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5 Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France.

6 Institut Universitaire de France (IUF).

September 10, 2024

Abstract

The Sterile Insect Technique (SIT) is a biological control method used to reduce or eliminate pest
populations or disease vectors. This technique involves releasing sterilized insects that, upon mating with the
wild population, produce no offspring, leading to a decline or eventual eradication of the target species. We
incorporate a spatial dimension by modeling the pest/vector population as being distributed across multiple
patches, with both wild and released sterile insects migrating between these patches at predetermined rates.

This study has two primary objectives: first, within an n-patch model, sufficient conditions are derived
for achieving the elimination of the wild population through SIT, whether releases occur in a subset of
patches or across all patches. Second, we focus on the two-patch scenario, showing that optimal SIT control
within one patch can successfully reduce the wild population in that patch to a desired level within a finite
time frame, provided that the migration rates between patches are sufficiently low. Numerical simulations
are employed to illustrate these results and further analyze the outcomes.

Keywords: Sterile Insect Technique; patch model; migration; elimination; population reduction; control;
optimal control; optimality conditions
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1 Introduction

Pests and disease vectors have become a critical global concern, impacting both food security and public
health. To address these challenges, a range of chemical and non-chemical control methods have been
developed, with varying degrees of success. However, there is now a strong emphasis on sustainable and
biological control strategies, which are designed to target specific pests or vectors while minimizing envi-
ronmental impact and safeguarding human health. Among these strategies, the Sterile Insect Technique
(SIT) is recognized as a particularly promising approach [25]. For SIT to be effectively implemented in
the field, preliminary studies, including modeling and simulations, are essential to assess its viability. SIT
involves the mass rearing of insects, followed by the release of sterilized males (typically achieved through
ionizing radiation). These sterilized males mate with wild females, transferring sterile sperm and leading
to no viable offspring. Over time, this results in a gradual decline in the population of the targeted pest or
vector. Despite its potential, the success of SIT is heavily dependent on the ability to release only sterile
males, which poses a significant challenge due to the need for an efficient sex-separation method.

To address this challenge, genetic-sexing strains have been developed for species such as the Mediter-
ranean fruit fly (Ceratitis capitata) [10] and the oriental fruit fly (Bactrocera dorsalis) [36]. These strains
enable sex separation based on traits like temperature sensitivity or puparium coloration.

In cases where genetic-sexing strains are unavailable, sex-separation is performed mechanically. This
process can be time-consuming and labor-intensive, with the added risk of inadvertently releasing sterile
females. This is particularly concerning for disease vectors like mosquitoes, where female contamination
can undermine control efforts [24, 23]. However, for certain pests, such as fruit flies, the release of both
sterile males and females has been shown to have potential benefits [30]. On Réunion Island, where a
genetic-sexing strain for Bactrocera dorsalis is not available, both sterile males and females are released.

Since the 1950s, the SIT has been applied with varying degrees of success against numerous pests, such
as the Mediterranean fruit fly, as well as disease vectors, including Anopheles and Aedes mosquitoes [25].
Additionally, alternative sterilization methods have been developed, including genetic approaches like the
RIDL method [45] (which stands for ”Release of Insects carrying Dominant Lethals”) and techniques involv-
ing the Wolbachia bacteria [42]. Since the pioneering model by E. Knipling [32], a range of mathematical
and computational models – simple, sex-structured, and/or stage-structured – have been developed and ex-
tensively studied to enhance the effectiveness of SIT (see for instance [13, 38, 12, 47, 35, 29, 44, 11, 15, 8]).
To date, although numerous field programs are underway, only a few incorporate a mathematical modeling
and simulation component.
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While conceptually straightforward, the SIT is challenging to implement in the field and even more
so on an industrial scale. Even with expertise in mass rearing and access to ionization facilities, several
factors can lead to failures. To mitigate these risks, mathematical modeling can play a crucial role in
formalizing SIT strategies [13], as well as addressing specific challenges associated with SIT deployment.
These challenges include residual fertility, where not all sterile males are entirely infertile; re-mating, where
females of the targeted species may mate multiple times; and sterile female contamination, which occurs
when sex separation is less than 100% efficient.

Some of these issues have been explored through mathematical modeling [8, 24, 23, 22], yielding valuable
theoretical results and threshold values based on SIT and vector/pest parameters, which are essential to
ensure the success of SIT prior to mass production and release.

When the area targeted for SIT is not naturally isolated, the International Atomic Energy Agency
(IAEA) and other SIT experts recommend establishing a “buffer zone” to minimize the migration of wild
individuals from untreated areas into the treated zone. This scenario can be represented simply as a model
with two interconnected areas – one treated and one untreated – linked by migration rates, which depend
on the effectiveness of the buffer zone. Therefore, it is essential to estimate the migration rates under which
releases in the targeted area alone remain effective, and possibly optimal. This scenario will be modeled
using a two-patch metapopulation model.

Regarding release strategies for SIT, numerous models have been developed and analyzed [46, 2, 21, 16].
These strategies often leverage the strong Allee effect induced by SIT, which suggests that local elimination
of pests or vectors is feasible once the system reaches the basin of attraction of the zero equilibrium. For
instance, [3] demonstrated that both massive and small release strategies can be effective, but this is only
true if the targeted area is isolated from surrounding areas—an ideal condition that is not always practically
achievable.

In [17], the incorporation of immigration terms into the model highlighted that local elimination is only
possible if migration is effectively controlled, meaning that immigration must be halted. However, the
migration model used in [17] was limited, as it did not account for the fact that some released sterile males
might migrate out of the targeted area, potentially reducing the effectiveness of the SIT. This underscores
the importance of incorporating spatial components into SIT models. Spatial dynamics have been explored
through partial differential equations (PDEs). Initial studies, such as [34], investigated wave extinction
phenomena due to SIT releases, and subsequent research, like [31], continued to build on this approach.
PDEs have also been used to include environmental factors, such as wind and landscape features [20].

Another approach is the metapopulation model, which implicitly considers spatial components. This
model, widely used in ecology and conservation biology since the early 1980s [27, 40, 7], has been applied to
mathematical epidemiology [9, 6, 18]. However, it has only been explored in the context of a two-patch SIT
control in two papers only: first, in a very recent paper [14], where the authors studied the conditions on
constant or impulsive periodic releases to reach elimination in one patch using a complex mosquito model;
and also in [49], where the authors examined the release of sterile males in one patch only and performed
standard qualitative analysis to determine conditions for the existence of positive (stable) equilibria. Our
work aims to extend these last results by deriving additional insights specific to this scenario.

We aim to advance the analysis by applying insights from the metapopulation/patches approach [26],
utilizing the monotone dynamical systems theory [37, 43, 28]. We will establish sufficient conditions to
demonstrate that complete elimination across all patches is achievable by releasing an adequate number of
sterile insects, ideally across as many patches as possible. Focusing on a two-patch system, our analysis
reveals that if diffusion rates are sufficiently low, it is feasible to reduce the wild population to below a
given threshold in patch 1 using an optimal SIT control strategy, even if releases occur only in patch 1. If
diffusion rates cannot be reduced effectively, it becomes preferable to treat both patches simultaneously.

The paper is organized as follows. In Section 2 we present a n-patch model for a single population of
pest or (vector-borne disease) vector. In Subsection 2.2, we derive the n-patch model for the sterile insects
releases with constant releases. For the 2-patches case, we recall some analytical results for the single
population model. Then, in Subsection 2.5, we present the 2-patches SIT model and describe the optimal
control problem of interest, specifically focusing on scenarios where sterile insects are released only in patch
1. In a nutshell, we demonstrate that if migration is sufficiently low, the optimal strategy is the same as in
the absence of migration. The precise results are stated in Section 2.6. Section 3 examines the SIT model
with constant releases, providing conditions to ensure the elimination of the wild population in both patches,
and extends these findings to the n-patch scenario. These results are instrumental in understanding the
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underlying dynamics of controlled systems and in establishing the existence of an optimal control strategy
for the two-patch case. Sections 4 and 5 are devoted to proving the main theoretical results regarding small
migration rates and characterizing the optimal control, respectively. In Section 6 we present numerical
simulations to both illustrate and extend our theoretical results. Additionally, we explore the practical
implications and applications of these findings. We conclude the paper with several perspectives for future
research in Section 7.

2 The patchy model - Main results

Before addressing the two-patch system, we first define the general n-patch problem for n ≥ 2, considering
both scenarios with and without SIT control.

2.1 The n-patch pest/vector population model

We consider a system of n interconnected patches, each occupied by a single species:

dPi

dt
= Pifi(Pi) +

n∑
j=1,j ̸=i

dijPj −
n∑

j=1,j ̸=i

djiPi, i = 1, . . . , n.

In this equation, Pi denotes the population density of the species in patch i (where i = 1, . . . , n), and
fi(Pi) represents the specific dynamics of the wild population in that patch. The dispersion rate dij (for
i ̸= j) is the non-negative coefficient governing the species’ movement from patch j to patch i. Specifically,
dii = −

∑n
j=1,j ̸=i dji. Therefore, we define the matrix D = (Dij)1≤i,j≤n as follows:

Dij =


dij for i ̸= j,

−
n∑

k=1,k ̸=i

dki, for i = j.

This yields a differential system that can be expressed in the concise form:

dP

dt
= P · F (P ) +DP, (1)

with (F (P ))i = fi(Pi) for i = 1, . . . , n and

fi(x) = bi − µi,1 − µi,2x, i = 1, . . . , n,

where bi > 0 represents the daily birth-rate per individual, µ1,i > 0 represents the daily death-rate, and
µ2,i > 0 represents the daily density death-rate in patch i. Thus, setting ri = bi − µi,1 and Ki = ri/µi,2,
we rewrite

fi(x) = ri

(
1− x

Ki

)
, i = 1, . . . , n.

This type of system has been studied in the context of species persistence and extinction, beginning with
the two-patch system analyzed in [1] and later extended in [5, 26]. Notably, [37] enhanced and generalized
the results of [1] by applying the theory of cooperative monotone systems [28]. Additionally, these systems
have been explored as ’source-source’ systems [41, 5, 26], where all ri > 0, and as ’source-sink’ systems
[48, 7], where some ri < 0. In this manuscript, we focus on the ’source-source’ case. Finally, we assume
that the matrix D is irreducible, implying that the species can migrate between any patches.

2.2 The n-patch sterile insects model

We assume that sterile insects are released in each patch at a rate of ui for i = 1, . . . , n, with a mortality
rate of µS . The population of sterile individuals in patch i, denoted as Ms,i for i = 1, . . . , n, is modeled by:

dMs,i

dt
= ui(t)− µSMs,i + ω

n∑
j=1,j ̸=i

dijMs,j − ω

n∑
j=1,j ̸=i

djiMs,i, (2)
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where ω is a parameter representing the impact of radiation on the dispersal ability of the sterile insects.
It is important to note that system (2) can be reformulated as:

dMs

dt
= U(t) +AMs, (3)

with Ms = (Ms,i)i=1,...,n, U = (ui)i=1,...,n, two vectors, and A = ωD−µS In, where In is the identity matrix
of size n.

Remark 2.1 (Properties of the matrix A). It is notable that A enjoys several properties:

(i) It is a Metzler matrix, meaning that Aij ≥ 0 for all i, j = 1, . . . , n with i ̸= j;

(ii) Additionally, Aii < 0 for all i = 1, . . . , n;

(iii) Since
∑n

j=1 Aji = −µS < 0 for all i = 1, . . . , n, it follows that
∑n

j=1,j ̸=i Aji < −Aii for all i = 1, . . . , n.
In other words, A is strictly diagonally dominant.

These properties imply that A is nonsingular and hence invertible. Moreover, A is Hurwitz, which means
that every eigenvalue of A has a strictly negative real part.

We also assume that Ms(0) = 0, meaning there are no sterile insects at time t = 0. It is straightforward
to show that the solution of system (3) under this initial condition is given by

Ms(t) =

∫ t

0

eA(t−s)U(s)ds.

Now, assuming U is constant and summing all the equations in (2) yields

dMtot

dt
=

n∑
i=1

ui − µSMtot,

where Mtot =
∑n

i=1 Ms,i represents the total number of sterile males across all patches. According to
Remark 2.1, it follows that Mtot converges to

M∗
tot :=

1

µS

n∑
i=1

ui

as t → +∞. It is noteworthy that the equilibrium number of sterile insects is independent of the diffusion
rates dij for i, j = 1, . . . , n with i ̸= j.

