
HAL Id: hal-04693347
https://hal.science/hal-04693347v1

Submitted on 13 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

γ-clustering problems: Classical and parametrized
complexity

Julien Baste, Antoine Castillon, Clarisse Dhaenens, Mohammed Haddad,
Hamida Seba

To cite this version:
Julien Baste, Antoine Castillon, Clarisse Dhaenens, Mohammed Haddad, Hamida Seba. γ-clustering
problems: Classical and parametrized complexity. Theoretical Computer Science, 2024, 1018,
pp.114784. �10.1016/j.tcs.2024.114784�. �hal-04693347�

https://hal.science/hal-04693347v1
https://hal.archives-ouvertes.fr

γ-clustering problems:
classical and parametrized complexity

Julien Baste∗, Antoine Castillon∗ †, Clarisse Dhaenens∗, Mohammed Haddad†, and
Hamida Seba†

∗Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
†Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622 Villeurbanne,

France

Abstract
We introduce the γ-clustering problems, which are variants of the well-known Cluster

Editing/Deletion/Completion problems, and defined as: given a graph G, how many
edges must be edited in G, deleted from G, or added to G in order to have a disjoint
union of γ-quasi-cliques. We provide here the complete complexity classification of these
problems along with FPT algorithms parameterized by the number of modifications, for the
NP-complete problems. We also study here a variant of these problems where the number
of final clusters is a fixed constant, obtaining mostly the same results regarding classical
and parameterized complexity.

1 Introduction

Among important problems in graph theory, only a few of them are as central as clustering, i.e.,
finding a partition of a graph into relevant clusters. From a practical point of view, clustering
problems are used in data analysis to identify community structures in social networks [7, 9] as
well as in computational biology to identify molecular modules in protein interaction networks
[19] or to identify similar genes [3]. From a theoretical point of view, the Cluster Editing
problem, where given a graph G, one has to transform G into a cluster graph with a minimal
number of modifications, has been studied extensively. Plenty of results have been found,
and later improved, regarding the classical complexity [17], the approximability [1, 6] or the
parameterized complexity [5, 10].

Note that a graph G is a cluster graph if, and only if, P3 is not an induced subgraph of G.
Hence, the Cluster Editing problem is often introduced as the edge modification problem
with respect to the property of being P3-free, i.e. without any induced P3. This implies
a very strict and ordered structure, especially on the small induced subgraphs of a solution
graph. Such a structure is usually hard to match with the complexity and chaos of real life
graphs such as social networks or protein networks which are the most common application
cases of the Cluster Editing problem [3, 9, 7, 19]. In this paper we investigate a variant
of Cluster Editing where we relax the requirement of the solution graph, replacing cliques
with quasi-cliques.

Quasi-cliques are a natural way to extend the definition of cliques to other dense graphs.
Several definitions of quasi-cliques exist in the literature: the density-based version [15] where
the proportion of existing edges in the quasi-clique must be greater than a constant γ, the
degree-based version [14] where the vertices must be adjacent to a proportion γ of the quasi-
clique and the degree/density-based version [4] which is an amalgam of the previous two
definitions. In this paper, we focus on the degree-based definition which encapsulates well the
intuitive notion of a quasi-clique.

1

Clique γ < 1 Clique, p-clusters γ < 1, p-clusters
Completion P P P P

Deletion NPC NPC NPC for p ≥ 3 NPC for p ≥ 2

Editing NPC NPC NPC for p ≥ 2 NPC for p ≥ 2

Table 1: Complexity classification of the γ-clustering problems. The columns corresponding
to Clique are results from [17].

Clique γ < 1 γ < 1, p-clusters
Completion P P P

Deletion 2k · nO(1) 2k log(2k) · nO(1) 2O(k log k) · nO(1)

Editing 2.27k · nO(1) 2O(k log k) · nO(1) 2O(k log k) · nO(1)

Table 2: Parameterized complexity of the γ-clustering problems. Again, the columns corre-
sponding to Clique are known results from [5, 10].

Unsurprisingly, most hardness results holding with cliques also holds with quasi-cliques
[2, 12, 14, 15]. For instance, it is NP-hard to find a quasi-clique of a given size [14, 15].
However, other hardness results tend to prove that the study of quasi-cliques is usually even
harder than the study of cliques [16, 20]. For instance, even checking the maximality of a
γ-degree-based quasi-clique is NP-hard [16]. This difficulty can be attributed to the non-
heredity of being a quasi-clique, i.e. an induced subgraph of a quasi-clique is not necessarily
a quasi-clique (see Remark 4).

