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Abstract—This paper presents a novel approach to deal with
nonlinear filtering by augmenting an Unscented Kalman Filter
(UKF) with an Optimal quantization algorithm, named OQ-UKF.
The Unscented Kalman Filter uses a sigma-point based method
to approximate the distribution of an unknown random variable
onto which is applied a nonlinear transformation, providing a
cloud of evolving points. However, the generation of these so-
called sigma-points is done by a deterministic algorithm which
needs tuning in order to accurately capture the distribution of
the estimate. This tuning is often problem-dependent due to
nonlinearities and sometimes not optimal. We propose to fuse
an UKF with Optimal quantization whose objective is to find
the best approximation of the density of a random variable. The
designed OQ-UKF is described in this paper, and its performance
is evaluated for some relevant practical problems, such as pose
estimation of a two-dimensional mobile robot.

Index Terms—Bayesian Estimation, Unscented Transform, Op-
timal Quantization, Unscented Kalman Filter

I. INTRODUCTION

Stochastic observers such as the Kalman filters are com-
monly used to solve state estimation problems. Notably, the
Extended Kalman Filter (EKF) and the Unscented Kalman
Filter (UKF) [1] are the two main versions when dealing with
nonlinear problems. It has been shown that the UKF performs
better than the EKF in general. This is because the UKF does
not rely on any computation of the Jacobians of the nonlinear
function but uses an Unscented Transform (UT) to propagate
the state uncertainty. The UT can be interpreted as a numerical
computation of the derivatives [2]. The idea is to spread a finite
number of points around the estimate, called the sigma-points
(σ-points), then propagate them through the nonlinear function
to capture the mean and the covariance accurately to the third
order (of the Taylor series expansion). On the contrary, the
EKF only approximates the Taylor series up to the first order
in general. Thus, the UKF achieves a better level of accuracy
at a similar complexity as that of the EKF [3].

Regarding the UT, it is necessary to tune some hyperpa-
rameters in order to accurately capture the distribution of
the estimate. These parameters, often noted as α, β and κ
(also known as scaling parameters [4]), allow us to tune the
spreading of the σ-points around the estimate, as well as
generating the weights used to compute the mean and the

covariance. Many guidelines exist to adequatly tune these
parameters but none of them provides the best tuning for all
problems. In this paper, we suggest an alternative approach
relying on Optimal quantization.

A. Links with previous literature

To date, only a few studies have attempted to address the
problem of systematically finding optimal parameters [6]–
[10]. Some of these works employed data-driven methods to
learn these parameters, such as discriminative training methods
[8] or genetic algorithms [9]. However, these approaches
require a substantial amount of data for training and remain
specific to particular applications. Other studies tackled this
issue by formulating and solving an optimization problem.
This is the case in [7] and [10], where the objective is to
maximize the log-likelihood of the measurements given a set
of parameters α, β and κ. In [10], a guideline was proposed
to guide the resolution of the optimization problem, but only
in the scalar case, while the multivariate case was briefly
addressed. No further investigation in line with this study has
been conducted until now. As demonstrated in [11], tuning is
problem-dependent since various types of nonlinearities can
influence the selection of these parameters. Apart from these
methods, their values are often left unchanged from the early
publications [1], [3], [5]. Essentially, three sets of parameters
can be distinguished: the first set proposed in [1] relies solely
on κ. The coefficients α and β were introduced later, and their
suggested values are given in [3]. The third set is derived from
the cubature rule provided in [5]. Although these sets may
differ by their respective values, the commonality among all
of them is that they are based on polynomial approximation.

