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ABSTRACT

All famous machine learning algorithms that comprise both supervised and semi-supervised learning
work well only under a common assumption: the training and test data follow the same distribution.
When the distribution changes, most statistical models must be reconstructed from new collected
data, which for some applications can be costly or impossible to obtain. Therefore, it has become
necessary to develop approaches that reduce the need and the effort to obtain new labeled samples
by exploiting data that are available in related areas, and using these further across similar fields.
This has given rise to a new machine learning framework known as transfer learning: a learning
setting inspired by the capability of a human being to extrapolate knowledge across tasks to learn
more efficiently. Despite a large amount of different transfer learning scenarios, the main objective
of this survey is to provide an overview of the state-of-the-art theoretical results in a specific, and
arguably the most popular, sub-field of transfer learning, called domain adaptation. In this sub-field,
the data distribution is assumed to change across the training and the test data, while the learning
task remains the same. We provide a first up-to-date description of existing results related to domain
adaptation problem that cover learning bounds based on different statistical learning frameworks.

Keywords Transfer learning · Domain adaptation · Learning theory

This survey is a shortened version of the recently published book "Advances in Domain Adaptation Theory"
[Redko et al., 2019c] written by the authors of this survey. Its purpose is to provide a high-level overview of the
book and to update it with some recent references. All of the proofs and most of the mathematical developments
are omitted in this version, to keep the document to a reasonable length. For more details, we refer the interested
reader to the original papers or to the full version of the book, available at https://www.elsevier.com/
books/advances-in-domain-adaptation-theory/redko/978-1-78548-236-6.

1 Introduction

The idea behind transfer learning is inspired by the ability of human beings to learn with minimal or no supervision
based on previously acquired knowledge. It is not surprising that this concept was not invented in the machine-learning
community in the correct sense of the term, as the concept of "transfer of learning" had been used long before the
construction of the first computer, and can be found in papers in the field of psychology from the early 20th century.
From the statistical point of view, this learning scenario is different from supervised learning, as transfer learning does
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Figure 1: Comparison of standard supervised learning, transfer learning, and positioning of the domain adaptation.

not assume that the training and test data have to be drawn from the same probability distribution. It was argued that
this assumption is often too restrictive to hold in practice, as in many real-world applications a hypothesis is learned and
deployed in environments that differ and exhibit an important shift. A typical example often used in transfer learning
is to consider a spam-filtering task where the spam filter is learned using an arbitrary classification algorithm for a
corporate mailbox of a given user. In this case, the vast majority of the e-mails analyzed by the algorithm are likely to
be of a professional character, with very few of them being related to the private life of the person considered. Imagine
further a situation where this same user installs mailbox software on the personal computer and imports the settings of its
corporate mailbox, with the hope that it will work equally well on this too. However, this is not likely to be the case, as
many personal e-mails may appear to be spam to an algorithm that has learned purely on professional communications,
due to the differences in their content and attached files, as well as the nonuniformity of e-mail addresses. Another
illustrative example is that of species classification in oceanographic studies, where experts rely on video coverage of a
certain sea area to recognize species of the marine habitat. For instance, in the Mediterranean Sea and in the Indian
Ocean, the species of fish that can be found on the recorded videos are likely to belong to the same family, even though
their actual appearance might be quite dissimilar due to the different climate and evolutionary backgrounds. In this case,
the learning algorithm trained on the video coverage of the Mediterranean Sea will most likely fail to provide correct
classification of species in the Indian Ocean without being specifically adapted by an expert.

For these kinds of applications, it might be desirable to find a learning paradigm that can remain robust to a changing
environment and can adapt to a new problem at hand, by drawing parallels and exploiting the knowledge from the
domain where it was learned initially. In response to this problem, the quest for new algorithms that can learn on a
training sample and then provide good performance on a test sample from a different, but related, probability distribution
gave rise to a new learning paradigm, known as transfer learning. Its definition is given as follows.

Definition 1. (Transfer learning) We consider a source data distribution S called the source domain, and a target
data distribution T called the target domain. Let XS × YS be the source input and output spaces associated to S , and
XT ×YT be the target input and output spaces associated to T . We use SX and TX to denote the marginal distributions
of XS and XT , tS and tT to denote the source and target learning tasks depending on YS and YT , respectively. Then,
transfer learning aims to help to improve the learning of the target predictive function fT : XT → YT for tT using
knowledge gained from S and tS , where S 6= T .

Note that the condition S 6= T implies either SX 6= TX (i.e., XS 6= XT or SX(X) 6= TX(X)) or tS 6= tT (i.e.,
YS 6= YT or S(Y |X) 6= T (Y |X)). In transfer learning, three possible learning settings are often distinguished based
on these different relationships (illustrated in Figure 1):

1. Inductive transfer learning where SX = TX and tS 6= tT ;
For example, SX and TX are the distributions of the data collected from the mailbox of one particular user,
where tS is the task of detecting spam, while tT is the task of detecting a hoax;
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2. Transductive transfer learning where SX 6= TX but tS = tT ;
For example, in the spam filtering problem, SX is the distribution of the data collected for one user, TX is the
distribution of the data of another user, and tS and tT are both the task of detecting spam;

3. Unsupervised transfer learning where tS 6= tT and SX 6= TX;
For example, SX generates the data collected from one user and TX generates the content of web-pages
collected on the web, where tS is to filter out spams, while tT is to detect hoaxes.

Arguably, the vast majority of situations where transfer learning is most needed fall into the second category. This
second category has the name of domain adaptation, where we suppose that the source and the target tasks are the same,
but where we have a source dataset with an abundant amount of labeled observations and a target dataset with no (or
few) labeled instances. In this survey, we concentrate on theoretical advances related to the latter case, and we highlight
their differences with respect to the traditional supervised learning paradigm. A brief overview of the contributions
presented is given in Tables 1 and 2 for learning bounds and hardness results, respectively.

Table 1: Summary of the learning bounds presented in this survey for domain adaptation. (Task) refers to the considered
learning problem; (Framework) specifies the statistical learning framework used in the analysis; (Divergence) is the
metric used to compare the source and target distributions; (Link) represents the dependence between the source error
and the divergence term; (Non-estim.) indicates the presence of a nonestimable term in the bounds.

REFERENCE
LEARNING BOUNDS

TASK FRAMEWORK DIVERGENCE LINK NON-ESTIM.

[Ben-David et al., 2007]
[Blitzer et al., 2008]

[Ben-David et al., 2010a]

Binary
classification VC L1,H∆H Add. +

[Mansour et al., 2009a] Classification/
Regression Rademacher Discrepancy Add. +

[Kuroki et al., 2019] Classification Rademacher (S-)Discrepancy Add. +

[Cortes et al., 2010]
[Cortes and Mohri, 2014]

[Cortes et al., 2015]
Regression Rademacher (Generalized)

Discrepancy Add. +

[Mansour et al., 2008] Classification/
Regression – – – –

[Mansour et al., 2009b]
[Hoffman et al., 2018]

Classification/
Regression – Rényi Mult. –

[Dhouib and Redko, 2018] Binary classification/
Similarity learning – L1, χ2 Mult. +

[Redko et al., 2019a] Binary classification Rademacher Discrepancy Add. +

[Zhang et al., 2012] Regression/
Classification

Uniform
entropy number IPM Add. –

[Redko, 2015] Regression Rademacher IPM/MMD Add. +

[Redko et al., 2017] Regression – IPM/Wassertein Add. +

[Zhang et al., 2019] Large-margin
classification Rademacher IPM Add. +

[Dhouib et al., 2020b] Large margin
Binary classification – IPM/minimax Wasserstein Add. +

[Johansson et al., 2019] Classification – IPM Add. +

[Shen et al., 2018] Classification – Wasserstein Add. +

[Courty et al., 2017] Classification – Wasserstein Add. +

[Germain et al., 2013] Classification PAC-Bayes Domain disagreement Add. +

[Germain et al., 2016] Classification PAC-Bayes β-divergence Mult. +
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[Li and Bilmes, 2007] Classification PAC-Bayes – Add. –

[McNamara and Balcan, 2017] Binary classification VC/PAC-Bayes – Add. –

[Mansour and Schain, 2014] Classification Robustness λ-shift Add. –

[Kuzborskij and Orabona, 2013]
[Kuzborskij and Orabona, 2017]

[Du et al., 2017]
Regression Stability – – –

[Perrot and Habrard, 2015] Classification/
Similarity learning Stability – – –

[Morvant et al., 2012] Classification/
Similarity learning Robustness/VC H∆H Add. +

Table 2: Summary of the contributions presented in this survey for hardness results in domain adaptation. (Type) is
the type of result obtained; (Setting) indicates the presence or absence of target data (either labelled or unlabelled);
(Assumptions) indicates the assumptions considered (individual or combined); (Proper) specifies whether the learned
model is required to belong to a predefined class; (Constr.) indicates whether the result is of a constructive nature.

REFERENCE
HARDNESS RESULTS

TYPE SETTING ASSUMPTIONS PROPER CONSTR.

[Ben-David et al., 2010b] Impossibility/
Sample compl. Unlabelled target Cov. shift,

H∆H, λH
– +

[Ben-David et al., 2012] Impossibility/
Sample compl.

No target/
Unlabelled target

Cov. shift,
CB, Lipscht. + +/–

[Ben-David and Urner, 2012] Impossibility/
Sample compl. Unlabelled target Cov. shift,

CB, Realizab. – –

[Redko et al., 2019b] Estimation/
Sample compl. Labelled target – – –

[Zhao et al., 2019] Impossibility Unlabelled target Cov. shift,
H∆H, λH

– +

[Johansson et al., 2019] Impossibility Unlabelled target Cov. shift,
H∆H, λH

– +

[Hanneke and Kpotufe, 2019] Sample compl. Labelled target Relaxed cov. shift,
Noise cond. – –

The rest of this survey is organized as follows. In Section 2, we briefly present the traditional statistical learning
frameworks that are referred to throughout the survey. In Section 3, we present the first theoretical results of the domain
adaptation theory from the seminal studies of [Ben-David et al., 2007, Mansour et al., 2009a, Cortes and Mohri, 2011]
that rely on the famousH∆H and discrepancy distances. We further turn our attention to hardness results for the domain
adaptation problem in Section 4. Section 5 presents several studies that establish the generalization bounds for domain
adaptation based on the popular integral probability metrics (IPMs). In Section 6, we highlight several learning bounds
defined using the PAC-Bayesian framework. Finally, in Section 7, we give an overview of the contributions that take the
actual learning algorithm into account when deriving the learning bounds, and we conclude the survey in Section 8.

2 Preliminary knowledge

Below we recall the usual supervised learning set-up and the different quantities used to derive generalization bounds in
this context. This includes the concepts of Vapnik-Chervonenkis (VC) [Vapnik, 2006, Vapnik and Chervonenkis, 1971]
and Rademacher complexities [Koltchinskii and Panchenko, 1999], the definitions related to the PAC-Bayesian the-
ory [McAllester, 1999], and those from the more recent algorithmic stability [Bousquet and Elisseeff, 2002] and algo-
rithmic robustness [Xu and Mannor, 2010] frameworks.
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2.1 Definitions

Let a pair (X, Y ) define the input and the output spaces where X is described by real-valued vectors of finite dimension
d, i.e., X ⊆ Rd, and for Y we distinguish between two possible scenarios: 1) when Y is continuous, e.g., Y = [−1, 1]
or Y = R, we talk about regression; 2) when Y is discrete and takes values from a finite set, we talk about classification.
Two important cases of classification are binary classification and multi-class classification, where Y = {−1, 1} (or
Y = {0, 1}) and Y = {1, 2, . . . , C} with C > 2, respectively.

We assume that X× Y is drawn from an unknown joint probability distribution D and that we observe them through a
finite training sample (also called the learning sample) S = {(xi, yi)}mi=1 ∼ (D)m of m independent and identically
distributed (i.i.d.) pairs (also called examples or data instances). We further use H = {h|h : X → Y } to denote a
hypothesis space (also called the hypothesis class) that consists of functions that map each element of X to Y . These
functions h are usually called hypotheses, or more specifically classifiers or regressors, depending on the nature of Y .

Let us now consider a loss function ` : Y × Y → [0, 1] that gives a cost of h(x) deviating from the true output y ∈ Y .
We can define the true risk and the empirical risk with respect to D and S, respectively, as follows.
Definition 2. (True risk) Given a loss function ` : Y × Y → [0, 1], the true risk (also called the generalization error)
R`
D(h) for a given hypothesis h ∈ H on a distribution D over X× Y is defined as

R`
D(h) = E

(x,y)∼D
`(h(x), y).

By abuse of notations, for a given pair of hypotheses (h, h′) ∈ H2, we can write

R`
D(h, h′) = E

(x,y)∼D
`(h(x), h′(x)).

Definition 3. (Empirical risk) Given a loss function ` : Y × Y → [0, 1] and a training sample S = {(xi, yi)}mi=1,
where each example is drawn i.i.d. from D, the empirical risk R`

D̂(h) for a given hypothesis h ∈ H is defined as

R`
D̂(h) =

1

m

m∑
i=1

`(h(xi), yi) ,

where D̂ is the empirical distribution associated to the sample S.

The most natural loss function that can be used to count the number of errors committed by hypothesis h ∈ H on the
distribution D is the 0− 1 loss function `0−1 : Y × Y → {0, 1}, which is defined for a training example (x, y) as

`01(h(x), y) = I [h(x) 6= y] =

{
1, if h(x) 6= y ,
0, otherwise. (1)

(0,0)

(0,1)

(1,0)(-1,0)

Zero-one loss

Hinge loss

Linear loss

Figure 2: Illustration of different
loss functions.

A popular proxy to this nonconvex function is the hinge loss defined for a given
pair (x, y) by

`hinge(h(x), y) = [1− yh(x)]+ = max (0, 1− yh(x)) .

Another loss function often used in practice that extends the 0− 1 loss to the case
of real values is the linear loss `lin : R× R→ [0, 1], defined by:

`lin(h(x), y) =
1

2
(1− yh(x)) .

The three above-mentioned loss functions are illustrated in Figure 2. Note that
in Figure 2, the X-axis are yh(x) values, as h(x) = y is equivalent to yh(x) ≥ 0
when Y = {−1, 1}.

Notations Below, we present the notations that are used throughout the survey.

X Input space
Y Output space
D A domain: a yet unknown distribution over X× Y
DX Marginal distribution of D on X
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D̂X Empirical distribution associated with a sample drawn from DX

SUPP(D) Support of distribution D
Pr(·) Probability of an event
E(·) Expectation of a random variable
x=(x1, . . . , xd)

>∈Rd A d-dimensional real-valued vector
(x, y) ∼ D (x, y) is drawn i.i.d. from D
S={(xi, yi)}mi=1∼(D)m Labeled learning sample constituted by m examples drawn i.i.d. from D
Su={(xi)}mi=1∼(DX)m Unlabeled learning sample constituted by m examples drawn i.i.d. from DX

|S| Size of the set S
H Hypothesis space
I [a] Indicator function: returns 1 if a is true, 0 otherwise
sign [a] Return the sign of a: 1 if a ≥ 0, −1 otherwise
M An arbitrary matrix
M> Transpose of the matrix M
0 Null vector (matrix)
‖ · ‖1 L1-norm
‖ · ‖∞ L∞-norm

2.2 Probably approximately correct setting

Statistical learning theory [Vapnik, 1995] provides us with results regarding the conditions that ensure the convergence
of the empirical risk to the true risk for a given hypothesis class. These results are known as the generalization bounds,
and they are usually expressed in the form of probably approximately correct (PAC) inequalities [Valiant, 1984] that
have the following form:

Pr
S∼(D)m

{
|R`
S(h)− R`

D(h)| ≤ ε
}
≥ 1− δ,

where ε > 0 and δ ∈ (0, 1]. This expression essentially tells us that we want to upper-bound the gap between the true
risk and its estimated value by the smallest possible value of ε and with a high probability over the random choice of
the training sample S. The major question now is to understand whether R`

S(h) converges to R`
D(h) with an increasing

size of the learning sample, and what is the speed of this convergence. We now proceed to a presentation of several
theoretical paradigms that were proposed in the literature to show the different characteristics of a learning model or a
data sample that this speed can depend on.

2.3 Vapnik-Chervonenkis complexity

Vapnik-Charvonenkis (VC) bounds [Vapnik and Chervonenkis, 1971, Vapnik, 2006] are based on the original definition
that allows quantification of the complexity of a given hypothesis class. This concept of complexity is captured by the
famous VC dimension that is defined as follows.

Definition 4. (VC dimension) The VC dimension VC(H) of a given hypothesis class H for the problem of binary
classification is defined as the largest possible cardinality of some subset X′ ⊂ X for which there exists a hypothesis
h ∈ H that perfectly classifies elements from X′ whatever their labels are. More formally, we have

VC(H) = max{|X′| : ∀yi ∈ {−1,+1}|X
′|,∃h ∈ H so that ∀xi ∈ X′, h(xi) = yi}.

Figure 3: Illustration of the
Vapnik-Charvonenkis (VC) dimen-
sion. Here, half-planes in Rd with
d = 2 can correctly classify at most
three points for all possible 23 la-
belings. The VC dimension here is
2 + 1.

As follows from the definition, the VC dimension is the cardinality of the biggest
subset of a given sample that can be subject to perfect classification provided by a
hypothesis fromH for all possible labelings of its observations. To illustrate this,
we can consider the classical example given in Figure 3, where the hypothesis
class H consists of half-planes in Rd. In this particular case with d = 2, we
can perfectly classify only d + 1 elements, regardless their labeling, as for the
case with d+ 2 points this will no longer be possible. This means that the VC
dimension of the class of half-planes in Rd is d+ 1. Note that the result obtained
reveals that in this particular scenario, the VC dimension is equal to the number of
parameters needed to define the function of the hypothesis plane. This, however,
is not true in general, as some classes might have an infinite VC dimension despite
the finite number of parameters needed to define the hypothesis class. A common
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example used in the literature to show this is given by

H = {hθ(x) : X→ {0, 1} : hθ(x) =
1

2
sin(θx), θ ∈ R}.

It can be proven that the VC dimension of this class is infinite.

The following theorem uses the VC dimension of a hypothesis class to upper-bound the gap between the true and the
empirical error for a given loss function and a finite sample of size m.

Theorem 1. Let X be an input space, Y = {−1,+1} the output space, and D their joint distribution. Let S be a finite
sample of size m drawn i.i.d. from D, andH = {h : X → Y } be a hypothesis class of VC dimension VC(H). Then for
any δ ∈ (0, 1] with probability of at least 1− δ over the random choice of the training sample S ∼ (D)m, the following
holds

∀h ∈ H, R`
D(h) ≤ R`

S(h) +

√
4

m

(
VC(H) ln

2em

VC(H)
+ ln

4

δ

)
.

2.4 Rademacher complexity

Intuitively, the Rademacher complexity measures the capacity of a given hypothesis class to resist against noise that
might be present in the data. This, in turn, was shown to lead to more accurate bounds than those based on the VC
dimension [Koltchinskii and Panchenko, 1999]. To present the Rademacher bounds, we first provide a definition of a
Rademacher variable.

Definition 5. (Rademacher variable) A random variable κ defined as

κ =

{
1, with probability 1

2
−1, otherwise ,

is called the Rademacher variable.

From this definition, a Rademacher variable defines a random binary labeling as it takes values −1 and 1 with equal
probability and allows the introduction of the Rademacher complexity for an unlabeled sample of size m, as follows.

Definition 6. (Rademacher complexity) For a given unlabeled sample S = {(xi)}mi=1 and a given hypothesis classH,
the Rademacher complexity is defined as follows:

RS(H) = E
κ

[
sup
h∈H

2

m

m∑
i=1

κih(xi)

]
,

where κ is a vector of m independent Rademacher variables. The Rademacher complexity for the whole hypothesis
class is thus defined as the expected value ofRS(H) by

Rm(H) = E
S∼(D)m

RS(H).

In this definition,RS(H) encodes the complexity of a given hypothesis classH based on the observed sample S, while
Rm(H) is the expected value of this complexity over all possible samples that were drawn from some joint probability
distribution. Contrary to the VC dimension, this complexity measure is defined in terms of the expected value over
all labelings, and not only the worst one. The following theorem presents the Rademacher-based generalization
bound [Koltchinskii and Panchenko, 1999, Bartlett and Mendelson, 2002].

Theorem 2. Let S = {(xi, yi)}mi=1 be a finite sample of m examples drawn i.i.d. from D, andH = {h : X→ Y } be a
hypothesis class. Then, for any δ ∈ (0, 1] with probability of at least 1− δ over the choice of the sample S ∼ (D)m,
the following holds

∀h ∈ H, R`
D(h) ≤ R`

S(h) +Rm(H) +

√
ln 1

δ

2m
.
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2.5 PAC-Bayesian bounds

The PAC-Bayesian approach [Shawe-Taylor and Williamson, 1997, McAllester, 1999] provides generalization bounds
for a hypothesis expressed as a weighted majority vote over the hypothesis space H, as, for instance, in ensemble
methods [Dietterich, 2000, Re and Valentini, 2012]. In this section, we recall the general PAC-Bayesian generalization
bound as presented in [Germain et al., 2015] in the setting of binary classification, where Y = {−1, 1} with the 0− 1
loss or the linear loss. To derive such a generalization bound, a prior distribution π overH is assumed, which models
an a-priori belief on the hypotheses from H before the observation of the training sample S ∼ (D)m. Given S, the
learner aims to find a posterior distribution ρ overH that leads to a well-performing ρ-weighted majority vote Bρ(x)
(also called the Bayes classifier), defined as

Bρ(x) = sign

[
E
h∼ρ

h(x)

]
.

In other words, rather than finding the best hypothesis from H, we want to learn ρ over H, such that this minimizes
the true risk RD(Bρ) of the ρ-weighted majority vote. However, PAC-Bayesian generalization bounds do not directly
focus on the risk of the deterministic ρ-weighted majority vote Bρ, but on giving an upper bound over the expectation
over ρ of all of the individual hypothesis true risks, called the Gibbs risk: Eh∼ρ R`

D(h). The Gibbs risk is associated
to a stochastic classifier, called the Gibbs classifier, which draws a hypothesis h from H according to the posterior
distribution ρ, and predicts the label of x given by h(x). An important behavior of the Gibbs risk is that it is closely
related to the deterministic ρ-weighted majority vote. Indeed, if Bρ miss-classifies x ∈ X, then at least half of the
classifiers (under measure ρ) make a prediction error on x. Therefore, we have

R`
D(Bρ) ≤ 2 E

h∼ρ
R`
D(h). (2)

Thus, an upper bound on E
h∼ρ

R`
D(h) provides an upper bound on R`

D(Bρ) as well.

Note that PAC-Bayesian generalization bounds do not directly take into account the complexity of the hypothesis class
H, contrary to the Rademacher complexity or the VC dimension, but they measure the deviation between the prior
distribution π and the posterior distribution ρ onH through the Kullback-Leibler divergence:

KL(ρ|π) = E
h∼ρ

ln
ρ(h)

π(h)
.