As previously said, we introduce here new variants of the Cluster Editing problem
where quasi-cliques replace cliques in the solution graph. To the best of our knowledge, quasi-
cliques or other relaxations of cliques such as s-plexes, s-clubs or s-cliques have only been
studied regarding the maximal induced subgraph problem [12] and never as a relaxation of
cliques in other problems such as the Cluster Editing problem. The closest relaxation of
Cluster Editing that we know is the research of (p, q)-clusters [11, 13], where each cluster
misses at most p-edges to be a clique and is still linked to at most q other vertices. However,
this approach only focuses on recognizing such graphs and does not involve edge modifications.

Our contributions are the introduction of the γ-clustering problems as well as their exten-
sive complexity classification listed in Table 1. We also introduce natural variants of these
problems, called the (γ, p)-clustering problems, where the solution graph must have exactly
p clusters. Finally, we also provide FPT algorithms parameterized by k for our NP-complete
problems as shown in Table 2.

The remainder of this article is organized as follows. Section 2 introduces our notations,
the formal definitions, the problems studied as well as a few useful properties. In Section 3,
we provide the proofs of the results presented in Table 1. Section 4 contains the two FPT
algorithms announced in Table 2. Finally, we conclude this article in Section 5.

2 Preliminaries

In this paper, the graphs are always considered simple and undirected. Also, we use the
following notations.

Given two reals a and b we use the usual notations [a, b], [a, b[,]a, b] and]a, b[for respectively
the closed, the two half-open and the open intervals of numbers between a and b. We also note:
[[a, b]] = {x ∈ Z | a ≤ x ≤ b}, where Z denotes the set of all integers. Given two sets E and F ,
we denote by E∆F the symmetric difference between E and F , i.e. E∆F = (E∪F)\ (E∩F).
Given a set X and an integer k ∈ Z≥0, we note

(
X
k

)
the set of subsets of X of size k. Hence,

given a set of vertices V , the set of all possible edges between the vertices of V is
(
V
2

)
. Also,

2

given two disjoint sets X and Y , we divert from the usual notation, denoting X × Y the set
of unordered pairs containing one element of X and one element of Y : X × Y = {{x, y} | x ∈
X, y ∈ Y }.

Given a graph G, we denote V (G) the vertex set of G and E(G) ⊆
(
V (G)
2

)
its edge set.

The subgraph (resp. bipartite subgraph) of G induced by a set of vertices X (resp. two sets of
vertices X,Y) is noted G[X] = (X,E(G) ∩

(
X
2

)
) (resp. G[X,Y] = (X ∪ Y,E(G) ∩ (X × Y))).

We denote by EG(X) the set E(G[X]) and EG(X,Y) the set E(G[X,Y]), if G is clear from
the context, we refer to them as E(X) and E(X,Y). We note NG(u) the neighborhood of u,
and dG(u) = |NG(u)| its degree. Again, if G is clear from the context, we refer to them as
N(u) and d(u). Also, if we want to focus on the neighborhood of u within a set of vertices
X ⊆ V (G) we note : NX(u) = N(u) ∩ X and dX(u) = |NX(u)|, note that these definitions
also holds if u /∈ X. The minimal and maximal degree of G are denoted respectively δ(G) and
∆(G). Finally, the distance between two vertices u, v ∈ V (G), i.e. the number of edges on
the shortest path connecting u to v is denoted distG(u, v) and the diameter of G is denoted
diam(G) = max

u,v∈V
distG(u, v).

The well-known Cluster Editing problem [17] can be defined as follows.

Problem 1 (Cluster Editing). Given a graph G = (V,E) and an integer k, does it exist
a set S ⊆

(
V
2

)
such that |S| ≤ k and each connected component of G∆S = (V,E∆S) is a

clique ?

The graph G∆S is often referred to as a solution graph and a disjoint union of cliques is
referred to as a cluster graph.

Definition 2 (γ-quasi-clique). Given γ ∈ [0, 1], a graph G = (V,E) is a γ-quasi-clique, if for
all u ∈ V , d(u) ≥ γ(|V | − 1).

