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Nontwist area-preserving maps violate the twist condition at specific orbits, resulting in shearless invariant curves that
prevent chaotic transport. Plasmas and fluids with nonmonotonic equilibrium profiles may be described using nontwist
systems, where even after these shearless curves breakdown, effective transport barriers persist, partially reducing trans-
port coefficients. Some nontwist systems present multiple shearless curves in phase space, increasing the complexity
of transport phenomena, which have not been thoroughly investigated until now. In this work, we examine the forma-
tion of effective transport barriers in a nontwist area-preserving mapping with multiple shearless transport barriers. By
quantifying the effectiveness of each transport barrier in phase space, we identified two scenarios where particular bar-
riers dominate over others. Our results also reveal configurations where the interplay of two transport barriers creates
regions in phase space with significant orbit trapping, thereby influencing the overall transport dynamics.

I. INTRODUCTION

Transport phenomena play a fundamental role in nature and
involve redistributing quantities such as particles, charge, and
energy. Different mechanisms are responsible for transport
processes, which can explain phenomena ranging from mi-
croscopic interactions in semiconductors1 to large-scale plan-
etary dynamics2.

In dynamical systems, the problem of transport involves
quantifying the collective motion of an ensemble of orbits
between regions in phase space3. Hamiltonian systems of-
ten represent models of physical significance, such as fluid
advection4,5 and magnetically confined plasmas6–9. Featuring
a mixed phase space, Hamiltonian dynamics exhibit periodic,
quasiperiodic, and chaotic trajectories, with chaotic trajecto-
ries being responsible for transport10.

The intermixing of regular and chaotic orbits in phase space
complicates the transport problem in Hamiltonian systems.
Certain structures in phase space can reduce or even elim-
inate chaotic transport. For instance, quasiperiodic invari-
ant curves act as total barriers, eliminating transport through
them11. Therefore, the breakup of the last invariant curve is
of great importance, and in twist systems, the Kolmogorov-
Arnold-Moser (KAM) theorem addresses this issue12.

Nontwist systems violate the twist condition at some or-
bits, forming the so-called shearless invariant curves. Al-
though the KAM theorem is not valid in these maps, analyti-
cal and numerical results indicate that the shearless invariant
curve is among the last invariant tori to break up13,14. Further-
more, nontwist systems have degenerate Hamiltonians, lead-
ing to new topological processes involving isochronous is-
land chains, for example, periodic obit collision and separatrix
reconnection15,16.

Even after their breakdown, remnants of invariant curves,
including the shearless, can reduce transport coefficients in
the region, forming a partial or effective transport barrier3.

Furthermore, the effectiveness of these barriers is closely re-
lated to the inter-intracrossing nature of manifolds associated
with periodic island chains17–20.

Nontwist dynamics appears in various research areas, in-
cluding fluid advection5,21, geophysical zonal flows22, and
magnetically confined plasmas23,24.

Professor R. L. Dewar was among the pioneers in apply-
ing area-preserving maps to the study of magnetically con-
fined plasmas. He utilized the Hamiltonian formalism to in-
vestigate magnetic island structures within the Heliac stellara-
tor. Building on previous research25, he compared nontwist
Hamiltonian models with reversed shear stellarator data, re-
vealing their similarities26. This work, along with several
other studies27–29, significantly advanced the understanding of
area-preserving maps and their application to tokamaks30,31.

Nontwist area-preserving maps have been used to investi-
gate the general properties of such systems. The Standard
Nontwist Map, for example, is a paradigmatic system that
captures the essential behavior of systems that violate the twist
condition at one single orbit14. Consequently, many works on
effective transport barriers in nontwist systems have utilized
this map18–20,32,33.

Recently, experimental evidence has indicated the existence
of more than one transport barrier in nonmonotonic plasma
equilibrium34. Additionally, plasma-transport models have
utilized nontwist systems to explain transport reduction35–37.
In such nontwist systems, more than one orbit violates
the twist condition, leading to complex nontwist processes
with unique characteristics, such as reconnection-collision
sequences16,38. Recently, the Biquadratic Nontwist Map has
been used to study bifurcation processes and shearless curve
breakdown in systems with multiple shearless curves39,40.
However, there has been no study so far on how multiple ef-
fective barriers influence transport in phase space.