Remark 2.2 (Case of constant releases). Assuming further that the release rates ui are constant, and
given that A is Hurwitz, the linear stability theory allows us to conclude that M∗

s := −A−1U ≥ 0 is globally
asymptotically stable (GAS) for System (3).

2.3 Conclusion: the n-patch SIT model of a single vector species

When sterile insects are released, they primarily disrupt the mating process. Consequently, in each patch
i, the birth rate is modified to bi

Pi

Pi+γMs,i
, where Pi

Pi+γMs,i
represents the probability of a fertile mating

occurring in patch i, and γ is a parameter reflecting the average competitiveness of the sterile males.
Thus, by combining (1) and (3) as discussed in Sections 2.1 and 2.2, we can derive the n-patch SIT

model: 
dP

dt
= P · Fs(P,Ms) +DP, t > 0

dMs

dt
= U(t) +AMs,

(4)

with

(Fs)i = fs,i(x, y) =
bi

x+ γy
− µi,1 − µi,2x, i = 1, . . . , n.

It is important to emphasize that releasing sterile insects introduces a strong Allee effect into model (4).
Consequently, the steady state 0 becomes Locally Asymptotically Stable (LAS), with the size of its basin
of attraction potentially depending on the release rates.

Next, we will focus on a two-patch model. We will specify the model and review some well-known results
related to the asymptotic behavior of its solutions.
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2.4 The two-patch model of a single vector species

Let T > 0 be the fixed time horizon over which the control strategy is applied. We consider a two-patch
model comprising two interconnected patches with population sizes P1 and P2, respectively. These patches
may represent different geographic regions or habitats, as illustrated in Fig. 1.

Patch 1
(Population P1)

Patch 2
(Population P2)

d21

d12

Figure 1: The two-patch model

As detailed in Section 2.1, we examine the 2-patch logistic model given by:
dP1

dt
= (b1P1 − µ1 − µ2P1)P1 + d12P2 − d21P1 in (0, T ),

dP2

dt
= (b2P2 − µ1 − µ2P2)P2 + d21P1 − d12P2 in (0, T ).

(5)

The persistence and elimination properties of this two-patch system are summarized in the following
result:

Theorem 2.3 (see [1, Theorem 1]). Let us denote by ri = bi − µ1,i and Ki =
ri
µ2,i

so that System (5) can

be recast as 
dP1

dt
= r1

(
1− P1

K1

)
P1 + d12P2 − d21P1 in (0, T ),

dP2

dt
= r2

(
1− P2

K2

)
P2 + d21P1 − d12P2 in (0, T ).

The extinction behavior, limt→+∞ Pi(t) = 0 for i = 1, 2, occurs if, and only if, the following two conditions
are satisfied:

(i) r1 − d12 < 0 and r2 − d21 < 0,

(ii) d12d21 − (r1 − d12) (r2 − d21) ≤ 0.

On the other hand, if either (i) or (ii) do not hold, then limt→+∞ Pi(t) = P ∗
i > 0, for i = 1, 2.

Assuming that System (5) is permanent, and defining d12 = β/γ1 and d21 = β/γ2, where β, γ1, and γ2
are positive real numbers with β representing the migration intensity and γ2/γ1 quantifying the migration
asymmetry, we obtain the following results:

Proposition 2.4 (see [5, Propositions 1 and 2]). Assuming that System (5) has a positive equilibria
(P ∗

1 , P
∗
2 ). Let P ∗ = P ∗

1 + P ∗
2 . We have

• When r1 = r2, migration is always unfavorable to P ∗, i.e. P ∗ < K1 +K2.

• Assume r1 < r2. Then

– If γ1, γ2 satisfy
γ1
γ2

<
r1
r2

K2

K1
, then there exists βC such that:

0 ≤ β ≤ βC =⇒ P ∗ > K1 +K2, and βC ≤ β =⇒ P ∗ < K1 +K2.
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– If γ1, γ2 satisfy
r1
r2

K2

K1
<

γ1
γ2

<
K1

K2
, then P ∗ > K1 +K2 for every β.

– If γ1, γ2 satisfy
K2

K1
<

γ1
γ2

, then P ∗ < K1 +K2 for every β.

Remark 2.5. The behavior of the system depends on whether migration occurs between the patches. In
the absence of migration (i.e., when d12 = d21 = 0 in (5)), the solution (P1, P2) to System (6) converges
pointwise to the equilibrium (K1,K2) as t → +∞. However, when migration is present, and if r1 ̸= r2
and K1 ̸= K2, the sum of the equilibrium states may not equal the sum of the carrying capacities of the
individual patches. Specifically, P1 + P2 may converge to a value different from K1 +K2, either less than
or greater than K1 + K2. This result highlights that, in the presence of migration, the total equilibrium
population across patches can deviate from the sum of the carrying capacities. This deviation underscores
the inherently nonlinear dynamics of patch systems.

2.5 The two-patch SIT model

Next, we consider a two-patch SIT-control model, where ui represents the amount of sterile insects released
in patch i. The time evolution of the wild population is then modeled by the following SIT system:

d

dt

(
P1

P2

)
=

(
f1(P1,Ms,1)
f2(P2,Ms,2)

)
+D

(
P1

P2

)
in [0, T ],

d

dt

(
Ms,1

Ms,2

)
= −µs

(
Ms,1

Ms,2

)
+DS

(
Ms,1

Ms,2

)
+

(
u1

u2

)
in [0, T ],

(P1(0), P2(0)) = (P ∗
1 , P

∗
2 ),

Ms,1(0) = Ms,2(0) = 0,

(6)

where (P ∗
1 , P

∗
2 ) is the positive equilibrium of System (5) and

D =

(
−d21 d12
d21 −d12

)
stands for the migration matrix modeling the interactions between the two patches. Assuming that the
migration of sterile insects does not exceed that of the wild population, the matrix DS = ωD (with
0 ≤ ω ≤ 1) represents the migration matrix for the sterile insects.

Building on previous work [3] and the discussions in Sections 2.4, we consider

fi(Pi,Ms,i) = gi(Pi,Ms,i)Pi with gi(Pi,Ms,i) = bi
Pi

Pi + γMs,i
− µ1,i − µ2,iPi,

where bi > 0, µ1,i > 0 and µ2,i > 0, i = 1, 2 are given.

In the context of SIT control, we address the following two key biological issues:

Question 1:

Is it possible to find a release threshold to reduce or insure the elimination of the pest/vector
population in all patches?

Question 2:

To reduce the population P1 under a given value ε > 0, is it optimal to act only with u1 (u2 = 0)
when migration is weak?

We concentrate on the control problem in patch 1, aiming to reduce the vector population in this patch
below a specified threshold ε > 0 using the minimal amount of control effort ui. Our goal is to explore
how the migration parameters d12 and d21 influence the structure of optimal controls, especially when these
parameters are small. The optimal control problem we will consider hence reads

inf
u∈Uε,M

J(u1, u2), (Pε,M )

7



where M = (M1,M2) ∈ (R∗
+)

2, where M1 and M2 are the maximal daily release rates, and ε > 0 are given,

J(u1, u2) =

∫ T

0

(u1(t) + u2(t)) dt

and

Uε,M = {u = (u1, u2) ∈ L∞(0, T ;R2) | 0 ≤ ui ≤ Mi a.e. in (0, T ), i = 1, 2 and P1(T ) ≤ ε}.

2.6 Main results: the 2-patches SIT model (Pε,M)

We now analyze problem (Pε,M ) under the assumption that the migration parameters are small. It is
important to note that sterile insects can be released in both patches simultaneously, meaning that controls
u1 and u2 can be activated concurrently.

As a preliminary step, we present a result on the use of constant controls. This approach is not only
biologically significant but also essential for ensuring that the admissible set of controls in problem (Pε,M )
is non-empty. In simple terms, with a sufficient number of sterilized males, it is possible to achieve the
constraint P1(T ) ≤ ε. Roughly speaking, with enough sterilized males it is possible to reach the constraint
P1(T ) ⩽ ε.

Proposition 2.6. There exist T̄ > 0 and M̄ > 0 such that for each T > T̄ and Mi > M̄ , i = 1, 2,
Problem (Pε,M ) has a solution (u1, u2).

This result is derived by carefully analyzing the system (6) under constant controls. The impact of
these constant controls on the system’s equilibrium across different regimes (with and without migration) is
thoroughly examined in Section 3. The proof of Proposition 2.6 is presented in section 3.3. We now present
one of the main results of this article, which addresses the qualitative behavior of the optimal controls.

Theorem 2.7. There exist T̄ > 0 and M̄ > 0 such that for each T > T̄ and Mi > M̄ , i = 1, 2, Prob-
lem (Pε,M ) admits a solution (u1, u2), and one has necessarily

P1(T ) = ε.

Furthermore, there exists δ > 0, depending on the parameters of the problem except d12 and d21, such that

d12 + d21 ≤ δ ⇒ u2(·) = 0.

Remark 2.8 (Biological interpretation of this result.). The preceding theorem establishes that an optimal
control strategy exists to reduce (and potentially eliminate) the pest or vector population in patch 1 within
a finite time by releasing sterile males exclusively in patch 1. However, this is only feasible if the migration
rates between the two patches are sufficiently low.

Theorem 2.9 (Characterization of the control). Assume that µs ≥ µ1,1. There exist T̄ > 0, M̄ > 0 and
δ̄ > 0 such that, for each T ≥ T̄ , Mi > M̄ and δ = d12 + d21 ∈ [0, δ̄], every solution (u1, u2) of the optimal
control problem (Pε,M ) satisfies:

• u2 = 0 on [0, T ];

• there exists 0 < t0 < t1 < T such that u1 = 0 on [0, t0] and on (t1, T ].

Furthermore, in the case where δ = 0 (no migration), every control u1 satisfies

d

dt
P1 = f1(P1,Ms1) in [0, T ],

d

dt
Ms1 = −µsMs1 + u1 in [0, T ],

u(t) =
(

∂2f
∂M2

s

)−1 (
∂f1
∂Ms

∂f1
∂P1

+ µ1,sMs
∂2f
∂M2

s
− f1

∂2f1
∂Ms∂P1

)∣∣∣∣
(P1(t),Ms1(t))

in [t0, t1],

u(t) = 0 in [0, t0] ∪ [t1, T ].

Remark 2.10. With the notations of Theorem 2.9 above, it is notable that, when the parameter δ decreases
to 0, any family of solution (uδ

1, u
δ
2) to Problem (Pε,M ) with migration coefficients d12 and d21 such that

δ ≤ δ̄ converges towards a solution (u0
1, u

0
2) to Problem (Pε,M ) with no migration, in the sense of the

weak-star topology of L∞(0, T ). This results immediately from the Γ-convergence argument, in the first step
of the proof of Theorem 2.7, in Section 4.5.
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3 Analysis of constant controls (proof of Proposition 2.6)

In this section, we assume that the controls u1 and u2 are constant over the interval [0, T ]. System (6)
can be divided into two components. The second component pertains to the dynamics of the sterile males,
which is modeled by system (3) with n = 2. As discussed in Section 2.2, page 4, we know that the solution
(Ms,1,Ms,2) converges exponentially to (M∗

s,1,M
∗
s,2) as t → +∞, where

(
M∗

s,1

M∗
s,2

)
= −A−1U =


u1 (µS + ωd12) + ωd12u2

(µS + ωd21 + ωd12)µS
u2 (µS + ωd21) + ωd21u1

(µS + ωd12 + ωd21)µS

 . (7)

Therefore, the long-term behavior of System (6) is equivalent to that of the following system:
dP1

dt
=

(
b1

P1

P1 + γM∗
s,1

− (µ1,1 + d21)− µ2,1P1

)
P1 + d12P2,

dP2

dt
=

(
b2

P2

P2 + γM∗
s,2

− (µ1,2 + d12)− µ2,2P2

)
P2 + d21P1.

(SIT)

System (SIT) defines a monotone cooperative system (see [28]) on D = R2
+ for any values of t ∈ (0,+∞).

Let us consider two cases :

3.1 Case without migration

Assuming first that d12 = d21 = 0, then the steady states are 0 = (0, 0), (P ∗
1 , 0), (0, P

∗
2 ) and (P ∗

1 , P
∗
2 ) where

P ∗
i are solutions of

bi
Pi

Pi + γM∗
s,i

− µ1,i − µ2,iPi = 0.