Given a graph G, we also say that a set of vertices X ⊆ V (G) is a γ-quasi-clique of G if G[X]
is a γ-quasi-clique. Note that we provide the general definition of γ-quasi-cliques with values
of γ varying from 0 to 1. However, since we want quasi-cliques to represent dense graphs, in
this paper, we only consider values of γ strictly larger than 1

2 . Also, note that 1-quasi-cliques
are exactly cliques. Since we want to emphasize the similarities and differences with cliques,
i.e. cases where γ = 1, we focus here on cases where γ < 1. In the remainder of this paper
and unless it is clearly specified otherwise, we always assume that 1

2 < γ < 1.
We introduce the γ-Cluster Editing problem as follows:

Problem 3 (γ-Cluster Editing). Given a graph G = (V,E) and an integer k, does it exist
a set S ⊆

(
V
2

)
such that |S| ≤ k and each connected component of G∆S = (V,E∆S) is a

γ-quasi-clique ?

We will also refer to G∆S as a solution graph and a disjoint union of γ-quasi-cliques as a
γ-cluster graph.
We introduce in a similar way the γ-Cluster Deletion problem, where edges can only be
removed, i.e. S ⊆ E, and the γ-Cluster Completion problem, where edges can only be
added, i.e. S ∩ E = ∅.

Remark 4. Contrary to the Cluster Editing problem, there is no strict structure on the
small induced subgraphs of a solution graph. In fact, for any γ ∈ [0, 1[and any given graph G
on n vertices, there exists a graph G′ on ⌈ 1

1−γn⌉ vertices such that G′ is a γ-quasi-clique and
G is an induced subgraph of G′. Hence a solution graph can contain any given graph as an
induced subgraph.

Proof. (Remark 4) Let G be a graph on n vertices. Let G′ be the graph obtained by adding
⌈ 1
1−γ |V |⌉ − |V | new universal vertices to G. It holds that G = G′[V] is an induced subgraph

3

of G′ and G′ is a γ-quasi-clique. Indeed, for all v ∈ V (G′), d(v) ≥ ⌈ 1
1−γ |V |⌉ − |V | ≥

γ
1−γ |V | ≥

γ(⌈ 1
1−γn⌉ − 1) = γ(|V (G′)| − 1).

We also study variants of the γ-clustering problems where the number of clusters is fixed
to a constant p.

Problem 5 ((γ, p)-Cluster Editing). Given a graph G = (V,E) and an integer k, does it
exist a set S ⊆

(
V
2

)
such that |S| ≤ k, G∆S = (V,E∆S) have exactly p connected components

and each one of them is a γ-quasi-clique ?

Again we introduce in a similar way the (γ, p)-Cluster Deletion and (γ, p)-Cluster Com-
pletion problems.

We provide here three useful properties used later in the proofs. These properties describe
respectively a relation between δ(G) and |V (G)| when G is a γ-quasi-clique, the diameter of a
γ-quasi-clique and an edge-connectivity result.

Remark 6. Given G a γ-quasi-clique it holds that δ(G) ≥ γ(|V (G)|−1). Conversely, |V (G)| ≤
1
γ δ(G) + 1.

Lemma 7. Given γ ∈]12 , 1[, G a γ-quasi-clique and u, v ∈ V two vertices. It holds that u and
v have at least (2γ − 1)(|V | − 1) common neighbors.

Proof. (Lemma 7) Let N(u) be the vertices of V not adjacent to u. It holds that |N(u)| ≤
(1− γ)(|V | − 1) hence : |N(v) \N(u)| ≥ (2γ − 1)(|V | − 1).

A direct consequence of this lemma is that the diameter of a γ-quasi-clique is at most 2 if
γ > 1

2 .

Lemma 8. Let G = (V,E) be a graph and d be an integer such that δ(G) ≥ d and diam(G) ≤ 2.
It holds that G is d-edge-connected, i.e. it remains connected even after removing d− 1 edges.

Proof. (Lemma 8) Let G = (V,E) be a graph and d be a non-negative integer such that
δ(G) ≥ d and diam(G) ≤ 2. Given two vertices u, v ∈ V let’s prove that there are at least d
edge-disjoint paths connecting u to v.

Let’s note A = N(u) \N(v), B = N(v) \N(u) and C = N(u) ∩N(v).
For all c ∈ C, (u, c, v) is a path connecting u to v.

v

c

u

We note |A| = s, |B| = t, and:

A = {a1, ..., as}, B = {b1, ..., bt}.

Without loss of generality, we also assume that t ≥ s (i.e. d(u) ≤ d(v)).
Let M be a maximal matching of G[A,B], up to a permutation we can assume that:

M = {{a1, b1}, ..., {ar, br}} .