Regarding Optimal quantization, the term ”quantization”
takes root from the field of signal processing, where the goal
is to discretize a continuous signal to address transmission
issues. In the context of probabilities, quantization involves
a set of methods to approximate a continuous n-dimensional
probability density with a discrete probability containing N
supporting points [13]. Optimal quantization, in particular,
delves into refining this process to achieve the most accurate
representation of the original continuous distribution with the
least possible error. The primary objective is to determine



the best placement of discrete points in the probability space
based on an optimal approximation of a probability measure.
This method is particularly useful in nonlinear filtering and
Bayesian fusion, where the goal is to compute the conditional
probability of a nonlinear stochastic process given past infor-
mations. In [14], an Optimal quantization approach has been
developed to numerically solve nonlinear filtering problems
associated with discrete-time observations. Another significant
contribution by the same authors explores the application of
Optimal quantization specifically when the underlying prob-
ability density is Gaussian [15]. While there exists some
applications in the field of finance [16], [17], to the best of
our knowledge, very few applications of Optimal quantization
(with the optimality criterion as defined in [14], [15]) for
Kalman filtering in other field (e.g. robotics) exist. Some
works can be interpreted as adopting an Optimal quantization
approach [18] but based on another optimality criterion which
is the minimization of the Cramer-Von Mises distance [19].

The contribution of this paper is the development of a novel
method, that we refer to as OQ-UKF, which is based on
both Unscented Transform and Optimal quantization (with the
optimality criterion of [14]). In this paper, we are not interested
in the scaling parameters tuning but we provide an additional
support to the UT.

B. Paper’s organisation

The paper is organized as follows: in section II, mathemat-
ical tools are provided. In section III, we recall the problem
of Bayesian estimation, followed by the Unscented Transform
procedure used to address the problem. A description of the
new approach using the Optimal quantization is then given.
In section IV, we describe the OQ-UKF resulting from our
approach and present some simulation results in section V in
the context of pose estimation. We draw some conclusions and
remarks in section VI.

II. MATHEMATICAL PRELIMINARIES

In this section, we recall basic definitions and properties of
the quadrature formula and Optimal quantization.

A. Quadrature formula

Consider a random vector x ∈ Rn equipped with a probabil-
ity measure dµ(x) = P(x)dx where P(x) is the probability
density of x. A random vector is transformed through any
function g(.) and the moment integral is given by

E(g(x)) =
∫
Rn

g(x)dµ(x) (1)

To numerically compute (1), one can rely on a finite set
of points {xi}Ni=1 (also called nodes) and weights {wi}Ni=1

such that the measure µ(x) is replaced by a finite sum of
Dirac measures

∑N
i=1 wiδxi

(x). Locally about the point x,
the Dirac measure can be defined as

∀A ∈ P(Ω), δx(A) =

{
0 x /∈ A

1 x ∈ A

where Ω is the measure space on which the integral is defined.
This replacement gives rise to an approximation of (1) as∫

Rn

g(x)dµ(x) ≈
N∑
i=1

wig(xi) (2)

with the condition
∑N

i=1 wi = 1. In the quadrature formula
(2), the set of weights and nodes must represent the moments
of the given distribution as exact as possible.

B. Optimal quantization

An N -quantizer is defined as a mapping Q : Rn →
{x1, ...,xN}. Let ||.||p denotes the lp-norm (p ≥ 1). The N -
quantizerQ is said to be p-optimal if it minimizes the expected
value of the quantization error (also called distortion):

E(||x−Q(x)||p) =
∫
Rn

||x−Q(x)||pdµ(x) (3)

An N -quantizer that would be p-optimal for (3) is the
Voronoı̈ quantizer Qvor : Rn → {x1, ...,xN} defined as:

Qvor(x) =

N∑
i=1

xiδC(xi)(x) (4)

where C(xi) is the ith Voronoı̈ cell such that:

C(xi) ⊂ {x ∈ Rn : ||x− xi||p ≤ ||x− xj ||p, j = 1, N}

This quantizer aims to place the set of points {xi}Ni=1 such
that it creates a Voronoı̈ tesselation (see [13] for more details).

III. BAYESIAN ESTIMATION AND MOMENT INTEGRALS

Consider a state vector xt ∈ Rn, with prior probability
P(xt) at a given instant t. Assume we get some information
about xt through a measurement yt ∈ Rm (with m ≤ n). The
goal of Bayesian estimation is to compute an estimate of the
posterior probability P(xt|yt) at each time step. In subsection
III-A, we recall the integrals needed to solve the Bayesian
estimation problem as well as some weaknesses regarding the
approximation of these integrals by the UT. We then describe a
proposition of solution in III-B and provide preliminary results
in III-C.