Setting Ni = bi/µ1,i, the basic offspring number related to population Pi, and assuming Ni > 1, long but
straightforward computations (see for instance [3]), show that there exists a threshold value M crit

s,i , defined
as follows

M crit
s,i =

µ1,i

µ2,i

(√
Ni − 1

)2
=

1

Qi

(√
Ni − 1

)2
, (8)

where Qi =
µ2,i

µ1,i
, such that we can deduce the following result

Proposition 3.1. Assume Ni > 1, for i = 1, 2, then the following results hold:

• When γM∗
s,i > M crit

s,i , i = 1, 2, then 0 is the only equilibrium.

• When γM∗
s,i = M crit

s,i , i = 1, 2, then only one positive equilibrium, P †, exists where

P †
i =

µ1,i

µ2,i

√
Ni, i = 1, 2.

• When 0 < γM∗
s,i < M crit

s,i , i = 1, 2, then there exist two positive equilibria P ∗
1 and P ∗

2 :

P ∗
1,i =

1

2Qi

(
Ni − 1−QiγM

∗
s,i −

√(
Ni − 1−QiγM∗

s,i

)2 − 4QiγM∗
s,i

)
, i = 1, 2.

and

P ∗
2,i =

1

2Qi

(
Ni − 1−QiγM

∗
s,i +

√(
Ni − 1−QiγM∗

s,i

)2 − 4QiγM∗
s,i

)
, i = 1, 2.

With both patches being isolated, and employing the approach used in [4, 3], we obtain the following
stability results:

Proposition 3.2. Assume Ni > 1, for i = 1, 2. The following results then hold:
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• When γM∗
s,i > M crit

s,i , then 0 is GAS.

• When 0 < γM∗
s,1 ≤ M crit

s,1 and γM∗
s,2 > M crit

s,2 then (P ∗
1,2, 0) and 0 are LAS

• When γM∗
s,1 > M crit

s,1 and 0 < γM∗
s,2 ≤ M crit

s,2 then (0, P ∗
2,2) and 0 are LAS

• When 0 < γM∗
s,i < M crit

s,i , i = 1, 2, then (P ∗
1,2, P

∗
2,2), (P

∗
1,2, 0), (0, P

∗
2,2) and 0 are LAS.

It is crucial to understand that SIT introduces a significant Allee effect, ensuring that 0 is always Locally
Asymptotically Stable (LAS) once sterile males are released, i.e., M∗

s,i > 0 for i = 1, 2. The size of the basin
of attraction for 0 primarily depends on the magnitude of the releases.

Remark 3.3. This reasoning extends to n isolated patches. For each patch, the critical release value
specified in formula (8) remains valid for i = 1, 2, . . . , n. Consequently, as shown in Proposition 3.2, 0 is
Globally Asymptotically Stable (GAS) if γM∗

s,i > Mcrit
s,i for i = 1, 2, . . . , n. In other words, the release rates

ui must satisfy ui > µsM
crit
s,i /γ for all i = 1, 2, . . . , n.

3.2 Case with migration

We consider either d12 > 0 and d21 ≥ 0 or d12 ≥ 0 and d21 > 0. We will use a result from [37] to show that
0 can be GAS, provided that enough sterile males are released.

Once sterile insects are released, with conditions such as u1 > 0 and u2 ≥ 0 or u1 ≥ 0 and u2 > 0, the
dynamics can become quite intricate. For example, [49] examined the scenario with u1 > 0 and u2 = 0,
revealing up to eight positive equilibria depending on the release rate u1. Only some of these equilibria are
Locally Asymptotically Stable (LAS). The following phase diagrams (see Figs. 2 and 3, with parameter
values from Table 1 nd migration rates d12 = d21 = 0.002) illustrate the complexity of the dynamics for
varying u1 > 0 and u2 > 0. They show that multiple equilibria can coexist, but only a few are LAS
(indicated by green dots). As the values of u1 and u2 vary, the number of possible steady states can
transition between 7, 5, 3, or 1. Figure 3 (Right) demonstrates that for sufficiently large u1 and u2, only the
equilibrium 0 remains, which is Globally Asymptotically Stable (GAS). We will also show how to determine
the minimal release rates required in each patch to ensure elimination in both patches.

0 P
31

*
P
71

*

0

P
32

*

P
72

*

0 P
31
*

P
51
*

0

P
32
* ,P

52
*

Figure 2: ( Left) Phase Portrait for u1 = 1090 and u2 = 1090: 7 equilibria case. (Right) Phase Portrait for
u1 = 1100 and u2 = 1090: 5 equilibria case. Each green dots represents a LAS equilibrium.
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0 P
31

*

0

P
32

*

0

0

Figure 3: (Left) Phase Portrait for u1 = 1100 and u2 = 1170: : 3 equilibria case (Right) Phase Portrait for
u1 = 1100 and u2 = 1080: : 1 equilibrium case. Each green dots represent a LAS equilibrium.

First of all, once M∗
s,i > 0, we easily check that 0 is always Locally Asymptotically Stable (LAS), even

in the presence of migration. Indeed, computing the Jacobian matrix of system (SIT) at 0 leads to

J(0) =

(
− (µ1,1 + d21) d12

d21 − (µ1,2 + d12)

)
,

that is Hurwitz since Tr(J(0)) < 0 and det(J(0)) > 0.
Let us set Ri = supx≥0 gi(x) for i = 1, 2 and AR = D+diag([R1, R2]). According to [37, Theorem 1(i)],

extinction occurs (i.e. 0 is GAS) if the spectral abscissa s(AR) of AR is negative.
One computes

g′i(x) = bi
γM∗

s,i(
x+ γM∗

s,i

)2 − µ2,i =
1(

x+ γM∗
s,i

)2 (biγM∗
s,i − µ2,i

(
x+ γM∗

s,i

)2)
,

such that g′i(x) ≥ 0, when x ∈ [x∗
1, x

∗
2], where

x∗
1 = −

√
biγM

∗
s,i

µ2,i
−γM∗

s,i ≤ 0 and x∗
2 =

√
biγM

∗
s,i

µ2,i
−γM∗

s,i,

and g′i(x) < 0,when x /∈ [x∗
1, x

∗
2]. If x∗

2 ≥ 0, then gi(x) ≤ gi(x
∗
2) for all x ≥ 0. We have x∗

2 ≥ 0 if, and only
if, γM∗

s,i ≤ bi/µ2,i. Thus we deduce that, for i = 1, 2, we have

Ri =


(√

bi −
√
µ2,iγM∗

s,i

)2
− µ1,i when 0 ≤ γM∗

s,i ≤
bi
µ2,i

,

−µ1,i when γM∗
s,i >

bi
µ2,i

.

First case: γM∗
s,i >

bi

µ2,i
for i = 1, 2. Then,

AR =

(
− (µ1,1 + d21) d12

d21 − (µ1,2 + d12)

)

11



is such that s(AR) < 0. Thus, 0 is GAS.

Remark 3.4 (Generalization). Note that this reasoning extends to the general case with n patches, where
i = 1, 2, . . . , n. Specifically, if γM∗

s,i >
bi

µ2,i
for i = 1, 2, . . . , n, then the matrix AR shares the same properties

as the matrix A outlined in Remark 2.1. In particular, AR is Hurwitz, which implies that 0 is Globally
Asymptotically Stable (GAS).

Second case: γM∗
s,i ≤

bi

µ2,i
for i = 1, 2. Then,

AR =

( (√
b1 −

√
µ2,1γM∗

s,1

)2 − µ1,1 − d21 d12

d21
(√

b2 −
√

µ2,2γM∗
s,2

)2 − µ1,2 − d12

)
.

The matrix AR is again a Metzler matrix. To ensure that AR is (strictly) column diagonally dominant, we
need to find values of γM∗

s,i such that, for i = 1, 2,

2∑
j=1

(AR)ji =
(√

bi −
√
µ2, iγM∗

s,i

)2
− µ1,i < 0. (9)

Since γM∗
s,i ≤ bi

µ2,i
, straightforward calculations show that (9) holds when M crit

s,i < γM∗
s,i for i = 1, 2, where

M crit
s,i is defined in (8). Moreover, if M crit

s,i < γM∗
s,i for i = 1, 2, it automatically ensures that (AR)ii < 0,

because

(AR)ii < 0 =
(√

bi −
√
µ2,iγM∗

s,i

)2
− µ1,i −

∑2
j=1,
j ̸=i

dj,i

<
(√

bi −
√
µ2,iγM∗

s,i

)2
− µ1,i < 0,

for i = 1, 2, thanks to (9). Therefore, when M crit
s,i < γM∗

s,i ≤
bi
µ2,i

for i = 1, 2, we can conclude that AR is

Hurwitz. Then, we derive the following result for a 2-patches SIT-system

Theorem 3.5. Assume Ni > 1 and dij ≥ 0 for 1 ≤ i ̸= j ≤ 2. Then, the following results holds

(a) When M∗
s,i > 0, i = 1, 2, then 0 is always LAS.

(b) When γM∗
s,1 > M crit

s,1 and γM∗
s,2 > M crit

s,2 , then 0 is GAS.

In fact, the reasoning above extends to n connected patches, allowing the previous theorem to be
generalized to

Theorem 3.6. For all i = 1, . . . , n, assume Ni > 1, and di,j ≥ 0 for 1 ≤ i ̸= j ≤ n. Then, the following
results holds

(a) When M∗
s,i > 0, i = 1, 2, . . . , n, then 0 is always LAS.

(b) When γM∗
s,i > M crit

s,i , i = 1, 2, . . . , n, then 0 is GAS.

Remark 3.7. This result, while not optimal regarding critical release rates, provides a way to estimate the
minimum number of sterile insects to release needed to ensure long-term elimination, even without knowing
the migration rates between patches.

Remark 3.8 (The particular case u2 = 0). Using Theorem 3.5, we can analyze the specific case where
u2 = 0, meaning that releases occur only in Patch 1, with d21 > 0. Applying (7), we obtain

(M∗
s,1,M

∗
s,2) =

(
µS + ωd12

µS + ωd12 + ωd21
,

ωd21
µS + ωd12 + ωd21

)
u1

µS
.

According to Theorem 3.5, we have to check that

γ
µS + ωd12

(µS + ωd12 + ωd21)

u1

µS
> M crit

s,1 and γ
ωd21

(µS + ωd12 + ωd21)

u1

µS
> M crit

s,2 ,
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that is, the release rate in Patch 1 must satisfy the following constraint to achieve elimination in both
patches: u1 > max{ucrit

1 , ucrit
2 } where

ucrit
1 =

µS

γ

(µS + ωd12 + ωd21)

µS + ωd12
M crit

s,1 and ucrit
2 =

µS

γ

(µS + ωd12 + ωd21)

ωd21
M crit

s,2 . (10)

Thanks to (10), we can highlight the following points:

• If the dispersal of the sterile insects is significantly reduced by the sterilization process, i.e., ω ≪ 1,
then, according to the second condition, ucrit

2 can be very large. This indicates that the release rate u1

in Patch 1 must also be very large.

• Even if ω = 1, meaning the dispersal ability of the sterile insects is unaffected by the sterilization
process, a problem arises if d21, the migration rate from Patch 1 to Patch 2, is low, i.e., d21 ≪ 1.
This is particularly noteworthy because it shows that reducing the displacement between patches, for
instance by using traps, can negatively impact the control when sterile insects are only released in
Patch 1.

• When d12 = 0, meaning no insects are migrating from Patch 2 to Patch 1, elimination in Patch 1 is
possible only if γM∗

s,1 > Mcrit
s,1 . Thus, if the targeted area is Patch 1, it seems feasible to significantly

reduce the wild population by releasing sterile insects only in Patch 1.

In the general case, where ui > 0 for i = 1, 2, using (7), we need to select u1 and u2 such that

γ
u1 (µS + ωd21) + ωd21u2

(µS + ωd12 + ωd21)µS
> M crit

s,1 and γ
u2 (µS + ωd12) + ωd12u1

(µS + ωd12 + ωd21)µS
> M crit

s,2 , (11)

that is

u1 (µS + ωd21) + ωd21u2

(µS + ωd12 + ωd21)
>

µS

γ
M crit

s,1 =: ucrit
s,1 and

u2 (µS + ωd12) + ωd12u1

(µS + ωd12 + ωd21)
>

µS

γ
M crit

s,2 =: ucrit
s,2 .

Remark 3.9. According to (11), the parameters γ and µS can influence the release rates. Specifically, a
larger value of γ (indicating better competitiveness) and/or a smaller value of µS (indicating a longer lifes-
pan) will reduce the necessary release rates. This underscores the importance of accurately estimating both
parameters. These parameters depend on the radiation dose used for sterilization as well as any additional
treatments, such as Ginger oil root, which has been shown to increase the competitiveness parameter γ (see
[22] and references therein).