Let A1 = {a1, ..., ar}, A2 = A \A1, B1 = {b1, ..., br} and B2 = B \B1.
For all i ∈ [[1, r]], (u, ai, bi, v) is a new path connecting u to v.

v

biai

u

4

Also, since M is maximal, it holds that E(A2, B2) = ∅. So, for all j ∈ [[r+ 1, s]], aj and bj
are not adjacent. However, it holds that distG(aj , bj) ≤ 2. Hence, let zj ∈ V be a vertex such
that {aj , zj}, {zj , bj} ∈ E.

It holds that:

- zj ̸= u: otherwise bj ∈ C = N(u) ∩N(v).

- zj ̸= v: otherwise aj ∈ C = N(u) ∩N(v).

- zj /∈ A2: otherwise {zj , bj} ∈ E(A2, B2).

- zj /∈ B2: otherwise {aj , zj} ∈ E(A2, B2).

Also, if zj ∈ A1, B1,C or V \ (A ∪B ∪ C) then (u, aj , zj , bj , v) is a new path connecting u
to v.

u

aj

zj

bj

v

To sum up, we have |C| paths of length 2, r paths of length 3 and s − r paths of length
4. Hence, there is a total of |C|+ s = d(u) ≥ d such paths as shown in Figure 1. Since these
paths are edge-disjoints, the result holds.

A B

C

u v

Figure 1: d(u) disjoint paths between u and v: |C| yellow paths of length 2, r red paths of
length 3 and s− r blue paths of length 4.

3 Classical Complexity

In this section we classify between polynomial and NP-hard the γ-clustering problems. Before
starting the proofs, it is important to note that all of these problems are in NP. Indeed given
a graph G and a set of modification S, one can compute G′ = (V,E ∪ S), or G′ = (V,E \ S),
or G′ = (V,E∆S) in polynomial time. Moreover, one can also verify in polynomial time that
G′ is a γ-cluster graph, i.e. if its connected components are all γ-quasi-cliques. Finally, if we
have a given number of clusters p, it is easy to check if G′ has exactly p connected components.
Hence, for all of these problems we provide either a polynomial time algorithm which solves the

5

problem or a polynomial reduction from another NP-complete problem, usually the Clique
problem.

This section is divided into four subsections, in Sub-section 3.1 we show that the γ-
Cluster Completion problem is polynomial, in Sub-section 3.2 we prove the NP-hardness
of γ-Cluster Deletion and γ-Cluster Editing and in Sub-section 3.3 we tackle the
(γ, p)-clustering problems.

3.1 γ-Cluster Completion

This subsection is dedicated to the proof of the following theorem.

Theorem 9. For γ ∈
]
1
2 , 1
[
, the γ−Cluster Completion problem is solvable in polynomial

time.

Proof. (Theorem 9) We start with Lemma 10 which proves the existence of an optimal solution
that never add any edge between the connected components of the input graph. Hence, we can
solve the problem independently on each connected component. Then, Lemma 14 concludes
the proof of the theorem by showing that an optimal solution to the γ-Cluster Completion
problem can be found in polynomial time on a connected graph.

Lemma 10. Given G = (V,E) a graph with two connected components A and B, there exists
S an optimal solution to the γ −Cluster Completion problem on G such that S does not
contain any edge between A and B.

Proof. (Lemma 10) We first assume that |A|, |B| ≥ 2. Let S be an optimal solution to the
γ-Cluster Completion problem. We assume that S contains at least an edge between A
and B. Thus, it holds that A ∪ B is a γ-quasi-clique of G ∪ S = (V,E ∪ S) and the degree
of every vertex of A ∪ B is greater than γ(|A| + |B| − 1) in G ∪ S. Let’s construct another
optimal solution S′, such that S′ does not contain any edge between A and B.

If we construct such S′ note that the degree required for each a ∈ A drop from γ(|A| +
|B| − 1) to γ(|A| − 1), and similarly for each b ∈ B.

We start with S′ = S and we apply the following rules. We also assume that a rule is
applied only if all previous rules have already been extensively applied everywhere.

We explain here how to manage the edges between A and B, i.e. S′ ∩ (A × B). For each
edge e ∈ S′ ∩ (A×B) we note e = {a, b} with a ∈ A and b ∈ B, if a or b already exists we use
instead respectively a′, a′′, ... or b′, b′′, In the following rules the degree and neighborhood
are considered with respect to the edge set E ∪ S′. However we can only modify edges in S′.

Rule 1.1: If there is e = {a, b} ∈ S′ ∩ (A × B) such that both a has at least γ(|A| − 1)
neighbors in A and b has at least γ(|B| − 1) neighbors in B. We can remove the edge e
as shown in Figure 2.