The result that follows is a general PAC-Bayesian theorem that takes the form of an upper bound on the deviation
between the true and empirical Gibbs risks when measured by a convex function D : [0, 1]× [0, 1]→ R.
Theorem 3 ([Germain et al., 2009, Germain et al., 2015]). For any distribution D on X× Y , for any hypothesis class
H, for any prior distribution π on H, for any δ ∈ (0, 1], for any convex function D : [0, 1] × [0, 1] → R, with a
probability of at least 1− δ over the random choice of S ∼ (D)m, we have, for all posterior distribution ρ onH,

D

(
E
h∼ρ

R`
S(h), E

h∼ρ
R`
D(h)

)
≤ 1

m

[
KL(ρ|π) + ln

(
1

δ
E

S∼(D)m
E
h∼π

emD(R`S(h),R`D(h))
)]
.

By upper-bounding E
S∼(D)m

E
h∼π

emD(R`S(h)) and by selecting a well-suited deviation function D, we can retrieve the

classical versions of the PAC-Bayesian theorem (i.e., [McAllester, 1999, Seeger, 2002, Catoni, 2007]).

2.6 Uniform stability

As the complexity of the hypothesis class intuitively depends directly on the properties of a learning algorithm, it might
be desirable to have the generalization bounds that manifest this relationship explicitly. [Bousquet and Elisseeff, 2002]
introduced generalization bounds that provide a solution to this problem based on the concept of uniform stability of a
learning algorithm. We now give its definition.
Definition 7. (Uniform stability) An algorithm A has uniform stability β with respect to the loss function ` if the
following holds

∀S ∈ {X× Y }m,∀i ∈ {1, . . . ,m}, sup
(x,y)∈S

|`(hS(x), y)− `(hS\i(x), y)| ≤ β ,

where the hypothesis hS is learned on the sample S while hS\i is obtained on S with its ith observation being deleted.
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The intuition behind this definition is to say that an algorithm that is expected to generalize well should be robust to
small perturbations in the training sample. Consequently, stable algorithms should have an empirical error that remains
close to their generalization error. This idea is confirmed by the following theorem.
Theorem 4. LetA be an algorithm with uniform stability β with respect to a loss function `, such that 0 ≤ `(hS(x, y) ≤
M , for all (x, y) ∈ (X× Y ) and all sets S. Then, for any m ≥ 1, and any δ ∈ (0, 1], the following bound holds with
probability of at least 1− δ over the random choice of the sample S,

R`
D(hS) ≤ R`

S(hS) + 2β + (4mβ +M)

√
ln 1

δ

2m
.

2.7 Algorithmic robustness

The main underlying idea of algorithmic robustness [Xu and Mannor, 2010, Xu and Mannor, 2012] is to say that a
robust algorithm should have similar performance in terms of the classification error for testing and training samples
that are close. The measure of similarity used to define whether two samples are close or not relies on partitioning the
joint space X× Y in a way that puts two similar points of the same class in the same partition. This partition is further
defined using the concept of covering numbers [Kolmogorov and Tikhomirov, 1959], as introduced below.
Definition 8. (Covering number) Let (Z, %) denote a metric space with metric %(·) defined on Z. For Z ′ ⊂ Z, we
say that Ẑ ′ is a γ covering of Z ′, if for any element t ∈ Z ′ there is an element t̂ ∈ Ẑ ′ such that %(t, t̂) ≤ γ. Then the
number of γ covering of Z ′ is expressed as

N(γ, Z ′, %) = min
{∣∣∣Ẑ ′∣∣∣ : Ẑ ′ is a γ-covering of Z ′

}
.

In the case where X is a compact space, its covering number N(γ,X, %) is finite. Furthermore, for the product space
X × Y , the number of γ-covering is also finite and is equal to |Y |N(γ,X, %). As previously explained, the above
partitioning ensures that two points from the same subset are from the same class and are close to each other with
respect to metric %. Bearing this in mind, the algorithmic robustness is defined as follows.
Definition 9. (Algorithmic robustness) Let S be a training sample of size m where each example is drawn from the
joint distribution D on X× Y . An algorithm A is (M, ε(·))-robust on D with respect to a loss function ` for M ∈ N
and ε(·) : (X× Y )m → R if X× Y can be partitioned into M disjoint subsets denoted by {Zj}Mj=1, so that for all
(x, y) ∈ X× Y , (x′, y′) drawn from D and j ∈ {1, . . . ,M} we have(

(x, y), (x′, y′)
)
∈ Z2

j −→ |`(hS(x), y)− `(hS(x′), y′)| ≤ ε(S) ,

where hS is a hypothesis learned by A on S.

We are now ready to present the generalization guarantees that characterize robust algorithms that verify the definition
presented above.
Theorem 5. Let S be a finite sample of size m drawn i.i.d. from D, A be (M, ε(·))-robust on D with respect to a loss
function `(·, ·), such that 0 ≤ `(hS(x), y) ≤ M`, for all (x, y) ∈ (X × Y ). Then, for any δ ∈ (0, 1], the following
bound holds with probability of at least 1− δ over the random draw of the sample S ∼ (D)m,

R`
D(hS) ≤ R`

S(hS) + ε(S) +M`

√
2M ln 2 + 2 ln 1

δ

m
,

where hS is a hypothesis learned by A on S.

Note that the algorithmic robustness focuses on measuring the divergence between the costs associated to two similar
points, assuming that the learned hypothesis function should be locally consistent. Uniform stability, in turn, explores
the variation in the cost due to perturbations of the training sample, and thus assumes that the learned hypothesis does
not change much.

3 Seminal divergence-based learning bounds

In this section, we provide the description of domain adaptation generalization bounds that laid the foundation of this
field. These seminal bounds mainly relied on traditional divergence measures between the probability distributions, to
relate the source and target domains.
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3.1 Learning bound based on the L1-distance

From a theoretical point of view, the domain adaptation problem was rigorously investigated for the first time by
[Ben-David et al., 2007] and [Ben-David et al., 2010a]1. The authors of these papers focused on the domain adaptation
problem following VC theory (recalled in Section 2.3) and considered the 0− 1 loss (Equation 1) function in the setting
of binary classification with Y = {−1,+1}. They further proposed to make use of the L1-distance, the definition of
which is given below.

Definition 10. (L1-distance) Let B denote the set of measurable subsets under two probability distributions D1 and
D2. The L1-distance or the total variation distance between D1 and D2 is defined as

d1(D1,D2) = 2 sup
B∈B

∣∣∣∣Pr
D1

(B)−Pr
D2

(B)

∣∣∣∣ .
The L1-distance is a proper metric on the space of probability distributions that informally quantifies the largest
possible difference between the probabilities that the two probability distributions D1 and D2 can assign to the same
event B. This distance is relatively popular in many real-world applications, such as image denoising or numerical
approximations of partial derivative equations.

Starting from Definition 10, the first important result from their work was formulated as follows.

Theorem 6 ([Ben-David et al., 2007]). Given two domains S and T over X × Y and a hypothesis class H, the
following holds

∀h ∈ H, R`01
T (h) ≤ R`01

S (h) + d1(SX, TX) + min

{
E

x∼SX
[|fS(x)− fT (x)|] , E

x∼TX
[|fT (x)− fS(x)|]

}
,

where fS(x) and fT (x) are the source and target true labeling functions associated to S and T , respectively.

This theorem presents the first result that relates the performance of a given hypothesis function with respect to two
different domains. It implies that the error achieved by a hypothesis in the source domain upper-bounds the true error
on the target domain where the tightness of the bound depends on the distance between their distributions and that of
the labeling functions.

3.2 Learning bound based onH∆H-divergence

Despite being the first result of this kind proposed in the literature, the idea of bounding the error in terms of the
L1-distance between the marginal distributions of the two domains includes two important restrictions: 1) the L1-
distance cannot be estimated from finite samples for arbitrary probability distributions; and 2) it does not allow the
divergence measure to be linked to the considered hypothesis class, and thus leads to very loose inequality.

To address these issues, the authors further defined the H∆H-divergence based on the A-divergence introduced in
[Kifer et al., 2004] for detection of changes in data streams. We give its definition below.

Definition 11 (Based on [Kifer et al., 2004]). Given two domains’ marginal distributions SX and TX over the input
space X, letH be a hypothesis class, and letH∆H denote the symmetric difference hypothesis space defined as

h ∈ H∆H ⇐⇒ h(x) = g(x)⊕ g′(x) ,

for some (g, g′)2 ∈ H2, where ⊕ stands for the XOR operation. Let I(h) denote the set for which h ∈ H∆H is the
characteristic function, i.e., x ∈ I(h)⇔ g(x) = 1. TheH∆H-divergence between SX and TX is defined as:

dH∆H(SX, TX) = 2 sup
h∈H∆H

∣∣∣∣Pr
SX

(I(h))−Pr
TX

(I(h))

∣∣∣∣ .
TheH∆H-divergence solves both problems associated with the L1-distance. First, from its definition, we can see that
H∆H-divergence explicitly takes into account the considered hypothesis class. This ensures that the bound remains
meaningful and directly related to the learning problem at hand. On the other hand, theH∆H-divergence for any class
H is never larger than the L1-distance, and thus can lead to a tighter bound. Finally, for a given hypothesis classH of
finite VC dimension, theH∆H-divergence can be estimated from finite samples using the following lemma.

1Note that in [Ben-David et al., 2010a], the authors presented an extended version of the results previously published in
[Ben-David et al., 2007] and [Blitzer et al., 2008].
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Lemma 7. Let H be a hypothesis space of VC dimension VC(H). If Su, Tu are unlabeled samples of size m each,
drawn independently from SX and TX, respectively, then for any δ ∈ (0, 1) with probability of at least 1− δ over the
random choice of the samples, we have

dH∆H(SX, TX) ≤ d̂H∆H(Su, Tu) + 4

√
2 VC(H) log(2m) + log( 2

δ )

m
, (3)

where d̂H∆H(Su, Tu) is the empiricalH∆H-divergence estimated on Su and Tu.

Inequality (3) shows that with an increasing number of instances and for a hypothesis class of finite VC dimension, the
empiricalH∆H-divergence can be a good proxy for its true counterpart. The former can be further calculated thanks to
the following result.
Lemma 8 ([Ben-David et al., 2010a]). LetH be a hypothesis space. Then, for two unlabeled samples Su, Tu of size
m, we have

d̂H∆H(Su, Tu) = 2

1− min
h∈H∆H

 1

m

∑
x:h(x)=0

I [x ∈ Su] +
1

m

∑
x:h(x)=1

I [x ∈ Tu]

 .

It can be noted that the expression of the empirical H∆H-divergence given above is essentially the error of the best
classifier for the binary classification problem of distinguishing between the source and target instances pseudo-labeled
with 0’s and 1’s. In practice, this means that the value of the H∆H-divergence depends explicitly on the hypothesis
class used to produce such a classifier. This dependence and the intuition behind theH∆H-divergence are illustrated
in Figure 4. In Figure 4, we consider two different domain adaptation problems, where for one of them the source
and target samples are well separated, while for the other, the source and target data are mixed together. To calculate
the value of theH∆H-divergence, we need to choose a hypothesis class used to produce a classifier that distinguishes
between them. Here, we consider two different families of classifiers: a linear support vector machine classifier, and its
nonlinear version with radial basis function kernels. For each solution, we also plot the decision boundaries to see how
the source and target instances are classified in both cases. From the visualization of the decision boundaries, we note
that the linear classifier fails to distinguish between the mixed source and target instances, while the nonlinear classifier
manages to do this relatively well. This is reflected by the value of theH∆H-divergence, which is zero in the first case
for both classifiers, and is drastically different for the second adaptation problem. Having two different divergence
values for the same adaptation problem might appear surprising at first sight, but this has a simple explanation. By
choosing a richer hypothesis class composed of nonlinear functions, we have increased the VC complexity of the
considered hypothesis space, and have thus increased the complexity term in Lemma 7. This shows the trade-off that
has to be borne in mind when theH∆H-divergence is calculated in the same way as is suggested by general VC theory.

At this point, we already have a "reasonable" version of the L1-distance used to derive the first seminal result. We have
also presented its finite sample approximation, but we have not yet applied this to relate the source and target error
functions. The next lemma gives the final key needed to obtain a learning bound for domain adaptation that is linked to
a specific hypothesis class and is derived for the available source and target finite size samples. This reads as follows.
Lemma 9 ([Ben-David et al., 2010a]). Let S and T be two domains on X× Y . For any pair of hypotheses (h, h′) ∈
H∆H2, we have ∣∣∣R`01

T (h, h′)− R`01
S (h, h′)

∣∣∣ ≤ 1

2
dH∆H(SX, TX).

Note that in this lemma, the source and target risk functions are defined for the same pairs of hypotheses, while the true
risk should be calculated based on a given hypothesis and the corresponding labeling function. This result presents the
complete learning bound for domain adaptation withH∆H-divergence, and it is established by means of the following
theorem.
Theorem 10 ([Ben-David et al., 2010a]). LetH be a hypothesis space of VC dimension VC(H). If Su, Tu are unlabeled
samples of size m′ each, which are drawn independently from SX and TX, respectively, then for any δ ∈ (0, 1) with
probability of at least 1− δ over the random choice of the samples, then for all h ∈ H

R`01
T (h) ≤ R`01

S (h) + 1
2 d̂H∆H(Su, Tu) + 4

√
2 VC(H) log(2m′) + log( 2

δ )

m′
+ λ ,

where λ is the combined error of the ideal hypothesis h∗ that minimizes RS(h) + RT (h).
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Source data

Figure 4: Illustration of the H∆H-divergence when the hypothesis class consists of linear (top row) and nonlinear
(bottom row) classifiers. Note that the indicated value ofH∆H is the error of the obtained classifier without subtracting
1 and multiplying the result by two, as in Lemma 8.

As indicated at the beginning of this section, a meaningful domain adaptation generalization bound should include
two terms that reflect both the divergence between the marginal distribution of the source and target domains, and the
divergence between their labeling functions. The first term here is obviously reflected by theH∆H-divergence between
the observable samples, while the second term is given by the λ term, as it depends on the true labels (and can be seen
as a measure of capacity to adapt). The presence of the trade-off between source risk, divergence, and capability to
adapt is a very important phenomenon in domain adaptation. Indeed, it shows that the reduction in the divergence
between the samples can be insufficient when there is no hypothesis that can achieve a low error on both the source and
target samples.

The semi-supervised case In the unsupervised case that we have considered previously, it is assumed that there is no
access to labeled instances in the target domain that can help to guide adaptation. For this case, the main strategy that
leads to an efficient adaptation is to have a classifier learned on a target-aligned labeled sample from the source domain,
and to apply it directly in the target domain afterwards. While this situation occurs relatively often in practice, many
applications can be found where several labeled target instances are available during the learning stage. In what follows,
we consider this situation and give a generalization bound for it, which shows that the error obtained by a classifier that
has been learned on a mixture of source and target labeled data can be upper-bounded by the error of the best classifier
learned using the target domain data only.

To proceed, let us now assume that we have βm instances drawn independently from T and (1 − β)m instances
drawn independently from S and labeled by fS and fT , respectively. A natural goal for this setting is to use the
available labeled instances from the target domain to find a trade-off between minimizing the source and the target
errors depending on the number of instances available in each domain and the distance between them. In this case, we
can consider the empirical combined error [Blitzer et al., 2008] defined as a convex combination of errors on the source
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and target training data for α ∈ [0, 1]:

R̂α(h) = αR`01
T̂

(h) + (1− α)R`01
Ŝ

(h).

The use of the combined error is motivated by the fact that if the number of instances in the target sample is small
compared to the number of instances in the source domain (which is usually the case in domain adaptation), minimizing
only the target error might not be appropriate. Instead, there might be the need to find a suitable value of α that ensures
the minimum of Rα(h) with respect to a given hypothesis h. Note that in this case, the shape of the generalization
bound that we are interested in becomes different. Indeed, in all previous theorems the goal was to upper-bound the
target error by the source error, while in this case we would like to know whether learning a classifier minimizing the
combined error is better than minimizing the target error using the available labeled instances alone. The answer to this
question is given by the following theorem.
Theorem 11 ([Blitzer et al., 2008, Ben-David et al., 2010a]). Let H be a hypothesis space of VC dimension VC(H).
Let S and T be the source and target domains, respectively, defined on X × Y . Let Su, Tu be unlabeled samples
of size m′ each, drawn independently from SX and TX, respectively. Let S be a labeled sample of size m generated
by drawing β m points from T (β ∈ [0, 1]) and (1− β)m points from S and labeling them according to fS and fT ,
respectively. If ĥ ∈ H is the empirical minimizer of R̂α(h) on S and h∗T = argmin

h∈H
R`01
T (h) then for any δ ∈ (0, 1),

with probability of at least 1− δ over the random choice of the samples, we have

R`01
T (ĥ) ≤ R`01

T (h∗T ) + c1 + c2 ,

where

c1 = 4

√
α2

β
+

(1− α)2

1− β

√
2 VC(H) log(2(m+ 1)) + 2 log( 8

δ )

m
,

and c2 = 2(1− α)

1

2
dH∆H(Su, Tu) + 4

√
2 VC(H) log(2m′) + log( 8

δ )

m′
+ λ

 . (4)

This theorem presents an important result that reflects the usefulness of the combined minimization of the source and
target errors based on the available labeled samples in both domains compared to the minimization of the target error
only. This essentially shows that the error achieved by the best hypothesis of the combined error in the target domain is
always upper-bounded by the error achieved by the hypothesis of the best target domain. Furthermore, this indicates
two important consequences:

1. if α = 1, the term related to the H∆H-divergence between the domains disappears, as in this case we have
enough labeled data in the target domain and a low-error hypothesis can be produced solely from the target
data;

2. if α = 0, the only way to produce a low-error classifier on the target domain is to find a good hypothesis in
the source domain while minimizing theH∆H-divergence between the domains. In this case, it has also to be
assumed that λ is low, so that the adaptation is possible.

Additionally, Theorem 11 can provide some insights into the optimal mixing value of α depending on the quantity of
labeled instances in the source and target domains. To illustrate this, the right-hand side of Equation (4) can be rewritten
as a function of α, to understand when this function is minimized. This gives

f(α) = 2B

√
α2

β
+

(1− α)2

1− β
+ 2(1− α)A,

where

B =

√
2 VC(H) log(2(m+ 1)) + 2 log( 8

δ )

m

is a complexity term that is approximately equal to
√

VC(H)/m and

A =
1

2
d̂H∆H(Su, Tu) + 4

√
2 VC(H) log(2m′) + log( 8

δ )

m′
+ λ
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is the total divergence between the two domains.

It then follows that the optimal value α∗ is a function of the number of target examples mT = βm, the number of
source examples mS = (1− β)m, and the ratio D =

√
VC(H)/A:

α∗(mS ,mT , D) =

{
1, mT ≥ D2

min(1, ν), mT ≤ D2

where

ν =
mT

mT +mS

(
1 +

mS√
D2(mS +mT )−mSmT

)
.

As mentioned in [Ben-David et al., 2010a], this reformulation offers two interesting insights. First, if mT = 0 (β = 0)
then α∗ = 0, and if mS = 0 (i.e., β = 1) then α∗ = 1. As mentioned above, this implies that if we have only source or
only target labeled data, the most appropriate choice is to use them for learning directly. Secondly, if the divergence
between two domains is zero, then the optimal combination is to use the training data with uniform weighting of the
examples. On the other hand, if there are enough target data, i.e., mT ≥ D2 = VC(H)/A2, then no source data are
required for efficient learning, and using it will be detrimental to the overall performance. This is because the possible
error decrease as a result of using additional source data is always subject to its increase due to the increasing divergence
between the source and target data. Secondly, for a few target examples, we might not have enough source data to
justify its use. In this case, the sample of the source domain can be simply ignored. Finally, once we have enough
source instances combined with a few target instances, α∗ takes on intermediate values. This analysis is illustrated in
Figure 5.

1 7 59 464 3593 27825 215443 1668100 12915496 100000000

Size of the source domain data

2000

2166

2333

2500

2666

2833

3000

3166

3333

3500

S
iz
e
 o
f 
th
e
 t
a
rg
e
t 
d
o
m
a
in
 d
a
ta

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: Illustration of the optimal value for α as a function of the number of source and target labeled instances.

3.3 Generalization bounds based on a discrepancy distance

One important limitation of the H∆H-divergence is its explicit dependence on a particular choice of a loss function,
which is taken to be a 0 − 1 loss. In general, however, it would be preferred to have generalization results for a
more general domain adaptation setting, where any arbitrary loss function ` with some reasonable properties can be
considered. In this section, we present a series of results that allow the first theoretical analysis of domain adaptation
presented in the previous section to be extended to any arbitrary loss function. As we will show, the new divergence
measure considered in this section is not restricted to be used exclusively for the task of binary classification, but can also
be used for large families of regularized classifiers and regression. Moreover, the results in this section use the concept
of the Rademacher complexity, as recalled in Section 2. This particular improvement will lead to data-dependent bounds
that are usually tighter that the bounds obtained using the VC theory.

Discrepancy distance We start with the definition of the new divergence measure that was first introduced in
[Mansour et al., 2009a]. As they mentioned, its name, the discrepancy distance, is due to the relationship between this
concept and the discrepancy problems that arise in combinatorial contexts.

Definition 12 ([Mansour et al., 2009a]). Given two domains S and T over X× Y , letH be a hypothesis class, and let
` : Y × Y → R+ define a loss function. The discrepancy distance disc` between the two marginals SX and TX over X
is defined by

disc`(SX, TX) = sup
(h,h′)∈H2

∣∣∣∣ E
x∼SX

[` (h′(x), h(x))]− E
x∼TX

[` (h′(x), h(x))]

∣∣∣∣ .
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We note that theH∆H-divergence and the discrepancy distance are related. First, for the 0− 1 loss, we have

disc`01(SX, TX) =
1

2
dH∆H(SX, TX) ,

which shows that in this case the discrepancy distance coincides with theH∆H-divergence that appears in Theorems 10
and 11, and it suffers from the same computational restrictions as the latter. Furthermore, their tight connection is
illustrated by the following proposition.
Proposition 12 ([Mansour et al., 2009a]). Given two domains S and T over X× Y , letH be a hypothesis class, and
let ` : Y × Y → R+ define a loss function that is bounded, ∀(y, y′) ∈ Y 2, `(y, y′) ≤M for some M > 0. Then, for
any hypothesis h ∈ H, we have

disc`(SX, TX) ≤ M d1(SX, TX).

This proposition establishes a link between the seminal results [Ben-David et al., 2010a] presented in the previous
section, and shows that for a loss function bounded by M , the discrepancy distance can be upper-bounded in terms of
the L1-distance.

Learning bounds To present a generalization bound, we first need to understand how the discrepancy distance can
be estimated from finite samples. To this end, [Mansour et al., 2009a] proposed the following lemma that bounds the
discrepancy distance using the Rademacher complexity (see Section 2.4) of the hypothesis class.
Lemma 13 ([Mansour et al., 2009a]). LetH be a hypothesis class, and let ` : Y × Y → R+ define a loss function that
is bounded, ∀(y, y′) ∈ Y 2, `(y, y′) ≤M for some M > 0 and let LH = {x→ `(h′(x), h(x)) : h, h′ ∈ H}. Let DX

be a distribution over X, and let D̂X denote the corresponding empirical distribution for a sample S = (x1, . . . ,xm).
Then, for any δ ∈ (0, 1), with probability of at least 1− δ over the choice of sample S, we have

disc`(DX, D̂X) ≤ RS(LH) + 3M

√
log 2

δ

2m
,

whereRS(LH) is the empirical Rademacher complexity of LH based on the observations from S.