In this work, we investigate the formation of an effective
transport barrier in the Biquadratic Nontwist Map, a prototype
system with multiple shearless transport barriers. Using com-
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putational and theoretical tools, we quantify the effectiveness
of each barrier individually. Our results revealed scenarios
where a specific barrier dominates over the others. Further-
more, the presence of two transport barriers can create chaotic
regions where orbits remain trapped for extended periods.

The rest of the paper is organized as follows. Section
II presents the area-preserving map used in our analysis.
The theoretical background about transport analysis tools and
quantifiers is provided in Section III. Section IV applies these
quantifiers to the Biquadratic Nontwist Map, exploring how
multiple transport barriers affect low and high transport con-
figurations. Finally, Section IV offers our conclusions.

II. MULTIPLE SHEARLESS CURVE SYSTEMS

Let us consider a two-dimensional area-preserving map
with a particular functional form, defined by the recurrence
relations

xn+1 = xn +ω(yn+1) (mod 1) (1a)

yn+1 = yn − f (xn), (1b)

where x ∈ [0,1) and y ∈ R are a pair of canonical coordinate
and momentum. Its phase space is the infinite cylinder S1×R.
Functions f and ω must be sufficiently differentiable. Addi-
tionally, for such a system to be used as a model for studying
Hamiltonian dynamics, we require f to be a period-1 function
with zero average10.

The twist function ω gives the frequency of the orbits in
phase space when the system is integrable, i.e., when f (x)≡ 0.
If ω has no extreme point, the map (1) is called a twist map,
and satisfies the condition∣∣∣∣∂xn+1

∂yn

∣∣∣∣= ∣∣ω ′(yn+1)
∣∣> 0 (2)

for every point in phase space41.
Maps that do not satisfy the twist condition are called non-

twist maps. Consequently, important results, such as the
Kolmogorov-Arnold-Moser (KAM) theorem, are not valid42.
Significant nontwist systems, such as the Standard Nontwist
Map, violate the twist condition at only one point14. How-
ever, general maps might violate the twist condition at multi-
ple points, thereby increasing the complexity of nontwist phe-
nomena presented, such as reconnection of separatrices43.

A. The Biquadratic Nontwist Map

It is suitable to use specific functional forms of ω and f for
the resultant map to possess useful properties. By choosing
the twist function ω(y) = a(1− y2)(1− εy2) and the pertur-
bation f (x) = bsin(2πx), we obtain the Biquadratic Nontwist
Map (BNM)39:

xn+1 = xn +a(1− y2
n+1)(1− εy2

n+1) (mod 1) (3a)

yn+1 = yn −bsin(2πxn). (3b)

When b = 0, the phase space contains only periodic and
quasiperiodic (y = constant) orbits. Near integrability oc-
curs for small perturbation parameters (b ≪ 1). Typical phase
spaces of the BNM in this regime are shown in Fig. 1. In this
case, periodic orbits give rise to resonance islands, and the
quasiperiodic invariant curves become distorted.

FIG. 1. Phase spaces of the Biquadratic Nontwist Map, with a = 0.3
and b = 0.05, (a) ε = 0 and (b) ε = 0.4. Symmetry lines are marked
by dashed-dotted lines, while shearless curves appear in red, blue,
and green lines.

The BNM is a nontwist map because its twist function vio-
lates the twist condition, Eq. (2). For ε > 0, the map exhibits
three such orbits, known as shearless invariant curves. Each
of these shearless curves intersects one of the nonmonotone
sets

R0 : y = bsin(2πx) (4a)

R± : y =±
√

1+ ε

2ε
+bsin(2πx), (4b)

defined by the regions in phase space that violate the twist
condition44. In this paper, we will call C0 the central shearless
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curve, associated with R0. The same occurs to C±, named
external shearless curves, intersecting R±.

In Fig. 1(b), the red curve stands for the C0, while C± are
marked in blue and green. For ε = 0, Fig. 1(a), the BNM twist
function is parabolic and, in this case, the Biquadratic Non-
twist Map reduces to the Standard Nontwist Map14 (SNM),
which has only a central shearless curve.