A B
a b

︸ ︷︷ ︸
≥ γ(|A| − 1)

︸ ︷︷ ︸
≥ γ(|B| − 1)

=⇒ A B
a b

︸ ︷︷ ︸
≥ γ(|A| − 1)

︸ ︷︷ ︸
≥ γ(|B| − 1)

Figure 2: Application of Rule 1.1.

Rule 1.2: If there is e = {a, b} ∈ S′ ∩ (A× B) such that a has at least γ(|A| − 1) neighbors
in A and b has a non-neighbor b′ in B, then we can remove {a, b} from S′ and add the
edge {b, b′} to S′ as shown in Figure 3.

6

A B

b′
a b

︸ ︷︷ ︸
≥ γ(|A| − 1)

=⇒ A B

b′
a b

︸ ︷︷ ︸
≥ γ(|A| − 1)

Figure 3: Application of Rule 1.2.

Rule 1.3: If there is e = {a, b} ∈ S′ ∩ (A× B) such that b has at least γ(|B| − 1) neighbors
in B and a has a non-neighbor in A, we proceed similarly.

We assume now that Rules 1.1, 1.2 and 1.3 cannot be applied anywhere. Note that when
applied these rules decrease the degree of a vertex a ∈ A only if dA(a) ≥ γ(|A| − 1). Hence,
after applying these rules if there is a ∈ A such that dA(a) < γ(|A| − 1), then the total degree
of a has not changed and is still greater than γ(|A| + |B| − 1). A similar point holds for the
vertices of B. Also, every edge e = {a, b} ∈ S′ ∩ (A×B) verifies that a has strictly less than
γ(|A| − 1) neighbors in A and b has strictly less than γ(|B| − 1) neighbors in B otherwise one
of the three previous rules could be applied. Hence, for such an edge e = {a, b} ∈ S′∩ (A×B)
it holds that d(a) ≥ γ(|A|+ |B| − 1) and dA(a) < γ(|A| − 1), thus dB(a) > γ|B| and similarly
dA(b) > γ|A|.

Rule 1.4: If there are e, e′ ∈ S′ ∩ (A × B), e = {a, b} and e′ = {a′, b′} such that {a, a′} and
{b, b′} are not in E ∪ S′. Then, we can remove the edges {a, b}, {a′, b′} from S′ and add
instead the edges {a, a′}, {b, b′} as shown in Figure 4.

A B

a

a′

b

b′

=⇒ A B

a

a′

b

b′

Figure 4: Application of Rule 1.4.

Rule 1.5: If there are a, b, b′ such that e = {a, b} ∈ S′, e′ = {a, b′} ∈ S′, {b, b′} /∈ E ∪ S′.

First note that all neighbors of b′ in A except a itself are necessarily neighbors of a.
Indeed, let a′ ∈ A be a neighbor of b′ i.e. {a′, b′} ∈ S′, if {a, a′} /∈ E ∪ S′ then Rule 1.4
could be applied to the edges {a, b}, {a′, b′}.
So, NA(b

′) \ {a} ⊆ NA(a). It holds that: |NA(b
′)| > γ|A|. Hence, |NA(a)| ≥ |NA(b

′) \
{a}| > γ|A| − 1. Since we want that dA(a) ≥ γ(|A| − 1), it holds that a is only missing
one neighbor in A. Then, instead of adding the edges {a, b} and {a, b′}, we can add the
edge {a, a′} for some a′ non-neighbor of a and add the edge {b, b′} as done in Figure 5.

Rule 1.6: If a similar situation happens for b we proceed similarly.

We assume now that if there are a, b, b′ (resp. a, a′, b) such that {a, b}, {a, b′} ∈ S′ (resp.
{a, b}, {a′, b} ∈ S′) then {b, b′} ∈ E ∪ S′ (resp. {a, a′} ∈ E ∪ S′).
So for all e = {a, b} ∈ S′ ∩ (A×B) it holds that a has at least γ|B| neighbors in B and they
all are neighbors of b, except b itself. Hence b has at least γ|B| − 1 neighbors in B. Similarly,
a has at least γ|A| − 1 neighbors in A. Also, since we assumed that a has strictly less than
γ(|A|−1) neighbors in A, it holds that NA(a)∪{a} = NA(b). Similarly, NB(b)∪{b} = NB(a).
In fact, a and b are true twins.