It can be noted that this lemma looks very much like the usual generalization inequalities obtained using the Rademacher
complexities presented in Section 2.4. Using this result, we can further prove the following corollary for the case of
more general loss functions defined as ∀(y, y′) ∈ Y 2, `q(y, y

′) = |y − y′|q for some q. This parametric family of
functions is a common choice of a loss function for a regression task.
Corollary 14 ([Mansour et al., 2009a]). Let S and T be the source and target domains over X× Y , respectively. Let
H be a hypothesis class, and let `q : Y × Y → R+ be a loss function that is bounded, ∀(y, y′) ∈ Y 2, `q(y, y

′) ≤M
for some M > 0, and defined as ∀(y, y′) ∈ Y 2, `q(y, y

′) = |y − y′|q for some q. Let Su and Tu be samples of size ms

and mt drawn independently from SX and TX and let ŜX, T̂X denote the empirical distributions corresponding to SX
and TX. Then, for any δ ∈ (0, 1), with probability of at least 1− δ over the random choice of the samples, we have

disc`q (SX, TX) ≤ disc`q (ŜX, T̂X) + 4q (RSu(H) +RTu(H)) + 3M

√ log( 4
δ )

2ms
+

√
log( 4

δ )

2mt

 .

This result highlights one of the major differences between the approach of [Ben-David et al., 2010a] and that
of [Mansour et al., 2009a], which arises from the way that they estimate the introduced distance. While Theorem 10
relies on the VC dimension to bound the trueH∆H-divergence by its empirical counterpart, disc` is estimated using
the quantities based on the Rademacher complexity. To illustrate what this implies for the generalization guarantees,
we now present the analog of Theorem 10, which relates the source and target error functions using the discrepancy
distance, and compare this to the original result.
Theorem 15 ([Mansour et al., 2009a]). Let S and T be the source and target domains over X×Y , respectively. LetH
be a hypothesis class, and let ` : Y ×Y → R+ be a loss function that is symmetric, obeys the triangle inequality, and is
bounded, ∀(y, y′) ∈ Y 2, `(y, y′) ≤M for some M > 0. Then, for h∗S = argmin

h∈H
R`
S(h) and h∗T = argmin

h∈H
R`
T (h)

denoting the ideal hypotheses for the source and target domains, we have

∀h ∈ H, R`
T (h) ≤ R`

S(h, h∗S) + disc`(SX, TX) + ε ,

where R`
S(h, h∗S) = E

x∼SX
` (h(x), h∗S(x)) and ε = R`

T (h∗T ) + R`
S(h∗T , h

∗
S).
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Comparison with the H∆H-divergence As pointed out by the authors, this bound is not directly comparable to
Theorem 10, but involves similar terms and reflects a very common trade-off between them. Indeed, the first term of
this bound stands for the same source risk function as that in the work of [Ben-David et al., 2010a]. The second term
here captures the deviation between the two domains through the discrepancy distance similar to theH∆H-divergence
used before. Finally, the last term ε can be interpreted as the capacity to adapt, and it is very close in spirit to the λ term
seen previously.

Despite these similarities, the closer comparison made by [Mansour et al., 2009a] revealed that the bound based on
the discrepancy distance can be tighter in some plausible scenarios. For instance, in a degenerate case where there is
only one hypothesis h ∈ H and a single target function fT , the bounds of Theorem 15 and of Theorem 10 with true
distributions give R`

T (h, f) + disc`(SX, TX) and R`
T (h, f) + 2R`

S(h, f) + disc`(SX, TX), respectively. In this case,
the latter expression is obviously larger when R`

S(h, f) ≤ R`
T (h, f). The same kind of result can also be shown to hold

under the following plausible assumptions:

1. When h∗ = h∗S = h∗T , the bounds of Theorems 15 and 10 respectively boil down to

R`
T (h) ≤ R`

T (h∗) + R`
S(h, h∗) + disc`(SX, TX) , (5)

and

R`
T (h) ≤ R`

T (h∗) + R`
S(h∗) + R`

S(h) + disc`(SX, TX) , (6)

where the right-hand side of Equation 6 includes the sum of three errors and is always larger than the right-hand
side of Equation 5, due to the triangle inequality.

2. When h∗ = h∗S = h∗T and disc`(SX, TX) = 0, Theorems 15 and 10 give

R`
T (h) ≤ R`

T (h∗) + R`
S(h, h∗) and R`

T (h) ≤ R`
T (h∗) + R`

S(h∗) + R`
S(h) ,

where the former coincides with the standard generalization bound, while the latter does not.
3. Finally, when fT ∈ H, Theorem 10 simplifies to

|R`
T (h)− R`

S(h)| ≤ disc`01(SX, TX) ,

which can be straightforwardly obtained from Theorem 15.

All of these results show a tight link that can be observed in different contributions of the domain adaptation theory.
This relation illustrates that the results of [Mansour et al., 2009a] strengthen the previous contributions on the subject,
but retain a tight connection to them.

3.4 Generalization bounds based on the discrepancy distance for regression

Source regressor
Target regressor
Source data
Target data

Figure 6: Domain adaptation prob-
lem for a regression task.

As mentioned at the beginning of this section, the discrepancy distance not only
extends the first theoretical results obtained for domain adaptation, but also allows
new point-wise guarantees to be derived for other learning scenarios, such as, for
instance, the regression task, where contrary to classification, the output variable
Y is continuous. The domain adaptation problem for regression is illustrated in
Figure 6.

To address this scenario, another type of theoretical result based on the dis-
crepancy distance was proposed by [Cortes and Mohri, 2011]. These authors
considered the case where the hypothesis set H as a subset of the reproducing
kernel Hilbert space (RKHS) H associated to a positive definite symmetric kernel
K : H = {h ∈ H : ‖h‖K ≤ Λ}, where ‖ · ‖K denotes the norm defined by the
inner product on H and Λ ≥ 0. We shall assume that there exists R > 0 such that
K(x,x) ≤ R2 for all x ∈ X. By the reproducing property, for any h ∈ H and
x ∈ X, h(x) = 〈h,K(x, ·)〉K , and thus this implies that |h(x)| ≤ ‖h‖K

√
K(x,x) ≤ ΛR.

In this setting, the authors further presented point-wise loss guarantees in domain adaptation for a broad class of
kernel-based regularization algorithms. Given a learning sample S, where ∀(x, y) ∈ S,x ∼ DX, y = fD(x), these
algorithms are defined by the minimization of the following objective function:

FD̂X
(h) = R`

D̂X
(h, fD) + β‖h‖2K ,

where β > 0 is a trade-off parameter. This family of algorithms includes support vector machines, support vector
regression [Vapnik, 1995], kernel ridge regression (KRR) [Saunders et al., 1998], and many other methods. Finally, the
loss function ` is also assumed to be µ-admissible following the definition given below.
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Definition 13 (µ-admissible loss). A loss function ` : Y × Y → R is µ-admissible if it is symmetric and convex with
respect to both of its arguments, and for all x ∈ X and y ∈ Y and (h, h′) ∈ H2, it verifies the following Lipschitz
condition for some µ > 0:

|`(h′(x), y)− `(h(x), y)| ≤ µ|h′(x)− h(x)|.

The family of µ-admissible losses includes the hinge loss and all `q(y, y′) = |y − y′|q with q ≥ 1, in particular the
squared loss, when the hypothesis set and the set of output labels are bounded.

With the assumptions made previously, the following results can be proven.
Theorem 16 ([Cortes and Mohri, 2011, Cortes and Mohri, 2014]). Let S and T be the source and target domains on
X× Y , letH be a hypothesis class, and let ` be a µ-admissible loss. We assume that the target labeling function fT
belongs toH, and let η denote max{`(fS(x), fT (x)) : x ∈ SUPP(ŜX)}. Let h′ be the hypothesis that minimizes FT̂X
and h the one returned when FŜX is minimized. Then, for all (x, y) ∈ X× Y , we have

|`(h′(x), y)− `(h(x), y)| ≤ µR

√
disc`(ŜX, T̂X) + µη

β
.

This theorem shows that the difference between the errors achieved by the optimal hypotheses learned on the source
and target samples is proportional to the distance between the samples plus a term that reflects the worst value that a
loss function can achieve for some instance that belongs to the support of ŜX.

A similar theorem can be proven when fS ∈ H and not fT is assumed. Moreover, the authors indicated that these
theorems can be extended to the case where neither the target function fT nor fS belong toH, by replacing η in the
statement of the theorem with

η′ = max
x∈SUPP(ŜX)

{`(h∗T (x), fS(x))}+ max
x∈SUPP(T̂X)

{`(h∗T (x), fT (x))},

where h∗T ∈ argmin
h∈H

`(h(x), fT ). In both cases, when η is assumed to be small, i.e. η � 1, the key term of the obtained

bound is the empirical discrepancy distance disc`(ŜX, T̂X). In the extreme case when fT = fS = f , we obtain η = 0,
and the problem reduces to the covariate shift adaptation scenario that is characterized by the same labeling function in
both domains, and is analyzed in more in detail in the following section. In general, a parallel can be drawn between the
η term that appears in this bound and the other so-called adaptation capacity terms, such as the λ term in the bound of
Ben-David et al. from Theorem 10.

The result given by Theorem 16 can be further strengthened when the considered loss function is assumed to be the
squared loss `2 = (y− y′)2 for some (y, y′) ∈ Y 2, and when the kernel-based regularization algorithm described above
coincides with the KRR. In what follows, the term η will be replaced by a finer quantity defined as

δH(fS , fT ) = inf
h∈H
‖ E
x∼ŜX

[∆(h, fS)]− E
x∼T̂X

[∆(h, fT )] ‖,

where ∆(h, f) =
(
f(x)− h(x)

)
Φ(x) with Φ(x) is associated to the kernel K feature vector, such that K(x,x′) =

〈Φ(x),Φ(x′)〉. Using this quantity, the following guarantee holds.
Theorem 17 ([Cortes and Mohri, 2014]). Let ` be a squared loss bounded by someM > 0, and let h′ be the hypothesis
that minimizes FT̂X , and h the one returned when FŜX is minimized. Then, for all (x, y) ∈ X× Y , we have:

|`(h(x), y)− `(h′(x), y)|≤ R
√
M

β

(
δH(fS , fT )+

√
δ2
H(fS , fT )+4β disc`(ŜX, T̂X)

)
.

As indicated by the authors, the main advantage of this result is its expression in terms of δH(fS , fT ) instead of
ηH(fS , fT ). It can be noted that δH(fS , fT ) is defined as a difference, and thus it becomes zero for SX = TX ,
which does not hold for ηH(fS , fT ). Furthermore, when the covariate-shift assumption holds for some shared labeling
function f such that fS = fT = f , δH(f, f) can be upper-bounded using the following result.
Theorem 18 ([Cortes and Mohri, 2014]). Assume that for all x ∈ X, K(x,x) ≤ R2 for some R > 0. Let A denote
the union of the supports of ŜX and T̂X. Then, for any p > 1 and q > 1, with 1/p+ 1/q = 1,

δH(f, f) ≤ dp(f|A,H|A)`q(ŜX, T̂X),

where for any set A ⊆ X, f|A (resp. H|A) denote the restriction of f (resp. h) to A and dp(f|A,H|A) = infh∈H ‖f −
h‖p.
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In particular, the authors show that for a labeling function f that belongs to the closure ofH|A, δH(f) = 0 when the
KRR algorithm is used with normalized Gaussian kernels. For this specific algorithm that is often used in practice, the
bound of the theorem then reduces to the simpler expression:

|`(h(x), y)− `(h′(x), y)| ≤ 2R

√
Mdisc`(ŜX, T̂X)

β
.

Generalized discrepancy The above-mentioned results can be further strengthened using a recently proposed notation
of the generalized discrepancy introduced by [Cortes et al., 2015]. To introduce this distance, we can first note that
a regression task in the domain adaptation context can be seen as an optimal approximation of an ideal hypothesis
h∗T = argmin

h∈H
R`
T (h, fT ) by another hypothesis h that ensures the closeness of the losses R`

T (h∗, fT ) and R`
T (h, fT ).

As we do not have access to fT , but only to the labels of the source sample S, the main idea is to define for any h ∈ H,
a reweighting function Qh : S → R such that the objective function G that is defined for all h ∈ H by

G(h) = R`
Qh

(h) + β‖h‖2K ,

remains uniformly close to FT̂X(h) defined over the target sample Tu. As indicated by the authors, this idea introduces
a different learning concept, as instead of reweighting the training sample with some fixed set of weights, the weights
are allowed to vary as a function of the hypothesis h, and are not assumed to sum to 1 or to be nonnegative. Based on
this construction, the optimal reweighting can be obtained by solving:

Qh = argmin
q∈F(SX,R)

|R`
T̂X

(h, fT )− R`
q(h, fS)|,

where F(SX,R) is the set of real-valued functions defined over SUPP(SX).

We can note that, in practice, we might not have access to labeled target instances, which implies that we cannot
estimate fT . To solve this problem, the authors proposed to consider a nonempty convex set of candidate hypotheses
H′′ ⊆ H that can contain a good approximation of fT . UsingH′′ as a set of surrogate labeling functions, the previous
optimization problem becomes:

Qh = argmin
q∈F(SX,R)

max
h′′∈H

|R`
T̂X

(h, h′′)− R`
q(h, fS)|.

The risk obtained using the solution of this optimization problem given by Qh can be equivalently expressed as follows:

R`
Qh

(h, fS) =
1

2

(
max
h′′∈H

R`
T̂X

(h, h′′) + min
h′′∈H

R`
T̂X

(h, h′′)

)
.

This, in its turn, allows us to reformulate G(h), which can now become:

G(h) =
1

2

(
max
h′′∈H

R`
T̂X

(h, h′′) + min
h′′∈H

R`
T̂X

(h, h′′)

)
+ β‖h‖2K .

The proposed optimization problem should have the same point-wise guarantees as those established in Theorem 17,
but based on a new notation of the distance between the probability distributions that can be seen as a generalization
of the discrepancy distance used before. To introduce this, we now define A(H) as a set of functions U : h → Uh
that map H to F(SX,R), such that for all h ∈ H, h → `Uh(h, fS) is a convex function. The set A(H) contains all
of the constant functions U such that Uh = q for all h ∈ H, where q is a distribution over SX. The definition of the
generalized discrepancy can thus be given as follows.

Definition 14. For any U ∈ A(H), the generalized discrepancy between U and T̂X is defined as

DISC(T̂X, U) = max
h∈H,h′′∈H′′

∣∣∣R`
T̂X

(h, h′′)− R`
Uh

(h, fS)
∣∣∣ .

In addition, the authors defined the following distance of f toH′′ over the support of T̂X:

dT̂X∞ (fT ,H′′) = min
h0∈H′′

max
x∈SUPP(T̂X)

|h0(x)− fT (x)|.

Using the above-defined quantities, the following point-wise guarantees can be given.
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Theorem 19 ([Cortes et al., 2015]). Let h∗ be a minimizer of R`
T̂X

(h, fT ) + β‖h‖2K , and hQ be a minimizer of

R`
Qh

(h, fS) + β‖h‖2K . Then, for Q : h→ Qh and ∀x ∈ X, y ∈ Y , the following holds

|`(hQ(x), y)− `(h∗(x), y)| ≤ µR

√
µdT̂X∞ (fT ,H′′) + DISC(Q, T̂X)

β
.

Furthermore, this inequality can be equivalently written in terms of the risk functions as

R`
T (hQ, fT ) ≤ R`

T (h∗, fT ) + µR

√
µdT̂X∞ (fT ,H′′) + DISC(Q, T̂X)

β
.

The result of Theorem 19 suggests the selection of H′′ to minimize the right-hand side of the last inequality. In
particular, the authors provided further evidence that if the space over whichH′′ is searched is the family of all of the
balls centered in fS defined in terms of lq∗ , i.e.,H′′ = {h′′ ∈ H|lq(h′′, fQ) ≤ r} for some distribution q over the space
of the reweighted source samples, then the proposed algorithm based on the generalized discrepancy gives demonstrably
better results compared to the original algorithm.

Semi-supervised case When labeled sample T from the target domain is available, part of it can actually be used to
find an appropriate value of r. To support this statement, let us consider the following set S′ = S ∪ T and an empirical
distribution Ŝ ′X over it, and use q′∗ to denote the distribution that minimizes the discrepancy between Ŝ ′X and T̂X. Now,
as SUPP(ŜX) is included in that of SUPP(Ŝ ′X), the following inequality can be obtained

disc`(T̂X, q′∗) = min
SUPP(q)⊆SUPP(Ŝ′X)

disc`(T̂X, q)

≤ min
SUPP(q)⊆SUPP(ŜX)

disc`(T̂X, q) = disc`(T̂X, q∗).

Consequently, in view of Theorem 19, for an appropriate choice ofH′′, the learning guarantee for adaptation algorithms
based on the generalized discrepancy is more favorable when some labeled data from the target domain are used. Thus,
use of the limited amount of labeled points from the target distribution can improve the performance of their proposed
algorithm.

3.5 Other relevant contributions

[Mansour et al., 2008] In this paper, the authors considered the multi-source domain adaptation problem, and
introduced the learning bounds in two different adaptation settings. For the first one, they assumed that TX =∑N
i=1 αiSiX, and studied the performance of a hypothesis defined as hα =

∑N
i=1 αihi, where SiX is the marginal

distributions of the ith source domain, and ∀i, αi ≥ 0,
∑N
i=1 αi = 1. In this scenario, the authors proved that there

exists a domain adaptation problem such that RT (hα) = 1
2 even when ∀i, RSiX(hi) = 0. This prompted them to

consider a different combined hypothesis defined as

hDα =

N∑
i=1

αiSiX∑N
i=1 αiSiX

hi.

In this case, the authors proved that RT (hDα ) ≤ ε when ∀i, RSiX(hi) ≤ ε.

[Mansour et al., 2009b] This work extends the contribution of [Mansour et al., 2008] by analyzing arbitrary target
distributions that are not necessarily represented by a weighted mixture of source distributions. The authors proposed
domain adaptation learning bounds of the following form:

RT (hDα ) ≤ (εdα(TX|SX))
α−1
α M

1
α ,

where dα(TX|SX) =

(∫
X

T αX
S(α−1)
X

) 1
α−1

is the exponential of the α-Rényi divergence, RSiX(hi) ≤ ε, and M ≥ 0 is a

constant that bounds the loss function used in the definition of RD.
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[Hoffman et al., 2018] In this work, the authors extend the analysis of [Mansour et al., 2009b] to account for cross-
entropy and other similar losses not considered in previous work. They also propose a principal way of determining the
coefficients αi ensuring efficient adaptation and extend their analysis to the scenario of non-deterministic labeling.

[Dhouib and Redko, 2018] In this work, the authors proposed a learning bound for hypotheses associated to a general
family of similarity functions introduced in [Balcan et al., 2008]. The proposed bounds rely on L1 and χ2 divergences
and similar to [Mansour et al., 2009b] present a multiplicative dependence of the source error on the divergence term.

[Redko et al., 2019a] Finally, in this work the authors introduced a bound for the multi-source domain adaptation
based on the discrepancy of [Mansour et al., 2009a] for the target shift scenario where the inequality between S and T
is due to the drift between the marginal distributions of Y in each domain.

[Kuroki et al., 2019] This paper proposes source-guided discrepancy (S-disc) that has a virtue of being much
easier to estimate in case of `01 than the discrepancy proposed by [Mansour et al., 2009a]. The authors also derive
a generalization error bound based on S-disc and show that it is never looser than the original bound proposed by
[Mansour et al., 2009a].

3.6 Summary

This section presents several cornerstone results of the domain adaptation theory, including those proposed by Ben-
David et al. based on the H∆H-divergence, and a variety of results based on the discrepancy distance proposed by
Mansour et al. and Cortes et al. for the tasks of classification and regression. As can be noted, the general ideas used
to prove generalization bounds for domain adaptation are based on the definition of a relation between the source
and target domains through a divergence that allows us to upper-bound the target risk by the source risk, and on the
theoretical results presented in Section 2, and their properties. Unsurprisingly, this trend is usually maintained regardless
of the considered domain adaptation scenario or the learning algorithm analyzed. The overall form of the presented
generalization bound on the error of a hypothesis calculated with respect to the target distribution appears to contain,
inevitably, the following important terms:

1. The source error of the hypothesis measured with respect to some loss function;

2. The divergence term between the marginal distributions of the source and target domains. In the case of Ben-
David et al., this term is explicitly linked to the hypothesis space that induces a complexity term that is related
to its Vapnik-Chervonenkis dimension; in the case of Mansour et al. and Cortes et al., the divergence term
depends on the hypothesis space, but the complexity term is data dependent and is linked to the Rademacher
complexity of the hypothesis space;

3. The nonestimable term that reflects the a-priori hardness of the domain adaptation problem. This last usually
requires at least some target labeled data to be quantified.

The terms that appear in the bounds show us that in the case where two domains are almost indistinguishable, the
performance of a given hypothesis across these will remain largely similar. When this is not the case, the divergence
between the source and target domain marginal distributions starts to have a crucial role in the assessment of the
proximity of two domains. For both of the set of results presented, the actual value of this divergence can be consistently
calculated using the available finite (unlabeled) samples, thus providing us with a first estimate of the potential success
of adaptation. Finally, the last term tells us that even when the divergence between the marginal distributions is taken
to zero across two domains, this might not suffice for efficient adaptation. This last point can be summarized by the
following statement, as made by Ben-David in [Ben-David et al., 2010a]:

"When the combined error of the ideal joint hypothesis is large, then there is no classifier that
performs well on both the source and target domains, so we cannot hope to find a good target
hypothesis by training only on the source domain."

This statement brings us to another important question regarding the conditions that need to be verified to make sure
that the adaptation is successful. This question stimulates a cascade of other relevant questions, such as what is the
actual size of the source and target unlabeled samples needed for the adaptation to be efficient? Are target labeled data
needed for an efficient adaptation, and if yes, can we prove formally that it leads to better results? And finally, what
are the pitfalls of domain adaptation when even strong prior knowledge regarding the adaptation problem does not
guarantee that it has a solution? All these question are answered by the so-called "hardness theorems" that we present
in the following section.
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4 Hardness results for domain adaptation

This section is devoted to a series of results that prove the so-called "hardness or impossibility theorems" for domain
adaptation. These latter statements show the extent to which the domain adaptation problem can be hard to solve, or the
conditions when it is provably unsolvable under some common assumptions. These theorems are very important, as
they highlight that in some cases it will not be possible to adapt well even with a prohibitively large amount of data
from both domains, or when the adaptation task might be trivial.

4.1 Problem set-up

Before presenting the main theoretical results, we first introduce the necessary preliminary definitions that formalize the
concepts used afterwards. These definitions are then followed by a set of assumptions that are commonly considered to
have a direct influence on the potential success of domain adaptation.

Definitions We have seen from the previous sections that the adaptation efficiency is directly correlated with two
main terms that inevitably appear in almost all analyses: one term that depicts the divergence between the domains, and
the other term that stands for the existence and the error achieved by the best hypothesis across the source and target
domains. The authors of [Ben-David et al., 2010b] proposed to analyze the presence of these two terms in the bounds
by answering the following questions:

1. Is the presence of these two terms inevitable in the domain adaptation bounds?

2. Is there a way to design a more intelligent domain adaptation algorithm that uses not only the labeled training
sample, but also the unlabeled sample of the target data distribution?