A. Moments approximation by Unscented Transform

Consider a generic observation vector of the form

y = g(x) + v (5)

where g(.) is a known nonlinear function and v ∼
N (0,R) ∈ Rm is a white zero-mean Gaussian noise. The
problem of Bayesian estimation is as follows:
1) Given a known initial conditional probability

P(x0|y0) = P(x0) (6)

2) Assume an observation yt is available
3) Compute recursively, the posterior probability as

P(xt|yt) =
P(yt|xt)P(xt|yt−1)

P(yt|yt−1)
(7)



with

P(xt|yt−1) =

∫
Rn

P(xt|xt−1)P(xt−1|yt−1)dxt−1 (8)

and
P(yt|yt−1) =

∫
Rn

P(yt|xt)P(xt|yt−1)dxt (9)

Assume that we have x ∼ N (x,P). Then, the integrals
in (8-9) can be reduced to integrals of the form of (1) with
dµ(x) = N (x,P)dx and can be computed using (2).

To attack this problem, there exists two approaches:
(i) the weights and points locations are chosen so that (2)

is exact for all g that can be approximated by a set of
polynomials of degree up to a given integer.

(ii) the weights and points locations are chosen based on
a closeness criterion between the true and the discrete
measure µ(x).

The Unscented Transform pertains to the first category, as
it relies on the Gauss quadrature methods [20] [21] with N
points, which aims to make (2) exact for all polynomials of
degree up to 2N − 1. The UT approximates the posterior
p(xt|yt) as follows: one generate a finite number of samples
{χi}2ni=0 and then pass each of these so-called σ-points through
(5). Then, one can compute successively the mean y = E[y]
and the covariance Py = E[(y − y)(y − y)T ] using the
quadrature formulas:

y =

∫
g(x)N (x,P)dx ≈

2n∑
i=0

W
(m)
i g(χi)

Py =

∫
(g(x)− y)(g(x)− y)TN (x,P)dx+R

≈
2n∑
i=0

W
(c)
i (g(χi)− y)(g(χi)− y)T +R

(10)

In (10), the coefficients {W (m)
i }2ni=0 and {W (c)

i }2ni=0 consti-
tute the weights. The σ-points are deterministically generated
using the mean x, the covariance P and the scaling parameters
α, β, κ. The general framework is

χ0 = x

χi = x−
√
n+ λSi ∀i = 1, n

χi = x+
√
n+ λSi ∀i = 1, n

(11)

where λ = α2(n + κ) − n and Si denotes the ith column
of the matrix S which is a decomposition of the covariance
matrix such that STS = P. The corresponding weights are

W
(m)
0 =

λ

n+ λ
, W

(c)
0 =

λ

n+ λ
+ (1− α2 + β)

W
(m)
i = W

(c)
i =

1

2(n+ λ)
, ∀i = 1, 2n

(12)

Finding the optimal set of points and weights via the scaling
parameters is not straightforward and heavily depends on the
problem at stake. As a matter of fact, the scaling-parameters

are often hand-tuned but generally, one can sort out three main
sets which we refer to as UT1 [1], UT2 [3] and CT (Cubature
Transform) [5]. (See Table III in Appendix A for the difference
between each set).

In this paper, we motivate the need to improve one of these
standard UTs by giving a first insight on their performances.
To simplify, let’s consider a Gaussian random vector x ∈ R2

with known statistics x and P. This random vector is trans-
formed to a scalar random variable y by

y = cos2(x1) + sin2(x2) (13)

for which we seek to compute the moments y and Py . We
can numerically show that the UT gives weak results. In
Table I, we have listed the absolute difference between the
true and approximated moments obtained with the different
transformations. The true moments are obtained thanks to a
Monte-Carlo Transformation (MCT).

