be utilized to
evaluate the model under varied weather conditions. The
used system is composed of 12 modules mounted at 30° in
landscape configuration. We used 390W monocrystalline
bifacial modules. The module are connected in a series
configuration via SolarEdge power optimizers. These
optimizers facilitate Maximum Power Point Tracking
(MPPT), thereby optimizing the energy extraction from
each individual module. Furthermore, they provide the
capability to monitor the power and energy output of each
module independently. The optimizers exhibit a weighted
efficiency of 98.8%, with a peak efficiency reaching as high
as 99.5%. The detailed system configuration is summarized
in Table 1.

The RaZON+ system from Kipp and Zonen is
employed to measure two key types of solar irradiance:
Direct Normal Irradiance (DNI) and Diffuse Horizontal
Irradiance (DHI). These measurements are crucial as they
are used to calculate the Global Horizontal Solar Irradiance
(GHI). For albedo values, we utilize data provided by
Solcast. This data is derived from NASA’s Moderate
Resolution Imaging Spectroradiometer (MODIS) prod-
ucts, which offer historical albedo data. To cater to specific
locations and times, the data undergoes spatial and
temporal interpolation. Solcast ensures the accuracy and



Table 1. System mounting parameters of the modules.

Parameter Value

Module type LG390N2T-A5
Cell Type Monocrystalline / N-type
Bifaciality Coefficient 76
Tilt Angle 30
Number of rows 1
Number of modules 12
Center Height 2.4m
Surface Azimuth 180
Ground Coverage Ratio 0.001
Orientation Landscape
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consistency of this interpolated data by performing bias
corrections. The solar Zenith and Azimuth angles is
provided by the RaZON+ System, which calculates the
solar angles using NREL’s Solar Position Algorithm (SPA)
[20]. This algorithm enables accurate tracking of the sun’s
position throughout the day. These parameters, collected
on an hourly basis, serve as the foundation for the model
depicted in Figure 1. The EdgeSolar Optimizer is employed
to monitor the power output’s hourly fluctuations. This
data, representing the system’s actual performance, is
subsequently used as a benchmark to assess the model’s
precision. By comparing the model’s predictions with these
real-world measurements, we can evaluate the model’s
accuracy and make necessary adjustments to improve its
predictive capabilities. In order to ensure the quality of our
data, we have employed two distinct techniques. The first
involves the removal of outliers by imposing limits on the
parameter values. For instance, we have set the maximum
value of the received irradiance equal to the constant solar
irradiance, thereby eliminating any anomalously high
readings. The second technique pertains to the handling
of missing values. If any parameters required to estimate
the power output are missing for a specific hour, we exclude
that hour from our dataset. Consequently, our meteoro-
logical input data has been reduced from 8760 to 8676
entries, indicating that 84 values have been filtered out due
to missing parameters.

3 Results and discussion

3.1 bifacial_radiance

The application of ray-tracing technique by the using
bifacial_radiance [21], presents a significant challenge due
to the extensive computational time required, which is not
conducive to a comprehensive, hourly analysis over an
entire year. In fact, a one-year simulation of our system is
projected to require approximately 13 h of computation on
a computer equipped with an Intel® CoreTM i5-8265U
CPU @ 1.60GHz 1.80GHz and 8 GB of RAM. To address
this issue, we employed code optimization in conjunction
with parallel computing, which effectively reduced the
execution time to a mere 3 hours. The strategy involves
utilizing the measured data as input for the function
responsible for calculating the hourly power production
(specifically, the gendaylit2manual function in bifacial_
radiance). The simulation of a single day is then
decomposed according to the number of processors
available in our machine. This approach allows for a more
efficient use of computational resources, thereby signifi-
cantly reducing the overall execution time.

As illustrated in Figure 2, we implemented the ray-
tracing technique to the given scene, taking into account
the mounting parameters of the system. To enhance
precision, we configured the bifacial_radiance parameter
to accommodate nine sensors. This configuration is based
on the array’s composition, which consists of three rows
with four modules each, resulting in three sensors per
module. The data acquired from this setup enabled us to
conduct a comprehensive analysis of the system and
ascertain the power output of each individual module. This
rigorous approach ensures a detailed understanding of the
system’s performance. The Normalized Root Mean Square
Error (NRMSE) (Eq. (3)) was computed for each
individual module over a three-month period correspond-
ing to each of the four seasons in the year 2021, as ameasure
to evaluate the precision of the power model and quantify
its deviation from the experimental data. This error
measurement is normalized by the range of the observed
values, as shown in the equation below (Eq. (3)). The
results are depicted in Figure 3.

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
Pmeas;i � Pest;i

� �2q

Pmeas;max � Pmeas;min
ð3Þ

where Pmeas,i and Pest,i are the measured and the estimated
energy in the hour i, and N number of a season days,
Pmeas,max and Pmeas,min are the maximum and the
minimum power respectively.

