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Abstract 

Scar-related myocardial tissue can lead to ventricular 
arrhythmia (VA), a global concern for sudden cardiac 
death. Repolarization dispersion due to electrical 
remodeling within infarcted territory often triggers 
ventricular arrhythmias. However, evaluating ventricular 
repolarization globally is clinically challenging and there 
is no gold-standard approach. This paper introduces a new 
method using body-surface leads to automate activation 
(ATs) and recovery times (RTs) detection in unipolar 
electrograms (UEs). Multilevel Discrete Wavelet 
Transform sets activation and recovery detection windows 
based on external lead data. Then, Wyatt’s method is used 
to compute ATs and RTs. By analyzing catheter-based 
intracardiac electrograms from n=9 infarcted swine, we 
compare ARI values between healthy tissue and 
arrhythmia-prone border zones (BZ), and between normal 
sinus rhythm (NSR) and pacing. Results reveal significant 
ARI differences between NSR and pacing, and among 
tissue types, with heterogeneous ARI values highlighting 
the repolarization complexity within BZ. This emphasizes 
the necessity for new automated approaches in assessing 
and treating cardiac arrhythmias, acknowledging the 
diverse electrophysiological individual profiles. 

 

1. Introduction 

Scar-related ventricular arrhythmia (VA) is a major 
cause of cardiac sudden cardiac death in the world. 
Electrical remodeling within and around scars causes a 
dispersion of repolarization, which is arrhythmogenic [1]; 
however, the global pattern of repolarization is difficult to 
assess clinically. Studies have shown the relationship 
between inhomogeneity of ventricular repolarization and 
enhanced ventricular arrhythmia vulnerability [2]. 
Refractory period, transmembrane action potential 
duration (APD), and activation recovery interval (ARI) are 
typically used to understand the properties of ventricular 
repolarization. ARI has the advantage of being able to be 

extracted from multiple recorded intracardiac electrograms 
(iEGMs) and is well-validated [3]. ARI can be obtained in 
vivo during invasive electrophysiological studies from 
pacing leads, allowing us to record unipolar electrogram 
signals (UE), and to approximate the depolarization and 
repolarization times via markers. The time corresponding 
to the steepest negative slope during the activation in the 
UE is widely accepted [4] as the depolarization time. 
Repolarization time is typically identified using the Wyatt 
method [5] as the steepest positive slope during the T 
wave; however, this definition is somewhat controversial. 
The ARI is defined as the time between activation time 
(AT) and repolarization time (RT) according to these 
markers and is often considered a clinical surrogate of 
action potential duration (APD). Thus, a better 
understanding of post-infarction ARI distribution could 
contribute towards an improved management of scar-
related arrhythmias.  

Our broad aim is to gain insight and add new knowledge 
to the impact the repolarization phase in healthy 
myocardial tissue and arrhythmogenic substrate might 
have on cardiac electrophysiological function. The 
substrate of scar-related ventricular arrhythmia consists of 
surviving bundles having altered electrical properties and 
is harbored at the border zone (BZ) located between 
healthy tissue and dense scars (i.e., fibrotic collagen). 
Specifically, in this study we sought to investigate the 
variability of the ARI distribution in heterogeneous fibrotic 
tissue, using UEs recorded in: (i) normal sinus rhythm 
(NSR); and, (ii) pacing conditions, from chronically 
infarcted swine. The endocardial iEGMs were recorded via 
intracardiac catheters maneuvered in the ventricular cavity 
(see detailed description in Data Source). For each of these 
two scenarios, we performed a comprehensive analysis on 
the whole cohort of cases, as well as per individual case. 
Figure 1 shows an example of a reconstructed map of local 
activation times, LAT (A) along with a bipolar voltage map 
(B) that is usually used to stratify the kind of tissue (healthy 
and BZ), as well as exemplary iEGMs (C) - (F) for the two 
different scenarios and tissue types (healthy and BZ). 
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Figure 1. (A) Exemplary LAT map and (B) bipolar voltage 
map, recorded from a case during pacing. Frames (C) and 
(D) show an example of an iEGM for healthy and border 
zone, respectively, during sinus rhythm; Frames (E) and 
(F) show iEGM signals for pacing recordings. 