To determine the minimal total release rate u1 + u2, where u = (u1, u2)
T ≥ 0, we need to solve the

inequality (11). Specifically, we formulate the following linear optimization program: find u = (u1, u2)
T

such that
inf{u1 + u2, −A−1

2 u ≥ b2 and u ≥ 0}, (12)

where

−A−1
2 =

γ

(µS + ωd12 + ωd21)µS

(
µS + ωd12 ωd12

ωd21 µS + ωd21

)
, b2 =

(
M crit

s,1

M crit
s,2

)
.

This approach will help determine both the minimal total release rate required to achieve elimination in
both patches and the optimal distribution of this rate between the two patches. In essence, this result will
specify the minimum daily production of sterile insects needed.

Remark 3.10 (Generalization). Similarly, the previous reasoning can be extended to n connected patches.
In this case, we need to determine the vector u = (u1, . . . , un)

T that satisfies the following linear program-
ming problem:

inf

{
n∑

i=1

ui, −A−1u ≥ bn and u ≥ 0

}
,

where the matrix A has been introduced in Section 2.2, and bn =
(
M crit

s,i

)
1≤i≤n

∈ Rn×1.

Note that some optimal release rates may eventually be zero. In Section 6, we will present simulations
for the two-patch case and discuss the results.
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3.3 Proof of Proposition 2.6

According to Theorem 3.5, the set of admissible controls Uε,M is non-empty provided that T and M are
large enough. We now investigate the existence property. For the sake of clarity, we temporarily denote by
(Pu

1 , P
u
2 ,M

u
s,1,M

u
s,2) the solution of System (6) associated with u.

Let (un)n∈N be a minimizing sequence. According to the Banach-Alaoglu-Bourbaki theorem, the set
L∞(0, T ; [0,M ]) is compact for the weak-∗ topology of L∞(0, T ) and, up to a subsequence, (un)n∈N converges
to u ∈ L∞(0, T ; [0,M ]). The functional J is obviously continuous with respect to the weak-∗ topology of
L∞(0, T ), so it remains to prove that the set {u ∈ L∞(0, T ) |Pu

1 (T ) ≤ ε} is closed for this topology, in
other words, that Pu

1 (T ) ≤ ε. First, we have

Mun
s (t) =

∫ t

0

e−(µs I2 +DS)(t−s)un(s) ds, for all t ≥ 0.

It follows that (Mun
s )n∈N is bounded in W 1,∞(0, T ) and therefore converges, up to a subsequence, to Mu

s

strongly in C0([0, T ]) by the Ascoli theorem.
Furthermore, using the fact that f(0,M) = 0 for all M ≥ 0, we infer from the Cauchy-Lipschitz theorem

that Pi(·) ≥ 0 for i = 1, 2. It follows that

dPun
i

dt
(t) ≤ biP

un
i (t) + ∥D∥∥Pun∥, t ≥ 0, i = 1, 2,

where ∥D∥ denotes the spectral norm of D. Therefore,
∥∥dPun

dt

∥∥ (t) ≤ (∥(b1, b2)∥ + ∥D∥)∥Pun(t)∥ for all
t ≥ 0, and it follows from Gronwall’s lemma that ∥Pun∥ is uniformly bounded. By applying the Ascoli
theorem as above, it follows that, up to a subsequence, (Pun)n∈N converges in C0([0, T ]) towards some
element P . We continue to denote this subsequence by (Pun)n∈N with a slight abuse of notation. Now,
passing to the limit in the relation

Pun(t) = Pun(0) +

∫ t

0

((
f1(P

un
1 ,Mun

s,1)
f2(P

un
2 ,Mun

s,2)

)
+DP (s)

)
ds, t ≥ 0,

yields that the pair (Pu,Mu
s ) solves the system (6). Finally, from the inequality Pun

1 (T ) ≤ ε, we obtain
Pu
1 (T ) ≤ ε by C0 convergence. This concludes the proof.

4 Analysis of the optimal control strategy (proof of Theorem 2.7)

4.1 First order optimality conditions

Let (u1, u2) be an optimal control for Problem (Pε,M ) and (P,Ms) be the corresponding trajectories,
solutions of (6) for u. To write the first-order optimality conditions, we will use the Pontryagin Maximum
Principle (PMP). To take into account the integral constraint on ui (i = 1, 2), it is convenient to introduce
an artificial state variable yi solving the o.d.e.

y′(t) = u1(t) + u2(t) on [0, T ] and y(0) = 0

in such a way that the constraint
∫ T

0
u+ u2 dt ≤ C rewrites as the terminal condition y(T ) ≤ C.

Let us introduce the Hamiltonian of Problem (Pε,M ), given by

H : R4 × R6 × R2 × {−1, 0} → R

((P,Ms, y), (q, λ), u, p
0) 7→ ⟨

(
q1
q2

)
,

(
f1(P1,Ms1)
f2(P2,Ms2)

)
+AP ⟩R2 + ⟨

(
q3
q4

)
, (DS − µs I2)Ms + u⟩R2

+λ(u1 + u2),

where, here and the rest, ⟨·, ·⟩Rn will denote the standard inner product in Rn. ∥ · ∥Rn will denote the
standard euclidean norm in Rn. When there is no ambiguity, we will also write ⟨·, ·⟩ and ∥ · ∥ to denote
those quantities.

According to the Maximum Principle (see, e.g. [33]), there exists an absolutely continuous mapping
q : [0, T ] → R4 called adjoint vector such that the so-called extremal ((P,Ms, y), (p, λ), u) satisfies a.e. in
[0,T]:
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• Adjoint equations:

− d

dt

(
q1
q2

)
=

((
∂f1
∂P1

(P1,Ms1) 0

0 ∂f2
∂P2

(P2,Ms2)

)
+A⊤

)(
q1
q2

)
(13)

− d

dt

(
q3
q4

)
= (D⊤

S − µs I2)

(
q3
q4

)
+

(
∂f1

∂Ms1
(P1,Ms1) 0

0 ∂f2
∂Ms2

(P2,Ms2)

)(
q1
q2

)
(14)

and in addition, dλ/dt = 0 which implies that λ is a constant vector (still denoted λ with a slight
abuse of notation).

• Maximality condition:

for a.e. t ∈ [0, T ], u∗(t) solves the problem max
0≤v1≤M1
0≤v2≤M2

⟨
(
v1
v2

)
,

(
q3
q4

)
⟩R2 + λ(v1 + v2).

and therefore, one has

q3 + λ ≤ 0 on {u1 = 0}, q3 + λ = 0 on {0 < u1 < M1}, q3 + λ ≥ 0 on {u1 = M1}
q4 + λ ≤ 0 on {u2 = 0}, q4 + λ = 0 on {0 < u2 < M2}, q4 + λ ≥ 0 on {u2 = M2}

(15)

• Transversality conditions: we impose the terminal conditions

q1(T ) = p0, q2(T ) = 0, q3(T ) = q4(T ) = 0, λ(T ) = λT (16)

on the adjoint state, where λT ∈ R+ satisfies moreover the complementary condition λT (P1(T )−C) =
0.

We infer from (16) that λ ≥ 0.
Furthermore, one has p0 = −1. Indeed, in the converse case, one has p0 = 0 and q solves a homogeneous

linear system with 0R4 as final condition. It follows that q = 0 which is in contradiction with the fact that
the pair (q, p0) is nontrivial. The expected result follows.

Let us sum up hereafter the optimality conditions we have obtained.

− d

dt

(
q1
q2

)
=

((
∂f1
∂P1

(P1,Ms1) 0

0 ∂f2
∂P2

(P2,Ms2)

)
+A⊤

)(
q1
q2

)
− d

dt

(
q3
q4

)
= (D⊤

S − µs I2)

(
q3
q4

)
+

(
∂f1

∂Ms1
(P1,Ms1) 0

0 ∂f2
∂Ms2

(P2,Ms2)

)(
q1
q2

)
q1(T ) = −1, q2(T ) = 0, q3(T ) = q4(T ) = 0
q3 − λ ≤ 0 on {u1 = 0}, q3 − λ = 0 on {0 < u1 < M1}, q3 − λ ≥ 0 on {u1 = M1}
q4 − λ ≤ 0 on {u2 = 0}, q4 − λ = 0 on {0 < u2 < M2}, q4 − λ ≥ 0 on {u2 = M2}
λ ≥ 0

(17)

Notice that for all t ∈ [0, T ], one has(
q3(t)
q4(t)

)
=

∫ T

t

e−D⊤
S (t−s)eµs(t−s)

(
∂f1

∂Ms1
(P1,Ms1) 0

0 ∂f2
∂Ms2

(P2,Ms2)

)(
q1
q2

)
(s) ds.

The expression of the differential of J1 in the next result is an immediate byproduct of the Pontryagin
Maximum Principle above.

Lemma 4.1. For i = 1, 2, let ui ∈ Uεi,Mi
and let hi denote an admissible perturbation1 at ui. Consider

G : u 7→ P1(T ). The functional G is differentiable at u = (u1, u2) and one has

DG(u)h = −
∫ T

0

(q3h1 + q4h2) dt.

1More precisely, we call “admissible perturbation” any element of the tangent cone Tui,Uεi,Mi
to the set UCi,Mi at ui. Recall

that the cone Tui,Uεi,Mi
is the set of functions hi ∈ L∞(0, T ) such that, for any sequence of positive real numbers εn decreasing

to 0, there exists a sequence of functions hi,n ∈ L∞(0, T ) converging to hi as n → +∞, and ui + εnhi,n ∈ Uεi,Mi for every n ∈ N
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4.2 A series of intermediate results

Let us recall or state several auxiliary results.

Lemma 4.2. Let α and β denote two positive real numbers and set

A =

(
−α β
α −β

)
.

Then, for every t ≥ 0, one has

exp(tA) =
1

α+ β

(
β + αe−t(α+β) β(1− e−t(α+β))
α(1− e−t(α+β)) α+ βe−t(α+β)

)
.

In particular, all the coefficients of exp(tA) are positive whenever t ≥ 0.

Proof. This computation is straightforward, observing that

A = PDP−1 with P =

(
β −1
α 1

)
, P−1 =

1

α+ β

(
1 1
−α β

)
, D =

(
0 0
0 −(α+ β)

)
.

The result follows by using that etA = PetDP−1.

Lemma 4.3. Let T > 0 and let z denote the solution of the Cauchy system{
z′′ = Az +B in [0, T ],
z(0) = z′(0) = 0,

where A is positively continuous and B is a nonnegative measurable function. Then, z is nondecreasing and
nonnegative.

Proof. Let zε denote the solution to the Cauchy system{
z′′ε = Azε +B in [0, T ],
zε(0) = ε, z′ε(0) = 0.

We claim that zε is increasing (and therefore positive). Indeed, assume by contradiction the existence of
tε ∈ (0, T ) such that z′(tε) = 0. Without loss of generality, we assume that tε is the first positive solution t
of the equation z′ε(t) = 0. Then, zε is positive and increasing on [0, tε], and one has

0 = z′ε(tε) =

∫ tε

0

(Azε +B) > ε

∫ tε

0

A > 0,

whence a contradiction. We conclude the proof of this lemma by using the continuity property of zε with
respect to the parameter ε. From zε(·) > 0 on [0, T ], we infer that z0 = z(·) ≥ 0 on [0, T ]. Finally, since

z′(t) =

∫ tε

0

(Az +B) ≥ 0,

the expected conclusion follows.

Lemma 4.4. Let n ∈ N∗ and K denote a compact set of Rn. Let T > 0, ε0 > 0, t0 ∈ [0, T ], ȳ ∈ Rn and
let yε denote the maximal solution to{

y′ε(t) = f(t, yε(t) + ηε(t)) + Uε(t)yε(t),
yε(t0) = ȳ,

for ε ∈ [0, ε0], where f belongs to C1([0, T ],K), ηε belongs to C0([0, T ];Rn) and Uε belongs to C0([0, T ],
Mn(R)). Let us assume that yε is defined on [0, T ] and that there exists LT > 0 such that ∥Uε∥C0 ≤ LT ε.
There exists kT > 0 such that

∥yε − y0∥C0([0,T ]) ≤ kT (ε+ ∥ηε − η0∥C0([0,T ])).
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Proof. According to the assumptions, f is in particular Lipschitz with respect to its second variable. Let
us hence introduce KT > 0 such that

∀(t, y1, y2) ∈ [0, T ]×K2, ∥f(t, y1)− f(t, y2)∥ ≤ KT ∥y1 − y2∥.