TABLE I: Absolute difference between the true (indexed by
MC) and approximated moments. The number of samples
for the Monte-Carlo Transformation is 100 000. The prior
moments are x = [0, π

2 ]
T and P = 2I2×2.

|yMC − y| |(Py)MC − Py |
UT1 [1] 0.7102 0.2129
UT2 [3] 3.0183 31.7502
CT [5] 0.1549 0.2498

It seems that the moments given by the different UTs could
be better, as demonstrated by the errors in Table I. This was
expected since the UT approximates the moments up to a
certain degree. The core of what we address in this paper
is how to get the best set of points and weights in order
to make the approximations in (10) as exact as possible.
We propose to tackle this problem by coupling the UT with
Optimal quantization.

B. Approach using Optimal quantization

The generation of the σ-points in the Unscented Transform
is typically a (2n+ 1)-quantizer of the probability density of
x. However it may not be optimal in the sense of (3). As stated
in the mathematical preliminaries, the p-optimal quantizer is
the Voronoı̈ quantizer. Our goal is to readjust the σ-points to
yield a new set that would be closer to a Voronoı̈ tesselation.

Starting from a suboptimal set of points {xi}2ni=0, one can
converge to an optimal one by minimizing the distortion

E(||x−Q(x)||p) =
2n∑
i=0

∫
Rn

||x− xi||pN (x,P)dx (14)

The next proposition is proved in [15].
Proposition 1. Equation (14) is continuously differentiable
and admits a minimizer if the points are distinct pairwise
xi ̸= xj for i ̸= j.

In the same reference, an algorithm based on a stochastic
gradient descent is proposed to solve the minimization of (14).
The procedure is described in Algorithm 1.



Algorithm 1 Competitive Learning Vector Quantization
(CLVQ)

Inputs: {xi}2ni=0, x ∈ Rn, P ∈ Rn×n, kmax ∈ N, {γk}kmax

k=1

1: for k = 1 to kmax do
2: Draw xrand from probability distribution N (x,P)
3: Find the winning index j = argmin

i
(||xrand − xi||p)

4: xi ← xi ∀i ̸= j
5: xj ← xj − γk(xj − xrand)
6: end for

Outputs: {xi}2ni=0

The steps γk are elements of a sequence {γk}, k ∈ N
satisfying:

γk ∈]0, 1[∑
k

γk = +∞,
∑
k

γ2
k < +∞ (15)

Since the UT already provides a set of distinct points χi, our
idea is to apply the CLVQ algorithm on this set to yield a new
placement which would be closer to the optimal placement
in the sense of (14). In contrast to the usual approach in
the literature, we propose to start from one of the suggested
values proposed in Table III to generate a prior set of σ-
points and weights. We then readjust the σ-points using the
Algorithm 1. By doing so, we realize a compromise between
Gauss quadrature methods, which rely on approach (i) and the
approximation of the probability measure relying on approach
(ii).

Furthermore, as explained in [15], one can compute new
weights (also called µ-masses of the Voronoı̈ cells) as a by-
product during the CLVQ procedure. To do that, one can
simply initialize a counter qi = 0 for each point i and then
increment the jth counter each time the jth point is selected
in the process: qj ← qj + 1 where j is the winning index.
At the end of the loop, the weights {wi}2ni=0 are obtained
by computing wi = qi/kmax ∀i. However in this paper, we
decided to consider the points placement only and keep the
original set of weights. The reasons are given in section V I .

C. First results

Let’s consider again the nonlinear function (13). We propose
to apply the Algorithm 1 on the σ-points generated by the UT1
and the CT sets only1. The Algorithm 1 takes place before
the propagation into (13). The total number of random draw
was kmax = 10000 for both transformations and a sequence
{γk}kmax

k=1 satisfying (15) was chosen as γk = ( 1
10

√
P)/k for

the UT1 and γk = ( 14
√
P)/k for the CT.