The summer season, with its higher number of clear sky
days compared to other seasons, exhibits the lowest
NRMSE values. The maximum value for this season is
4.7%, while the minimum value is 3.1%, indicating a
commendable degree of accuracy for the model during this
period. In the spring season, the NRMSE values range from
4.7% to 5.4%, which is still within an acceptable range.
However, during the autumn season, there is a rise in the
NRMSE values of each module, with the minimum value
being 5.8% and the maximum value reaching 6.8%. The
observed augmentation can be attributed to the amplified
frequency of cloudy conditions prevalent during this
particular season. This is evident from Table 2 showing
the monthly fraction of cloudy days. As we analyze the
data, we see that the monthly fraction of cloudy days rises
from 52% to a significant 72% in December. However, the
model’s accuracy shows a notable variation during the
winter season, with NRMSE values fluctuating between a
minimum of 16.1% and a maximum of 19%. Despite the
superior quality of the validation data, it’s presumed that
the main contributor to these significant NRMSE values is
the snow coverage. This postulation is based on the



Fig. 3. Seasonal NRMSE [%] for the year 2021.
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geographical location’s tendency for winter snowfall,
suggesting that the degree of snow coverage during the
winter season has a substantial effect on the model’s power
production.
3.1.1 Seasonal bifacial gain

Snowalbedo is the fractionof incoming lightor radiation that
a surface reflects. It ranges from0.5 to 0.7 for old snow, but it
can surpass 0.9 for freshly fallen snow [22]. As a result, in the
winter, the received ground-reflected irradiance increases
significantly, as does the bifacial gain. To quantify the
additional energy obtained by using bifacial modules versus
monofacial modules, we compute the bifacial gain, that
represents the ratio of the irradiance received by the back
surface to the irradiance received by the front surface. As
expressed intheequation(4),weconsider the efficiencyof the
module’s backside. This equation is commonly used in the
literature, and it is an approximation of the actual value.

Gbif ¼ h
fr

ff

ð4Þ
where h is the bifaciality factor, fr[W/m2] and ff[W/m2]
are the rear and front irradiance respectively.

Figure 4 illustrates the remarkable advantage of
employing bifacial modules with our system configuration.
These modules can boost efficiency by as much as 28.4%
during winter months, a figure nearly three times the
minimum improvement observed in summer, which
stands at 9.8%. In terms of seasonal variations, the
bifacial gain fluctuates between 8.4% and 10% in spring,
8.5% and 10.1% in summer, and 9.8% and 11.7% in
autumn. The increase in autumn is attributable to the rise
in albedo values. Upon closer examination, it is evident
that the modules located at the bottom and in the center
exhibit a lower gain compared to those at the top edges.
This discrepancy can be attributed to the shading effect
caused by the mounting structure and torque tube for the
central modules, and the reduced rear side collection due
to lower altitude for the bottom modules. It is important
to note that the bifacial gain discussed here is based on
modeling and does not account for snow losses. which are
known to decrease when photovoltaic (PV) modules are
bifacial [10].



Table 2. Monthly distribution of cloud cover and clear days: Data courtesy of WeatherSpark.com.

Fraction Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cloudier 75% 72% 66% 60% 57% 52% 43% 40% 43% 52% 64% 72%
Clearer 25% 28% 34% 40% 43% 48% 57% 60% 57% 48% 36% 28%

Fig. 4. Seasonal Bifacial Gain [%] of the year 2021 using bifacial radiance.
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3.2 PV factors

A fast simulation can be reached using pvfactors [23].
pvfactors assumes that all the modules at the same altitude
are similar (2D View Factor model). This assumption,
however, limits the ability to study power production
variations among adjacent modules with identical mount-
ing properties. It is of significance to note that the Ground
Coverage Ratio (GCR) delineated in Table 1 aligns with
the value utilized for the pvfactors model. As bifacial_ra-
diance model can accommodate a GCR value of 0.
pvfactors operates as a view factor model, employing the
GCR to compute the spacing required to achieve the
desired GCR. This spacing is crucial for accurate modeling
THE shading characteristics AGCRvalue of 0 would result
in an error in this context. Consequently, to circumvent
this issue, we approximate this value to 0.001.

To validate the model using pvfactors, we selected the
modules located at the highest point and initiated a
simulation spanning one year. Remarkably, the execution
time for this simulation was a mere 15 seconds. This
swift computation time is particularly advantageous for



Fig. 5. Comparison of Measured and Estimated Power Output using pvfactors (Top Module) and local data with Razon+.
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modeling larger scale photovoltaic (PV) systems or for
integrating this model into simulations that necessitate
multiple iterations.