Let us set δy = yε − y0, where y0 = yε=0. Thus, δy satisfies{
δy′(t) = f(t, yε(t) + ηε(t))− f(t, y0(t) + η0(t)) + Uε(t)yε(t),
δy(t0) = 0,

so that, by setting r(t) = ∥δy(t)∥R2 , r satisfies r(0) = 0 and

r′(t) =
⟨yε(t)− y0(t), y

′
ε(t)− y′0(t)⟩

r(t)

=
⟨yε(t)− y0(t), f(t, yε(t) + ηε(t))− f(t, y0(t) + η0(t))⟩

r(t)
+

⟨Uε(t)yε(t), yε(t)− y0(t)⟩
r(t)

≤ KT r(t) +KT ∥ηε(t)− η0(t)∥+ ∥Uε(t)∥Mn(R)∥yε(t)∥
≤ (KT + ∥Uε(t)∥Mn(R))r(t) + ∥Uε(t)∥Mn(R)∥y0∥C0([0,T ]) +KT ∥ηε(t)− η0(t)∥

by using the Cauchy-Schwarz and the triangle inequalities, where the notation ∥ · ∥Mn(R) stands for the
operator norm associated with the Euclidean one. Then, by applying a standard Gronwall lemma, and
since r(0) = 0, one has

r(t) ≤
LT ∥y0∥C0([0,T ])ε+KT ∥ηε − η0∥C0([0,T ])

KT + LT ε

(
e(KT+εLT )(t−t0) − 1

)
for all t ≥ t0 The desired result follows.

4.3 Saturation of the constraint

We investigate hereafter whether the integral constraint is activated.

Proposition 4.5. Let M > M̄ , T > T̄ and let us assume that ω > 0. Let (u1, u2) denote a solution of
Problem (Pε,M ). Then, one has

P1(T ) = ε.

Proof. Let us argue by contradiction, assuming that P1(T ) < ε. There exists ξ ∈ L∞(0, T ;R+) a measurable
set I ⊂ (0, T ) such that ξ > 0 a.e. on I and u1 + νξ is admissible whenever ν < 0 is small enough.

For i = 1, 2, let us denote temporarily by Pi[u] and Msi[u] the solutions to System (6) to underline the
dependency with respect to the control function u. According to this system, by linearity of Ms1 and Ms2

with respect to u, one has obviously

Msi[(u1 + νξ, u2)](t)−Msi[(u1, u2)](t) = νδMsi, i = 1, 2

for all t ∈ [0, T ], where δMsi(t) is the i-th coordinate (i = 1, 2) of∫ t

0

eDS(t−s)e−µS(t−s)ξ(s) ds.

According to Lemma 4.2 and since ξ > 0 a.e. on I, we get that for i = 1, 2, the right-hand side δMsi

does not vanish identically and is nonnegative on [0, T ]. In other words, there exists J ⊂ (0, T ) of positive
measure such that δMsi > 0 on J .

From now on, we will rather use the notation Pi[Ms1], i = 1, 2 to underline the dependency of Pi with
respect to Ms1. Let us now compute the differential of Pi[Ms1] with respect to Ms1. We will not prove
that the mapping Ms1 ∈ C0([0, T ]) 7→ Pi[u] ∈ H1(0, T ), i = 1, 2, is differentiable, since this follows from a
standard argument based on the implicit function theorem.

Let us introduce the notations

Ṗi = lim
ν↘0

Pi[Ms1 + νδMs1]− Pi[Ms1]

ν
, i = 1, 2.

17



An easy computation shows that the pair (Ṗ1, Ṗ2) solves the system
d

dt

(
Ṗ1

Ṗ2

)
=

( ∂f1
∂P1

− d21

)
Ṗ1 + d12Ṗ2 +

∂f1
∂Ms1

δMs1(
∂f2
∂P2

− d12

)
Ṗ2 + d21Ṗ1

 in [0, T ],

(Ṗ1(0), Ṗ2(0)) = (0, 0),

where the partial derivatives of f1 and f2 are respectively evaluated at the trajectory (P1,Ms1) and
(P2,Ms2). We do not write it explicitly in these computations for the sake of notational simplicity.

Let us introduce the auxiliary functions γ1 and γ2 defined on [0, T ] by

γ1(t) = d21t−
∫ t

0

∂f1
∂P1

and γ2(t) = d12t−
∫ t

0

∂f2
∂P2

.

The system above can be recast as
d

dt

(
eγ1 Ṗ1

eγ2 Ṗ2

)
=

(
eγ1

(
d12Ṗ2 +

∂f1
∂Ms1

δMs1

)
d21e

γ2 Ṗ1

)
in [0, T ],

(Ṗ1(0), Ṗ2(0)) = (0, 0).

(18)

Setting wi = eγi Ṗi for i = 1, 2, one gets
(

dw1

dt

eγ1−γ2 dw2

dt

)
=

(
eγ1

(
d12e

−γ2w2 +
∂f1

∂Ms1
δMs1

)
d21w1

)
in [0, T ],

(w1(0), w2(0)) = (0, 0),

and we infer that w2 solves the ODE
d

dt

(
eγ1−γ2

dw2

dt

)
= d21d12e

γ1−γ2w2 + d21e
γ1

∂f1
∂Ms1

δMs1 in [0, T ],

(w2(0),
dw2

dt (0)) = (0, 0).

Let us consider the standard change of variable for Sturm-Liouville type systems,

v =

∫ t

0

eγ2(s)−γ1(s) ds

and let us set z2(v) := w2(t) for all t ∈ [0, T ]. Direct computations yield that

z′′2 (v) = eγ1(t)−γ2(t)
d

dt

(
eγ1(t)−γ2(t)

dw2

dt
(t)

)
,

and therefore, z′′2 (v) = d21d12e
2(γ1(t)−γ2(t)))z2(v) + d21e

2γ1(t)−γ2(t)
∂f1
∂Ms1

(t)δMs1(t) in [0, U ],

(z2(0),
dz2
dv (0)) = (0, 0),

where t has now to be seen as a function of u and

V =

∫ T

0

eγ2(s)−γ1(s) ds.

According to Lemma 4.3 applied to z = −z2, since ∂f/∂Ms1(·) < 0, the function z2(·) is non-positive on
[0, T ]. By undoing all the change of variables above, it follows that Ṗ2(·) ≤ 0 on [0, T ] and Ṗ2(T ) < 0. Now,
according to (18), d

dt (e
γ1 Ṗ1) writes as the sum of two non-positive terms and does not vanish identically.

Since moreover Ṗ1(0) = 0, we infer that Ṗ1(T ) < 0.
Coming back to the beginning of this reasoning, one has

P1[u1 + νξ, u2](T )− P1[u1, u2](T ) = DMs1P1(T ) · δMs1 +DMs2P1(T ) · δMs2 + o(ν),

where DMsiP1(T ) stands for the differential of P1(T ) with respect to Msi, i = 1, 2. The quantity Ṗ1(T )
above coincides precisely with DMs1

P1(T ) · δMs1. We claim that, mimicking all the computations above,
one shows similarly that DMs2

P1(T ) · δMs2 < 0.
We have reached a contradiction. The desired result follows.
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4.4 Estimates on P1 and P2

In this section, we highlight that the populations P1 and P2 are bounded.

Proposition 4.6. Let (P 0
1 , P

0
2 ) ∈ (R∗

+)
2 and (u1, u2) ∈ Uε,M , then the functions Ms1, Ms2, P1, P2 are all

positive on [0, T ]. Moreover, one has the estimate

P1(t)
2 + P2(t)

2 ≤
(
eρm(d21,d12)t

√
(P 0

1 )
2 + (P 0

2 )
2 +

1

ρm(d21, d12)
∥b∥(eλm(d21,d12)t − 1)

)2

for every t ∈ [0, T ], where

ρm(d21, d12) =
1

2
(d21 + d12) +

1√
2

√
d221 + d212 > 0.

Proof. By exploiting (6), we get(
Ms1(t)
Ms2(t)

)
=

∫ t

0

e−µs(t−s)e(t−s)DS

(
u1(s)
u2(s)

)
ds.

Since u = (u1, u2) ∈ Uε,M , they are in particular non-negative. According to Lemma 4.2, all the coefficients
of e(t−s)DS are positive on (0, T ] and it follows that Ms1 and Ms2 are positive on (0, T ].

One has (P1(0), P2(0)) = (P 0
1 , P

0
2 ) ∈ (R∗

+)
2. To prove the positivity of P1 and P2, let us argue by

contradiction, assuming that either P1 or P2 vanishes on (0, T ]. Let t0 denote the first such time and
assume without loss of generality that P1(t0) = 0. In particular, one has necessarily dP1/dt(t0) ≤ 0. We
have already seen that P2(t) ≥ 0 on (0, t0) and we claim moreover that P2(t0) > 0. Indeed, in the converse
case, one would have (P1(t0), P2(t0)) = (0, 0) which would yield, according to the Cauchy-Lipschitz theorem,
that (P1, P2) would vanish identically on [0, T ]. Thus, one has(

f1(P1(t0),Ms1(t0))
f2(P2(t0),Ms2(t0))

)
+A

(
P1(t0)
P2(t0)

)
=

(
d12P2(t0)

f2(P2(t0),Ms2(t0))− d12P2(t0)

)
and therefore, dP1/dt(t0) > 0, whence a contradiction.

By mimicking this reasoning, one sees similarly that if t′0 ∈ (0, T ) denotes the first time such that
P2(t

′
0) = 0 (whenever it exists), then, one has necessarily P1(t

′
0) > 0 and dP2/dt(t

′
0) > 0. Since we have

moreover dP2/dt(t
′
0) ≤ 0, we obtain a contradiction. The first claim follows.

Regarding the last claim of this lemma, let us introduce the function L given by

L(t) =
1

2
(P1(t)

2 + P2(t)
2).

Then, one has
dL

dt
= P1f1(P1,Ms1) + P2f2(P2,Ms2) + ⟨

(
P1

P2

)
, D

(
P1

P2

)
⟩

for all t ∈ [0, T ].
Since Pi > 0 and Msi ≥ 0 on [0, T ] for i = 1, 2, we infer that P 2

i /(Pi + γMsi) ≤ Pi and therefore,

dL

dt
≤ b1P1 + b2P2 + ⟨

(
P1

P2

)
, D

(
P1

P2

)
⟩.

Furthermore, set Ds =
1
2 (D +D⊤) and Da = 1

2 (D −D⊤), so that D = Ds +Da. One has

⟨DX,X⟩ = ⟨DsX,X⟩ ≤ ρm(d12, d21)∥X∥2

for all X ∈ R2. Indeed, the eigenvalues of Ds are − 1
2 (d12+d21)± 1√

2

√
d212 + d221, whence the claim. Setting

b = [b1, b2]
⊤, it follows from the Cauchy-Schwarz inequality that

dL

dt
(t) ≤ 2ρm(d21, d12)L(t) +

√
2∥b∥

√
L(t),
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which rewrites
d

dt

(
L(t)e−2ρm(d21,d12)t

)
≤

√
2∥b∥e−ρm(d21,d12)t

√
e−2ρm(d21,d12)tL(t).

Integrating this inequality thus yields√
e−2ρm(d21,d12)tL(t)−

√
L(0) ≤ 1√

2ρm(d21, d12)
∥b∥(1− e−ρm(d21,d12)t)

and therefore √
L(t) ≤ eρm(d21,d12)t

√
L(0) +

1√
2ρm(d21, d12)

∥b∥(eρm(d21,d12)t − 1)

whence the claim.

4.5 Conclusion

Let us now assume that D and DS are nonzero matrices. We respectively replace D and DS by νD and
νDS . In that case, we respectively denote by (P ν

1 , P
ν
2 ,M

ν
s1,M

ν
s2) and (qνi )i∈J1,4K the corresponding solutions

to the state system (6) and its adjoint (13). In what follows, we will also denote by uν = (uν
1 , u

ν
2) a solution

to Problem (Pε,M ).
For the sake of clarity, we split this proof into several steps.

Step 1. A Γ-convergence property. Let us temporarily denote by Jν the quantity given by

Jν =
∫ T

0
(uν

1 + uν
2) dt and by Uν

ε,M , the set

Uν
ε,M = {u = (u1, u2) ∈ L∞(0, T ;R2) | 0 ≤ ui ≤ Mi a.e. in (0, T ), i = 1, 2 and P ν

1 (T ) ≤ ε}.