Since high uncertainty situations are precisely where one
would want moments approximation to be particularly accu-
rate, we evaluated the performance for different P. In Fig. 1,
we have displayed the absolute error (averaged on a dozen
simulations) between the true and approximated moments of

1We chose to put aside the UT2 set since it provided less good results than
the others.

y given by the different UTs in function of ||P||F where
||.||F denotes the Frobenius norm. As we can see for small
P, our method does not provide any particular improvement
(it is sometimes slightly deteriorated) but the error begins to
decrease as the uncertainty on x grows. At a certain point,
our approach outperforms the standard method for both UTs
although the evolution follows the same tendency. Additional
results are provided in Appendix B regarding the evolution of
the distortion.

Overall, the σ-points placement provided by the Unscented
Transform and corrected by the CLVQ is either identical or
better than the initial placement when the uncertainty is high.
This example illustrates and motivates our proposition to fuse
an UKF with an Optimal quantization algorithm.

IV. APPLICATION TO UNSCENTED KALMAN FILTERING

In this section, we apply our approach on the Unscented
Kalman Filter and refer to it as the OQ-UKF. Consider the
following discrete-time nonlinear stochastic system

xt = f(xt−1,ut−1) +wt−1

yt = h(xt) + vt

(16)

where xt ∈ Rn corresponds to the state of the system,
yt ∈ Rm is a noisy measurement and ut ∈ Rp is a known
deterministic input. f : Rn × Rp → Rn and h : Rn → Rm

are known nonlinear functions denoting the dynamical and
the observation model respectively. For notation convenience,
we will now write f(xt,ut) = f(xt). wt ∼ N (0,Qt) is the
model noise and vt ∼ N (0,Rt) is the measurement noise.

Kalman filters are part of the family of Gaussian filters [22].
The general form of a Gaussian filter comes from the Bayesian
estimator as it solves the estimation problem by a recursive
algorithm consisting on a prediction and update step, under
the assumption that x is Gaussian. Assuming that xt−1|t−1

and Pt−1|t−1 are the mean and covariance at time t−1 given
measurements at t−1, the filtering process is given as follows:

1) Prediction:

xt|t−1 =

∫
f(xt−1)N (xt−1|t−1,Pt−1|t−1)dxt−1

Pt|t−1 =

∫
(f(xt−1)− xt|t−1)(f(xt−1)− xt|t−1)

T ...

...×N (xt−1|t−1,Pt−1|t−1)dxt−1 +Qt−1

(17)

2) Update:

yt =

∫
h(xt)N (xt|t−1,Pt|t−1)dxt

Pyt
=

∫
(h(xt)− yt)(h(xt)− yt)

T ...

...×N (xt|t−1,Pt|t−1)dxt +Rt

Pxyt
=

∫
(xt − xt|t−1)(yt − yt)

T ...

...×N (xt|t−1,Pt|t−1)dxt

Kt = Pxyt
P−1

yt

xt|t = xt|t−1 +Kt(ym − yt)

Pt|t = Pt|t−1 −KtPytK
T
t

(18)



(a) Absolute error between the true mean yMC and the
approximated mean y as a function of ||P||F

(b) Absolute error between the true variance (Py)MC and
the approximated variance Py as a function of ||P||F

Fig. 1: Mean and variance errors of y for various prior covariances P (with x = [0, π/2]T fixed)

In the equations (18), yt is the mean of the predicted
measurement and ym is the observation acquired at time t.
Pyt

, Pxyt
and Kt are respectively the covariance of the

predicted measurement, the cross-covariance and the Kalman
gain.

The UKF uses the UT to compute the moment integrals in
(17) and (18). We propose to compute these integrals thanks
to our approach to yield the UKF described in Algorithm 2.
This algorithm consists in applying the CLVQ each time one
generate σ-points. This procedure is added in steps 3 and 7,
where the σ-points are readjusted using the available statistical
properties of xt as inputs for Algorithm 1.

V. SIMULATION RESULTS FOR POSE ESTIMATION

In this section, we evaluate our method on a pose estimation
problem for a mobile robot using simulated data on Matlab.