Notice that the BNM has symmetry properties concerning
time evolution and spatial transformation. The time evolu-
tion symmetry leads to the symmetry lines si, i = 1,2,3,4,
useful to find periodic orbits45. For example, the symme-
try lines intersections correspond to the map’s fixed points.
Those lines are marked by dashed-dotted lines in Fig. 1. Fur-
thermore, the map is symmetric under the spatial transforma-
tion S(x,y) = (x+ 1/2,−y); therefore, the behavior of orbits
is equivalent above and below the central shearless curve C0.
For example, the external shearless curves and the period-1
resonance islands are symmetrical under S. Although the ex-
ternal shearless curves are symmetric, i.e., C+ is symmetric to
C−, the map is not symmetrical with respect to them.

The BNM has been used in previous studies concerning
nontwist systems with multiple shearless curves. Due to its
symmetry properties and the range of phenomena displayed,
it serves as a useful model for studying general nontwist sys-
tems, that present multiple shearless curves. Further charac-
terization and results about the BNM can be found in Ref. 39
and 40.

B. Effective transport barriers

Away from integrability, the BNM exhibits a mixed-type
phase space. Alongside regular orbits (resonances and invari-
ant curves), irregular (chaotic) orbits fill nonzero volume re-
gions in phase space, as depicted in Fig. 2(a). These irregular
orbits lead to chaotic transport, i.e., the motion of a collec-
tion of trajectories across different regions of phase space. As
the perturbation parameter grows, invariant curves are bro-
ken, causing chaos to spread throughout phase space. The
remaining invariant curves serve as barriers to transport, de-
lineating boundaries for chaotic orbits. Consequently, once
the last curve is broken, chaotic orbits traverse all available
space, leading to a scenario known as global transport.

Invariant curves are total transport barriers since they com-
pletely prevent transport along the momentum variable. How-
ever, even after their breakup, transport in the region is not
diffusive. The remnants of the last invariant curve lead to a
reduction in transport coefficients at the region. Such a reduc-
tion is attributed to long-time correlation functions, a signa-
ture of chaotic orbits wandering along the transport barrier in
a phenomenon called stickiness46. These remnants and their
influence on transport have been studied on twist3,11 and non-
twist systems18,20,32,33.

Concerning nontwist systems, both analytical and numer-
ical evidence suggest that the shearless curve is one of the
last invariant curves to be broken13,14. In addition, the ar-
rangement of island chains around the shearless transport bar-
rier plays a crucial role in the effectiveness of these partial

FIG. 2. Phase spaces of the Biquadratic Nontwist Map for ε = 0.11,
(a) with a = 0.4 and b = 0.3, and (b) a = 0.25 and b = 0.7906. A
partial barrier persists once a shearless curve is broken, preventing
transport between the four regions of phase space, marked by chaotic
orbits of different colors.

barriers20,22.

The Biquadratic Nontwist Map has three shearless curves
that break up in different configurations, with the central and
external transport barriers breaking up independently40. Still,
there are parameter sets where all shearless curves are broken.

In the BNM, orbits can mix between four distinct regions in
phase space. Figure 2(b) illustrates such a situation, where we
evolved a unique orbit in each region of phase space. These
four orbits are colored as follows: (i) above the top shear-
less transport barrier (blue), (ii) between the top and central
barriers (purple), (iii) between the central and lower barriers
(green), and (iv) below the lower barrier (orange). Initially,
these orbits are trapped between the barriers. Yet, they even-
tually cross the barrier, causing mixing between regions of
different colors.
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III. TRANSPORT ANALYSIS FRAMEWORK

This section describes the methods used in this paper to in-
vestigate transport in the Biquadratic Nontwist Map (BNM).
Some dynamical quantifiers have been used to evaluate trans-
port properties in Hamiltonian systems. In this paper, we
adopt the transmissivity of a transport barrier, escape time
phase space and manifold analysis.