We investigate the behaviour of a family of minimizers uν as ν ↘ 0.

Lemma 4.7. Let (uν)ν>0 denotes a family of minimizers over Uε,M (i.e. for Problem (Pε,M )), (uν)ν>0

converges, up to a subsequence, weakly-∗ in L∞(0, T ;R2) to a minimizer of J0 over Uε,M and

lim
ν↘0

Jν = lim
ν↘0

min
u∈Uν

ε,M

J(u) = min
u∈U0

ε,M

J(u) = J0.

Proof. Recall that, according to Proposition 4.5, one has P ν
1 (T ) = ε. For simplicity, let us write uν =

(uν
1 , u

ν
2). Let us start from the inequality

J(uν) ≤ J(v) (19)

for all v = (v1, v2) in L∞(0, T ; [0,M1]× [0,M2]) such that P ν
1 [v](T ) ≤ ε, where we write P ν

1 (T )[v] instead of
P ν
1 (T ) to underline the dependency in v. Observe first that, by compactness of L∞(0, T ; [0,M1]× [0,M2])

for the weak-∗ topology, the sequence (uν
1 , u

ν
2) converges up to a subsequence for this topology towards some

element ũ0. We aim at letting ν tend to 0 in (19). Since J is obviously continuous for this topology, the
only point to check is the continuity of the mapping ν 7→ P ν

1 [u
ν ](T ).

Note first that, identifying uν(s) with a column vector, one has(
Mν

s1(t)
Mν

s2(t)

)
=

∫ t

0

e−µs(t−s)e(t−s)νDSuν(s) ds −−−→
ν↘0

∫ t

0

e−µs(t−s)ũ0(s) ds =

(
M̃0

s1(t)

M̃0
s2(t)

)
,

by weak convergence, where M0
s is associated to the control ũ0. We infer that Mν

s converge pointwise
(and even continuously) towards M̃0

s in [0, T ]. Recall moreover that, according to Proposition 4.6, (P ν
1 , P

ν
2 )

is bounded in C0([0, T ]). Since (P ν
1 , P

ν
2 ) solves the ODE system (6), we infer that (dP ν

1 /dt, dP
ν
2 /dt) is

also bounded in C0([0, T ]). According to the Ascoli theorem, it follows that (P ν
1 , P

ν
2 ) converges up to

a subsequence towards some limit in C0([0, T ]). Note that this limit is necessarily the solution (P̃ 0
1 , P̃

0
2 )

associated to ũ0. This can be easily seen by rewriting the ODE system as the fixed-point system(
P ν
1 (t)

P ν
2 (t)

)
=

(
P 0
1

P 0
2

)
+

∫ T

0

[(
f1(P

ν
1 ,M

ν
s1)

f2(P
ν
2 ,M

ν
s2)

)
+D

(
P ν
1

P ν
2

)]
,
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passing to the limit, and concluding by the uniqueness of solutions of the resulting Cauchy-Lipschitz system.
We thus infer that

ε = lim
ν↘0

P ν
1 (T ) = P̃ 0

1 (T ).

It remains to prove that ũ0 solves Problem (Pε,M ) for ν = 0. Let u0 denote a solution of Problem (Pε,M )
without migration (ν = 0). We define vν = u0+hν with hν = (

√
ν(M−u1

0), 0). By construction, vν belongs
to L∞(0, T ; [0,M ]2) whenever ν is small enough. Introduce the mapping G : (ν, u) 7→ P ν

1 [u](T ). It is
well-known that, for a fixed u, the mapping ν 7→ G(ν, u) is differentiable due to the continuous dependence
of the solution of an ODE system on its parameters. Using Lemma 4.1, we get that

P ν
1 [vν ](T ) = P 0

1 [u0](T ) +DuG(0, u0)hν + ν
∂G(0, u0)

∂ν

∣∣∣∣u=u0
ν=0

+ o(ν, ∥hν∥L∞)

= P 0
1 [u0](T )−

√
ν

∫ T

0

(M − u0)q
0
3 + o(

√
ν).

Since there exists C > 0 such that q03(·) > C > 0, then, for ν small enough, P ν
1 [vν ](T ) ⩽ ε. It allows us to

take v = vν in (19) and letting ν tend to +∞, we obtain

J(ũ0) ⩽ J(u0).

Thus ũ0 is a minimiser and the conclusion follows.

Step 2. Estimating the adjoint states for small migration rates. Let us provide several
estimates of the solutions to (6) associated to a minimizer uν = (uν

1 , u
ν
2). As previously, we will use either

the superscript ν or the subscript ν to underline the dependency on ν Observe first that the state system
(6) in that case can be recast under the form

Y ′
ν = F (Yν) + νMYν + Uν ,

where

Yν =


P ν
1

P ν
2

Mν
s1

Mν
s2

 , F


y1
y2
y3
y4

 =


f1(y1, y3)
f2(y2, y4)
−µSy3
−µSy4

 , M =

(
[c|c]D 0

0 DS

)
, Uν =


0
0
uν
1

uν
2

 .

We aim at applying Lemma 4.4. Nevertheless, as such, it cannot be directly used because of the source
term Uν . To overcome this difficulty, let us introduce Zν given by

Zν(t) =

∫ t

0

Uν(s) ds

and recast the system above as

W ′
ν = F (Wν + Zν) + νM(Wν + Zν),

where we have set Wν = Yν − Zν . Under this form, one can now apply Lemma 4.4, showing the existence
of C1

T > 0 such that

∥Wν −W0∥C0([0,T ]) ≤ C1
T

(
ν + sup

t∈[0,T ]

∥∥∥∥∫ t

0

(uν(s)− u0(s)) ds

∥∥∥∥
)

and therefore there exists C2
T > 0 such that

∥Yν − Y0∥C0([0,T ]) ≤ C2
T

(
ν + sup

t∈[0,T ]

∥∥∥∥∫ t

0

(uν(s)− u0(s)) ds

∥∥∥∥
)
. (20)

Let us now provide estimates of the adjoint state Qν . The adjoint state equations (17) can be recast as

−Q′
ν(t) = Ĥ(t)Qν(t) +Hν(t)Qν(t),
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where

Qν =


qν1
qν2
qν3
qν4

 , Ĥ =


∂f1
∂P1

(P 0
1 ,M

0
s1) 0 0 0

0 ∂f2
∂P2

(P 0
2 ,M

0
s2) 0 0

∂f1
∂Ms1

(P 0
1 ,M

0
s1) 0 −µs 0

0 ∂f2
∂Ms2

(P 0
2 ,M

0
s2) 0 −µs


and

Hν = ν

(
[c|c]D⊤ 0

0 D⊤
S

)
+


∂f1
∂P1

(P ν
1 ,M

ν
s1)−

∂f1
∂P1

(P 0
1 ,M

0
s1) 0 0 0

0 ∂f2
∂P2

(P ν
2 ,M

ν
s2)−

∂f2
∂P2

(P 0
2 ,M

0
s2) 0 0

∂f1
∂Ms1

(P ν
1 ,M

ν
s1)−

∂f1
∂Ms1

(P 0
1 ,M

0
s1) 0 0 0

0 ∂f2
∂Ms2

(P ν
2 ,M

ν
s2)−

∂f2
∂Ms2

(P 0
2 ,M

0
s2) 0 0

 .

Using (20), it is easy to see that

∥Hν∥C0([0,T ];M4(R)) = O

(
ν + sup

t∈[0,T ]

∥∥∥∥ ∫ t

0

(uν(s)− u0(s)) ds

∥∥∥∥
)

= o(1) as ν ↘ 0,

the last equality resulting from Lemma 4.7, and it follows hence directly from Lemma 4.4 and from (20)
that there exists C3

T > 0 such that

∥Qν −Q0∥C0([0,T ]) ≤ C3
T

(
ν + sup

t∈[0,T ]

∥∥∥∥∫ t

0

(uν(s)− u0(s)) ds

∥∥∥∥
)
. (21)

Step 3: Conclusion. Let us choose M̄ > 0 such that∫ T

0

(u0
1 + u0

2) =

∫ T

0

u0
1 ≤ TM̄

2

and let us assume ν small enough so that ∫ T

0

(uν
1 + uν

2) ≤
3TM̄

4
. (22)

which is possible according to the Γ-convergence property stated in Lemma 4.7.
For the sake of notational simplicity, let us denote by Rν the remainder term

Rν := ν + sup
t∈[0,T ]

∥∥∥∥∫ t

0

(uν(s)− u0(s)) ds

∥∥∥∥
and observe that (Rν)ν>0 tends to 0 as ν ↘ 0 by virtue of Lemma 4.7.

According to (21), we infer the existence of C4
T > 0 such that

qν3 (t) ≥ −C4
TRν + q03(t) and qν4 (t) ≤ C4

TRν (23)

for all t ∈ [0, T ].
By applying Proposition 4.6 in the special case where A = 0 and using

q01(t) = − exp

(∫ t

0

∂f1
∂P1

(P1(s),Ms1(s))

)
ds,

we get the existence of C5
T > 0 such that q01(·) ≤ −C5

T on [0, T ], and using that

q03(t) = −
∫ T

t

eµs(t−s) ∂f1
∂Ms1

(P1,Ms1) exp

(
−
∫ s

0

∂f1
∂P1

(P1(ξ),Ms1(ξ)) dξ

)
ds,
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we infer the existence of C6
T > 0 such that

q03(t) ≥ C6
T

∫ T

t

eµs(t−s) ds =
C6

T

µs
(1− eµs(t−T )),

so that

qν3 (t) ≥ −C4
TRν +

C6
T

µs
(1− eµs(t−T ))

for all t ∈ [0, T ].
Let λν ≥ 0 denote the Lagrange multiplier introduced in the optimality system (17). Now, we have to

distinguish between two cases: if λν > C4
TRν , then qν4 (·) < λν a.e. in [0, T ] according to (23), and uν

2(·) = 0.
In the converse case, namely λν ≤ C4

TRν , an elementary computation shows that

t < Tν ⇒ qν3 (t) ≥ −C4
TRν +

C6
T

µs
(1− eµs(t−T )) > C4

TRν ≥ λν ,

where

Tν := T +
1

µs
ln

(
1− 2µsC

4
TRν

C6
T

)
= T +O(ν).

It follows that one can assume without loss of generality that ν has been chosen small enough so that

Tν ≥ 9

10
T.

According to (17), one has uν
1 = M1 on [0, Tν ], and therefore∫ T

0

uν
1 ≥ TνM1 ≥ 9TM1

10
≥ 9TM̄

10
.

Combining this estimate with (22), we obtain

9TM̄

10
≤
∫ T

0

uν
1 ≤

∫ T

0

(uν
1 + uν

2) ≤
3TM̄

4
,

a contradiction. It follows that the case where λν ≤ C4
TRν cannot arise whenever ν is small enough and

one necessarily has uν
2(·) = 0 in [0, T ].

5 Characterisation of the optimal control (proof of Theorem 2.9)

First, let us consider the scenario with no migration, i.e., D = DS = 0M2(R). In this case, System (6)
becomes uncoupled. For this reason, it is straightforward that any pair (u1, u2) solving problem (Pε,M )
has to satisfy u2(·) = 0. It follows that the optimal control problem (Pε,M ) can be reformulated as

inf
u1∈U0

ε,M1

J0
1 (u1), (24)

where ε > 0, M1 > 0 are given,

J0
1 (u1) =

∫ T

0

u1

and
U0
ε,M1

= {u1 ∈ L∞(0, T ;R) | 0 ≤ u1 ≤ M1 a.e. in (0, T ) and P1(T ) ≤ ε},

and P1 is solution to the time evolution
d

dt
P1 = f1(P1,Ms,1) in [0, T ],

d

dt
Ms1 = −µsMs,1 + u1 in [0, T ],

P1(0) = P ∗
1 ∈ R∗

+

(25)
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with

f1(P1,Ms,1) =

(
b1

P1

P1 + γMs,1
− µ1,1 − µ2,1P1

)
P1,

where b1 > 0, µ1,1 > 0 and µ2,1 > 0 are given.