A. System model

The considered system is a 2D rigid body. Let the vector
state X = [θ, x1, x2]

T where θ denotes the heading and
x = [x1, x2]

T the position w.r.t a fixed reference frame. The
discrete kinematical model describing the motion of the system
from time t− 1 to t is given as follows:

θt = θt−1 + (uθ
t−1 + wθ

t−1)∆t

xt = xt−1 +

(
cos(θt−1) − sin(θt−1)
sin(θt−1) cos(θt−1)

)[
u1
t−1 + w1

t−1

u2
t−1 + w2

t−1

]
∆t

(19)
Where uθ

t ∈ R denotes the angular velocity, u1
t ∈ R and u2

t ∈
R respectively represent the longitudinal and transversal linear
velocities (both expressed in the body frame). The quantities
wθ

t , w1
t and w2

t are the model uncertainties on the angular
velocity, longitudinal shift and transversal shift respectively.
∆t is a fixed time step. These variables are gathered in the
vectors:
ut = [uθ

t , u
1
t , u

2
t ]

T

wt = [wθ
t , w

1
t , w

2
t ]

T ∼ N
(
0,Q = diag[σ2

θ , σ
2
1 , σ

2
2 ]
)

Algorithm 2 OQ-UKF

Inputs: x̂0|0, P0|0, Q, R, α, β, κ, kmax, {γk}kmax

k=1

1: for t = 1 to tend do
2: Generate σ-points {χi}2ni=0 with x = x̂t−1|t−1, S =

St−1|t−1 using (11) and weights {W (m)
i ,W

(c)
i }2ni=0

using (12)
3: Readjust σ-points using Algorithm 1 by taking

x = x̂t−1|t−1 and P = Pt−1|t−1

4: Compute the predicted mean and covariance:
x̂t|t−1 =

∑2n
i=0 W

(m)
i f(χi)

Pt|t−1 =
∑2n

i=0 W
(c)
i (f(χi) − x̂t|t−1)(f(χi) −

x̂t|t−1)
T +Q

5: if measurement ym acquired then
6: Generate σ-points {χi}2ni=0 with x = x̂t|t−1, S =

St|t−1 using (11) and weights {W (m)
i ,W

(c)
i }2ni=0

using (12)
7: Readjust σ-points using Algorithm 1 by taking

x = x̂t|t−1,P = Pt|t−1

8: Apply the correction step:
ŷt =

∑2n
i=0 W

(m)
i h(χi)

Pyt
=

∑2n
i=0 W

(c)
i (h(χi)− ŷt)(h(χi)− ŷt)

T +R

Pxyt
=

∑2n
i=0 W

(c)
i (f(χi)− x̂t|t−1)(h(χi)− ŷt)

T

Kt = Pxyt
P−1

yt

x̂t|t = x̂t|t−1 +Kt(ym − ŷt)
Pt|t = Pt|t −KtPyt

K−1
t

9: end if
10: end for
Outputs: {x̂t|t}tend

t=0 , {Pt|t}tend
t=0

As for the observation, we have chosen a simple model
where the body acquires some noisy measurement of its
position (given for instance by a GPS):

yt =

[
x1

x2

]
t

+ vt (20)



with vt ∼ N
(
0,R = σ2

vI2×2

)
B. Framework

We consider a simple scenario where a circular trajectory
(Fig. 2) is generated and corresponds to a motion of 20
seconds, beginning at X0 = [0, 0, 0]T . The time update is
performed at a sample rate of 100 Hz, hence ∆t = 0.01 s and
we consider the inputs ut entering the model at the same rate.
As for the measurements, they are delivered at a frequency of
10 Hz. For numerical stability purpose, we implemented the
Square-Root version of the UKF [12].