The scatter plots depicted in Figure 5 illustrate a
comparison between the hourly measured power and the
estimated power using the pvfactors model. We compare
the simulation output with the mean power production of
the top four modules. Similarly to modeling with
bifacial_radiance, the PV production is overestimated
during the winter season. This overestimation is
attributed to the snow effect. The Normalized Root
Mean Square Error (NRMSE) peaks at 18.77%, and the
coefficient of determination (R2) is 0.35. This suggests
that the model moderately fits the experimental data,
leaving 65% of the variability unexplained. However, the
model aligns well with the measured values during
the spring and summer seasons. This is evidenced by the
coefficients of determination of 0.97 and 0.98 respective-
ly, and NRMSE values of 4.94% and 3.93%. A minor
deviation is observed during the autumn season, with an
error of 6.22% and a coefficient of determination of 0.94.
This deviation can be associated with the occasional
snowy days characteristic of this season, particularly in
December.



Table 3. Results of the simulation using pvfactors and
bifacial_radiance.

Pvfactors Bifacial_radiance

Bifacial Gain
Winter 33.11 27.67
Spring 13.54 9.9
Summer 13.97 9.95
Autumn 14.58 11.5

NRMSE %
Winter 18.77 17.92
Spring 4.94 4.90
Summer 3.93 4.12
Autumn 6.22 5.96

Excution Time 15 seconds 3 hours
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The performance of the two modeling methods in terms
of two factors (Error and execution time) is compared in
Table 3. We notice that pvfactors has almost the same
values as bifacial_radiance except for the computation
time. The model with pvfactors shows therefore an
interesting advantage for integration into management
strategies and optimization problems for hybrid systems or
microgrids that require multiple iterations. However, it is
not capable of capturing 3D effects such as the impact of
the mounting structure that was clearly visible with
bifacial_radiance.

3.3 Sensitivity analysis

In this section, we examine the sensitivity of themodel with
respect to input data. As previously noted in Section 2,
validation of the model was conducted using measured
data, except for the albedo parameter. Therefore, this
section addresses the accuracy of the model when it is
supplied exclusively with weather data obtained from
Solcast, which utilizes geostationary weather satellites and
weather model data to estimate irradiance components.
Various satellite-derived solar irradiance datasets provide
historical irradiance time series, such as SOLARGIS,
PVGIS, Solar AnyWhere, and METEONORM. Among
these, Solcast stands out due to its promising character-
istics, including its remarkable precision, which has been
demonstrated in the publication [24].

The performance of the model utilizing Solcast
irradiation data is detailed in Figure 6, with each sub-
figure representing a specific season in the year 2021.
Significant errors are observed across all seasons. Even in
summer, which typically experiences the clearest skies
(Tab. 2), the Normalized Root Mean Square Error
(NRMSE) is 14.72%, with a coefficient of determination
(R2) of 0.71. During spring, the NRMSE is 15.32% with an
R2 of 0.71, while autumn exhibits an NRMSE of 17.78%
and an R2 of 0.55. As anticipated, winter shows the highest
error and greatest discrepancy between measured and
estimated values, with an NRMSE of 22.76% and an R2 as
low as 0.07.

The elevated error values are attributed to the input
data quality. To investigate this, we compared Solcast’s
historical data with measured data, focusing on four
primary parameters impacting power production estima-
tion: DNI, DHI, GHI, and Temperature. We computed the
NRMSE for each parameter, summarized in Figure 7. The
NRMSE values for DNI, DHI, GHI, and Temperature were
36.81%, 24.03%, 30.12%, and 12.81%, respectively.

3.4 Impact of snow coverage

This paper underscores the impact of snow on the energy
yield of bifacial panels, a factor that significantly influences
the sizing of power systems that utilize these panels. The
common sizing methodology employs weather data,
predominantly irradiance time series, to project the annual
power variation of a single bifacial PV module. Subse-
quently, an optimization algorithm is used to ascertain the
ideal number of modules needed to fulfill specific objectives
while complying with load constraints. This method is
extensively adopted in various studies and tools, including
but not limited to Homer Pro and Pvsyst [25–27]. However,
in regions prone to heavy snowfall, the power production of
PV panels can be considerably diminished due to snow
coverage.

To confirm the accumulation of snow on the modules,
we have utilized the ‘snow on the ground’metric, measured
in centimeters. The variations in this specific parameter
have been derived from an extensive database managed by
a station located in Linexoville, Sherbrooke. In order to
validate the presence of snow on the front surface of the
module, we have strategically placed a camera directed
towards the installed bifacial module. This configuration
allows us to visually confirm and track the build-up of
snow.

From Figures 8 and 9, a discernible pattern emerges:
when the accumulated snow on the ground reaches or
exceeds 2 cm, and the derivative of snow accumulation
from the previous day is positive, the solar modules become
entirely covered by snow on their front surface. This
phenomenon is evident in the data for the four specific days
depicted in Figure 9 namely, January 20, 2024, January 15,
2024, January 8, 2024, and May 12, 2024.