A. Transmissivity

The transmissivity measures the effectiveness of a given
transport barrier in preventing orbits from crossing a given re-
gion in phase space. In other words, it quantifies the strength
of a transport barrier. Given a set of initial conditions, we de-
fine the transmissivity of a barrier as the fraction of orbits that
cross the same barrier. To numerically obtain this fraction, we
define the circles

∂B± = {(x,y) ∈ S1 ×R : 0 ≤ x < 1, y =±yB}, (5)

in phase space, where yB is a constant value. Computation-
ally, we randomly choose a large number of initial conditions
on the circle ∂B−, which are iterated N times. The fraction of
orbits that reach the circle ∂B+ is assigned as the transmis-
sivity of the partial transport barrier inside the region bounded
by ∂B±. Therefore, the value of yB determines which barriers
of the BNM are considered, as discussed in the next section.

A total transport barrier, which completely prevents the
transport of orbits through it, has zero transmissivity. Shear-
less curves are examples of total transport barriers. Trans-
missivity values marginally greater than zero indicate a strong
transport barrier, while values closer to one indicate a weak
capability of preventing transport. Applying transmissivity
for the BNM requires a careful choice of yB, as this deter-
mines which transport barrier is considered. Results concern-
ing transmissivity in the BNM are presented in Fig. 3, 4 and
8.

B. Escape time phase space

The escape time of trajectories in phase space can be used
to investigate the stickiness of orbits on partial transport bar-
riers. While transmissivity provides relevant information, it
does not offer any data on the characteristic time scales as-
sociated with the transport barrier. Therefore, determining
the time required for an orbit to escape a certain region of
phase space allows us to verify the time that orbits spend in
each region of phase space. This tool helps identify regions of
stickiness and escape channels through which orbits leave the
transport barrier.

In this work, the escape time phase space is obtained by set-
ting a regularly spaced grid of 2000×2000 initial conditions,
which are iterated a maximum of 2 · 106 times. We compute
the number of iterations needed for the orbits to exit a certain
region of phase space B, bounded by ∂B±, previously de-
fined. The choice of the constant yB, which defines the region

FIG. 3. Transmissivity parameter space of the Biquadratic Nontwist
Map, fixed ε = 0.11. Colors represent the barrier transmissivity, with
black being the zero transmissivity.

boundary, determines the transport barrier being considered.
Results of the escape time phase space are shown in Figures 5,
6, 9 and 10.

C. Stable and unstable manifolds

Here, we provide a brief introduction to invariant mani-
folds in dynamical systems. Since this work focuses on the
Biquadratic Nontwist Map, we restrict our discussion to two-
dimensional area-preserving maps.

Let P be a hyperbolic period-p orbit of a two-dimensional
area-preserving map M : z 7→ M(z), whose inverse is M−1.
Invariant manifolds are defined as the set of points in phase
space that asymptotically accumulate on a given hyperbolic
periodic orbit in at least one direction of time. Mathemati-
cally, the stable manifold W P

s and the unstable manifold W P
u

associated with the hyperbolic orbit P are defined as

W P
s = {z ∈ D : Mn(z)→ P, n → ∞} (6a)

W P
u =

{
z ∈ D : M−n(z)→ P, n → ∞

}
, (6b)

where D = S1 ×R is the domain of the map. In the context
of our study, W P

s,u are one-dimensional curves. The computa-
tional method to obtain such invariant sets starts by choosing
an appropriate linear segment, whose direction is given by the
eigenvectors of the associated hyperbolic orbit. This segment
is then evolved under the map dynamics to obtain the unstable
manifold and under its inverse to obtain the stable manifold47.

Locally, the manifolds of a map give the direction of the
tangent space, indicating the direction in which nearby orbits
evolve. Furthermore, the configuration of the stable and un-
stable manifolds of hyperbolic orbits determines the behavior
of chaotic orbits and, consequently, transport in phase space.
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IV. SCENARIOS OF DOMINANT TRANSPORT
BARRIERS

This section examines how multiple transport barriers in
the Biquadratic Nontwist Map (BNM) influence transport in
phase space. Using the techniques described in the previous
section, we explore how the central and external transport bar-
riers impact low and high transport scenarios on the map.