Fig. 2: Ground truth trajectory starting at X0 = [0, 0, 0]T .
Here, the uncertainties are parameterized as σθ = π

180 rad/s,
σ1 = σ2 = 0.01 m and σv = 0.1 m

The CLVQ procedure is applied as described in Algorithm
2. It is important to note that due to the fact that the system
(19) has internal noises, the state had to be augmented with
these noises. The CLVQ can either be applied on the full
augmented state or just on specific state variables. In this
study, we chose to apply it on the three states of interest (i.e.
θ,x1,x2) and not the full augmented state. We would like to
underline that we conducted experiment where we chose the
state variable θ only, but we have noticed that in the case of
the considered problem, the results were almost identical as if
all three variables were chosen for the CLVQ.

To assess the improvement of the standard UKF using our
method, we perform Monte-Carlo simulations. The metric
used for validation is the Root-Mean-Square-Error (RMSE)
of the estimation over the whole trajectory, averaged on all
simulations.

C. Monte-Carlo simulations

During a given run, each estimator processes the same
data to ensure a fair comparison. Besides, we always set the
initial covariance to P0|0 = diag[(π6 )

2, (0.3)2, (0.3)2] and the
estimate is always initialized at the true state X̂0|0 = X0 =
[0, 0, 0]T . The true trajectory for each simulation is generated
online by applying nominal inputs ut disturbed by white
Gaussian noise with covariance Q. For the measurements,
we also artificially add noise of the same level as that of
the matrix R. By doing so, we consider these matrices to

be well-parameterized (i.e. the uncertainty we assume on the
noise is the same as the true noise actually applied on the
system). The tuning parameters of the CLVQ are kmax = 100,
γk = ( 1

20St)/k, ∀k = 1, kmax at the current time t.
We then run 400 Monte-Carlo simulations for different

noises σ2
v ∈ [10−4, 9.10−2]m2. In Fig. 3, we have displayed

the Monte-Carlo average of the RMSE on {θt}tend
t=0 on one

side and the RMSE on {xt}tend
t=0 on the other side, as a

function of σ2
v . For both states, we compare the performance

of the standard Kalman filter against the performance of the
proposed approach. Results show that, for this trajectory and
the problem (19-20) at stake, the OQ-UKF provides the best
heading estimate as the noise level grows (Fig. 3a). As for
the position estimate (Fig. 3b), if we zoom in a more precise
scale, we can see that our method seems slightly better about
one or two millimeters for high noises. The same conclusions
can be drawn by fixing the measurement noise variance σ2

v to
a given value and assessing the influence of Q on the error.
Starting from a noise tuning Q0 = diag[(π6 )

2, (0.1)2, (0.1)2],
we run 400 Monte-Carlo simulations with a given covariance
Q = cQ0 with a multiplier factor c ∈ [1, 9]T . Results are
displayed in Fig. 4.

D. Computational efficiency

In order to evaluate the computational effort, 100 simula-
tions were performed, with a time update of 100 Hz and a
measurement update of 10 Hz. Here, the CLVQ was performed
on the θ variable only. Over these 100 simulations, the average
computational time and their standard deviation was computed
for the UKF and the OQ-UKF. The results are provided in
Table II as well as their difference compared to the standard
UKF given in terms of ratio [Filter] average time

UKF average time . We also added
their respective performance by assessing the heading RMSE
averaged on the 100 simulations.

TABLE II: Average computational cost

Filter average time (s) time ratio average RMSE θ (°)
UKF 0.27± 0.03 1 6.07± 1.35

OQ-UKF
(kmax=300)

1.64± 0.14 ≈6.1 5.23± 1.21

OQ-UKF
(kmax=600)

3.17± 0.28 ≈11.74 5.49± 1.30

We can conclude that the proposed OQ-UKF is slower than
the conventional UKF. The computational time is six times
higher for kmax = 300 and almost as twice for kmax = 600
with a respective improvement of 13.84% and 9.56% on the
average RMSE. As discussed in [15], the most time consuming
procedure is the research of the winning index in Algorithm
1. In our paper, we did not focused on the optimization of
the computational effort but future studies should involve this
aspect.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, we addressed the issues related to the approx-
imations of the mean and the covariance of a random variable
passing through a nonlinear function using the Unscented