Conversely, it is observed that when the snow
accumulation surpasses or equals 2 cm, and the deriva-
tive of the accumulation from the preceding day is
negative, coupled with a significant temperature escala-
tion, these conditions instigate the activation of the
sliding phenomenon. This results in the clearance of the
front surface of the bifacial panels. In our photographic
series 35, we have documented a day where this
phenomenon was observed, specifically on December
10th. On this day, the snow depth was 13 cm, however,
there was a notable increase in the daily mean
temperature. Starting from December 6th, 2024, the
temperature rose from �10 °C and reached 5.5 °C on
December 10th, 2024. This thermal shift appears to have
contributed to the observed sliding phenomenon.



Fig. 6. Comparison of Measured and Estimated Power Output using pvfactors (Top Module) and Solcast Data.

S. Ghafiri et al.: EPJ Photovoltaics 15, 28 (2024) 9
Under the full coverage of the front surface all the string
of the bifacial panels are masked with the snow. Thus only
the rear surface of the bifacial modules generates the power
based on the power and the expression of the power
production can be expression as follows:

Pbif ¼ Pmp
hFr

Fref
1þ ap T cell � Tc;stc

� �� �
: ð5Þ

Figure 10 presents a heatmap of the production output
for each module, recorded at 12:00 (UTC-5) on January 8,
2024. As depicted in Figure 8, the panels were entirely
covered with snow throughout the day. The snow
accumulation on the ground was measured to be 10 cm.
In the absence of snow coverage, the top modules were
estimated to produce approximately 86.6W. However, the
highest observed value was only 17.8W, indicating a power
loss of 79%.

To enhance the modeling of power production during
the winter season, we employed equation (2) under
conditions of complete snow coverage. We identified days
where the snow depth exceeded 2 cm, and the daily mean
and maximum temperatures were strictly below 0 °C to
ensure the absence of snow sliding phenomena. These
conditions were met from January 19, 2021, to February
27, 2021, and again from December 6, 2021. Previously, the



Fig. 7. Discrepancy between measured values and Solcast (Satellite-Derived): DNI, DHI, GHI, and Temperature.

Fig. 8. Accumulation of snowfall (in cm) in Sherbrooke.
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Fig. 9. Bifacial PV String Installation on Sherbrooke Campus: A photo series captured across selected Winter days of 2023-2024.

Fig. 10. Measured Power Output of fully snow covered front surface Bifacial Modules on January 8, 2024.
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NRMSE value for the winter season was 18.77%, with anR2

value of 0.35. After refining the modeling approach to
account for the impact of snow, the NRMSE value
improved to 9.17%, and the R2 value increased to 0.83,
reflecting an improvement of approximately 51.1% in
NRMSE and a substantial enhancement in R2.

Despite these improvements, further refinement is
possible. As observed in Figure 11, there are instances
where the power production of bifacial modules is under-
estimated. This discrepancy may be attributed to
undetected snow sliding phenomena.
4 Conclusion

With their promising energy yield and reasonable
manufacturing cost, bifacial panels technology is showing
remarkable momentum in the PVmarket, thus an accurate
and fast model of the bifacial panel is necessary for sizing
and implementing efficient management strategies for
stations that use these modules. This study presents an
experimentally validated model of bifacial panels tailored
for snow-prone climates, ensuring strict time efficiency.



Fig. 11. Refinement of NRMSE value via snow coverage consideration in Winter season modelling.
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The evaluated model, based on the pvfactors, achieves
NRMSE of 18.77%, 4.94%, 3.93%, and 6.22% for Winter,
Spring, Summer, and Fall, respectively. Remarkably, it
accomplishes these results in under 15 seconds for a full year
simulation of 2021. In contrast, simulations using the
bifacial_radiance model are significantly slower, with
corresponding NRMSE values of 17.92%, 4.9%, 4.12%,
and5.96%for thesameseasons.Thepvfactorsmodel strikesa
commendable balance between accuracy and execution time
across three seasons,withwinterbeing the exception.During
winter, the model tends to overestimate power production
due to high agreementwith clearweather periods, leading to
notable discrepancies. Sensitivity analysis using satellite-
imagery driven data from Solcast revealed a substantial
performance drop, attributed to the data quality. Further
investigation, includingcameramonitoringof thePVarrays,
identified snow coverage on the front surface of the modules
as the primary cause of poor winter performance. Snow
coverage can reduce production by up to 80%, leaving the
rear surface as the sole power producer. Incorporating snow
depth metrics to estimate snow presence on panel surfaces
improved model accuracy by 51%. In summary, the
pvfactors-based model offers a robust and efficient solution
for simulatingbifacial panel performance, particularly under
varying seasonal conditions, while highlighting areas for
improvement in snow-affected regions.
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