Since the BNM features three independent shearless trans-
port barriers, we can study the effect of each barrier individ-
ually or their combined effect. Regarding the last case, the
boundaries ∂B± (defined in Eq. (5)) must extend beyond the
external shearless transport barriers. Conversely, to isolate
the effect of the central transport barrier, the same boundaries
must be placed between the central and external barriers.

In our analysis, we fix ε = 0.11. For this value, the cen-
tral and external barriers do not intertwine, simplifying their
individual analysis. Details about the typical phase space of
the BNM in this configuration are shown in Figures 2 and 5.
The external transport barriers, defined by Eq. (4), are located
within the region |y| ≲ 3.35. Therefore, choosing yB = 5 en-
sures the boundaries ∂B± are beyond the external shearless
barriers. In contrast, to focus on the transmissivity of the cen-
tral barrier alone, we set yB = 1.5, positioning the boundaries
between the central and external shearless barriers.

Taking into account the effect of all three shearless trans-
port barriers, we illustrate the dependence of transmissivity
on the parameters of the BNM in Figure 3. We computed the
transmissivity using the method outlined in section III A, with
a total of 104 initial conditions, iterated 104 times, considering
boundaries ∂B± where yB = 5.

Black regions in parameter space have zero transmissivity,
i.e., the phase space has at least one invariant curve acting as
a total transport barrier. Further details on the scenarios with
total transport barrier in the BNM can be found in Ref. 40.

According to the transmissivity parameter space, Figure 3,
transport is still reduced after all invariant curves have bro-
ken. Regions with zero transmissivity are surrounded by low-
transport zones, indicating that transport remains low immedi-
ately after the shearless curve breakdown. Additionally, there
is a noticeable sensitivity of transmissivity to the map param-
eters, which can vary gradually or abruptly depending on the
region of the parameter space.

Abrupt changes in transmissivity are attributed to topolog-
ical modifications in the remnants of the transport barriers17.
Furthermore, in the BNM, those changes can be associated
with modification of the central or external transport barrier.
The first scenario is named the centrally dominant transport
barrier, while the last is the externally dominant transport bar-
rier. The characterization of the topological changes in both
dominant scenarios is detailed below.

A. Centrally dominant

In the centrally dominant scenario, nontwist processes in-
volving the central transport barriers dictate the effectiveness
of transport in the BNM. We compare the transmissivity when

considering only the central barrier (yB = 1.5) versus consid-
ering all the barriers (yB = 3.5). Figure 4 displays the trans-
missivity as a function of a, with fixed values of b and ε . Here,
the transmissivity is obtained using an ensemble of 105 initial
conditions iterated 106 times, or until they reach the boundary
at y = yB.

FIG. 4. Transmissivity of the Biquadratic Nontwist Map, as function
of a, fixed b = 0.58 and ε = 0.11. Dashed-doted and dashed lines
mark high and low transport configurations, respectively.

We observe an abrupt change in transmissivity for both
values of yB. Two specific values of a are highlighted: the
dashed line marks a low transmissivity configuration, while
the dashed-dotted line marks a high transmissivity one. The
results indicate that both low and high transport regimes are
evident for the two values of yB. Additionally, the transmissiv-
ity considering all transport barriers is slightly smaller com-
pared to the effect of the central barrier alone. Briefly, in the
centrally dominant scenario, transmissivity is primarily influ-
enced by the central transport barrier. The external barriers
tend to reduce transport, but their effect is minimal, especially
in regions of low transmissivity.

Figure 5 shows the number of iterations needed for an or-
bit to escape the region of phase space bounded by ∂B±,
where yB = 3.5. The parameters used correspond to high
[Fig. 5(a)] and low [Fig. 5(b)] transmissivity configurations
from Figure 4. In both configurations, all invariant curves
were destroyed, resulting in all chaotic orbits eventually es-
caping. However, the required time for these escapes greatly
varies.

In both high and low transmissivity scenarios, most orbits
escape after 103 iterations, particularly in the region bounded
by y ≈ ±2. Outside this portion of phase space, orbits typi-
cally take around 10 iterations to escape. The region where
the escape time changes abruptly delineates the external par-
tial transport barriers. Despite having different transmissivity
values, Figures 5(a) and 5(b) do not show significant differ-
ences in escape times.