Given the diverse morphological characteristics of 
EGM signals, here we propose to investigate the 
systematic use of an ECG lead to guide the automatic 
detection of ATs and RTs in UEs. Explicitly, using 
multilevel Discrete Wavelet Transform (DWT), we define 
activation and recovery detection windows based on 
information extracted from the external lead. The local 
ATs and RTs are computed according to Wyatt’s method 
in these windows, and then ARI values are extracted. By 
doing so, we aim to improve accuracy and consistency in 
EGM interpretation and analysis. We also test our 
approach on real iEGM data and perform statistical 
analysis by stratifying the ARIs by heart rhythm type (NSR 
and pacing) and tissue (healthy and BZ). 

2. Methodology and Proposed Approach 

In this work, we propose a novel algorithm to auto- 
matically extract ATs and RTs from iEGM recordings and 
rapidly compute ARIs. Since there is no gold-standard 
approach, the proposed methodology is built on well- 
established signal processing techniques typically used to 
analyze ECG recordings with parameters tuned to 
specifically process EGM signals, which were empirically 
determined.  

2.1. Signal Preprocessing and Fiducial 
Extraction 

In order to avoid high-frequency components that could 
interfere with the subsequent signal analysis such as the 

derivative computation (sensitive to high-frequency 
noise), all EGM and ECG channels are first filtered using 
a low-pass Finite Impulse Response (FIR) filter with a 100 
Hz cutoff frequency. Then, using the wavelet-based 
method of Martinez et. al [6], the P-wave onsets, T-wave 
offsets, and R-peak locations are extracted from the lead II 
channel of the body-surface ECG, which will serve as a 
reference lead when locating activation and recovery 
times. The derivative of the UE is computed with the first-
order discrete differences, ensuring computational 
efficiency and preserving temporal accuracy of 
corresponding ATs and RTs of highly sampled recordings. 

2.2. Detection of Activation and Recovery 
Times in Unipolar Electrograms 

A novel customized algorithm was developed to detect 
ATs in UEs, assuming a 1 kHz sampling frequency. The 
Symlet-4 wavelet is first used to identify high-frequency 
components. Using a 9-level decomposition, detail 
coefficients 3 through 5 (corresponding to the 15,6 – 125 
Hz frequency band) are used to create a signal version 
where peaks can easily be extracted. Then, using 100 ms 
windows centered around the peaks, the derivative minima 
are extracted, thus corresponding to the ATs as per Wyatt’s 
method. Only ATs that coincide with R-peaks from lead II 
are selected (with a 50 ms tolerance). To pinpoint the 
recovery events in NSR, a recovery detection window is 
defined starting at 60 ms after the activation and, based on 
the available fiducials from lead II, up until: 20 ms after 
the lead II T-wave offset, if detected; at the lead II P-wave 
onset, if no T-wave offset was detected; or 20% before the 
next event, if no waves were detected on lead II. The same 
approach is used in pacing records; however, the recovery 
detection window is narrowed down to the time between 
T-wave onset and offset of lead II. 

2.3. Stratifying Activation Recovery Intervals 
by Heart Rhythm and Tissue Type 

To investigate the differences between ARI values for 
different heart rhythms (NSR vs paced) and tissue types 
(healthy and BZ), we propose to analyze the ARI 
distributions at the acquisition level, meaning that the ARI 
values for each UE channel are computed and averaged. 
Then, the data is aggregated by the channels corresponding 
to a specific tissue type, or by the heart rhythm during the 
acquisition. More precisely, the average peak-to-peak 
amplitude of bipolar EGMs is used to analyze ARI 
differences between healthy and border zone tissues. 
Following the findings of previous studies [7], we use the 
following amplitude intervals >1.5 mV and 0.5-1.5 mV to 
separate healthy tissue from BZ, respectively. The Mann–
Whitney U two-sided test is employed to compare the 
distributions of ARI values for the variables under study, 
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both at the intra-subject and population levels. By 
assessing the statistical difference in distribution medians, 
this analysis should offer insights into the heterogeneity of 
ARIs. 

3. Results and Discussion 

3.1. Data Source 

This work is specifically focused on a comprehensive 
retrospective analysis of iEGMs recorded from the left 
ventricular endocardium in 9 swine during X-ray-guided 
electrophysiological studies. Briefly, the catheter-based EP 
studies were performed at ~5 weeks post-infarction, in 
accordance with local ethical approval (Sunnybrook 
Research Institute, Toronto, CA), as per the methodology 
described in similar procedures [8]. By the end of this 
healing period, heterogeneous fibrosis had developed and 
matured within the infarcted region, and was comprised of 
dense scars and surviving BZ, which may form reentry 
circuits that sustain dangerous VA. An electro-anatomical 
CARTO3 mapping system (Biosense) was used to acquire 
the iEGM signals using a 1 kHz sampling rate, via a 
Pentaray NAV ECO catheter (J&J MedTech) introduced in 
the cavity of the left ventricle, LV. High-density 
endocardial maps of LV (~2900 iEGMs on average per all 
pigs) were recorded in sinus rhythm and pacing conditions 
(typically paced from right ventricle).  