Proposition 5.1 (Caracterisation of the control without migration). Assume that D = DS = 0 and
µs ≥ µ1. There exists T̄ > 0 and M̄ such that for each T > T̄ and M1 > M̄ , there exists t0, t1 ∈ [0, T )
such that

• u1 = 0 on [0, t0] ∪ [t1, T ],

• u1 ∈ (0,M1) on (t0, t1) with

u1(t) =

(
∂2f1
∂M2

s,1

)−1(
∂f1

∂Ms,1

∂f1
∂P1

+ µ1,sMs,1
∂2f1
∂M2

s,1

− f1
∂2f1

∂Ms,1∂P1

)∣∣∣∣∣∣
(P1(t),Ms,1(t))

. (26)

Moreover, if Ū is large enough, then u1 = 0 on (0, t0).

Before presenting the proof of this proposition, we will establish a series of useful lemmas. The dual
system (13) can be reduced to 

−q′1 =
∂f1
∂P1

q1 in [0, T ],

−q′3 =
∂f1

∂Ms,1
q1 − µsq3 in [0, T ],

q1(T ) = 1, q3(T ) = 0

(27)

and the first optimality conditions become

q3 − λ ≤ 0 on {u1 = 0},
q3 − λ = 0 on {0 < u1 < M1},
q3 − λ ≥ 0 on {u1 = M1},
λ ≥ 0.

Indeed, in (13), if q2(T ) = q4(T ) = 0, we have q2 = q4 = 0.

Lemma 5.2. Assume that D = DS = 0. There exists T̄ > 0 and M̄ such that for each T > T̄ and M1 > M̄
such that the solution to (24) satisfies P1(T ) = ε.

For the proof, we will make a minor adjustment to the proof of Proposition 4.5.

Lemma 5.3. Assume D = DS = 0. There exist constants T̄ > 0 and M̄ such that for every T > T̄ and
M1 > M̄ , if u = u∗

1 is a solution to the optimal control problem (24), and (P1,Ms,1) is the corresponding
solution to (25), then P ′

1 ≤ 0 on the interval (0, T ).

We refer to [2, Lemma 4.10] for a proof.

Lemma 5.4. Assume that D = DS = 0. There exists T̄ > 0 and M̄ such that for each T > T̄ and M1 > M̄ ,
there exist three positive constant C0, C1 and C2, that only depend on T̄ and M̄ , such that

|M1,s| < C0 and 0 < C1 < q1, q3, P1 < C2 on [0, T ].

We refer to [2, Lemma 4.13] for a proof. The following lemma is derived through straightforward
computations, the details of which are omitted for brevity.

Lemma 5.5. We have

∂f1
∂Ms,1

=
−b1γP

2
1

(P1 + γMs,1)2
< 0 and

∂2fi
∂M2

s,1

=
b1γ

2P 2
1

(P1 + γMs,1)3
> 0.

Building on these intermediate results, we are now ready to prove the Proposition 5.1.
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Proof of Proposition 5.1. For a complete proof, we refer to Theorem 3.3 in [2], as the behavior of the
function f1 with respect to Ms,1 is analogous to our case. Indeed, as shown by Lemma 5.5.

∂f1
∂Ms,1

< 0 and
∂2f1
∂M2

s,1

> 0.

The main difference lies in the expression of the function f1, which leads to variations in the final computa-
tion. Additionally, in the present proof, we require explicit bounds that remain independent of ε, especially
to handle the case with small migration. Note that

−q′′3 = G(P1,Ms,1, u1)q1 − µsq
′
3,

where

G(P1,Ms,1, u1) =
∂2f1
∂M2

s,1

(u1 − µsM1,s) +
∂2f1

∂Ms,1∂P1
f1 −

∂f1
∂Ms,1

∂f1
∂P1

.

Let I be an open interval of (the open set) {q3 > λ}. The main idea, inspired by [2, Proof of Theorem
3.3], is as follows: if q′′3 maintains a constant sign on I, then I can be extended to an interval (0, t0) or
(t1, T ). In other words, the set where q3 > λ consists of either a single interval that reaches one boundary
of [0, T ], or the union of two intervals, each touching an opposite extreme point of [0, T ].

Consider t∗ ∈ I a time at which q3 admits a local extremum. Then, at t∗, it holds

−q′′3 (t
∗) = G(P1(t

∗),Ms,1(t
∗),M1)q1(t

∗).

According to Lemma 5.2, 5.3 and 5.4, one has P ′ ≤ 0, P1(T ) = ε and Ms,1 is uniformly bounded with
respect to T and M1 by a constant C0. Hence, we have

∂2f1
∂M2

s,1

≥
b1γ

2(P 1
1,0)

2

(ε+ γC0)3
> C > 0. (28)

Using the fact that Ms,1 and P1 are uniformly bounded with respect to T and M1, we deduce that q′′3 does
not vanish which is in contradiction with the fact that q3 admits a local extremum at t∗. Thus, {q3 > λ}
can only be (0, t0) or (t1, T ) or (0, t0) ∪ (t1, T ).

Let now I be an open interval of {q3 < λ}. Consider t∗ ∈ I a time at which q3 admits a local extremum.
Then, at t∗, it holds

−q′′3 (t
∗) = G(P1(t

∗),Ms,1(t
∗), 0)q1(t

∗)

with

G(P1,Ms,1, 0) =
∂2f1
∂M2

s,1

(−µsMs,1) +
∂2f1

∂Ms,1∂P1
f1 −

∂f1
∂Ms,1

∂f1
∂P1

.

Note that
∂2f1

∂Ms,1∂P1
=

−2b1γP1(P1 + γMs,1) + 2b1γP
2
1

(P1 + γMs,1)3
=

−2b1γ
2P1Ms,1

(P1 + γMs,1)3

and
∂f1
∂P1

=
f1
P1

+

(
b1

γMs,1

(P1 + γMs,1)2
− µ2,1

)
P1.

By combining this observation with Lemma 5.5, we can deduce that

G(P1,Ms,1, 0) =
b1γ

2P 2
1

(P + γMs,1)3
(−µsMs,1) +

−2b1γ
2PMs,1

(P1 + γMs,1)3
f1

+
b1γP

2
1

(P1 + γMs,1)2

(
f1
P1

+

(
b1

γMs,1

(P1 + γMs,1)2
− µ2,1

)
P1

)
.

or equivalently,

G(P1,Ms,1, 0) =
b1γ

2P 2
1

(P + γMs,1)3

(
−µsMs,1 −

2Ms,1

P1
f1 +

f1
P1γ

(P1 + γMs,1)

+

(
b1

γMs,1

(P1 + γMs,1)2
− µ2,1

)
P1(P1 + γMs,1)

γ

)
.
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Using Lemma 5.3, we infer

f1 =

(
b1

P1

P1 + γMs,1
− µ1,1 − µ2,1P1

)
P1 < 0.

it follows that

G(P1,Ms,1, 0) <
b1γ

2P 2
1

(P + γMs,1)3
(−µsMs,1 −

f1
P1γ

γMs,1 + b1
P1Ms,1

(P1 + γMs,1)
− µ2,1

P1(P1 + γMs,1)

γ
).

Using the expression of f1,

G(P1,Ms,1, 0) <
b1γ

2P 2
1

(P + γMs,1)3
(−µsMs,1 −

(
b1

P1

P1 + γMs,1
− µ1,1 − µ2,1P1

)
Ms,1

+ b1
P1Ms,1

(P1 + γMs,1)
− µ2,1

P1(P1 + γMs,1)

γ
).

Therefore, one has

G(P1,Ms,1, 0) <
b1γ

2P 2
1

(P + γMs,1)3
(−µsMs,1 + µ1,1Ms,1 − µ2,1

P 2
1

γ
).

If µs > µ1, then by applying Lemma 5.4,

G(P1,Ms,1, 0) < − µ2,1b1γP
4
1

(P1 + γMs,1)3
< − µ2,1b1γε

4

(P ∗
1 + γC0)3

. (29)

The conclusion of the proof follows a similar approach to that of [2, Theorem 3.3]. We outline the key steps
below. Since q1 > 0, it follows that q′′3 cannot vanish, which contradicts the assumption that q3 has a local
extremum at t∗. Therefore, the set {q3 < λ} must coincide with either (0, t0), (t1, T ), or (0, t0) ∪ (t1, T ).
Consequently, q3 must equal λ on (t0, t1), and thus (26) holds on this interval.

We remark that q3 < 0 on an interval (t∗, T ), since λ ⩾ 0, it follows that u1 = 0 on (t∗, T ), then also on
(t1, T ). Now, assume that for all T > 0, we have u1 = M1 on (0, t0). By using (29), there exists a constant

C > 0 independent of T such that u1 > C on (0, t1). Given that
∫ T

0
u1 is uniformly bounded with respect

to T , the same must hold for t1. However, this contradicts the fact that T − t1 is uniformly bounded as T
increases. Therefore, there exists a sufficiently large T ∗ such that u1 = 0 on (0, t0). Consequently, u1 = 0
on (0, t0) for all T ≥ T ∗.

Proof of Theorem 2.9. Let d21, d12 ≥ 0. Consider P = (P1, P2), Ms = (Ms,1,Ms,2), and q = (q1, q2) as
the solution to (Pε,M ), (6), and (13). Let P 0 = (P 0

1 , P
0
2 ), M

0
s = (M0

s,1,M
0
s,2), and q0 = (q0i )i be the

corresponding solution to (24), (25), (27). Let I be an open interval of the open set {q3 > λ}. Consider
t∗ ∈ I a time at which q3 admits a local extremum. Then, at t∗, it holds

−q′′3 (t
∗) = G(P1,Ms,1,M1)q1 − ωd21q

′
3 + ωd12q

′
4|t=t∗

= G(P 0
1 ,M

0
s,1,M1)q

0
1 +O(∥(P,Ms, q)− (P 0,M0

s , q
0)∥)

∣∣
t=t∗

.

Thanks to (28) and Lemma 5.4, we deduce that q′′3 does not vanish, allowing us to conclude as previously.
Similarly, let I be an open interval of the open set {q3 < λ}. Consider t∗ ∈ I a time at which q3 admits a
local extremum. Then, at t∗, it holds

−q′′3 (t
∗) = G(P 0

1 ,M
0
s,1, 0)q

0
1 +O(∥(P,Ms, q)− (P 0,M0

s , q
0)∥)

∣∣
t=t∗

.

Using the fact that q01 is bounded below by a positive constant and that (P,Ms, q) converges uniformly to
(P 0,M0

s , q
0) as d21 = d12 approaches zero, we can deduce that q′′3 does not vanish. Consequently, we can

draw the same conclusion as before.
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bi µ1,i µ2,i ω µs γ Ni ucrits,i

Patch 1
8.15 0.035

0.0015
1.0 0.231 1.0 232.85

1095.79
Patch 2 0.0014 1174.06

Table 1: Parameters values for the 2-patches system

6 Numerical illustrations and simulations

Based on [22], we use the numerical values provided in Table 1, which are appropriate for populations such
as fruit flies (e.g., B. dorsalis) or potentially mosquitoes in a favorable tropical environment.

Assuming that 50% of the sterile insects die within 3 days, we obtain µS = log 2
3 ≈ 0.231 [22]. By

selecting appropriate death rates µ1,i and µ2,i, we ensure that without control, the wild population would
reach 5410 individuals in the first patch and 5797 in the second patch. These values will serve as the initial
conditions for the upcoming simulations. For a pest like B. dorsalis, the basic offspring number N , as
provided in Table 1, is notably high, ranging between 100 and 500, depending on the fruit host. Using (11),
we estimate the critical release rates ucrit

s,i for both patches, assuming no migration. Specifically, the total

critical release rate is ucrit
s,1 + ucrit

s,2 = 2271 individuals per unit of time.
We will first present and discuss simulations with constant controls and varying values for the disper-

sal/migration parameters d12, d21, and ω to illustrate the theoretical results.

6.1 Minimal release rates estimate to reach elimination

We use the results of section 3 and solve the linear optimization problem using Matlab [39].

6.1.1 Case d12 = d21 = 0.01

Solving the linear optimization problem (12) with the parameters provided in Table 1 yields a critical
release rate of ucrit = (1093, 1178), resulting in a total release rate of 2271 individuals per unit of time. As
anticipated, with the populations in Patch 1 and Patch 2 being nearly equal, the control efforts required
for each patch are almost identical. This release rate represents the minimum required for each patch to
achieve control. In practice, increasing these values can enhance control effectiveness and accelerate the
reduction of the wild population. The key is to determine the minimal daily release rate of sterile males
and the optimal distribution between patches to ensure effective control.