These two questions are very important, as answering them can help us to obtain an exhaustive set of conditions that
theoretically ensure efficient adaptation with respect to a given domain adaptation algorithm. Before proceeding to
the presentation of the main results, the authors first defined several quantities that they used later. The first one is the
formalization of an unsupervised domain adaptation algorithm [Ben-David et al., 2010b].

Definition 15 (domain adaptation learner). A domain adaptation learner is a function

A :

∞⋃
m=1

∞⋃
n=1

(X× {0, 1})m ×Xn → {0, 1}X.

As before, the standard notation for the performance of the learner is given by the error function used. When the error is
measured with respect to the best hypothesis in some hypothesis classH, we use the notation RD(H) = infh∈HRD(h).
Using this notation, the authors further defined the learnability, as follows.

Definition 16 ((ε, δ,m, n)-learnability). Let S and T be distributions over X × {0, 1}, H a hypothesis class, A a
domain adaptation learner, ε > 0, δ > 0, and m, n positive integers. We say that A(ε, δ,m, n)-learns T from S
relative toH, if when given access to a labeled sample S of size m, generated i.i.d.by S , and an unlabeled sample Tu of
size n, generated i.i.d. by TX, with probability of at least 1− δ (over the choice of the samples S and Tu), the learned
classifier does not exceed the error of the best classifier inH by more than ε, i.e.,

Pr
S∼(S)m

Tu∼(TX)n

[
RT (A(S, Tu)) ≤ RT (H) + ε

]
≥ 1− δ.

This definition gives us a criterion that we can use to judge whether a particular algorithm has strong learning guarantees,
which consists in finding an optimal trade-off between both ε and δ in the above definition. We further introduce two
alternative definitions of domain adaptation learnability for the proper learning setting and when the best error of a
classifier inH is scaled by an additional constant c.

Definition 17 ((c, ε, δ,m, n)-proper learnability). With the notations from Definition 16, we say that A(c, ε, δ,m, n)-
solves a proper domain adaptation for the classW relative toH, if A outputs an element h ofH with

Pr
S∼(S)m

Tu∼(TX)n

[
RT (A(S, Tu)) ≤ cRT (H) + ε

]
≥ 1− δ.
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In other words, this definition says that the proper solving of the domain adaptation problem is achieved when the error
of the returned hypothesis from a fixed hypothesis class w.r.t. the target distribution is bounded by c times the error
of the best hypothesis on the target distribution plus a constant ε. Obviously, efficient solving of the proper domain
adaptation is characterized by small δ and ε, and c close to 1. We also note that for both of the definitions given above,
the inequality event can be reduced to RT (A(S, Tu)) ≤ ε when the hypothesis classH contains a zero-error hypothesis,
i.e., RT (H) = 0.

Finally, we will also need a definition that was introduced in [Ben-David and Urner, 2012] that expresses the capacity
of a hypothesis class to produce a zero-error classifier with margin γ.
Definition 18. Let X ⊆ Rd, DX be a distribution over X, h : X → {0, 1} be a classifier, and Bγ(x) be the ball of
radius γ around some domain point x. We say that h is a γ-margin classifier with respect to DX if for all x ∈ X
whenever DX(Bγ(x)) > 0, then h(y) = h(z) holds for all y, z ∈ Bγ(x).

In [Ben-David and Urner, 2012], it was also noted that when h is a γ-margin classifier with respect to DX, this is
equivalent to h satisfying the Lipschitz-property with Lipschitz constant 1

2γ on the support of DX. Thus, we can refer
to this assumption as the Lipschitzness assumption. For the sake of completeness, we present the original definition of
the probabilistic Lipschitzness below.
Definition 19. Let φ : R→ [0, 1]. We say that f : X→ R is φ-Lipschitz with respect to a distribution DX over X if,
for all λ > 0, we have

Pr
x∼DX

[
∃x′ : |f(x)− f(x′)| > λµ(x,x′)

]
≤ φ(λ),

where µ : X×X→ R+ is some metric over X.

Common assumptions in domain adaptation We now proceed to recall the most common assumptions that were
considered in the literature as those that ensure efficient adaptation.

1. Covariate shift. This assumption is among the most popular ones, and it has been extensively studied in
a series of theoretical studies on the subject (see, for instance, [Sugiyama et al., 2008], and the references
therein). While in domain adaptation we generally assume S 6= T , this can be further understood as
SX(X)S(Y |X) 6= TX(X)T (Y |X), where S(Y |X) = T (Y |X) while SX 6= TX is generally called the
covariate shift assumption.

2a. Similarity of the (unlabeled) marginal distributions. [Ben-David et al., 2010b] considered the
H∆H-distance between SX and TX to assess the impossibility of domain adaptation, and assumed that
it remains low between these two domains. This is the most straightforward assumption that directly follows
from all of the proposed generalization bounds for domain adaptation. We refer the reader to Section 3 for the
details.

2b. Weight-ratio of the (unlabeled) marginal distributions. The weight-ratio assumption was introduced in
[Cortes et al., 2010], and further studied in [Ben-David and Urner, 2012] as a stronger concept of similarity
between two marginal distributions. This is defined as:

CB(SX, TX) = inf
b∈B

TX(b) 6=0

SX(b)

TX(b)

with respect to a collection of input space subsets B ⊆ 2X.
3. Ideal joint error. Finally, this last important assumption is the one that states that there should exist a low-error

hypothesis for both domains. As explained in Section 3, this error can be defined as a so-called λH term, as
follows:

λH = min
h∈H

RS(h) + RT (h).

These three assumptions are at the heart of impossibility theorems, where they are usually analyzed in a pair-wise
fashion.

4.2 Constructive impossibility theorems

In what follows, we present a series of so-called impossibility results related to the domain adaptation problem. These
results are then illustrated based on some concrete examples that highlight the pitfalls of domain adaptation algorithms.

To proceed, we present a theorem showing that some of the intuitive assumptions presented above do not suffice to
guarantee the success of domain adaptation. More precisely, among the three assumptions that have been rapidly
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discussed – covariate shift, smallH∆H-distance between the unlabeled distributions, and the existence of the hypothesis
that achieves low error on both the source and target domains (small λH) – these last two are both necessary (and, as we
know from previous results, are also sufficient).

Theorem 20 (Necessity of a small H∆H-distance [Ben-David et al., 2010b]). Let X be some domain set, and H a
class of functions over X. Assume that, for some A ⊆ X, we have that {h−1(1) ∩ A : h ∈ H} contains more than
two sets and is linearly ordered by inclusion. Then, the conditions "covariate shift" plus "small λH" do not suffice for
domain adaptation. In particular, for every ε > 0, there exists probability distributions S over X × {0, 1}, and TX
over X such that for every domain adaptation learner A, every integer m > 0, n > 0, there exists a labeling function
f : X→ {0, 1} such that

1. λH ≤ ε is small;

2. S and Tf satisfy the covariate shift assumption;

3. Pr
S∼(S)m

Tu∼(TX)n

[
RTf (A(S, Tu)) ≥ 1

2

]
≥ 1

2 ,

where the distribution Tf over X× {0, 1} is defined as Tf{1|x ∈ X} = f(x).

This result highlights the importance of the need for small divergence between the marginal distributions of the domains,
as even when the covariate shift assumption is satisfied and λH is small, the error of the classifier returned by a
domain adaptation learner can be larger than 1

2 with a probability that exceeds this same value. We now proceed to the
symmetric result that shows the necessity for a small joint error between the two domains expressed by the λH term.

Theorem 21 (Necessity for a small λH [Ben-David et al., 2010b]). Let X be some domain set, and H a class of
functions over X where the VC dimension is much smaller than |X| (for instance, anyH with a finite VC dimension
over an infinite X). Then, the conditions covariate shift plus smallH∆H-divergence do not suffice for domain adaption.
In particular, for every ε > 0 there exist probability distributions S over X× {0, 1}, TX over X, such that for every
domain adaptation learner A, every integer m,n > 0, there exists a labeling function f : X→ {0, 1} such that

1. dH∆H(TX,SX) ≤ ε is small;

2. The covariate shift assumption holds;

3. Pr
S∼Sm

Tu∼(TX)n

[
RTf (A(S, Tu)) ≥ 1

2

]
≥ 1

2 .

Once again, this theorem shows that small divergence combined with a satisfied covariate shift assumption can lead to
an error of the hypothesis returned by a domain adaptation learner that exceeds 1

2 with high probability. Consequently,
the main conclusion of these two theorems can be summarized as follows: among the studied assumptions, neither the
assumption combination 1. and 3., nor 2a. and 3., suffice for successful domain adaptation in the unsupervised case.
Another important conclusion that should be underlined here is that all generalization bounds for domain adaptation
with a distance term and a joint error term introduced throughout this survey indeed imply learnability, even with the
most straightforward learning algorithm. On the other hand, the covariate shift assumption is not really necessary: it
cannot replace any of the other assumptions, and it becomes redundant when the other two assumptions hold. This
study, however, needs further investigation, as in the case of semi-supervised domain adaptation, the situation can be
drastically different.

Case of proper domain adaptation learning Below, we turn our attention to the impossibility results established in
[Ben-David et al., 2012] for the case where the output of the given domain adaptation algorithm should be a hypothesis
that belongs to some predefined hypothesis class. This particular constraint easily justifies itself in practice, where we
may need to find a hypothesis as quickly as possible from a predefined set of hypotheses, at the expense of a higher
error rate. The following result was obtained by [Ben-David and Urner, 2012] in this setting.

Theorem 22 ([Ben-David et al., 2012]). Let domain X = [0, 1]
d, for some d. Consider the classH of half-spaces as

the target class. Let x and z be a pair of antipodal points on the unit sphere, and letW be a set that contains two pairs
(S, T ) and (S ′, T ′) of distributions with:

1. both pairs satisfy the covariate shift assumption;

2. f(x) = f(z) = 1 and f(0) = 0 for their common labeling function f;

23



3. SX(x) = TX(z) = SX(0) = 1
3 ;

4. TX(x) = TX(0) = 1
2 or T ′X(z) = T ′X(0) = 1

2 .

Then, for any number m, any constant c, no proper domain adaptation learning algorithm can (c, ε, δ,m, 0) solve the
domain adaptation learning task forW with respect to H, if ε < 1

2 and δ < 1
2 . In other words, every learner that

ignores unlabeled target data fails to produce a zero-risk hypothesis with respect toW .

This theorem shows that having some amount of data generated by the target distribution is crucial for the learning
algorithm to estimate whether the support of the target distribution is x and 0, or z and 0. Surprisingly, there is no
possible way to obtain this information without having access to a sample drawn from the target distribution event if the
point-wise weight-ratio is assumed to be as large as 1

2 . Thus, no amount of labeled source data can compensate for
having a sample from the target marginal distribution.

Illustrative examples Now as the main impossibility theorems are stated, it can be useful to give an illustrative
example of situations where different assumptions and different learning strategies might fail or succeed. To this end,
[Ben-David et al., 2010b] considered several examples that showed the inadequacy of the covariate shift assumption
explained above, as well as the limits of the reweighting scheme.

In what follows, the considered hypothesis class is restricted to the space of threshold functions on [0, 1], where a
threshold function ht(x) is defined for any t ∈ [0, 1] as ht(x) = 1 if x < t, and 0 otherwise. In this case, the setH∆H
becomes the class of half-open intervals.

Inadequacy of the covariate shift. Let us consider the following construction: for some small fixed ξ ∈ {0; 1}, let
T be a uniform distribution over {2kξ : k ∈ N, 2kξ ≤ 1} × {1}, and let the source distribution S be the uniform
distribution over {(2k + 1)ξ : k ∈ N, (2k + 1)ξ ≤ 1} × {0}. The illustration of these distributions is given in Figure 7.

0 2ξ 4ξ 6ξ 8ξ 10ξ
y = 1S

ξ 3ξ 5ξ 7ξ 9ξ 11ξ
y = 0T

Figure 7: This scheme illustrates the considered source and target distributions that satisfy the covariate shift assumption
with ξ = 2

23 .

For this construction, the following holds.

1. The covariate shift assumption holds for T and S;

2. The distance dH∆H(S, T ) = ξ, and thus it can be arbitrarily small;

3. The errors RS(H) and RT (H) are zero;

4. λH(S, T ) = 1− ξ and RT (h∗S) ≥ 1− ξ are large.

From this example it can instantly be seen that even if the covariate shift assumption is combined with a small
H∆H-divergence between domains, this still results in a large joint error, and consequently in complete failure of the
best source classifier when applied to the target distribution.

Reweighting method. A reweighting method in domain adaptation consists of the determination of a vector of
weights w = {w1, w2, . . . , wm} that are used to reweight the unlabeled source sample Su generated by SX, to built a
new distribution T Suw such that dH∆H(T Suw , TX) is as small as possible. In what follows, we denote this reweighted
distribution T S . This new sample is then fed to any available supervised learning algorithm at hand, to produce a
classifier that is expected to have a good performance when applied subsequently in the target domain. As this method
has a very important role in the domain adaptation, the authors also gave two intrinsically close examples that show
both its success and failure under the standard domain adaptation assumptions.

We first consider the following scheme: for some small ε ∈
(
0, 1

4

)
, we assume that the covariate shift assumption holds;

i.e., for any x ∈ X, T (y = 1|x) = S(y = 1|x) = f(x). We define f : X→ [0, 1] as follows: for x ∈ [1− 3ε, 1− ε],
we set f(x) = 0, and otherwise we set f(x) = 1. To define S and T , we only have to specify their marginals SX
and TX. To this end, we let SX be the uniform distribution over [0, 1], and we let TX be the uniform distribution over
[1− ε, 1]. This particular setting is shown in Figure 8.

The following observations follow from this construction.
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0 1
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Figure 8: Illustration of the reweighting scenario. The source and target distributions satisfy the covariate shift
assumption where f is their common conditional distribution. The marginal SX is the uniform distribution over [0, 1],
and the marginal TX is the uniform distribution over [1− ε, 1].

1. For the given construction, the best joint hypothesis that defines λH is given by the function ht=1; This function
commits 0 errors on the target distribution and 2ε errors on the source distribution, thus giving λH(S, T ) equal
to 2ε.

2. From the definition ofH∆H-divergence, we obtain that dH∆H(SX, TX) = 1− ε;
3. RT (h∗S) = 1, RT (H) = 0, and RS(H) = ε achieved by the threshold functions ht=1−3ε, ht=1 and ht=1−3ε,

respectively.

On the other hand, it is possible to find a reweighting distribution that will produce a sample such that RT (h∗T S )→ 0
in the probability when m and n tend towards infinity and h∗T S = argmin

h∈H
RT (hT S ). This happens along with the

probability of the source error tending to 1 when m grows to infinity. This example is a clear illustration of when a
simple reweighting scheme can be efficient for adaptation. This, however, is not the case when we consider different
labeling of the target data points. Let us now assume that the source distribution remains the same, while for the target
distribution f(x) = 1 for any x ∈ X. This slight change gives the following results:

1. λH(S, T ) = ε;
2. dH∆H(SX, TX) = 1− ε;
3. RT (h∗S) = 0, RT (H) = 0 and RS(H) = ε.

We can observe that the λH term has now become smaller, and that the best source hypothesis achieves a 0 error on the
target distribution. However, the result that we obtain with the reweighting method is completely different: it is not
difficult to see that RT (h∗T S )→ 1 in the probability when m and n tend towards infinity, while the error of h∗S will
tend to zero.

We conclude by saying that the bound from [Ben-David et al., 2010a] recalled in Section 3 implies that RT (h∗S) is
bounded by RT (H) +λH(S, T ) + dH∆H(SX, TX), and thus it can be hoped that by reweighting the sample S to reflect
the distribution TX, the term dH∆H(SX, TX) in that bound would be diminished. The last example, however, shows
that this might not be the case, as RT LX

w
might be as bad as that bound allows.

4.3 Impossibility theorems based on sample complexity

We now present several results that assess the hardness of the domain through the lens of its sample complexity, which
is usually defined as the number of training instances required to achieve a low-error classifier for a certain distribution
D. This setting in the context of the adaptation problem was studied by [Ben-David and Urner, 2012], where their first
theorem established the sample complexity of solving a domain adaptation problem formulated as follows.
Theorem 23 ([Ben-David and Urner, 2012]). For every finite domain X, for every ε and δ with ε+ δ < 1

2 , no algorithm
can (ε, δ, |Su|, |Tu|)-solve the domain adaptation problem for the classW of triples (SX, TX, f) withCB(SX, TX) ≥ 1

2 ,
dH∆H(SX, TX) = 0, and RT (H) = 0 if

|Su|+ |Tu| <
√

(1− 2(ε+ δ))|X|,

, whereH is the hypothesis class that contains only the all-1 and all-0 labeling functions, and RT (H) = min
h∈H

RT (h, f).

This result is interesting in many ways. First, the assumptions used in the theorem are extremely simplified, which
means that the a-priori knowledge about the target task is so strong that a zero error classifier for the given hypothesis
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class can be obtained using only one labeled target instance. Secondly, we can also note that the considered setting is
extremely favorable for adaptation, as the marginal distributions of the source and target domains are close both in
terms of theH∆H-divergence and the weight-ratio CB(SX, TX). For the latter, this roughly means that the probability
to encounter a source point is at least half of the probability of finding it in the target domain. These assumptions further
spur the following surprising conclusions:

1. The sample complexity of domain adaptation cannot be bounded only in terms of the VC dimension of the
class that can produce a hypothesis that achieves a zero error on it. This statement agrees well with the previous
results, which shows the need for the existence of a good hypothesis for both domains;

2. Some data drawn from the target distribution should be available, to obtain a bound with an exclusive
dependency on the VC dimension of the hypothesis class;

3. This result implies that the sample sizes that are needed to obtain useful approximations of the weight-ratio
are prohibitively high.

We now provide another result provided by Ben-David and Urner that shows that the same lower bound can be obtained
using the Lipschitzness assumption imposed on the labeling function f .

Theorem 24 ([Ben-David and Urner, 2012]). Let X = [0, 1]
d
, ε > 0 and δ > 0 be such that ε+ δ < 1

2 , let λ > 1 and
letWλ be the set of triples (SX, TX, f) of distributions over X with RT (H) = 0, CB(SX, TX) ≥ 1

2 , dH∆H(SX, TX) =
0, and λ-Lipschitz labeling functions f . Then no domain adaptation-learner can (ε, δ, |Su|+ |Tu|)-solve the domain
adaptation problem for the classWλ, unless

|Su|+ |Tu| ≥
√

(λ+ 1)d(1− 2(ε+ δ)).

4.4 Hardness results for sample complexity

So far we have presented theorems that show what conditions provably lead to the failure of domain adaptation. These
results show that even in some extremely simple settings, successful adaptation might require an abundant amount of
labeled source data, or at least a reasonable amount of labeled target data. In spite of this, a natural question that might
be asked is to what extent the target domain unlabeled data can help to adapt when traded against some labeled source
domain data. Before answering this question, we first turn our attention to the sample complexity results presented
by [Ben-David et al., 2012], who investigated the existence of a learning method that can efficiently learn a good
hypothesis for a target task provided that the target sample from its corresponding probability distribution is replaced
by a (possibly larger) generated sample from a different probability distribution. The efficiency of such a learning
method requires that it does not worsen the generalization guarantee of the learned classifier in the target domain. As an
example of the considered classifier, we can take a popular nearest-neighbor classifier hNN(x) that given a metric µ
defined over the input space X, assigns a label to a point x as hNN(x) = y(NS(x)), with NS(x) = argmin z∈S µ(x, z)
being the nearest neighbor of x in the labeled source sample S, and y(NS(x)) is the label of this nearest neighbor. The
theorems obtained are proven under the covariate shift condition and the assumption of a bound on the weight-ratio
between the two domains, as explained before. We now present below the first such theorem below.

Theorem 25 ([Ben-David et al., 2012]). Let domain X = [0, 1]
d and for some C > 0, letW be a class of pairs of

source and target distributions {(S, T )|CB(SX, TX) ≥ C} with a bounded weight-ratio and their common labeling
function f : X → [0, 1], satisfying the φ-probabilistic-Lipschitz property with respect to the target distribution, for
some function φ. Then, for all λ,

E
S∼Sm

[RT (hNN)] ≤ 2R∗T (H) + φ(λ) + 4λ

√
d

C
m−

1
d−1 .

This theorem suggests that under covariate shift and bounded weight-ratio assumptions, the expected target error of
a NN classifier learned on a sample drawn from the source distribution is bounded by twice the optimal risk over
the whole considered hypothesis space, plus several constants related to the nature of the labeling function and the
dimension of the input space. Regarding these latter, it can be noted that if the labeling function is λ-Lipschitz in the
standard sense of Lipschitzness, and the labels are deterministic, then we have R∗T (H) = 0 and φ(a) = 0 for all a ≥ λ.
Applying Markov’s inequality then yields the following corollary on the sample size bound which further strengthens
the previous result.

Corollary 26. Let domain X = [0, 1]
d and for some C > 0, letW be a class of pairs of source and target distributions

{(S, T )|CB(SX, TX) ≥ C} with a bounded weight-ratio and their common labeling function f : X→ [0, 1] satisfying
the φ-probabilistic-Lipschitz property with respect to the target distribution, for some function φ. Then, for all ε > 0,
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δ > 0, m ≥
(

4λ
√
d

Cεδ

)d+1

, the nearest neighbor algorithm applied to a sample of size m has, with probability of at least

1− δ, error of at most ε w.r.t. the target distribution for any pair (S, T ) ∈ W .

This corollary provides the first positive result to establish the number of samples required for efficient adaptation in
cases where no target data is available to the learner. A natural question that arises is then to quantify the utility of the
additional unlabeled target data in the adaptation process, and the conditions required for it to succeed. To answer this
question, the authors of [Ben-David and Urner, 2012] considered a particular adaptation algorithm A, as summarized
below.

Input: An i.i.d. sample Su∼SX labeled by f , an unlabeled i.i.d. sample Tu∼TX, and margin parameter γ.

Step 1. Partition [0, 1]d into a collection B of boxes (axis-aligned rectangles) with side length γ/
√
d.

Step 2. Obtain sample S′ by removing every point in Su, which is sitting in a box that is not hit by Tu.
Step 3. Output an optimal risk-minimizing classifier fromH for the sample S′.

The following theorem provides lower bounds for both the size of the source labeled and the target unlabeled samples
required by algorithm A, to learn well when a prior knowledge is assumed to be available to the learner in the form of a
hypothesis class that realizes TX with margins, as in the definition above.

Theorem 27 ([Ben-David and Urner, 2012]). Let X = [0, 1]
d, γ > 0 be a margin parameter,H be a hypothesis class

of finite VC dimension, andW be the set of triples (SX, TX, f) of source distribution, target distribution, and labeling
function with

1. CI(SX, TX) ≥ 1
2 for the class I = (H∆H) ∩ B, where B is a partition of [0, 1]

d into boxes of side length
γ√
d

;

2. H contains a hypothesis that has γ-margin on T ;

3. the labeling function f is a γ-margin classifier with respect to T .