Computing the escape time to yB = 1.5, which lies between
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FIG. 5. Escape time of the trajectories in phase space of the Bi-
quadratic Nontwist Map, with b = 0.58, ε = 0.11, (a) a = 0.80765
and (b) a = 0.80837, corresponding to high and low transport con-
figurations of Fig. 4. Here we considered yB = 3.5.

the central and external barriers, Figure 6 shows a phase space
with a considerably different escape time distribution. The
central transport barrier is formed by a pair of period-11 twin
island chains embedded in the chaotic sea. Points inside these
islands do not escape since they correspond to invariant sets.
However, examining the escape times near the islands (high-
lighted rectangles in Figure 6), we observe that orbits adjacent
to them linger longer than the rest of the chaotic orbits.

In some way, these adjacent orbits resemble the periodic
behavior of the islands, causing them to remain trapped in the
region for extended periods. This dynamical trap of orbits,
called stickiness, has been studied in both twist3 and nontwist
systems20.

A detailed examination of Figures 6(a) and 6(b), which cor-
respond to high and low transmissivity, indicates distinct es-
cape times nearby the islands. In the low transmissivity sce-
nario, sticky orbits require approximately 105 iterations to es-

FIG. 6. Escape time near the central transport barrier of the Bi-
quadratic Nontwist Map for (a) high and (b) low transmissivity
regimes of Fig. 8, considering yB = 1.5. Magnifications of the high-
lighted regions are embedded in the corresponding panels.

cape the central region, whereas in the high transmissivity,
they take only about 104 iterations. Notably, for the same pa-
rameters, the escape times considering the external transport
barriers remain roughly the same (see Fig. 5). Therefore, the
escape time analysis also indicates the dominance of the cen-
tral barrier over the external ones in this scenario.

As defined in section III, manifolds dictate the behavior of
orbits in phase space. According to the Poincaré-Birkhoff the-
orem, island chains originate from a pair of stable and unsta-
ble periodic orbits42. In turn, each unstable periodic orbit has
a stable and an unstable hyperbolic manifold. Specifically, the
island chains in the central transport barrier are denoted as the
upper and lower chains. The hyperbolic period-11 orbit of the
upper (lower) chain is marked by filled squares (triangles) and
denoted by U (L) in Figure 7. The corresponding stable and
unstable manifolds are denoted by WU

s (W L
s ) and WU

u (W L
u ).

The six panels of Figure 7 are divided as follows. The upper
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FIG. 7. Stable and unstable manifolds of the upper (WU
s and WU

u ) and lower (W L
s and W L

u ) periodic orbit, considering (a) high and (b) low
transport configurations of Fig. 4. Chaotic orbits near them are plotted in light-grey.

panels refer to the high transmissivity, while the lower panels
correspond to the low transmissivity regime. The left (central)
panels show the manifolds associated with the upper (lower)
periodic orbit, while the right panels exhibit stable and unsta-
ble manifolds of different periodic orbits.

The stable and unstable manifolds associated with upper
and lower orbits intersect in a complex structure, determin-
ing the motion of chaotic orbits and transport. Manifolds of
the same hyperbolic orbit intersect in a structure called homo-
clinic tangle (see, for example, Figs. 7(a.1) and 7(b.1)). These
intersections are named intracrossing and the emergence of
chaos in Hamiltonian systems is closely related to them41.
However, nontwist systems also present intercrossing, i.e., the
intersection of manifolds associated with different hyperbolic
orbits, creating the heteroclinic tangle responsible for the ef-
fectiveness of nontwist transport barriers20.

The turnstile mechanism explains how island chains act
as transport barriers based on the intercrossing structure of
the stable and unstable manifolds. Fundamentally, the re-
gions through which orbits enter and leave the resonance zone,
called lobes, dictate the effectiveness of such a transport bar-
rier. A lobe is a region between two consecutive intersections
of the stable and unstable manifolds of a given periodic orbit.
In summary, the mechanism asserts that transport is directly
connected to lobe size: high transport occurs with large lobe
size, while low transport is associated with small lobes.