Assuming ω = 0.5, indicating low dispersal of sterile insects, we find ucrit = (1095, 1176) for a total
release rate of 2271 individuals. This result is nearly identical to that obtained with ω = 1. Since both
patches are very similar in terms of carrying capacity and diffusion rates, the dispersal rate of sterile insects
has a minimal impact. However, it will take longer to achieve elimination compared to the scenario where
ω = 1.

When we set u2 = 0, meaning that releases are only made in Patch 1, solving (12) yields ucrit =
(29, 486, 0). It is evident that if releases in Patch 2 are not permitted for any reason, the control effort
required is significantly higher compared to a scenario where both patches are treated. Clearly, to achieve
elimination in both patches, the most effective strategy is to release sterile insects in both patches.

In the worst-case scenario where u2 = 0 and ω = 0.5, we find ucrit = (56, 624, 0). This result is consistent
with expectations: when dispersal is low, the number of sterile insects migrating from Patch 1 to Patch 2 is
minimal, necessitating a substantially higher release rate in Patch 1 to achieve elimination in both patches.
Naturally, increasing the release rates will expedite the decline of the wild population in each patch to 0.

6.1.2 Case d12 = 0.05 and d21 = 0.01

Solving system (12) with the parameters provided in Table 1 yields ucrit = (889, 1381), resulting in a total
release rate of 2271 individuals per unit of time. As anticipated, the release rate is higher in Patch 2
compared to Patch 1. This is because the diffusion rate from Patch 2 to Patch 1 is greater than that from
Patch 1 to Patch 2, meaning that sterile insects released in Patch 2 move more quickly to Patch 1. It is
feasible to increase the total release rate beyond 2271 individuals per unit of time, provided that u1 and u2
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satisfy the constraint given in (11). A higher release rate will accelerate the decline of the wild population
in both patches towards elimination. However, the practical feasibility of this approach depends on the
daily production capacity of sterile insects.

Assuming ω = 0.5, indicating low dispersal of sterile insects, we find ucrit = (993, 1278) with the same
total release rate. This result is logical: to compensate for the reduced mobility of sterile insects, a higher
release rate is required in Patch 1, resulting in a lower release rate for Patch 2.

When u2 = 0, meaning we only release sterile insects in Patch 1, solving (12) yields ucrit = (34,184, 0).
This represents a significantly higher release rate compared to scenarios where both patches are treated.
It is evident that excluding Patch 2 from treatment necessitates a much larger control effort to achieve
elimination in both patches.

In the worst-case scenario, where u2 = 0 and ω = 0.5, we find ucrit = (61,322, 0). It is important to note
that extensive releases are typically needed only for a finite period, T . According to the phase diagram
in Fig. 3(a), once the population falls within the basin of attraction of 0, meaning the population size
is sufficiently reduced, it becomes feasible to switch to smaller release rates—though they should not be
too small—similar to the approach suggested in [3]. This strategy is practical and aligns with real-world
applications.

6.1.3 Case d21 = 0.01 and d12 = 0.0002 or d12 = 0

In scenarios where the diffusion rate from Patch 2 to Patch 1 is very low or negligible, we observe the
following results:

• When d12 = 0.0001, solving (12) yields ucrit = (1144, 1127) for a total release rate of 2271 individuals
per unit of time. If u2 = 0, then ucrit

1 = 28,314.

• When d12 = 0, the results are consistent: ucrit = (1144, 1127) for both patches, and ucrit
1 = 28,312

when releases are restricted to Patch 1.

• If both diffusion rates are very low, such as d21 = d12 = 0.0002, we find ucrit = (1096, 1175). In the
worst-case scenario where u2 = 0, the required release rate in Patch 1 is exceedingly high, ucrit

1 =
1,359,214.

These results highlight that extremely low diffusion rates limit the movement of sterile insects into Patch
2, necessitating very large release rates to achieve elimination in both patches. For population reduction
strategies, various results and approaches are feasible, depending on the specific parameters and goals.

Remark 6.1. The previous simulations underscore the necessity of releasing sterile insects in both patches to
achieve elimination. Specifically, a positive release rate in each patch is required, with a minimal total release
rate of 2271 individuals per unit of time. In the two-patch scenario, the dispersal rates primarily influence
how the release is distributed between the patches. Thus, while dispersal rates affect the distribution strategy,
they do not change the total release rate required for elimination. Naturally, increasing the production rate
will lead to faster population reduction.

We now turn to a numerical investigation of similar scenarios, aiming to determine an optimal release
strategy that reduces the population in Patch 1 by 99% within a specified finite time T .

6.2 Solving the optimal control problem

Based on the parameter values provided in Table 1 and Theorem 3.5, we will explore various scenarios
with different migration rates d12 and d21, specifically considering values such as 0.0, 0.0002, and 0.01. As
established, when M∗

s,1 and M∗
s,2 exceed their critical thresholds, for any ε > 0, there exists a time T such

that Problem (Pε,M ) has a solution.
We set T = 50, M∗

1,s = M∗
2,s = 20,000, and ε = 0.01×P ∗

1 . In Figures 4, 5, 6, and 7, we analyze scenarios
with migration rates d12 and d21 taking various values such as 0.0, 0.0002, 0.002, 0.005, and 0.01.

6.2.1 Case d21 = d12 = 0 and d21 = d12 = 0.0002

We observe the theoretical result from Theorem 2.7: ε is reached within the finite time T . Given that the
migration rates are sufficiently small, it is unnecessary to intervene in the second patch, as demonstrated
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in Figures 4 and 5. Notably, the release rate profiles in Figures 42 and 52 exhibit remarkable similarity: a
very large initial release is followed by progressively smaller releases until a certain time t1, at which point
the releases cease, consistent with the expectations in Proposition 5.1.

The codes are available here :

https://github.com/michelduprez/Sterile-Insect-Technique-in-a-Two-Patch-Model

Figure 4: Numerical solution of the optimal control problem (Pε,M ) with the parameter values given in Table
1, T = 50, M∗

1,s = M∗
2,s = 20000, ε = 0.01× P ∗

1 and d12 = d21 = 0.

Figure 5: Numerical solution of the optimal control problem (Pε,M ) with the parameter values given in Table
1, T = 50, M∗

1,s = M∗
2,s = 20000, ε = 0.01× P ∗

1 , d12 = d21 = 0.0002.

6.2.2 Case d12 = 0.0002 and d21 = 0.01

In Figure 6, we show that the same outcome is achieved when the diffusion from Patch 2 to Patch 1
is sufficiently small only. This finding is intuitive, as the primary objective is to reduce the wild insect
population in Patch 1. Indeed, having a large diffusion from patch 1 to patch 2 is even more advantageous
while it is crucial to reduce the diffusion from patch 2 to patch 1. However, in practice, reducing the
migration in both way, rather than in one way, is done using massive trapping, in a buffer zone between
both patches. Thus, reducing d12 + d21 makes sense, from the practical point of view.
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Figure 6: Numerical solution of the optimal control problem (Pε,M ) with the parameter values given in Table
1, T = 50, M∗

1,s = M∗
2,s = 20000, ε = 0.01× P ∗

1 , d12 = 0.0002 and d21 = 0.01

6.2.3 Case d12 = d21 = 0.005

Finally, in Figure 7, we illustrate that when diffusion rates are high, the optimal solution requires releases in
both patches to achieve a 99% population reduction in Patch 1 by time T = 50. This result is crucial from
a practical standpoint. It indicates that if it is not feasible to lower the diffusion rates between Patch 1 and
Patch 2 through mass trapping or other control measures in the buffer zone, then releases in Patch 2 become
necessary. Consequently, a sterile insect production facility must be capable of generating a substantially
larger quantity of sterile insects—well beyond the amount needed solely for Patch 1. The choice of strategy,
therefore, can significantly influence the success of field trials and, naturally, the associated costs.

Figure 7: Numerical solution of the optimal control problem (Pε,M ) with the parameter values given in Table
1, T = 50, M∗

1,s = M∗
2,s = 20000, ε = 0.01× P ∗

1 , d12 = d21 = 0.005.

6.2.4 Case d12 = d21 = 0.01

It is also insightful to examine the optimal control solution when d12 = d21 = 0.01: see Figure 8. In
this scenario, the optimal strategy involves releases in both patches. As expected, the control starts with
massive releases, followed by small or no releases. However when µS increases, i.e. µS = 0.1, the numerical
optimal solution can be false: see Fig. 9. Indeed, from a practical standpoint, this approach is neither
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feasible nor desirable, as it begins with minimal releases at t = 0 and concludes with a surge of massive
releases. This ”suboptimal” result from a biological perspective can be corrected by reducing, for instance,
the final time T to 30 days, as shown in Figure 10. In this adjusted strategy, the releases begin with a very
large number, as expected, and then gradually decrease. Since the releases are conducted in both patches,
the wild populations in both areas will decline accordingly.

These examples highlight that optimal release strategies must be evaluated through a biological lens.
In other words, while the optimal solution may be mathematically sound, it does not always align with
the best practices from a biological standpoint. Last but not least, our simulations underscore the critical
importance of isolation between patches. If Patch 1 is not sufficiently isolated from Patch 2, then releasing
sterile insects in both patches becomes necessary, even if the goal is to reduce the population in Patch 1
only. From an experimental perspective, it is therefore essential to accurately estimate all diffusion rates
and their variations throughout the release process, enabling adjustments to the release strategy as needed.

Figure 8: Numerical solution of the optimal control problem (Pε,M ) with the parameter values given in Table
1, T = 50, M∗

1,s = M∗
2,s = 20000, ε = 0.01× P ∗

1 , d12 = d21 = 0.01.

Figure 9: Numerical solution of the optimal control problem (Pε,M ) with the parameter values given in Table
1, T = 50, M∗

1,s = M∗
2,s = 20000, ε = 0.01× P ∗

1 , d12 = d21 = 0.01, and µS = 0.1
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Figure 10: Numerical solution of the optimal control problem (Pε,M ) with the parameter values given in
Table 1, T = 30, M∗

1,s = M∗
2,s = 20000, ε = 0.01× P ∗

1 , d12 = d21 = 0.01, and µS = 0.1

7 Conclusion

In this work, we have demonstrated two key results. First, by ensuring that the release rates, ui, satisfy
a specific vector inequality, U ≥ µS

γ A−1M crit
S , we guarantee the possibility of pest or vector elimination

across all patches. Second, using optimal control techniques, we have shown in the two-patch scenario that
an optimal control strategy exists to reduce the wild population below a specified threshold in Patch 1,
by releasing sterile insects only in Patch 1, provided that the migration rates are sufficiently small. This
scenario is frequently encountered in practice in SIT programs. Additionally, numerical simulations confirms
that this result also holds as long as the migration rate from Patch 2 to Patch 1 remains sufficiently low.

Some perspectives for future work include:

• Impact of Time Control. We have fixed the control time T , but it could be treated as a variable.
Allowing T to vary might lead to different optimal strategies and insights into the control dynamics.

• Migration Rates from Patch 2 to Patch 1. In Theorem 2.7, we established that the sum of
migration rates d12 + d21 must be small to achieve P1 = ε in finite time. However, simulations, such
as those in Fig. 6, suggest that it is sufficient for d12 alone to be small. It would be valuable to derive
this result theoretically.

• Elimination in n Patches with Control in m < n Patches. This scenario arises when different
stakeholders do not permit the release of sterile insects in their areas. It is crucial to determine
whether the non-controlled patches negatively impact the overall control strategy. Understanding the
significance of the network connecting the patches is essential. Additionally, evaluating the extra costs
or the additional amount of sterile insects required when an optimal strategy cannot be applied is
important for production considerations.

• Optimal Control Model for n Patches. Extending our optimal control model to n patches raises
the question: ”Is it optimal to omit action in some patches when there is low dispersal or migration
between them?” While directly studying the n-patch optimal control problem is challenging, it might
be possible to address this by considering that if migration corresponds to a discretized Laplacian,
the n-patch model could converge to a parabolic equation. It is well known that for such equations,
and with a cost function involving the L1 norm of the solution, the optimal control can be sparse
(see [19] for a review). Thus, exploring the convergence of the n-patch control to the control of the
corresponding parabolic equation could be insightful.

• Impulsive Control Strategy. In practice, sterile insect releases are conducted periodically, typically
every τ day. Considering a model with periodic pulsed releases would be more realistic. The results
obtained from continuous release scenarios could provide useful estimates for the amount of sterile
insects needed per release.
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• Incorporating seasonality in the search for optimal strategies. Last but not least, knowing
the relationship between the model’s parameters and environmental parameters, like temperature and
rainfall, it could be possible to derive, numerically, the best strategies along the year, like in [21].
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