3.2. Algorithm Implementation 

As previously described, the automatic detection of ATs 
and RTs involves using different signal processing 
techniques. To do so, we used open-source Python libraries 
to implement our methodology. More precisely, the 
fiducials from lead II were extracted using the Martinez et. 
al [6] implementation; the first-order differences of the 
UEs were computed using NumPy’s diff function; and 
finally, Multilevel DWT was performed using the 
PyWavelets library, and peak detection on the 
reconstructed signal was made using the find_peaks 
function of SciPy’s signal module. Figure 2 summarizes 
the results of the proposed method for pacing. After 
locating an “activation event” (green dashed line) as a 
high-frequency peak in the UE, the derivative minima are 
computed (green circles) around the peaks (green region), 
thus corresponding to the ATs. As expected, these 
activation events do not necessarily match the ATs, but 
they allowed us to define where the ATs should be found 
based on Wyatt’s criterion as well as the recovery detection 
windows as informed by lead II. Notably, the detection 
windows are limited by the T-wave offsets identified in 
lead II. 

 

Figure 2. Analysis of an exemplary UE in pacing rhythm. 
Top: UE signal showing activation (green) and recovery 
(blue) times, and the corresponding ARIs. The dashed 
vertical lines correspond to an “activation event”. Middle: 
first derivative of the UE signal, along with the detection 
windows for activation (green) and recovery (blue) times, 
used to find the minimum and maximum derivatives. 
Bottom: lead II and the detected fiducials, namely the R-
peaks and T-wave limits. 

3.3.  Activation Recovery Interval Analysis 

To showcase the relevance of our methodology, we 
present below the statistical analysis on the two types of 
data stratification using the extracted ARI values from the 
9 acquired datasets. Figure 3 depicts the overall 
distribution of ARI values across all cases, in NSR and 
pacing conditions. The two distributions reveal significant 
disparities in mean ARI, suggesting differences in 
repolarization time in these heart rhythms. Also, the results 
from the Mann-Whitney U test at the individual level 
demonstrate significant differences between the 
distributions, with p-values below 1e-4.  

 

Figure 3. Distribution of rhythm-stratified ARI values per 
case (left) and the combined distribution (right). **** 
indicates p-value < 1e-4. Boxplots show quartiles and 
median values. 

Figure 4 shows the ARI values separated based on the 
bipolar amplitudes in healthy and BZ tissues. In this case, 
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the combined distributions appear similar, with no 
statistically significant differences. However, at the case 
level, we observe heterogeneous results. For cases # 1, 2, 
3, 8, and 9 the ARI values differ between healthy and BZ 
tissues, whereas for cases # 4, 5, 6, and 7 there are no 
distinguishable differences.  

 

Figure 4. Distribution of tissue-stratified ARI values per 
case (left) and the combined distribution (right). Statistical 
significance: **** p-value < 1e-4, ** p-value < 1e-2, * p-
value < 0.05, and 'ns' indicates not significant. 

4. Conclusion 

Our proposed method facilitates the systematic 
computation of activation recovery intervals in unipolar 
electrograms by integrating activation events detected in 
the signal with fiducial information from a body-surface 
lead. We use a multi-level DWT to define detection 
windows and identify activation times automatically. By 
using body-surface lead fiducials, such as T-wave, we 
determine recovery times. The significant differences 
observed in median ARIs between pacing and NSR 
rhythms highlight the importance of considering the heart 
rate in electrophysiological dynamics. Since the BZ 
located at the interface between healthy myocardium and 
dense scar harbors potentially arrhythmogenic substrates, 
studying the electrophysiological properties of tissue types 
is highly relevant for iEGM interpretation, as well as for 
accurate modeling of wave propagation and arrhythmia. 
With this respect, our heterogeneous ARI results at the case 
level emphasize the complexity of repolarization patterns 
within healthy and BZ tissues. These findings support the 
need for tailored approaches in both clinical assessment 
and interventions for cardiac arrhythmias, considering the 
diverse electrophysiological profiles across patients and 
tissue types. 
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