In the BNM, the homoclinic tangle differs significantly be-
tween the low and high transport configurations shown in
Figure 7. The lobe sizes are considerably larger in the high

transport regime [Figs. 7(a.1) and 7(a.2)] compared to the low
transmissivity configuration [Figs. 7(b.1) and 7(b.2)]. In high
transport regime, orbits can easily enter and leave the reso-
nance zone, as stated by the turnstile mechanism. Finally, due
to the symmetry of the BNM, lobe sizes of manifolds related
to both upper and lower orbits are similar, resulting in equal
upward and downward transport.

The other transport mechanism, relevant in nontwist sys-
tems, is the intercrossing of manifolds. As detailed in Ref.20,
the intersections of manifolds from different (but closer)
chains form escape channels used by orbits to leave the
transport barrier region. In the high transport regime [Fig-
ure 7(a.3)] there is a large number of those intercrossings com-
pared to low transmissivity, Fig. 7(b.3). These intercrossings
occurs because WU

s (W L
u ) intertwine with the lower (upper) is-

land chain, resembling a homoclinic topology of separatrices.
We stress that both the turnstile mechanism and intercross-

ing are complementary in describing transport in nontwist
systems18. The intercrossing and turnstile mechanism dic-
tates how orbits enter and leave the resonance zone of a spe-
cific island chain. However, since nontwist transport barri-
ers are formed by a pair of island chains, the intercrossing of
manifolds governs how orbits transitions between these island
chains.

The manifold structure also dictates the escape channels
through which orbits leave the sticky region31. A detailed look
at Figure 6 exhibits incursions of low escape time (dark blue)
among regions with significantly large escape times (light blue
and green). Since the escape channels coincide with the lobes,
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these incursions are directly connected with the manifold be-
havior shown in Figure 7.

B. Externally dominant

In the externally dominant scenario, processes involving
the external transport barriers determine the transport proper-
ties in the Biquadratic Nontwist Map (BNM). Figure 8 shows
the transmissivity of the BNM as a function of the parame-
ter a, considering the effect of all transport barriers combined
(yB = 3.5). Here, we observe a sudden change in the transmis-
sivity, just like in Figure 4. The configuration of low (high)
transmissivity is marked by a dashed (dashed-dotted) line. As
we will see, in both scenarios, the central barrier does not sig-
nificantly affect the transport; only the external barriers play
an important role.

FIG. 8. Transmissivity of the Biquadratic Nontwist Map, as function
of a, fixed b = 0.77 and ε = 0.11. Dashed-dotted and dashed lines
mark high and low transport configurations, respectively. We iterated
105 initial conditions up to 106 times, considering boundaries at yB =
3.5.

The escape time phase spaces of the high and low trans-
missivity configurations from Figure 8 are displayed in Fig-
ures 9(a) and 9(b), respectively. In both configurations,
the transport barrier is characterized by an abrupt change in
the average escape time, present only in the regions around
y ≈ ±2.5, corresponding to the external barriers. Beyond the
external barriers orbits escape after a few iterations, while be-
tween them, orbits linger to escape. This orbit trapping is
more effective in the low transmissivity scenario compared to
the high transmissivity one, as evidenced by the average es-
cape time of trapped orbits.

A detailed look at the escape times near the external barri-
ers is shown in Figure 10, where we use the same parameters
of high [Fig. 10(a)] and low [Fig. 10(b)] transmissivity con-
figurations. A pair of isochronous island chains can be seen,
whose remnants are responsible for the transport barrier.

FIG. 9. Escape time of the trajectories in phase space of the Bi-
quadratic Nontwist Map, with b = 0.77, ε = 0.11, (a) a = 0.1843
and (b) a = 0.1849, corresponding to high and low transport config-
urations of Fig. 8. Here we considered yB = 3.5.

In opposition to the central transport barrier, the behavior
of the map near the external barrier is asymmetric. Differ-
ences in upper and lower islands and in the average escape
time are evident in Figure 10. In both low and high transport
configurations, orbits take around 103 iterations to escape, ex-
cept in the lower chain of low transport configuration, Fig-
ure 10(b). The finger-like structures in the escape time are
present, dictating the escape channels of orbits. They are eas-
ily seen in Fig. 10(a); however, in the low transport regime
(see Fig. 10(b)), they are only visible in the upper island chain
due to the characteristic escape time of the region.