Then there is a constant c > 1, such that for all ε > 0, δ > 0, and for all (SX, TX, f) ∈ W , when given an i.i.d. sample
Su from SX, labeled by f of size

|Su| ≥ c

[
VC(H) + log 1

δ

CI(SX, TX)(1− ε)ε
log

(
VC(H)

CI(SX, TX)(1− ε)ε

)]
,

and an i.i.d. sample Tu from TX of size

|Tu| ≥
1

ε

2

[√
d

γ

]d
ln

3

[√
d

γ

]d
δ

 ,

then A outputs a classifier h with RT (h, f) ≤ ε with probability of at least 1− δ.

It is worth noting that these bounds follow the standard bounds from statistical learning theory, where the size of the
learning sample required for successful learning is given as a function of the VC dimension of the hypothesis class.
In domain adaptation, this dependency is further extended to the weight-ratio and the accuracy parameters of the
learnability model. Moreover, we observe that this theorem considers the input space that might contain an infinite
number of points. This assumption can lead to a vacuous bound, as in reality the input space often presents a finite
domain, and the dependency of the sample size should be given in its terms. The following theorem covers this case.
Theorem 28. Let X be some finite domain, H be a hypothesis class of finite VC dimension, and W =
{(SX, TX, f)|RT (H) = 0, C(SX, TX) ≥ 0} be a class of pairs of source and target distributions with bounded
weight-ratio whereH contains the zero-error hypothesis on T . Then there is a constant c > 1, such that for all ε > 0,
δ > 0, and all (SX, TX, f) ∈ W , when given an i.i.d. sample Su from SX, labeled by f of size

|Su| ≥ c

[
VC(H) + log 1

δ

C(SX, TX)(1− ε)ε
log

(
VC(H)

C(SX, TX)(1− ε)ε

)]
,

and an i.i.d. sample Tu from TX of size

|Tu| ≥
1

ε

(
2|X| ln 3|X|

δ

)
,

then algorithm A outputs a classifier h with RT (h, f) ≤ ε with probability of at least 1− δ.
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To conclude, we note that both hardness results that state under which conditions the domain adaptation fails, and the
results of the analysis of the sample sizes required from the source and target domains for the adaptation to succeed, fall
into the category of the so-called impossibility theorems. They essentially draw the limits of the domain adaptation
problem under various common assumptions, and provide insights into the hardness of solving this.

The case of agnostic proper domain adaptation We presented above an impossibility result for proper domain
adaptation that shows that a conservative learner that is fed with a large labeled sample from the source domain
might fail to produce a low-error classifier in the target domain, even under high weight-ratio and covariate shift
assumptions. Below, we define a two-stage paradigm suggested by [Ben-David et al., 2012] that allows successful
learning in this scenario. The proposed two-stage procedure consists of: 1) using a labeled source sample to learn
an arbitrary hypothesis with decent performance on the target domain; and 2) applying the learned hypothesis to the
unlabeled examples from the target domain, and feeding them to a standard agnostic learner. For the sake of clarity, the
definition of an agnostic learning is given below.
Definition 20 ([Ben-David et al., 2012]). For ε > 0, δ > 0, m ∈ N, we say that an algorithm (ε, δ,m) (agnostically)
learns a hypothesis class H, if for all distributions D, when given an i.i.d. sample of size at least m, it outputs a
classifier of error at most RD(H) + ε with probability of at least 1 − δ. If the output of the algorithm is always a
member ofH, we call it an agnostic proper learner forH.

This definition can now be used to prove the following theorem for the proposed two-stage procedure.
Theorem 29 ([Ben-David et al., 2012]). Let X be some domain andW be a class of pairs (S, T ) of distributions over
X × {0, 1} with RT (H) = 0, such that there is an algorithm A and functions m : (0, 1)2 → N, n : (0, 1)2 → N
such that A(0, ε, δ,m(ε, δ), n(ε, δ))-solves the domain adaptation learning task forW for all ε, δ > 0. LetH be some
hypotheses class for which there exists an agnostic proper learner. Then, theH-proper domain adaptation problem can
be ((0, ε, δ,m(ε/3, δ/2), n(ε/3, δ/2)) + m′(ε/3, δ/2))-solved with respect to the classW , where m′ is the sample
complexity function for agnostically learningH.

As in the previous case, the algorithm A in the statement of this theorem can be considered to be the nearest neighbor
classifier NN(S), if the class W satisfies the conditions from the theorem. To summarize, the presented theorems
for the proper domain adaptation learning show that with a domain adaptation algorithm that takes into account the
unlabeled instances from the target marginal distribution, it might be possible to solve the proper domain adaptation
problem, while in the contrary case, it is provably unsolvable.

4.5 Other relevant contributions

[Redko et al., 2019b] In this study, the authors provide a first analysis for consistent estimation of the adaptability
term λ when some target label data is available. The main construction used in their study is to express the ideal joint
hypothesis h∗ = argmin

h∈H
RS(h, fS) + RT (h, fT ) as a barycenter of the source and target labeling functions fS and

fT . These latter are then considered to be probability measures over X, so that the barycenter is defined over the space
of probability distributions without requiring a hypothesis space to be picked in advance.

[Zhao et al., 2019] In this paper, the authors provide an example similar to that given in [Ben-David et al., 2010b], to
show that smallH-divergence between marginal distributions and low source error do not guarantee good performance
in the target domain. They further argue that this is mainly explained by the shift in the conditional distributions over
the two domains that is accounted for by the inestimable adaptability term.

[Johansson et al., 2019] This paper proceeds in a spirit similar to that of [Zhao et al., 2019], by first showing an
example where finding an invariant representation decreasing the shift between the two domains while minimizing
the source error leads to poor performance in the target domain. This is attributed to the unobserved adaptability term
and lack of invertability of the learned representation, and it is dealt with by taking into account the performance of a
hypothesis in the source domain in regions where the source density is sufficiently high. The authors then provide a tight
learning bound based on a weighted source error, a support discrepancy, and an unobservable term that characterizes
the invertability of the invariant representation.

[Hanneke and Kpotufe, 2019] In this paper, the authors consider a semi-supervised setting where the goal is to learn
a hypothesis from a mixture of labeled source and target samples, and to bound the excess risk of this hypothesis, i.e.,
RD(h) − RD(H) in each domain. The paper further introduces the novel concept of discrepancy between the two
domains, called "transfer-exponents", and provides the first minimax-rates, in terms of both source and target sample
size and of the latter divergence, similar to the work of [Ben-David and Urner, 2012].
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4.6 Summary

In this section, we covered a series of results that establish the conditions required to make a domain adaptation problem
solvable. As shown, these necessary conditions might take on different forms, and depend on the value of certain terms
presented in the generalization bound and on the size of the available source and target learning samples. The take-away
messages of this section can be summarized as follows:

1. Solving a domain adaptation problem requires two independent conditions to be fulfilled. First, there is the
need to properly minimize the divergence between the source and target marginal distributions. Secondly,
there is the need to ensure simultaneously that the a-priori adaptability of the two domains is high (which is
reflected by the small ideal joint error term λH);

2. Even under some strong assumptions that make the adaptation problem appear to be easy to solve, there might
still be the need for a certain amount of unlabeled source and target data that in the most general case, can be
prohibitively large;

3. A certain amount of labeled source and unlabeled target data can ensure efficient adaptation, and can produce
a hypothesis with a small target error. In both cases, this amount depends on the general characteristics of the
adaptation problem given by the weight-ratio and the complexity of the hypothesis space represented by its
VC dimension;

4. In proper domain adaptation, ignoring unlabeled target data leads to provably unsolvable adaptation problems,
where the domain adaptation learner fails to produce a zero-error hypothesis for the target domain.

All these conclusions provide us with a more general view on the learning properties of the adaptation phenomenon,
and essentially provide a list of conditions that need to be verified to make sure that the adaptation problem at hand can
be solved efficiently. Apart from that, the established results also provide us with an understanding that some adaptation
tasks are harder when compared to others, and that this hardness can be quantified by not one, but several, criteria
that take into account both the data distribution and the labeling of instances. Finally, they also show that successful
adaptation requires a certain amount of data to be available during the adaptation step, and that this amount might
directly depend on the proximity of the marginal distributions of the two domains. This last feature is quite important, as
it is added to the dependence on the complexity of the hypothesis class considered previously in the standard supervised
learning described in Section 2.

5 Learning bounds with integral probability metrics

In the previous sections, we presented several seminal results regarding the generalization bounds for domain adaptation
and the impossibility theorems for some of them. We have shown that the basic shape of generalization bounds in the
context of domain adaptation remains more or less the same, and mainly differs only in the divergence used to measure
the distance between the source and the target marginal distributions. In this section, we consider a large family of
metrics on the space of probability measures known as IPMs that present a well-studied topic in probability theory.
In particular, we show that depending on the chosen functional class, some instances of IPMs can have interesting
properties that are completely different from those shown by both theH∆H-divergence and the discrepancy distance
seen previously.

5.1 Problem set-up

Integral probability metrics represent a large class of distances defined on the space of probability measures that have
found applications in many machine-learning algorithms. The general definition of IPMs can be given as follows.
Definition 21 ([Zolotarev, 1984]). Given two probability measures SX and TX defined on a measurable space X, the
IPM is defined as

DF (SX, TX) = sup
f∈F

∣∣∣∣∣
∫
X

fdSX −
∫
X

fdTX

∣∣∣∣∣,
where F is a class of real-valued bounded measurable functions on X.

As mentioned by [Müller, 1997], the quantity DF (SX, TX) is a semimetric, and it is a metric if and only if the function
class F separates the set of all signed measures with µ(X) = 0. It then follows that for any non-trivial function class
F , the quantity DF (SX, TX) is zero if SX and TX are the same. Several important special cases of IPMs can be
obtained by specifically choosing the functional class F . We present those that were used for the analysis of the domain
adaptation problem below.
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Maximum mean discrepancy Let F = {f : ‖f‖Hk ≤ 1} whereHk is a RKHS with its associated kernel k. Then,
the maximum mean discrepancy (MMD) distance is defined as follows:

dMMD(SX, TX) = sup
‖f‖Hk≤1

∣∣∣∣∫ fd(SX − TX)

∣∣∣∣ =

∥∥∥∥∥
∫
X

k(x, ·)d(SX − TX)

∥∥∥∥∥
Hk

.

From a practical point of view, we observe that numerous domain adaptation and transfer learning approaches
have been based on MMD minimization [Pan et al., 2009, Geng et al., 2011, Huang et al., 2006, Pan et al., 2008,
Chen et al., 2009], and thus a theoretical analysis of the domain adaptation problem with this is of high scientific
interest.

Wasserstein distance Let F = {f : ‖f‖L ≤ 1} where

‖f‖L = sup
x6=x′∈X

|f(x)− f(x′)|
c(x,x′)

is the Liptschitz semi-norm for real-valued continuous f on X and some metric c(·, ·) : X×X→ R+.

In this case, the Kantorovich-Rubinstein theorem [Dudley, 2002] yields the following result, with the Wasserstein
distance W1 defined as follows:

W1(SX, TX) = sup
‖f‖L≤1

∣∣∣∣∫ fd(SX − TX)

∣∣∣∣ = inf
γ∈Π(SX,TX)

∫
X×X

c(x,x′)dγ(x,x′),

where Π(SX, TX) is a space of all joint probability measures on X×X with marginals SX and TX.

The original optimal transportation problem was introduced by [Monge, 1781] to study the problem of resource alloca-
tion. Its modern formulation, which led to the introduction of the Wasserstein distance, is due to [Kantorovich, 1942],
who proposed a relaxation of the Monge’s problem allowing to prove the existence of a unique minimizer for it. Despite
being a very powerful tool for comparing and aligning probability distributions, the Wasserstein distance has become an
emerging topic in machine learning only recently due to [Cuturi, 2013], where an efficient regularization scheme that
allowed the solving of the optimal transportation problem was introduced.

5.2 Generalization bound with IPMs

We start this section with a general result that introduces IPMs to the domain adaptation generalization bounds provided
by [Zhang et al., 2012]. In this paper, the authors considered a general multi-source scenario where not one, but
K ≥ 2 source domains are available. To be consistent with the rest of the survey, we present the main result of
[Zhang et al., 2012] that introduces the IPMs in the context of domain adaptation specified for the case of one source
and one target domain below.
Theorem 30. For a labeling function f ∈ G, let F = {(x, y)→ `(f(x), y)} be a loss function class that consists of
the bounded functions with the range [a, b] for a space of labeling functions G. Let S = {(x1, y1), . . . , (xm, ym)} be a
labeled sample drawn from S of size m. Then, given any arbitrary ξ ≥ DF (S, T ), we have for any m ≥ 8(b−a)

ξ′2 and
any ε > 0, with probability of at least 1− ε, the following holds

sup
f∈F

∣∣R`
Ŝf − R`

T f
∣∣ ≤ DF (S, T ) +

(
lnN1(ξ′/8,F , 2m)− ln(ε/8)

m
32(b−a)2

) 1
2

,

where ξ′ = ξ −DF (S, T ).

Here the quantity N1(ξ,F , 2m) is defined in terms of the uniform entropy number (see Definition 8), and it is given by
the following equation

N1(ξ,F , 2m) = sup
{S2m}

logN
(
ξ,F , `1({S2m})

)
,

where for the source sample S and its associated ghost sample S′ = {(x′1, y′1), . . . , (x′m, y
′
m)} drawn from S, the

quantity S2m = {S, S′} and the metric `1 are a variation of the `1 metric defined for some f ∈ F based on the
following norm

‖f‖`1({S2m})) =
1

m

m∑
i=1

(
|f(xi, yi)|+ |f(x′i, yi)

)
.
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It can be noted that there are several peculiarities related to this result. First, it is different from other generalization
bounds provided before, as the divergence term here is defined for the joint distributions S and T , and not for the
marginal distributions SX and TX. Note that, in general, the joint target distribution T cannot be estimated in the
classical scenario of unsupervised domain adaptation, as this can be done only when target labels are known, thus
making the application of this bound quite uninformative in practice. Secondly, the proposed bound is very general, as
it does not specify explicitly the functional class F considered in the definition of the IPM. On the one hand, this allows
this bound to be adjusted to any instance of IPMs that can be obtained by choosing the appropriate functional class,
while on the other hand, it also requires the uniform entropy number for this to be determined. Finally, the authors
established a link between the discrepancy distance seen before and the DF (S, T ) that allows us to obtain a bound
with a more "traditional" shape. More precisely, the authors proved that the following inequality holds in the case of
one source and one target domain for any ` and functional class F :

DF (S, T ) ≤ disc`(SX, TX) + sup
g∈G

∣∣∣∣ E
x∼TX

[`(g(x), fT (x)]− E
x∼TX

[`(g(x), fS(x)]

∣∣∣∣ .
Note that the second term of the right-hand side is basically a disagreement between the labeling functions fS and fT
that is zero only when they are equal. Using this inequality, it can be shown that the proposed theorem can be reduced
to the following shape:

sup
f∈F
|R`
Ŝf − R`

T f | ≤ disc`(SX, TX) + λ+

(
lnN1(ξ′/8,F , 2m)− ln(ε/8)

m
32(b−a)2

) 1
2

, (7)

where λ = supg∈G

∣∣∣∣ E
x∼TX

[`(g(x), fT (x)]− E
x∼TX

[`(g(x), fS(x)]

∣∣∣∣, and the last term is the complexity term that

depends on the covering number of the space F , similar to the bounds based on the algorithmic robustness presented by
Section 2. To this end, Equation (7) now looks similar to the generalization bounds from the previous sections.

To show that for a finite complexity term the difference between the empirical source risk and the target risk never
exceeds the divergence between the two domains with the increasing number of available source examples, the authors
proved the following theorem.
Theorem 31. For a labeling function f ∈ G, let F = {(x, y)→ `(f(x), y)} be a loss function class that consists of
the bounded functions with the range [a, b] for a space of labeling functions G. If the following holds

lim
m→∞

lnN1(ξ′/8,F , 2m)
m

32(b−a)2
<∞ ,

with ξ′ = ξ −DF (S, T ), then we have for any ξ ≥ DF (S, T ),

lim
m→∞

Pr {sup
f∈F
|R`
Ŝf − R`

T f | > ξ} = 0.

It can be noted here that the probability of event {supf∈F |R`
Ŝf − R`

T f | > ξ} is taken with respect to the thresh-
old ξ ≥ DF (S, T ), while in standard learning theory this guarantee is usually stated for any ξ > 0 given that
limm→∞

lnN1(ξ,F,m)
m < ∞. This highlights an important difference between the classic generalization bounds for

supervised learning and the result given by Theorem 30.

As we mentioned above, the general setting for generalization bounds with IPMs proposed by Zhang et al. suffers
from two major drawbacks: (1) the function class in the definition of the IPM is not specified, making it intractable
to compute; (2) the proposed bounds are established for joint distributions rather than marginal distributions, making
them not very informative in practice. To this end, we present below two different lines of research that tackle these
drawbacks, and establish the generalization bounds for domain adaptation by explicitly considering a particular function
class with a divergence term that takes into account the discrepancy between the marginal distributions of the source
and target domains. These lines lead to two important particular cases of IPMs that were used to derive generalization
bounds in domain adaptation: the Wasserstein distance and the MMD. We take a closer look at both of these in what
follows.

5.3 Learning bounds with the Wasserstein distance

Despite many important theoretical insights presented previously, the above-mentioned divergence measures, such as
theH∆H-divergence and the discrepancy, do not directly take into account the geometry of the data distribution when

31



estimating the discrepancy between two domains. Recently, [Courty et al., 2014] proposed to tackle this drawback by
solving the domain adaptation using the Wasserstein distance. To justify domain adaptation algorithms based on the
minimization of the Wasserstein distance, the generalization bounds for the three domain adaption settings involving this
latter were presented by [Redko et al., 2017]. According to [Villani, 2009], the Wasserstein distance is relatively strong
and can be combined with smoothness bounds to obtain convergences in other distances. As mentioned by the authors,
this important advantage of the Wasserstein distance leads to tighter bounds in comparison to other state-of-the-art
results, and it is more computationally attractive, as explained below.

To proceed, let F = {f ∈ Hk : ‖f‖Hk ≤ 1}, where Hk is a RKHS with its associated kernel k. Let `h,f : x →
`(h(x), f(x)) be a convex loss-function defined ∀h, f ∈ F , and assume that ` obeys the triangle inequality. As before,
h(x) corresponds to the hypothesis and f(x) to the true labeling functions. Considering that (h, f) ∈ F2, the loss
function ` is a non-linear mapping of the RKHSHk for the family of `q losses defined previously2. Using results from
[Saitoh, 1997], it can be shown that `h,f also belongs to the RKHSHkq , admitting the reproducing kernel kq , and that
its norm obeys the following inequality:

||`h,f ||2Hkq ≤ ||h− f ||
2q
Hk .

This result gives us two important properties of `f,h that are used further:

1. the function `h,f belongs to the RKHS, which allows us to use the reproducing property via some feature map
φ(x) associated to kernel kq;

2. the norm ||`h,f ||Hkq is bounded.

Thus, the error function defined above can be also expressed in terms of the inner product in the corresponding Hilbert
space, i.e3,

R`
D(h, fD) = E

x∼DX

[`(h(x), fD(x))] = E
x∼DX

[〈φ(x), `〉Hkq ].

Now the following lemma that relates the Wasserstein metric with the source and target error functions for an arbitrary
pair of hypotheses can be proved.
Lemma 32 ([Redko et al., 2017]). Let SX, TX ∈ P (X) be two probability measures on Rd. Assume that the cost
function c(x,x′) = ‖φ(x) − φ(x′)‖Hk` , where H is a RKHS equipped with kernel k` : X × X → R induced by
φ : X→ Hk` and k`(x,x′) = 〈φ(x), φ(x′)〉Hk` . Assume further that the loss function `h,f : x −→ `(h(x), f(x)) is
convex, symmetric, bounded, obeys triangle equality, and has the parametric form |h(x) − f(x)|q for some q > 0.
Assume also that the kernel k` in the RKHSHk` is square-root integrable w.r.t. both SX, TX for all SX, TX ∈ P(X)
where X is separable and 0 ≤ k`(x,x′) ≤ K, ∀ x,x′ ∈ X. If ‖`‖Hk` ≤ 1, then the following holds

∀(h, h′) ∈ H2
k`
, R

`q
T (h, h′) ≤ R

`q
S (h, h′) +W1(SX, TX).

This lemma makes use of the Wasserstein distance to relate the source and target errors. The assumption made here is
to specify for the cost function that c(x,x′) = ‖φ(x)− φ(x′)‖H. While it might appear too restrictive, this assumption
is, in fact, not that strong. Using the properties of the inner-product, we have

‖φ(x)− φ(x′)‖H =
√
〈φ(x)− φ(x′), φ(x)− φ(x′)〉H =

√
k(x,x)− 2k(x,x′) + k(x,x′).

As the authors noted, it is possible to further show that for any given positive-definite kernel k there is a distance c
(used as a cost function in our case) that generates this, and vice versa (see Lemma 12 from [Sejdinovic et al., 2013]).

The following generalization bound was proven by the authors using a result that showed the convergence of the
empirical measure µ̂ to its true associated measure w.r.t. the Wasserstein metric provided by [Bolley et al., 2007].
Theorem 33. Under the assumptions of Lemma 32, let Su and Tu be two samples of size NS and NT drawn i.i.d. from
SX and TX, respectively. Let ŜX = 1

NS

∑NS
i=1 δxSi and T̂X = 1

NT

∑NT
i=1 δxTi be the associated empirical measures.

Then for any d′ > d and ς ′ <
√

2, there exists some constant N0 depending on d′, such that for any δ > 0 and
min(NS , NT ) ≥ N0 max(δ−(d′+2), 1) with probability of at least 1− δ for all h, we have

R
`q
T (h) ≤ R

`q
S (h) +W1(ŜX, T̂X) +

√
2 log

(
1

δ

)
/ς ′
(√

1

NS
+

√
1

NT

)
+ λ ,

where λ is the combined error of the ideal hypothesis h∗ that minimizes the combined error of R
`q
S (h) + R

`q
T (h).

2If (h, f) ∈ F2 then h− f ∈ F , which implies that `(h(x), f(x)) = |h(x)− f(x)|q is a nonlinear transform for h− f ∈ F .
3For simplicity, we further write ` meaning `f,h.
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A first immediate consequence of this theorem is that it justifies the use of the optimal transportation in the domain
adaptation context when combined with the minimization of the source error, and assuming the joint error given by
the λ term is small. For this latter, [Courty et al., 2014] proposed a class-labeled regularization term added to the
original optimal transport formulation to restrict source examples of different classes to be transported to the same
target example, by promoting group sparsity in the matrix γ due to ‖ · ‖pq with q = 1 and p = 1

2 . In some way,
this regularization term influences the capability term, by ensuring the existence of a good hypothesis that will be
discriminant on both source and target domain data.