(a) Average RMSE on {θt}tend
t=0 as a function of σ2

v . For these
simulations, we have fixed σθ = π

6
rad/s, σ1 = σ2 = 0.1 m

(b) Average RMSE on {xt}tend
t=0 as a function of σ2

v . For these
simulations, we have fixed σθ = π

6
rad/s, σ1 = σ2 = 0.1 m

Fig. 3: Monte-Carlo average of the RMSE over the whole trajectory, as a function of the measurement noise σ2
v

(a) Average RMSE on {θt}tend
t=0 as a function of c. For these

simulations, we have fixed σv = 0.1 m
(b) Average RMSE on {xt}tend

t=0 as a function of c. For these
simulations, we have fixed σv = 0.1 m

Fig. 4: Monte-Carlo average of the RMSE over the whole trajectory, as a function of the model noise factor c.

Transform. We proposed a complementary approach, using
Optimal quantization to approximate these moments. First, we
illustrated this method with the example of a two-dimensional
random vector transformed into a mono-dimensional random
variable and showed that it can improve the performance of the
UT. We then conducted simulations in the context of a mobile
robot pose estimation using an UKF. Our results showed, in
average, a reduction of the estimation error in this particular
case.

However it should be pointed out that this method also needs
further development to be fully reliable in a more general
context. Hence, more theoretical work should be addressed in
this direction. A direction of investigation could be the choice
of the parameter kmax and the step sequence {γk}kmax

k=1 . This
choice is already discussed in the literature [15] and we may
not have taken the best values for our study. Besides, in this
study we only considered the σ-points placement. Of course,
since we have changed the points localization, it should also
imply different weights. In fact, our first attempts to change the

weights using the strategy given at the end of III-B resulted in
failures when applied to the UKF. We think (but these are mere
speculations) that using these new weights can’t capture the
moments accurately since there is not a sufficient number of
σ-points to make it accurate. One could think that this method
of weights computation is too ”naive” given the fact that the
UT uses a very limited number of points.

That being said, we believe that the Optimal quantization
still provides a good support and has a lot of potential in
order to deal with the problem of Bayesian estimation. For
example, studies focused on the extension of the UT for
circular variables under a Von Mises distribution [23], [24].
The Optimal quantization could be used to approach a Von
Mises distribution, provided that one knows the parameters
(mean and concentration coefficient) of this distribution. The
extension to the Von Mises distribution could also be a line
of investigation.



APPENDIX A

TABLE III: Three different sets of parameters for the UT

α β κ
UT1 [1] 1 0 3− n
UT2 [3] 10−3 2 0
CT [5] 1 0 0

In Table III, the UT1 set is equivalent to considering only
the coefficient κ in the the UT since λ = α2(n+ κ)−n = κ.
This tuning completely coincides with Gauss-Hermite quadra-
ture rule when n = 1. In the UT2 set, the coefficient α = 10−3

is used to gather the σ-points closer to the mean and β = 2
allows to take higher order moments into account. the CT set
is equivalent to apply a no-scaling in the σ-points spreading.
In [10], a more detailed explanation is provided concerning
the influence of each parameter.

APPENDIX B

It would be interesting to see the evolution of (14) in the
considered scenario of subsection III-C. We have displayed
this evolution as a function of P in Fig. 5. As expected, the
distortion has been reduced after the application of the CLVQ,
at least for high covariances. Still, one can see that there is
not a lot of difference, suggesting that the original placement
is already not far from the optimality in the sense of the
minimization of (14). But the fact that we were able to further
reduce this quantity shows that the CLVQ algorithm works
well and that the new placement is closer to the optimum
than the old one. At this point, we still do not know if we
have reached a local miminum or the global minimum. In
any case, achieving the perfect minimum is not our goal.
Recall that the purpose of our method is to do a compromise
between Gauss quadrature approach and Optimal quantization
approach. Completely embrace the Optimal quantization ap-
proach would probably deteriorate the Kalman Filter since we
could lose some properties that are necessary in the UKF.

Fig. 5: Distortion in function of P
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