The associated hyperbolic manifolds also reflect the asym-
metry of the map around the external island chain. Figure 11
shows the stable and unstable manifolds of the upper and
lower island chain in Figure 10, denoted by WU,L

s and WU,L
u .

Following the turnstile mechanism, manifolds typically
have larger intercrossing lobes in the high transport regime.
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FIG. 10. Magnification of the highlighted rectangle in Fig. 9.

Nevertheless, an asymmetric behavior is evident when com-
paring the lower and upper orbits. The lobes of the lower
manifolds have roughly the same size in both high and low
transport regimes, as seen in Figures 11(a.2) and 11(b.2). Ad-
ditionally, within the highlighted rectangle in Figure 11(b.2),
small sized lobes are present. This asymmetry indicates an un-
equal upwards and downwards transmissivity of the transport
barrier.

In the externally dominant scenario, high and low trans-
missivity is completely determined by intercrossing. Com-
paring Figures 11(a.3) and 11(b.3), we observed a prevalence
of manifold intercrossing in the high transmissivity regime.
Also, the hyperbolic manifolds appear to have a homoclinic-
like topology when transmissivity is high. In this situation,
upper (lower) manifolds intertwine with the lower (upper)
chain, facilitating the interchange of orbits between pairs of
isochronous island chains.

Examining manifold behavior (Fig. 11) and escape time
(Fig. 10) we conclude that, in low transport regime, orbits
easily enter and exit the resonance zone of the lower island

chain in the external barrier. However, due to the asymmetric
behavior of manifolds, the probability of these orbits finding
an escape channel leading from the lower to the upper chain
is low.

V. CONCLUSION

In this paper, we investigated the transport properties in the
Biquadratic Nontwist Map, a prototype of a nontwist system
with multiple shearless curves. Although robust to pertur-
bations, shearless curves eventually break up; however, their
remnants continue to reduce transport in the region, forming
effective transport barriers. The Biquadratic Nontwist Map
presents three such regions of effective barriers, referred to as
the central and external transport barriers.

We used two different dynamical quantifiers to characterize
the effectiveness of transport barriers: the barrier transmissiv-
ity and the escape time of orbits. The first quantifier measures
the fraction of orbits that overcome the transport barrier, re-
gardless of the time needed. The second considers the time
required for each orbit to escape from the barrier region. Our
results indicate that the central and external transport barriers
in the Biquadratic Nontwist Map have distinct effectiveness in
two identified scenarios of dominance.

In the centrally dominant scenario, the transmissivity of
the central transport barrier dominates over the external barri-
ers. In this configuration, orbits shadow the behavior of island
chains, trapping them into the barrier region. Conversely, in
the externally dominant scenario, the central transport barrier
offers almost no resistance to transport, and the external trans-
port barriers play a major role. In this configuration, orbits are
trapped between the two external transport barriers, with es-
cape time substantially larger than untrapped orbits.

Complementarily, we examined manifold behavior in the
two dominant scenarios. As expected, the qualitative nature
of manifold crossing dictates the effectiveness of the partial
barriers. High transport configurations, in both scenarios, are
associated with manifold crossings of different island chains
(intercrossing). However, since the map is asymmetric with
respect to the external transport barriers, orbits crossing in this
region have a preferred direction. This behavior is reflected in
manifolds, which show varying-sized lobes.

In summary, our results indicate that the Biquadratic Non-
twist Map exhibits complex transport properties due to the
presence of multiple transport barriers. Each barrier has dis-
tinct transmissivity, leading to scenarios where either the cen-
tral or external barriers dominate. The behavior of manifolds,
especially their intercrossings, plays a critical role in deter-
mining the effectiveness of these barriers. Our findings sug-
gest that in nontwist systems with multiple transport barriers,
the interplay between these barriers creates regions in phase
space with significant orbit trapping, influencing overall trans-
port dynamics.
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FIG. 11. Stable and unstable manifolds of the upper (WU
s and WU

u ) and lower (W L
s and W L

u ) periodic orbit, considering (a) high and (b) low
transport configurations of Fig. 8. Chaotic orbits near them are plotted in light-grey.
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