Semi-supervised case To remain consistent with the previous sections, we also provide the generalization bound for
the Wasserstein distance in the semi-supervised setting below.
Theorem 34 ([Redko et al., 2017]). Let Su, Tu be unlabeled samples of size NS and NT each, drawn independently
from SX and TX, respectively. Let S be a labeled sample of size m generated by drawing β m points from TX
(β ∈ [0, 1]) and (1 − β)m points from SX and labeling them according to fS and fT , respectively. If ĥ ∈ H is the
empirical minimizer of Rα

Ŝ(h) on S and h∗T = argmin
h∈H

R
`q
T (h), then for any δ ∈ (0, 1) with probability of at least 1− δ

(over the choice of samples),

R
`q
T (ĥ) ≤ R

`q
T (h∗T ) + c1 + 2(1− α)(W1(ŜX, T̂X) + λ+ c2),

where

c1 = 2

√√√√2K
(

(1−α)2

1−β + α2

β

)
log(2/δ)

m
+ 4
√
K/m

(
α

mβ
√
β

+
(1− α)

m(1− β)
√

1− β

)
,

c2 =

√
2 log

(
1

δ

)
/ς ′
(√

1

NS
+

√
1

NT

)
.

In line with the results obtained previously, this theorem shows that the best hypothesis that takes into account both
source and target labeled data (i.e., 0 ≤ α < 1) performs at least as good as the best hypothesis learned on target data
instances alone (α = 1). This result agrees well with the intuition that semi-supervised domain adaptation approaches
should be at least as good as unsupervised ones.

5.4 Generalization bound with MMD

Based on the results with the Wasserstein distance, we now introduce learning bounds for the target error where the
divergence between the task distributions is measured by the MMD distance. As before, we start with a lemma that
relates the source and target errors in terms of the introduced discrepancy measure for an arbitrary pair of hypotheses.
Then, we show how the target error can be bounded by the empirical estimate of the MMD plus the complexity term.
Lemma 35 ([Redko, 2015]). Let F = {f ∈ Hk : ‖f‖Hk ≤ 1} whereHk is a RKHS with its associated kernel k. Let
`h,f : x→ `(h(x), f(x)) be a convex loss-function with a parametric form |h(x)−f(x)|q for some q > 0, and defined
∀h, f ∈ F such that ` obeys the triangle inequality. Then, if ‖l‖Hkq ≤ 1, we have :

∀(h, h′) ∈ F , R
`q
T (h, h′) ≤ R

`q
S (h, h′) + dMMD(SX, TX).

This lemma is proved in a similar way to Lemma 32 from [Redko et al., 2017], as presented before in this section. Using
this and the result that relates the true and the empirical MMD distances [Song, 2008], we can prove the following
theorem.
Theorem 36. With the assumptions from Lemma 35, let Su and Tu be two samples of size m drawn i.i.d. from SX and
TX, respectively. Then, with probability of at least 1− δ(δ ∈ (0, 1)) for all h ∈ F , the following holds:

R
`q
T (h) ≤ R

`q
S (h) + dMMD(ŜX, T̂X) +

2

m

(
E

x∼SX

[√
tr(KS)

]
+ E

x∼TX

[√
tr(KT )

])
+ 2

√
log( 2

δ )

2m
+ λ,

where dMMD(ŜX, T̂X) is an empirical counterpart of dMMD(SX, TX), KS and KT are the kernel functions calculated
on samples from SX and TX, respectively, and λ is the combined error of the ideal hypothesis h∗ that minimizes the
combined error of R

`q
S (h) + R

`q
T (h).
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We can see that this theorem is similar in shape to Theorem 33 and Theorem 10. The main difference, however, is that
the complexity term does not depend on the Vapnik-Chervonenkis dimension. In our case, the loss function between
two errors is bounded by the empirical MMD between distributions and two terms that correspond to the empirical
Rademacher complexities ofH w.r.t. the source and target samples. In both theorems, λ has the role of the combined
error of the ideal hypothesis. Its presence in the bound comes from the use of triangle inequality for the classification
error.

This result is particularly useful, as an unbiased estimate of the squared MMD distance d2
MMD(ŜX, T̂X) can be calculated

in linear time. We also note that the bound obtained can be further simplified with the use of, for instance, Gaussian,
exponential or Laplacian kernels, to calculate the kernel functions KS and KT , as these have 1s on the diagonal, thus
facilitating the calculation of the trace. Finally, it can be seen that the bound from Theorem 36 has the same terms as
Theorem 10, while the MMD distance is estimated as in Corollary 14.

Semi-supervised case Similar to the case considered by [Ben-David et al., 2010a], we can also derive similar bounds
for the MMD distance in the case of combined error. To this end, we present the following analog of Theorem 11.

Theorem 37. With the assumptions from Lemma 35, let Su, Tu be unlabeled samples of size m′, each drawn inde-
pendently from SX and TX, respectively. Let S be a labeled sample of size m generated by drawing β m points from
TX (β ∈ [0, 1]) and (1− β)m points from SX, and labeling them according to fS and fT , respectively. If ĥ ∈ H is
the empirical minimizer of Rα(h) on S and h∗T = argmin

h∈H
R
`q
T (h), then for any δ ∈ (0, 1), with probability of at least

1− δ (over the choice of samples),

R
`q
T (ĥ) ≤ R

`q
T (h∗T ) + c1 + c2,

c1 = 2

√√√√2K
(

(1−α)2

1−β + α2

β

)
log 2

δ

m
+ 2

(√
α

β
+

√
1− α
1− β

)√
K

m
,

c2 = d̂MMD(Su, Tu) +
2

m′
E

x∼SX

√
tr(KS) +

2

m′
E

x∼TX

√
tr(KT ) + 2

√
log 2

δ

2m′
+ λ.

Several observations can be made from this theorem. First of all, the main quantities that define the potential success of
domain adaptation according to [Ben-David et al., 2010a] (i.e., the distance between the distributions and the combined
error of the joint ideal hypothesis) are preserved in the bound. This is an important point that indicates that the two
results are not contradictory or supplementary. Secondly, rewriting the approximation of the bound as a function of
α and omitting additive constants can lead to a similar result as for Theorem 11. This observation might indicate the
existence of a strong connection between these.

The generalization guarantees obtained for domain adaptation based on the MMD distance allow another step forward to
be made in domain adaptation theory, and the results presented in the previous sections to be extended in two different
ways. Similar to discrepancy-based results, the bounds with the MMD distance allow any arbitrary loss function to be
considered, and thus applications of domain adaptation other than binary classification can be studied. On the other
hand, similar to the entropic-regularized Wasserstein distance, the MMD distance has some very useful estimation
guarantees that are unavailable for both theH∆H and disc divergences. This feature can be very important in accessing
both the a-priori hardness of adaptation and its a-posteriori success, to understand whether a given adaptation algorithm
manages to correctly reduce the discrepancy between the domains.

5.5 Relationship between the Wasserstein and the the MMD distances

Here, we have just presented two results that introduced the Wasserstein and the MMD distances to the domain
adaptation generalization bounds for both semi-supervised and unsupervised cases. As both results are built on the same
construction, there might be the need to explore the link between the Wasserstein and the MMD distances. To do this,
we first observe that in some particular cases, the latter can be bounded by the former. Indeed, if we assume that the
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ground metric in the Wasserstein distance is c(x,x′) = ‖φ(x)− φ(x′)‖H, then the following results can be obtained:∥∥∥∥∥
∫
X

fd(SX − TX)‖H =

∥∥∥∥∥
∫
X×X

(f(x)− f(x′))dγ(x,x′)

∥∥∥∥∥
H

≤
∫
X×X

‖f(x)− f(x′)‖Hdγ(x,x′)

=

∫
X×X

‖ 〈f(x), φ(x)〉 − 〈f(x′), φ(x′)〉 ‖Hdγ(x,x′)

≤ ‖f‖H
∫
X×X

‖φ(x)− φ(x′)‖Hdγ(x,x′).

Now taking the supremum over f w.r.t. F = {f : ‖f‖H ≤ 1}, and the infimum over γ ∈ Π(SX, TX), this gives

dMMD(SX, TX) ≤W1(SX, TX). (8)

This result holds under the hypothesis that c(x,x′) = ‖φ(x)−φ(x′)‖H. On the other hand, in [Gao and Galvao, 2014],
the authors showed that W1(SX, TX) with this particular ground metric can be further bounded, as follows

W1(SX, TX) ≤
√
d2

MMD(SX, TX) + C,

where C = ‖µ[SX]‖H + ‖µ[TX]‖H. This result is quite strong for multiple reasons. First, it allows the squared MMD
distance to be introduced to the domain adaptation bounds using [Redko et al., 2017, Lemma 1], which leads to the
following result for two arbitrary hypotheses (h, h′) ∈ H2

RT (h, h′) ≤ RS(h, h′) +
√
d2

MMD(SX, TX) + C.

On the other hand, the unified inequality

dMMD(SX, TX) ≤W1(SX, TX) ≤
√
d2

MMD(SX, TX) + ‖µ[SX]‖H + ‖µ[TX]‖H (9)

suggests that the MMD distance establishes an interval bound for the Wasserstein distance. This point is very interesting,
because originally the calculation of the Wasserstein distance (also known as the Earth Mover’s distance) requires the
solving of a linear programming problem that can be quite time consuming due to the computational complexity of
O(n3 log(n)), where n is the number of instances.

This result, however, is true only under the assumption that c(x,x′) = ‖φ(x)− φ(x′)‖H. While in most applications,
the Euclidean distance c(x,x′) = ‖x − x′‖ is used as a ground metric, this assumption can represent an important
constraint. Luckily, it can be circumvented due to the duality between the RKHS-based and distance-based metric
representations studied by [Sejdinovic et al., 2013]). Let us first rewrite the ground metric as

‖φ(x)− φ(x′)‖H =
√
〈φ(x)− φ(x′), φ(x)− φ(x′)〉H =

√
k(x,x)− 2k(x,x′) + k(x′,x′).

Now, to obtain the standard Euclidean distance in the expression of the ground metric, we can pick a kernel given by the
covariance function of the fractional Brownian motion, i.e., k(x,x′) = 1

2 (‖x‖2 + ‖x′‖2 − 2‖x− x′‖2). Inserting this
expression into the definition of c(x,x′) gives the desired Euclidean distance, and thus allows the Wasserstein distance
to be calculated with the standard ground metric.

5.6 Other relevant contributions

[Zhang et al., 2019] In this work, the authors generalized the seminal bounds to the multi-class setting, and introduced
a classification margin β > 0 into their results. This was done by introducing a definition of the error function Rβ

D that
takes into account the classification margin, as follows:

Rβ
D = E

x∼D
[lβ(h(x), fD(x))],

wherelβ is the ramp loss ([Shalev-Shwartz and Ben-David, 2014, Section 15.2.3]), defined as:

lβ(t) :=

{
1− t

β , if 0 ≤ t ≤ β
[t < 0], otherwise

(10)
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Their main contribution for the case of binary classification with labels encoded in {−1, 1} can then be stated as
follows:

RT (h) ≤ Rβ
S(h) + sup

h′∈H

∣∣∣Rβ
S(sgn (h) , h′)− Rβ

T (sgn (h) , h′)
∣∣∣+ λ(β), (11)

where
λ(β) = inf

h∈H
Rβ
S(h) + Rβ

T (h).

The alignment term in Equation (11) was termed the margin disparity discrepancy. As can be noted, this involves
a supremum over one hypothesis instead of two, making it lower than H∆H-divergence defined previously, which
corresponds to the case of β = 0 with the definition of the error given above. This also offers new insights into the
domain adaptation problem, by introducing the margin violation rate and scoring functions that give the confidence
level of belonging to a class of interest, rather than functions with binary output. However, as they bound the 0-1 loss
on the target domain, i.e., ε0,0T (h, f), their bound does not indicate the behavior of the margin violation rate on this
latter. For λ(β), this remains conceptually similar to the λ term of the other bounds, with the only difference consisting
in the definition of the error terms.

[Dhouib et al., 2020b] This work provides a generalization bound using a translated version of the ramp loss given
in Equation (10) and defined as lρ,β := lβ(· − ρ) for some ρ > 0. The authors first prove a bound that is analogous to
Equation (11), but concerning the margin violation loss Rρ,0

T (h) on the target domain, as follows:

Rρ,0
T (h) ≤ R

ρ+β
α ,0

S (h) + sup
h′∈H′

∣∣∣Rρ,β
S (h, h′)− Rρ,β

T (h, h′)
∣∣∣+ λ(α), (12)

where
λ(α) = inf

h∈H′
RS(h) + RT (h) + Pr

x∼SX
[|h(x)| < α].

Compared to the bound from Equation (11), this bound is more informative on the separation quality between classes in
the target domain, assessed by the margin violation risk Rρ,0

T (h). Also, the divergence term is continuous in both h and
h′ for β > 0, which makes it more suitable for optimization algorithms. The non estimable term λ(α) is non symmetric
w.r.t to T and S as it involves an absolute margin violation risk only for SX. Finally, hypothesis spaceH′ used to define
the divergence and the λ(α) term on the one hand, and the one concerning h, i.e.H, are not necessarily equal.

[Shen et al., 2018, Courty et al., 2017] Several studies have presented generalization bounds for domain adaptation
based on the Wasserstein distance, similar to those presented in this section. To this end, [Shen et al., 2018] gave a
learning bound with the exact same form as the bound in Theorem 33, but without imposing any additional assumptions
on the ground metric used in the definition of the Wasserstein distance. On the other hand, [Courty et al., 2017]
proposed a learning bound for an adaptation scenario between joint source and target probability distributions S and
T , similar to that of [Zhang et al., 2012]. Their bound introduced W (S, T ) with an additional term related to the
probabilistic transfer Lipschitzness assumption introduced in the latter paper for the labeling function with respect to the
optimal coupling. Also, the work of [Dhouib et al., 2020b] mentioned above proposed a generalization DA bound with
an adversarial (minimax) version of the Wasserstein distance between the marginal distributions analyzed extensively in
[Dhouib et al., 2020a].

Finally, we also note that the study of [Johansson et al., 2019] mentioned in the previous section also introduces learning
bounds for domain adaptation based on the concept of IPM.

5.7 Summary

In this section, we presented several theoretical results that use IPMs as a measure of divergence between the marginal
source and the target domain distributions in the domain adaptation generalization bounds. We argued that this particular
choice of a distance provides a number of advantages compared to theH∆H-distance and the discrepancy distances
considered before. First, both the Wasserstein distance and the MMD distance can be calculated from available finite
samples in a computationally attractive way, due to linear time estimators for their entropy-regularized and quadratic
versions, respectively. Secondly, the Wasserstein distance allows geometrical information to be taken into account
when calculating the divergence between the two domain distributions, while the MMD distance is calculated based on
the distance between the embeddings of two distributions in some (possibly) richer space. This feature is relatively
interesting, as it provides more flexibility when it comes to incorporating the prior knowledge into the domain adaptation
problem on the one hand, and allows a potentially richer characterization of the divergence between the domains, on the
other. This might explain the abundance of domain adaptation algorithms based on the MMD distance, and some recent
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domain adaptation techniques developed based on optimal transportation theory. Finally, we note that in general, the
presented bounds are similar in shape to those described in Section 3, and they preserve their main terms, thus remaining
consistent with these. This shows that despite the large variety of ways that can be used to formally characterize the
generalization phenomenon in domain adaptation, the intuition behind this process and the main factors defining its
potential success remain the same.

6 PAC-Bayesian theory for domain adaptation

In this section, we recall the results from [Germain et al., 2016, Germain et al., 2013, Germain et al., 2020], where
PAC-Bayesian theory was used to theoretically understand domain adaptation through the weighted majority vote
learning point of view.

6.1 Problem set-up

In the traditional PAC-Bayesian setting, we consider a π distribution over the hypothesis setH, and the objective is to
learn a ρ distribution overH, by taking into account the information captured by the learning sample S. In the domain
adaptation setting, the goal is different, and it consists of learning the ρ-weighted majority vote

∀x ∈ X, Bρ(x) = sign

[
E
h∼ρ

h(x)

]
,

, with the best performance on the target domain T . Note that, here, we consider the 0 − 1 loss function. As in the
nonadaptation setting, PAC-Bayesian domain adaptation generalization bounds do not directly upper-bound R`01

T (Bρ),
but upper-bound the expectation according to ρ of the individual risks of the functions fromH: Eh∼ρ R`01(h), which is
closely related to Bρ (see Equation (2)). Let us introduce a tight relation between RD(Bρ) and Eh∼ρ R`01(h), known
as the C-bound [Lacasse et al., 2006], and defined for all distribution D on X× Y as

R`01
D (Bρ) ≤ 1−

(
1− 2 E

h∼ρ
R`01
D (h)

)2

1− 2dDX
(ρ)

. (13)

where
dDX

(ρ) = E
(h,h′)∼ρ2

E
x∼DX

`01

(
h(x), h′(x)

)
is the expected disagreement between pairs of voters on the marginal distribution DX. It is important to highlight that
the expected disagreement dDX

(ρ) is closely related to the concept of expected joint error eD(ρ) between pairs of
voters:

eD(ρ) = E
(h,h′)∼ρ2

E
(x,y)∼D

`01

(
h(x), y)

)
× `0−1

(
h′(x), y)

)
.

Indeed, for all distribution D on X× Y , we have

E
h∼ρ

R`01
D (h) =

1

2
dDX

(ρ) + eD(ρ). (14)

In the following, we present the two PAC-Bayesian generalization bounds for domain adaptation presented in
[Germain et al., 2013, Germain et al., 2016], through the point of view of [Catoni, 2007].

6.2 In the spirit of Ben-David et al. and Mansour et al.

The authors of [Germain et al., 2013] proposed to define a divergence measure that follows the idea underlying the
C-bound of Equation (13). More precisely, if Eh∼ρ R`01

S (h) and Eh∼ρ R`01
T (h) are similar, then R`01

S (Bρ) and R`01
T (Bρ)

are similar when dSX(ρ) and dTX(ρ) are also similar. Thus, the domains S and T are close according to ρ if the
expected disagreement over the two domains tends to be close. This intuition led the authors to the following domain
disagreement pseudometric.
Definition 22 (Domain disagreement [Germain et al., 2013]). LetH be a hypothesis class. For any marginal distribu-
tions SX and TX over X, and any distribution ρ onH, the domain disagreement disρ(SX, TX) between SX and TX is
defined by

disρ(SX, TX) =
∣∣∣ dTX(ρ)− dSX(ρ)

∣∣∣.
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It is worth noting that the value of disρ(SX, TX) is always lower than theH∆H-distance between SX and TX. Indeed,
for everyH and ρ overH, we have

1
2 dH∆H(SX, TX) = sup

(h,h′)∈H2

∣∣∣∣ E
x∼SX

`01

(
h(x), h′(x)

)
− E

x∼T
`01

(
h(x), h′(x)

)∣∣∣∣
≥ E

(h,h′)∼ρ2

∣∣∣∣ E
x∼SX

`01

(
h(x), h′(x)

)
− E

x∼T
`01

(
h(x), h′(x)

)∣∣∣∣
≥
∣∣∣ dTX(ρ)− dSX(ρ)

∣∣∣
= disρ(SX, TX).

Using this domain divergence, the authors proved the following domain adaptation bound.
Theorem 38 ([Germain et al., 2013]). LetH be a hypothesis class. We have

∀ρ onH, E
h∼ρ

R`01
T (h) ≤ E

h∼ρ
R`01
S (h) +

1

2
disρ(SX, TX) + λρ ,

where λρ is the deviation between the expected joint errors between pairs for voters on the target and source domains,
defined as

λρ =
∣∣∣ eT (ρ)− eS(ρ)

∣∣∣. (15)

The above theorem can be used to prove different kinds of PAC-Bayesian generalization bounds. Below, we present
only one such generalization bound, which was used to derive an adaptation algorithm in [Germain et al., 2013].
Theorem 39. For any domains S and T over X × Y , any set of voters H, any prior distribution π over H, any
δ ∈ (0, 1], any real numbers ω > 0 and a > 0, with a probability of at least 1 − δ over the random choice of
S × Tu ∼ (S × TX)m, for every posterior distribution ρ onH, we have

E
h∼ρ

R`01
T (h) ≤ ω′ E

h∼ρ
R`01
S (h) + a′ 1

2 disρ(S, Tu)

+

(
ω′

ω
+
a′

a

)
KL(ρ|π) + ln 3

δ

m
+ λρ + 1

2 (a′ − 1) ,

where disρ(S, Tu) is the empirical estimate of the the domain disagreement; λρ is defined by Equation (15); ω′ = ω
1−e−ω

and a′ = 2a
1−e−2a .

Similarly to the bounds of Theorems 6 and 15, this bound can be seen as a trade-off between different quantities.
The terms Eh∼ρ R`01

S (h) and disρ(S, T ) are akin to the first two terms of the bound of Theorem 6: Eh∼ρ R`01
S (h) is

the ρ-average risk over H on the source sample, and disρ(S, Tu) measures the ρ-average disagreement between the
marginals, although it is specific to the current model depending on ρ. The last term λρ measures the deviation between
the expected joint target and source errors of the individual hypothesis fromH (according to ρ). A successful domain
adaptation is possible if this deviation is low, although when no labels in the target sample are available, this term
cannot be controlled or estimated.

Despite the same underlying philosophy, the authors note that this bound is in general incomparable with those ones of
Theorems 6 and 15 due to the dependence of disρ(S, T ) and λρ on the learned posterior.

6.3 A different philosophy

In [Germain et al., 2016], the authors introduce another domain divergence to provide an original bound for the PAC-
Bayesian setting. They take advantage of Equation (14), which expresses the risk of the Gibbs classifier in terms of two
quantities:

E
h∼ρ

R`01
T (h) = 1

2dTX(ρ) + eT (ρ) (16)

It can be noted that the latter expression consists of half of the expected disagreement, which does not require labeled
data to be estimated, and the inestimable expected joint error. To deal with the latter, the authors designed a divergence
to link eT (ρ) to eS(ρ), called the β-divergence, which is defined by

∀q > 0, βq =

[
E

(x,y)∼S

(
T (x, y)

S(x, y)

)q ] 1
q

. (17)
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The β-divergence is parametrized by the value of q > 0, and allows well-known distribution divergence to be recovered,
such as the χ2-distance and the Rényi divergence mentioned at the end of Section 3. When q →∞, we have

β∞ = sup
(x,y)∈SUPP(S)

(
T (x, y)

S(x, y)

)
, (18)

where SUPP(S) denotes the support of the domain S. This β-divergence leads to the following bound.
Theorem 40 ([Germain et al., 2016]). Let H be a hypothesis space, S and T be the source and target domains on
X× Y , and q > 0 be some positive constant. Then, for all posterior distributions ρ onH, we have

E
h∼ρ

R`01
T (h) ≤ 1

2
dTX(ρ) + βq×

[
eS(ρ)

]1− 1
q

+ ηT \S ,

where
ηT \S = Pr

(x,y)∼T

(
(x, y) /∈ SUPP(S)

)
sup
h∈H

RT \S(h)

with T \S the distribution of (x, y)∼T conditional to (x, y) ∈ SUPP(T )\SUPP(S).

The last term of the bound, ηT \S , which cannot be estimated without target labels, captures the worst possible risk for
the target area not included in SUPP(S), similar to the idea used by [Johansson et al., 2019]. Note that we have

ηT \S ≤ Pr
(x,y)∼T

(
(x, y) /∈ SUPP(S)

)
.

An interesting property of Theorem 40 is that when domain adaptation is not required (i.e., S = T ), the bound is still
sound and nondegenerate. Indeed, in this case we have

RS(Gρ) = RT (Gρ) ≤ 1
2 dTX(ρ) + 1× [eS(ρ)]

1
+ 0 = 1

2 dSX(ρ) + eS(ρ) = RS(Gρ) .

Below, we present the PAC-Bayesian generalization bound obtained from the above theorem for the case q→∞.
Theorem 41. For any domains S and T over X × Y , any set of voters H, any prior distribution π over H, any
δ ∈ (0, 1], any real numbers b > 0 and c > 0, with a probability of at least 1 − δ over the random choices of
S ∼ (S)mS and Tu ∼ (TX)mT , for every posterior distribution ρ onH, we have

E
h∼ρ

R`01
T (h) ≤ c′ 1

2 dT (ρ) + b′ eS(ρ) + ηT \S +

(
c′

mT × c
+

b′

mS × b

)(
2 KL(ρ|π) + ln 2

δ

)
,

where dT (ρ) and eS(ρ) are the empirical estimations of the target voters’ disagreement and the source joint error, and
b′ = b

1−e−b β∞, and c′ = c
1−e−c .

Similarly to the first bound, the above theorem upper-bounds the target risk by a trade-off of different terms given by
the following atypical quantities:

1. The expected disagreement dT (ρ) that captures second degree information about the target domain;
2. The divergence between the domains, captured by the βq-divergence is not an additive term any more: it

weights the influence of the expected joint source error eS(ρ) where the parameter q allows different instances
of the βq-divergence to be considered;

3. The term ηT \S quantifies the worst feasible target error on the regions where the source domain is not
informative for the target task.

6.4 Comparison of the two domain adaptation bounds

The main difference between the bounds of Theorems 38 and 40 lies in the estimable terms that the latter relies on.
In Theorem 40, the nonestimable terms are the β-divergence βq and the term ηT \S . Contrary to the noncontrollable
term λρ of Theorem 38, these terms do not depend on the learned posterior distribution ρ: for every ρ on H, βq
and ηT \S are constant values that measure the relation between the domains for the considered task. Moreover, the
β-divergence is not an additive term but a multiplicative one (as opposed to disρ(SX, TX) + λρ in Theorem 38), which
is an important contribution of this new perspective. This is similar to the studies of [Mansour et al., 2009b] and
[Dhouib and Redko, 2018], who also introduced such a multiplicative dependence. Consequently, βq can be viewed as
a hyperparameter, which allows us to tune the trade-off between the target voters’ disagreement dTX(ρ) and the source
joint error eS(ρ).
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Note that, when eT (ρ) ≥ eS(ρ), we can upper-bound the term λρ of Theorem 38 by using the same trick as in the proof
of Theorem 40. This leads to

eT (ρ) ≥ eS(ρ) =⇒ λρ = eT (ρ)− eS(ρ) ≤ βq ×
[
eS(ρ)

]1− 1
q + ηT \S − eS(ρ).

Thus, in this particular case, we can rewrite the Theorem 38 statement for all ρ onH, as

E
h∼ρ

R`01
T (h) ≤ E

h∼ρ
R`01
S (h) +

1

2
disρ(SX, TX) + βq ×

[
eS(ρ)

]1− 1
q − eS(ρ)+ηT \S .

It turns out that, if dTX(ρ) ≥ dSX(ρ) in addition to eT (ρ) ≥ eS(ρ), the above statement reduces to that of Theorem 40.
In all other cases, Theorem 40 is tighter, thus confirming that following the seminal works of Section 3, with introduction
of absolute values in Theorem 38, gives a very rough approximation. Finally, one of the key points of the generalization
bounds of Theorems 39 and 41 is that they suggest algorithms for tackling majority vote learning in the domain
adaptation context. Similar to what was done in traditional supervised learning [Langford and Shawe-Taylor, 2002,
Ambroladze et al., 2006], [Germain et al., 2013, Germain et al., 2016, Germain et al., 2020] specialized these theo-
rems to linear classifiers, and derived adaptation algorithms based on this specialization.

6.5 Other relevant contributions

[McNamara and Balcan, 2017] In this study, the authors made use of the PAC-Bayesian framework to derive a
generalization bound for fine tuning in deep learning in a spirit close to that of analysing a domain adaptation problem.
Their considered setting corresponded to a scenario where there is the need to adapt a network trained for a given
domain to a similar one. The authors obtained a bound that does not directly involve the concept of divergence between
the domains, but a function that measures a transferability property between the two domains.

6.6 Summary

In this section, we recalled the two domain adaptation analyses for the PAC-Bayesian framework presented in
[Germain et al., 2013, Germain et al., 2016, Germain et al., 2020] for models taking the form of a majority vote over
a set of classifiers. More precisely, the first result of this section follows the underlying philosophy of the seminal
works of Ben-David et al. and Mansour et al. of Section 3, by upper-bounding the target risk by a source risk and a
domain divergence measure suitable for the PAC-Bayesian setting. This divergence is expressed as the average deviation
between the disagreement over a set of classifiers on the source and target domains, contrary to H∆H-divergence
and discrepancy distance, which are defined in terms of the worst-case deviation. Then, we recalled another domain
adaptation bound that takes advantage of the inherent behavior of the target risk in the PAC-Bayesian setting. The upper
bound obtained is different from the original one, as it expresses a trade-off between the disagreement on the target
domain only, the joint errors of the classifiers on the source domain only, and a term that reflects the worst-case error in
regions where the source domain is noninformative. Contrary to the first bound and those of the previous sections, the
divergence is not an additive term, but is a factor that weights the importance of the source information. These analyses
were combined with PAC-Bayesian generalization bounds of Section 2, and involved an additional term that measures
the deviation of the learned majority vote to the a-priori knowledge we have on the majority vote.

7 Domain adaptation theory based on algorithmic properties

In this section, we first review the work of [Mansour and Schain, 2014], where they derived a domain adaptation
generalization bound in terms of the algorithmic robustness of [Xu and Mannor, 2010] recalled in Section 2. Then, we
present the works of [Kuzborskij and Orabona, 2013] based on a closely related concept of algorithmic stability. Note
that this last contribution is proved for a setting different from the domain adaptation problem considered so far, as in
this case there is no access to the source examples, but rather to a hypothesis learned from them.

7.1 Robust domain adaptation

Definition of λ-shift [Mansour and Schain, 2014] used the concept of algorithmic robustness [Xu and Mannor, 2010]
to define the λ-shift that encodes prior knowledge of the deviation between the source and target domains. The goal of
their definition was to capture the proximity of the loss associated to a hypothesis on the source and target domains in
the regions defined by partitioning the joint space X× Y . As there is usually no access to target labels, the authors
proposed to consider the conditional distribution of the label in a given region, and the relation to its sampled value over
the given labeled sample S. To proceed, let ρ be a distribution over the label space Y , and let σy and σ−y = 1− σy
denote the probability of a given label y ∈ Y and the total probability of the other labels, respectively. The definition of
the λ-shift is then given as follows.
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Definition 23 ([Mansour and Schain, 2014]). Let σ and ρ be two distributions over Y . ρ is the λ-shift with respect to
σ, denoted by ρ ∈ λ(σ), if for all y ∈ Y we have ρy ≤ σy + λσ−y and ρy ≥ σy(1− λ). If for some y ∈ Y we have
ρy = σy + λσ−y , we say that ρ is strict-λ-shift with respect to σ.

Note that, for the sake of simplicity, for ρ ∈ λ(σ), the upper bound and the lower bound of the probability ρy are
respectively denoted by:

λ̄y(σ) = σy + λ(1− σy), and λy(σ) = σy(1− λ) .

The above definition means that λ-shift between two distributions on Y implies a restriction on the deviation between
the probability of a label on the distributions: this shift might be at most a λ portion of the probability of the other labels
or of the probability of the label. Note that λ = 1, respectively λ = 0, corresponds to the no restriction and the total
restriction cases, respectively.

Learning bounds based on algorithmic robustness To analyze the domain adaptation setting, the authors assumed
that X × Y can be partitioned into M disjoint subsets, defined as X × Y =

⋃
i,jXi × Yj , where the input space

is partitioned as X =
⋃MX

i=1 , and the output space as Y =
⋃MY

j=1 Yj and M = MXMY . Note that, an (M, ε)-robust
algorithm outputs a hypothesis that has an ε variation in the loss in each region Xi × Yj . We now present the following
theorem.
Theorem 42 ([Mansour and Schain, 2014]). Let A be an (M, ε)-robust algorithm with respect to a loss function
` : X× Y , such that 0 ≤ `(h(x, y) ≤Ml, for all (x, y) ∈ (X× Y ) and h ∈ H. If S is λ-shift of T with respect to the
partition of X for any δ ∈ (0, 1], the following bound holds with probability of at least 1− δ, over the random draw of
the sample S from S, and of the sample T from T of size m,

∀h ∈ H, R`
T (h) ≤

Mx∑
i=1

T (Xi)`
λ
S(h,Xi) + ε+M`

√
2M ln 2 + 2 ln 1

δ

m
,

where T (Xi) = 1
m

∣∣ {x ∈ T ∩Xi}
∣∣ is the ratio of target points in the region Xi, and

∀i ∈ {1, . . . ,MX}, `λS(h,Xi) ≤ max
y∈Y

`i(h, y)λ̄y(Si) +
∑
y′ 6=y

`i(h, y
′)λy

′
(Si)

 ,

with

`i(h, y) =

{
maxx∈S∩Xi×y `(h(x), y) if S ∩Xi × y 6= ∅
M` otherwise.

The main difference between this domain adaptation result and the original robustness bound of Theorem 9 of
Section 2 is seen in the first term. In the latter case, which is an upper bound on the source risk, the first term
1
m

∑
(x,y)∈S `(hS(x), y) simply corresponds to the empirical error of the model learned on the source sample. In the

former bound, which upper-bounds the target risk, the first term
∑Mx

i=1 T (Xi)`
λ
S(h,Xi) depends also on the empirical

risk on the source sample, which is a combination of the λ-shifted source risk of each region weighted by the ratio
of target points in the region. This is reminiscent of the multiplicative dependence between the source error and the
divergence term already mentioned in previous sections.

7.2 Hypothesis transfer learning

In this section we review theoretical results for the hypothesis transfer learning (HTL) setting where only a hypothesis
learned in the source domain, and not the source (labeled) data, is available in addition to a small training sample from
the target domain. As a direct consequence of this, HTL does not introduce any assumptions about the relatedness of
the source and target distributions, and it has an advantage in that it avoids the need to store abundant source data.

More formally, let hsrc ∈ HS be a hypothesis learned from labeled source data, and let T = {(xi, yi)}mi=1 ∼ (T )m be
a (labeled) target sample. The goal of HTL is then to learn a target model using hsrc and T that is better than the one we
can learn from T only. This goal is formalized using the following definition of a HTL algorithm A:

A : (X× Y )m ×HS 7→ H ,

where A maps any (labeled) target sample T ∼ (T )m and a source hypothesis hsrc ∈ HS onto a target hypothesis
h ∈ H. We now use this formalization to present several key definitions in HTL.
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Definition 24 (Usefulness and Collaboration [Kuzborskij, 2018]). A hypothesis hsrc ∈ HS is useful for A with respect
to the distribution S and a training sample S of size m if

E
S∼(S)m

[RD(A(S, hsrc))] < E
S∼(S)m

[RD(A(S,0))].

A hypothesis hsrc ∈ HS and a distributionD collaborate [Ben-David and Urner, 2013] forA, with respect to a training
sample S of size m, if

E
S∼(S)m

[RS(A(S, hsrc))] < min

{
RS(A(∅, hsrc), E

S∼(S)m
[RD(A(S,0))]

}
.

This definition provides two interesting properties for a hypothesis transfer learning algorithm. The concept of usefulness
corresponds to the case where the algorithm A allows a model to be inferred with a lower risk by using the source
hypothesis. The collaboration refers to the case where the access to both the source hypothesis hsrc and the sample S
used together helps to increase the performance in comparison to the case where they are used separately. If any one
of these two properties is not satisfied, then the resulting learning procedure leads to higher target error. The authors
further analyzed a regularized least squares algorithm (RLS) for HTL, as presented below.

A biased RLS algorithm for HTL We first begin with a quick recap of the classic RLS algorithm. For a learning
sample T = {(xi, yi)}mi=1 ∼ (T )m such that yi ∈ [−B,B] withB ∈ R and xi ∈ Rd with ‖x‖ ≤ 1, the RLS algorithm
aims to solve the following optimization problem:

min
w∈Rd

{
1

m

m∑
i=1

(wTxi − yi)2 + λ‖w‖2
}
.

It is well-known that RLS has useful theoretical properties and its solution can be expressed in a closed form. Now, we
consider a source hypothesis of the form hsrc(x) = xTw0, where w0 corresponds to the parameters of hsrc in the same
space as w. In [Orabona et al., 2009], the authors suggested to use a biased regularization with respect to w0, as

min
w∈Rd

{
1

m

m∑
i=1

(wTxi − yi)2 + λ‖w −w0‖2
}
.

In this formulation, we can see that the source hypothesis represented by w0 acts as a bias that tends to make the learned
model closer to w0 if the learning sample is compatible with it. Following the result of [Kuzborskij and Orabona, 2013],
we present a more general version, where the target hypothesis to be learned is defined by

hT (x) = trC
(
x>ŵT

)
+ hsrc(x) , (19)

where

ŵT = argmin
w

1

m

m∑
i=1

(
w>xi − yi + hsrc(xi)

)2
+ λ‖w‖2 ,

and the truncation function trC(a) is defined as

trC(a) = min [max (a,−C) , C] .

This formulation is a generalization of the usual biased RLS algorithm that allows consideration of any type of source
model hsrc. In particular, we can retrieve the usual formulation when C =∞ and hsrc(x) = x>w0, where w0 and wT

belong to the same space.

From the theoretical standpoint, the goal of the authors was then to bound the expected risk associated with this
algorithm, in terms of the characteristics of the source model hsrc. The proposed result is based upon the leave-one-out
risk over a sample T , defined as

Rloo
T̂ (A, T ) =

1

m

m∑
i=1

`(AT\i , (xi, yi)) ,

where AT\i represents the model learned by algorithm A from sample T , without the example (xi, yi). The first result
related to HTL can be now presented in the following theorem.

42



Theorem 43 ([Kuzborskij and Orabona, 2013]). Set λ ≥ 1
m . If C ≥ B + ‖hsrc‖∞, then for any hypothesis learned by

the algorithm presented in Equation (19), with probability of at least 1− δ over any sample T of size m i.i.d. from T ,
we have

RT (hT )− Rloo
T̂ (hT , T ) = O

C
4

√
RT (hsrc)trC2

(
RT (hsrc)

λ

)
+ R2

T (hsrc)

√
mδλ3/4

 .

If C =∞, then we have

RT (hT )− Rloo
T̂ (hT , T ) = O

(√
RT (hsrc)(‖hsrc‖∞ +B)√

mδλ

)
.

According to [Kuzborskij, 2018], we can draw the following implications.

1. For the null source hypothesis, i.e., hsrc = 0, we fall into a classic supervised learning setting, while for
C =∞, the generalization bound is bounded by O

(
B√
mλ

)
, similar to the results obtained for classic RLS

algorithms [Bousquet and Elisseeff, 2002];
2. If hsrc 6= 0 and 1

λRT (hsrc) tend to zero, then the target true risk converges to the leave-one-out risk. This
means that when the source hypothesis is good enough on the target domain, then transfer learning helps to
learn a better hypothesis on the target domain, even with small training samples.

3. If 1
λR(hsrc) is high, then more target labeled data are needed to provide a reliable hypothesis on the target. The

domains are then considered to be unrelated, so the source hypothesis does not bring any useful information.

Multi-source scenario Here, we consider the setting of [Kuzborskij and Orabona, 2017], where the source hypothesis
is expressed as a weighted combination of different source hypotheses

hβsrc(x) =

n∑
i=1

βih
i
src(x),

and where the target hypothesis is defined as

hw,β(x) = 〈w,x〉+ hβsrc(x).

The relevance of the different source hypotheses is then characterized by their associated weight given by the vector β.

Let ` : Y ×Y → R+ be an H-smooth loss function, such that ∀y1, y2 ∈ Y, |∇y1`(y1, y)−∇y2`(y2, y)| ≤ H|y1−y2|,
and let Ω : H → R+ be a σ-strongly convex function with respect to a norm ‖ · ‖ and to a hypothesis spaceH. Given
a target training set T = {(xi, yi)}mi=1, λ ∈ R+, n source hypotheses {hisrc}ni=1 and a parameter vector β verifying
Ω(β) ≤ ρ, the transfer algorithm generates a target hypothesis hŵ,β such that

ŵ = argmin
w∈H

{
1

m

m∑
i=1

`(〈w,xi〉+ hβsrc(xi), yi) + λΩ(w)}

}
.

In this formulation, the loss function is only minimized with respect to w, and not specifically with respect to β.
However, it is assumed that Ω(β) ≤ ρ makes β constrained by a strongly convex function, which allows regularized
algorithms to be covered that consider an additional regularization with respect to β. As in the previous analysis, the
key quantity RT (hβsrc) that measures the relevance of the source hypothesis on the target domain will have a crucial role
in the analysis of the generalization properties of hŵ,β. To illustrate the types of algorithms covered by this analysis, we
can consider the least-squares-based regularization that given source hypotheses {wi

src} ⊂ H, the parameters β ∈ Rn
and λ ∈ R+ outputs the target hypothesis

h(x) = 〈ŵ,x〉 ,
where

ŵ = argmin
w∈H

 1

m

m∑
i=1

(〈w,xi〉 − yi)2 + λ‖w −
n∑
j=1

βjw
j
src‖22

 . (20)

The problem defined by Equation (20) presents a special case of the classic regularized empirical risk minimization
(ERM), and can be interpreted as the minimization of the empirical error on the target sample while keeping the solution
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close to the (best) linear combination of source hypotheses. Note that while such a formulation is limited to a linear
combination of the source hypotheses in the same space as the target predictor, it can be generalized by allowing the
source hypotheses to be treated as "black box" predictors. The results presented below correspond to generalization
bounds for such an RLS multi-source algorithm.
Theorem 44 ([Kuzborskij and Orabona, 2017]). Let hŵ,β be a hypothesis output by a regularized ERM algorithm
from an m-sized training set T i.i.d. from the target domain T , n source hypotheses {hisrc : ‖hisrc‖∞ ≤ 1}ni=1, any
source weights β obeying Ω(β) ≤ ρ and λ ∈ R+. Assume that the loss is bounded by M : `(hŵ,β(x), y) ≤ M for
any (x, y) and any training set. Then, denoting κ = H

σ and assuming that λ ≤ κ, we have with probability of at least
1− e−η , for all η ≥ 0

RT (hŵ,β) ≤ RT̂ (hŵ,β) +O

Rsrc
T κ√
mλ

+

√
Rsrc
T ρκ

2

mλ
+

Mη

m log

(
1 +

√
Mη
usrc

)


≤ RT̂ (hŵ,β) +O

(
κ√
m

(
Rsrc
T
λ

+

√
Rsrc
T ρ

λ

)
+
κ

m

(√
Rsrc
T Mη

λ
+

√
ρ

λ

))
,

where usrc = Rsrc
T

(
m+ κ

√
m
λ

)
+ κ
√

Rsrc
T mρ

λ and Rsrc
T = RT (hβsrc) is the risk of the source hypothesis combination.

The following conclusions can be drawn from this result.

1. If Rsrc
T is high, then hβsrc has no use for transfer, and would only hurt the performance in the target domain;

2. If m = O(1/Rsrc
T ), then a small value Rsrc

T allows a faster convergence rate of O(
√
ρ/m
√
λ) when making

use of the information coming from the source hypotheses combination.

Comparison with standard theory of domain adaptation Recall that the seminal results presented in Section 3
have the following general form

RT (h) ≤ RS(h) + d(SX, TX) + λ ,

where d is some divergence between the source and target marginal distributions and λ refers to the adaptation capability
of the hypothesis classH from where h is taken.

In general, domain adaptation bounds cannot be directly compared to the result of Theorem 44, even though the
term Rsrc can be interpreted as H∆H-divergence by defining H = {x 7→ 〈β,hsrc(x) 〉| Ω(β) ≤ τ} where hsrc(x) =

[h1
src(x), . . . , hnsrc(x)]>, and fixing h = hβsrc ∈ H, such that

Rsrc = RT (hβsrc) ≤ RS(hβsrc) + dH∆H(SX, TX) + λH.

If we insert this inequality into the result presented above, then for any hypothesis h and λ ≤ 1, and ρ ≤ 1/λ, we have

RT (h) ≤ RŜ(h) +O

(
RS(hβsrc) + dH∆H(SX, TX) + λH√

mλ
+

1

mλ

)
. (21)

The two results agree that the divergence between the domains has to be small to generalize well. The divergence is
actually controlled by the choice of hsrc, while the complexity of the hypothesis classH is controlled by τ . In traditional
domain adaptation, a hypothesis h performs well on the target domain only if it performs well on the source domain,
under the condition that H is expressive enough to ensure adaptation, or in other words that the λH term should be
small. In HTL, however, this condition can be relaxed, as highlighted by Equation (21), which implies that a good
source model has to perform well on its own domain. Additionally, while in traditional domain adaptation the λ-term is
assumed to be small – otherwise there is no hypothesis that can perform well on both domains at the same time, and the
adaptation cannot be effective – in HTL, the transfer can still be beneficial even for large λ, due to the availability of the
labeled target samples.

7.3 Other relevant contributions

[Li and Bilmes, 2007] The authors of this study investigated HTL from the Bayesian perspective, by proposing a
PAC-Bayesian study and deriving bounds that capture the relationship between domains by an additive KL-divergence
term, which is classic in a PAC-Bayesian setting. In the particular case of logistic regression, they showed that the
divergence term is upper-bounded by ‖h− hsrc‖2, which motivated the biased regularization term in logistic regression
and the interest of incorporating the source hypothesis into the adaptation model.
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[Morvant et al., 2012] As in [Dhouib and Redko, 2018], the authors of this paper considered learning with a particu-
lar family of similarity functions introduced in [Balcan et al., 2008], and provided a generalization bound for this using
the algorithmic robustness framework.

[Habrard et al., 2013] This paper presented a study on iterative self-labeling for domain adaptation, where at each
iteration a hypothesis h is learned from the current sample S, some target samples are pseudo-labeled from Tu by
h, and these are incorporated into the source sample S to progressively modify the current classifier. Their analysis
suggested that such a procedure theoretically solves a domain adaptation problem when the hypothesis obtained at each
iteration improves upon the hypothesis obtained without self-labeling.

[Perrot and Habrard, 2015] The theoretical results of this paper made use of an extension of the concept of algo-
rithmic stability (see Subsection 2.6) to similarity learning, and provided generalization bounds for this in the HTL
framework presented above. In particular, instead of learning a set of weights w that parameterize the hypothesis
function h, the authors learned a similarity matrix M that is regularized with respect to a similarity matrix MS learned
in a related source domain.

[Habrard et al., 2016] In this study, the authors analyzed a setting that consisted of learning N weak hypotheses4

using the labeled source sample and reweights them differently by taking into account the data from the unlabeled
target domain. Their theoretical analysis proves that the proportion of target examples having a margin γ decreases
exponentially with the number of iterations, but does not benefit from any generalization guarantees given by an upper
bound on the risk with respect to the target distribution.

[Du et al., 2017] In this study, the authors considered an extension of the original HTL setting through a general
form of transfer defined by transformation functions that can be provided as input to the HTL algorithm. These
transformation functions include, for instance, the offset transfer and scale transfer, thus generalizing the study of
[Kuzborskij and Orabona, 2013].

Also, we note that the study of [Hanneke and Kpotufe, 2019] mentioned in Section 4 analyzed the HTL-based adaptation
approach, and showed its efficiency in improving the target performance.

7.4 Summary

In this section, we have presented theoretical results that allow algorithmic properties of adaptation algorithms to be
taken into consideration. First, we recalled how the algorithmic robustness can be extended to the domain adaptation
setting, with relaxation of the covariate-shift assumption. Secondly, we focused on a different domain adaptation setting
called hypothesis transfer learning, where there is no access to source samples, but to source model(s) given by the
learned hypotheses. In this setting, we presented theoretical results obtained in the case of regularized ERM-based
algorithms that rely on the algorithmic stability framework.

In general, we can highlight several important differences of this framework with respect to the results seen in the
previous sections. These are the following:

1. Contrary to the divergence-based bounds, the learning guarantees presented in this section do not include a
term that measures the discrepancy between the marginal distributions of the two domains. This is as expected,
as in the HTL scenario we do not have access to a learning sample from the source domain, but only to a
hypothesis learned on it;

2. The potential success of adaptation in the HTL framework depends on the performance of the source hypothesis
on the target distribution, and allows a better hypothesis to be learned, even on small samples when some
assumptions are fulfilled;

3. Contrary to the majority of the results seen so far, the adaptability term is absent from the bounds related to the
HTL setting, as in this case, the learner has access to some target labeled data.

8 Conclusions and discussion

In this survey, we have presented an overview of the existing theoretical guarantees that have been proven for the
domain adaptation problem, a learning setting that extends traditional learning paradigms to the case where the model
is learned and deployed on samples coming from different, yet related, probability distributions. The cited theoretical

4A weak hypothesis for D is a hypothesis such that RD(h) = 1
2
− ε, where ε > 0 is a small constant.
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results often take the shape of learning bounds, where the goal is to relate the error of a model on the training domain
(also called the source domain) to that of the test domain (also called the target domain). To this end, we note that the
results presented are highly intuitive, as they explicitly introduce the dependence of the relationship between the two
errors mentioned above to the similarity of their data-generating probability distributions and that of their corresponding
labeling functions. Consequently, this two-way relatedness between the source and target domains characterizes both
the unsupervised proximity of two domains, by comparing their marginal distributions, and the possible labelings of
their samples, by looking for a good model with a low error with respect to these. This general trade-off is preserved, in
one way or another, in the majority of published results on the subject, and thus this can be considered as a cornerstone
of modern domain adaptation theory.

As any survey that gives an overview of a certain scientific field, this one would have been incomplete without
identification of the problems that remain open. In the context of domain adaptation theory, these problems can be
arguably split into two main categories, where the first is related to the domain adaptation problem itself, and the second
is related to other learning scenarios similar to domain adaptation. For the first category, one important open problem
is that of characterizing the a-priori adaptability of the adaptation given by the joint error term. Indeed, this term is
often assumed to be small for domain adaptation to be possible, although only one previous study [Redko et al., 2019b]
suggested an actual way for its consistent estimation from a handful of labeled target data. On the other hand, domain
adaptation has been recently extended to open-set and heterogeneous settings, where for the former both source and
target domains are allowed to have nonoverlapping classes, while for the latter the input space of the two domains might
differ. To the best of our knowledge, there are still no theoretical results that analyze these scenarios. This point brings
us to the second category of open problems related to learning scenarios similar to that of domain adaptation, such
few-shot learning problems, where there is the need to learn on a sample that contains no or only a few examples of
certain classes appearing in the test data. Intuitively, this problem is tightly related to domain adaptation and might
naturally inherit some of its theoretical guarantees, although there have been no studies that make this link explicit in
the literature to date.

Finally, this survey has not discussed such closely related topics as multitask learning, learning-to-learn, and lifelong
learning, to name but a few. This particular choice was made to remain focused on one particular problem, as this is
vast enough on its own. We also admit that there are certainly other relevant papers that provide guarantees for domain
adaptation that are not included in this survey5. This field, however, is so large and recent advances have been published
at such a great pace that it is simply not possible to keep up with it and to report all possible results, without breaking
the general structure and the narrative of our survey.

References

[Ambroladze et al., 2006] Ambroladze, A., Parrado-Hernández, E., and Shawe-Taylor, J. (2006). Tighter PAC-Bayes
bounds. In Proceedings of the Conference on Neural Information Processing Systems (NIPS), pages 9–16.

[Balcan et al., 2008] Balcan, M., Blum, A., and Srebro, N. (2008). Improved guarantees for learning via similarity
functions. In COLT, pages 287–298.

[Bartlett and Mendelson, 2002] Bartlett, P. L. and Mendelson, S. (2002). Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3(Nov):463–482.

[Ben-David et al., 2010a] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. (2010a). A
theory of learning from different domains. Machine learning, 79(1-2):151–175.

[Ben-David et al., 2007] Ben-David, S., Blitzer, J., Crammer, K., and Pereira, O. (2007). Analysis of representations
for domain adaptation. In Proceedings of the Conference on Neural Information Processing Systems (NIPS), pages
137–144.

[Ben-David et al., 2010b] Ben-David, S., Lu, T., Luu, T., and Pál, D. (2010b). Impossibility theorems for domain
adaptation. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 9, pages 129–136.

[Ben-David et al., 2012] Ben-David, S., Shalev-Shwartz, S., and Urner, R. (2012). Domain adaptation–can quantity
compensate for quality? In International Symposium on Artificial Intelligence and Mathematics (ISAIM).

[Ben-David and Urner, 2012] Ben-David, S. and Urner, R. (2012). On the hardness of domain adaptation and the
utility of unlabeled target samples. In Proceedings of the conference on Algorithmic Learning Theory (ALT), pages
139–153.
5If your paper does not appear in this survey, but seems relevant to its contents, please let us know, and we will try to include it in

the revised versions.

46



[Ben-David and Urner, 2013] Ben-David, S. and Urner, R. (2013). Domain adaptation as learning with auxiliary
information. In Workshop@NIPS New Directions in Transfer and Multi-Task.

[Blitzer et al., 2008] Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Wortman, J. (2008). Learning bounds for
domain adaptation. In Proceedings of the Conference on Neural Information Processing Systems (NIPS), pages
129–136.

[Bolley et al., 2007] Bolley, F., Guillin, A., and Villani, C. (2007). Quantitative concentration inequalities for empirical
measures on non-compact spaces. Probability Theory and Related Fields, 137(3-4):541–593.

[Bousquet and Elisseeff, 2002] Bousquet, O. and Elisseeff, A. (2002). Stability and generalization. Journal of Machine
Learning Research, 2(Mar):499–526.

[Catoni, 2007] Catoni, O. (2007). PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical
Learning, volume 56. Inst. of Mathematical Statistic.

[Chen et al., 2009] Chen, B., Lam, W., Tsang, I., and Wong, T.-L. (2009). Extracting discriminative concepts for
domain adaptation in text mining. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 179–188.

[Cortes et al., 2010] Cortes, C., Mansour, Y., and Mohri, M. (2010). Learning bounds for importance weighting. In
NIPS, pages 442–450.

[Cortes and Mohri, 2011] Cortes, C. and Mohri, M. (2011). Domain adaptation in regression. In Proceedings of the
conference on Algorithmic Learning Theory (ALT), pages 308–323.

[Cortes and Mohri, 2014] Cortes, C. and Mohri, M. (2014). Domain adaptation and sample bias correction theory and
algorithm for regression. Theoretical Computer Science, 519:103–126.

[Cortes et al., 2015] Cortes, C., Mohri, M., and Muñoz Medina, A. (2015). Adaptation algorithm and theory based on
generalized discrepancy. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 169–178. ACM.

[Courty et al., 2017] Courty, N., Flamary, R., Habrard, A., and Rakotomamonjy, A. (2017). Joint distribution optimal
transportation for domain adaptation. In NIPS, pages 3730–3739.

[Courty et al., 2014] Courty, N., Flamary, R., Rakotomamonjy, A., and Tuia, D. (2014). Optimal transport for domain
adaptation. In Workshop@NIPS on Optimal Transport and Machine Learning.

[Cuturi, 2013] Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In NIPS, pages
2292–2300.

[Dhouib and Redko, 2018] Dhouib, S. and Redko, I. (2018). Revisiting (\epsilon, \gamma, \tau)-similarity learning for
domain adaptation. In NeurIPS, pages 7408–7417.

[Dhouib et al., 2020a] Dhouib, S., Redko, I., Kerdoncuff, T., Emonet, R., and Sebban, M. (2020a). A swiss army knife
for minimax optimal transport. In Proceedings of the International Conference on Machine Learning (ICML), pages
7613–7622.

[Dhouib et al., 2020b] Dhouib, S., Redko, I., and Lartizien, C. (2020b). Margin-aware adversarial domain adaptation
with optimal transport. In Proceedings of the International Conference on Machine Learning (ICML), pages
4619–4629.

[Dietterich, 2000] Dietterich, T. G. (2000). Ensemble methods in machine learning. In International workshop on
multiple classifier systems, pages 1–15. Springer.

[Du et al., 2017] Du, S. S., Koushik, J., Singh, A., and Póczos, B. (2017). Hypothesis transfer learning via transforma-
tion functions. In NIPS, NIPS’17, page 574–584.

[Dudley, 2002] Dudley, R. M. (2002). Real analysis and probability. Cambridge studies in advanced mathematics.
Cambridge University Press.

[Gao and Galvao, 2014] Gao, Z. and Galvao, A. (2014). Minimum integrated distance estimation in simultaneous
equation models. arXiv preprint arXiv:1412.2143.

[Geng et al., 2011] Geng, B., Tao, D., and Xu, C. (2011). DAML: domain adaptation metric learning. IEEE Transac-
tions on Image Processing, 20(10):2980–2989.

[Germain et al., 2013] Germain, P., Habrard, A., Laviolette, F., and Morvant, E. (2013). A PAC-Bayesian approach
for domain adaptation with specialization to linear classifiers. In Proceedings of the International Conference on
Machine Learning (ICML), pages 738–746.

47



[Germain et al., 2016] Germain, P., Habrard, A., Laviolette, F., and Morvant, E. (2016). A new PAC-Bayesian
perspective on domain adaptation. In Proceedings of the International Conference on Machine Learning (ICML),
volume 48, pages 859–868.

[Germain et al., 2020] Germain, P., Habrard, A., Laviolette, F., and Morvant, E. (2020). Pac-bayes and domain
adaptation. Neurocomputing, 379:379–397.

[Germain et al., 2009] Germain, P., Lacasse, A., Laviolette, F., and Marchand, M. (2009). PAC-Bayesian learning of
linear classifiers. In Proceedings of the International Conference on Machine Learning (ICML), pages 353–360.

[Germain et al., 2015] Germain, P., Lacasse, A., Laviolette, F., Marchand, M., and Roy, J.-F. (2015). Risk bounds for
the majority vote: From a PAC-Bayesian analysis to a learning algorithm. Journal of Machine Learning Research,
16(1):787–860.

[Habrard et al., 2013] Habrard, A., Peyrache, J.-P., and Sebban, M. (2013). Iterative self-labeling domain adaptation
for linear structured image classification. International Journal on Artificial Intelligence Tools (IJAIT), 22(05).

[Habrard et al., 2016] Habrard, A., Peyrache, J.-P., and Sebban, M. (2016). A new boosting algorithm for provably
accurate unsupervised domain adaptation. Knowledge and Information Systems, 47(1):45–73.

[Hanneke and Kpotufe, 2019] Hanneke, S. and Kpotufe, S. (2019). On the value of target data in transfer learning. In
NeurIPS.

[Hoffman et al., 2018] Hoffman, J., Mohri, M., and Zhang, N. (2018). Algorithms and theory for multiple-source
adaptation. In NeurIPS, pages 8256–8266.

[Huang et al., 2006] Huang, J., Smola, A. J., Gretton, A., Borgwardt, K. M., and Schölkopf, B. (2006). Correcting
sample selection bias by unlabeled data. In NIPS, pages 601–608.

[Johansson et al., 2019] Johansson, F. D., Sontag, D. A., and Ranganath, R. (2019). Support and invertibility in
domain-invariant representations. In AISTATS, pages 527–536.

[Kantorovich, 1942] Kantorovich, L. (1942). On the translocation of masses. In C.R. (Doklady) Acad. Sci. URSS(N.S.),
volume 37, page 199–201.

[Kifer et al., 2004] Kifer, D., Ben-David, S., and Gehrke, J. (2004). Detecting change in data streams. In Proceedings
of the International Conference on Very Large Data Bases, pages 180–191.

[Kolmogorov and Tikhomirov, 1959] Kolmogorov, A. N. and Tikhomirov, V. M. (1959). ε-entropy and ε-capacity of
sets in function spaces. Uspekhi Matematicheskikh Nauk, 14(2):3–86.

[Koltchinskii and Panchenko, 1999] Koltchinskii, V. and Panchenko, D. (1999). Rademacher processes and bounding
the risk of function learning. In High Dimensional Probability II, pages 443–459. Birkhauser.

[Kuroki et al., 2019] Kuroki, S., Charoenphakdee, N., Bao, H., Honda, J., Sato, I., and Sugiyama, M. (2019). Unsuper-
vised domain adaptation based on source-guided discrepancy. In AAAI, pages 4122–4129.

[Kuzborskij, 2018] Kuzborskij, I. (2018). Theory and Algorithms for Hypothesis Transfer Learning. PhD thesis, EPFL.
https://infoscience.epfl.ch/record/232494/files/EPFL_TH8011.pdf.

[Kuzborskij and Orabona, 2013] Kuzborskij, I. and Orabona, F. (2013). Stability and hypothesis transfer learning. In
Proceedings of the International Conference on Machine Learning (ICML), pages 942–950.

[Kuzborskij and Orabona, 2017] Kuzborskij, I. and Orabona, F. (2017). Fast Rates by Transferring from Auxiliary
Hypotheses. 106(2):171–195.

[Lacasse et al., 2006] Lacasse, A., Laviolette, F., Marchand, M., Germain, P., and Usunier, N. (2006). PAC-Bayes
bounds for the risk of the majority vote and the variance of the Gibbs classifier. In Proceedings of the Conference on
Neural Information Processing Systems (NIPS), pages 769–776.

[Langford and Shawe-Taylor, 2002] Langford, J. and Shawe-Taylor, J. (2002). PAC-Bayes & margins. In Proceedings
of the Conference on Neural Information Processing Systems (NIPS), pages 439–446.

[Li and Bilmes, 2007] Li, X. and Bilmes, J. (2007). A bayesian divergence prior for classiffier adaptation. In
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), pages 275–282.

[Mansour et al., 2008] Mansour, Y., Mohri, M., and Rostamizadeh, A. (2008). Domain adaptation with multiple
sources. In Proceedings of the Conference on Neural Information Processing Systems (NIPS), pages 1041–1048.

[Mansour et al., 2009a] Mansour, Y., Mohri, M., and Rostamizadeh, A. (2009a). Domain adaptation: Learning bounds
and algorithms. In Proceedings of the Conference on Learning Theory (COLT).

[Mansour et al., 2009b] Mansour, Y., Mohri, M., and Rostamizadeh, A. (2009b). Multiple source adaptation and the
rényi divergence. In UAI, pages 367–374.

48

https://infoscience.epfl.ch/record/232494/files/EPFL_TH8011.pdf


[Mansour and Schain, 2014] Mansour, Y. and Schain, M. (2014). Robust domain adaptation. Annals of Mathematics
and Artificial Intelligence, 71(4):365–380.

[McAllester, 1999] McAllester, D. A. (1999). Some PAC-Bayesian theorems. Machine Learning, 37:355–363.

[McNamara and Balcan, 2017] McNamara, D. and Balcan, M. (2017). Risk bounds for transferring representations
with and without fine-tuning. In Proceedings of the International Conference on Machine Learning (ICML), pages
2373–2381.

[Monge, 1781] Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale
des Sciences.

[Morvant et al., 2012] Morvant, E., Habrard, A., and Ayache, S. (2012). Parsimonious unsupervised and semi-
supervised domain adaptation with good similarity functions. Knowledge and Information Systems, 33(2):309–349.

[Müller, 1997] Müller, A. (1997). Integral probability metrics and their generating classes of functions. Advances in
Applied Probability, 29(2):429–443.

[Orabona et al., 2009] Orabona, F., Castellini, C., Caputo, B., Fiorilla, A., and Sandini, G. (2009). Model adaptation
with least-squares svm for adaptive hand prosthetics. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 2897–2903.

[Pan et al., 2008] Pan, S. J., Kwok, J. T., and Yang, Q. (2008). Transfer learning via dimensionality reduction. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 677–682.

[Pan et al., 2009] Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. (2009). Domain adaptation via transfer component
analysis. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1187–1192.

[Perrot and Habrard, 2015] Perrot, M. and Habrard, A. (2015). A theoretical analysis of metric hypothesis transfer
learning. In Proceedings of the International Conference on Machine Learning (ICML), pages 1708–1717.

[Re and Valentini, 2012] Re, M. and Valentini, G. (2012). Ensemble methods: a review. In Advances in Machine
Learning and Data Mining for Astronomy, pages 563–582.

[Redko, 2015] Redko, I. (2015). Nonnegative Matrix Factorization for Unsupervised Transfer Learning. PhD thesis,
Paris North University.

[Redko et al., 2019a] Redko, I., Courty, N., Flamary, R., and Tuia, D. (2019a). Optimal transport for multi-source
domain adaptation under target shift. In AISTATS, pages 849–858.

[Redko et al., 2017] Redko, I., Habrard, A., and Sebban, M. (2017). Theoretical analysis of domain adaptation with
optimal transport. In Proceedings of the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML/PKDD), pages 737–753.

[Redko et al., 2019b] Redko, I., Habrard, A., and Sebban, M. (2019b). On the analysis of adaptability in multi-source
domain adaptation. Mach. Learn., 108(8-9):1635–1652.

[Redko et al., 2019c] Redko, I., Morvant, E., Habrard, A., Sebban, M., and Bennani, Y. (2019c). Advances in Domain
Adaptation Theory. Elsevier.

[Saitoh, 1997] Saitoh, S. (1997). Integral Transforms, Reproducing Kernels and their Applications. Pitman Research
Notes in Mathematics Series.

[Saunders et al., 1998] Saunders, C., Gammerman, A., and Vovk, V. (1998). Ridge regression learning algorithm in
dual variables. In Proceedings of the International Conference on Machine Learning (ICML), pages 515–521.

[Seeger, 2002] Seeger, M. (2002). Pac-bayesian generalisation error bounds for gaussian process classification. Journal
of Machine Learning Research, 3(Oct):233–269.

[Sejdinovic et al., 2013] Sejdinovic, D., Sriperumbudur, B., Gretton, A., Fukumizu, K., et al. (2013). Equivalence of
distance-based and rkhs-based statistics in hypothesis testing. The Annals of Statistics, 41(5):2263–2291.

[Shalev-Shwartz and Ben-David, 2014] Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge university press.

[Shawe-Taylor and Williamson, 1997] Shawe-Taylor, J. and Williamson, R. C. (1997). A PAC Analysis of a Bayesian
Estimator. In Proceedings of the annual workshop on Computational learning theory (COLT), pages 2–9.

[Shen et al., 2018] Shen, J., Qu, Y., Zhang, W., and Yu, Y. (2018). Wasserstein distance guided representation learning
for domain adaptation. In AAAI, pages 4058–4065.

[Song, 2008] Song, L. (2008). Learning via Hilbert Space Embedding of Distributions. PhD thesis, University of
Sydney.

49



[Sugiyama et al., 2008] Sugiyama, M., Nakajima, S., Kashima, H., Bünau, P. V., and Kawanabe, M. (2008). Direct
importance estimation with model selection and its application to covariate shift adaptation. In Proceedings of the
Conference on Neural Information Processing Systems (NIPS), pages 1433–1440.

[Valiant, 1984] Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27:1134–1142.
[Vapnik, 2006] Vapnik, V. (2006). Estimation of Dependences Based on Empirical Data. Springer Science & Business

Media.
[Vapnik, 1995] Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc.
[Vapnik and Chervonenkis, 1971] Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the uniform convergence of

relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264–280.
[Villani, 2009] Villani, C. (2009). Optimal Transport : Old and New. Grundlehren der mathematischen Wissenschaften.

Springer, Berlin.
[Xu and Mannor, 2010] Xu, H. and Mannor, S. (2010). Robustness and generalization. In Proceedings of the

Conference on Learning Theory (COLT), pages 503–515.
[Xu and Mannor, 2012] Xu, H. and Mannor, S. (2012). Robustness and generalization. Mach. Learn., 86(3):391–423.
[Zhang et al., 2012] Zhang, C., Zhang, L., and Ye, J. (2012). Generalization bounds for domain adaptation. In

Proceedings of the Conference on Neural Information Processing Systems (NIPS), pages 3320–3328.
[Zhang et al., 2019] Zhang, Y., Liu, T., Long, M., and Jordan, M. (2019). Bridging Theory and Algorithm for Domain

Adaptation. In International Conference on Machine Learning, pages 7404–7413.
[Zhao et al., 2019] Zhao, H., des Combes, R. T., Zhang, K., and Gordon, G. J. (2019). On learning invariant represen-

tations for domain adaptation. In ICML, pages 7523–7532.
[Zolotarev, 1984] Zolotarev, V. M. (1984). Probability metrics. Theory of Probability & Its Applications, 28(2):278–

302.

50


	1 Introduction
	2 Preliminary knowledge
	2.1 Definitions
	2.2 Probably approximately correct setting
	2.3 Vapnik-Chervonenkis complexity
	2.4 Rademacher complexity
	2.5 PAC-Bayesian bounds
	2.6 Uniform stability
	2.7 Algorithmic robustness

	3 Seminal divergence-based learning bounds
	3.1 Learning bound based on the L1-distance
	3.2 Learning bound based on HH-divergence
	3.3 Generalization bounds based on a discrepancy distance
	3.4 Generalization bounds based on the discrepancy distance for regression
	3.5 Other relevant contributions
	3.6 Summary

	4 Hardness results for domain adaptation
	4.1 Problem set-up
	4.2 Constructive impossibility theorems
	4.3 Impossibility theorems based on sample complexity
	4.4 Hardness results for sample complexity
	4.5 Other relevant contributions
	4.6 Summary

	5 Learning bounds with integral probability metrics
	5.1 Problem set-up
	5.2 Generalization bound with IPMs
	5.3 Learning bounds with the Wasserstein distance
	5.4 Generalization bound with MMD
	5.5 Relationship between the Wasserstein and the the MMD distances
	5.6 Other relevant contributions
	5.7 Summary

	6 PAC-Bayesian theory for domain adaptation
	6.1 Problem set-up
	6.2 In the spirit of Ben-David et al. and Mansour et al.
	6.3 A different philosophy
	6.4 Comparison of the two domain adaptation bounds
	6.5 Other relevant contributions
	6.6 Summary

	7 Domain adaptation theory based on algorithmic properties
	7.1 Robust domain adaptation
	7.2 Hypothesis transfer learning
	7.3 Other relevant contributions
	7.4 Summary

	8 Conclusions and discussion