7

A B

a′

b′
a b

=⇒ A B

a′

b′
a b

Figure 5: Application of Rule 1.5.

Rule 1.7: Finally for any edge e = {a, b} ∈ S′ ∩ (A × B), let a′, b′ be two neighbors of both
a and b. Such neighbors always exist since dB(a) ≥ γ|B| > 1 and dA(b) ≥ γ|A| > 1.
It holds that {a, a′, b, b′} is a clique and a, a′ are only missing one neighbor in A, i.e.
dA(a) = dA(a

′) = ⌈γ(|A| − 1)⌉ − 1 and b, b′ are only missing one neighbor in B. Hence,
we can delete the edges {a, b}, {a′, b}, {a, b′}, {a′, b′} from S′ and add instead edges as
shown in Figure 6. Note that a, a′ (resp. b, b′) always have at least one non-neighbor in
A (resp. B) to add an edge with. Indeed, their degrees in A (resp. in B) are strictly
lower than |A| − 1.

A B

a

a′

b

b′

=⇒ A B

a

a′

b

b′

Figure 6: Application of Rule 1.7.

After applying all the rules, S′ ∩ (A×B) = ∅. Also, for each rule the number of edge deleted
is always greater or equal to the number of edges added, thus |S′| ≤ |S|. Finally, for a ∈ A,
after applying any rule either d(a) increases or stays the same and thus stays greater than its
original value dG∪S(a) ≥ γ(|A|+ |B| − 1), or dA(a) ≥ γ(|A| − 1) and a similar property holds
for b ∈ B. So, G∪S′ is a γ-cluster, S′ is an optimal solution to the γ-Cluster Completion
problem on G and S′ does not add any edge between A and B.

To conclude the proof for all possible A and B, note that if, for instance, |A| = 1 then the
only a ∈ A has already more than γ(|A| − 1) = 0 neighbors in A and Rule 1.1 or 1.2 could be
applied as long as there are edges between A and B. So the results holds even if |A| = 1 or
|B| = 1.

More generally the previous lemma tells us that there exists an optimal solution of the
γ-Cluster Completion problem which does not add any edge between the connected com-
ponents of the input graph and thus we can solve independently on the connected components.

Corollary 11. Given a graph G = (V,E), let CC1, ..., CCr be the connected components of
G. There exists S a solution of the γ-Cluster Completion problem on G such that S does
not add any edge between the CCis.

Proof. (Corollary 11) We provide a proof by induction on r.

• If r = 1: the result holds trivially.

• If r = 2: the result is exactly Lemma 10.

• r − 1 =⇒ r: Let S be an optimal solution of the γ-Cluster Completion problem on
G. We assume that S contains an edge between two connected components of G let’s
consider e ∈ S such that e ∈ CCr−1 × CCr.

8

By optimality of S, it holds that S \ {e} is an optimal solution to the γ-Cluster
Completion problem on G ∪ {e} = (V,E ∪ {e}).

By induction and since G∪{e} has exactly r−1 connected components: CC1, ..., CCr−2,
CCr−1 ∪CCr, it holds that there is S′ an optimal solution which does not add any edge
between the connected components of G ∪ {e}. Since |S′| = |S \ {e}|, it holds that
|S′ ∪ {e}| = |S| and S′ ∪ {e} is an optimal solution to the γ-Cluster Completion
problem on G. Also, S′ ∪{e} does not add any edges between CCr−1 ∪CCr and the rest
of the graph. Let S′∪{e} = S′

1∪S′
2 where S′

1 = (S′∪{e})∩
(
CCr−1∪CCr

2

)
is the restriction of

this solution to G[CCr−1∪CCr] and S′
2 contains the other edges of S′∪{e}. It holds that

S′
1 is an optimal solution to the γ-Cluster Completion problem on G[CCr−1 ∪CCr].

By applying Lemma 10 to G[CCr−1 ∪CCr] it holds that there is S′′
1 an optimal solution

on G[CCr−1 ∪ CCr] which does not add any edge between CCr−1 and CCr. Thus, it
holds that S′′ = S′′

1 ∪S′
2 is an optimal solution to the γ-Cluster Completion problem

on G which does not add any edge between the connected components of G.

The corollary holds for any r ≥ 1.

Moreover this corollary also holds for the γ-Cluster Editing problem.

Corollary 12. Given a graph G = (V,E), let CC1, ..., CCr be the connected components of
G. There exists S a solution of the γ-Cluster Editing problem on G such that S does not
add any edge between the CCis.

Proof. (Corollary 12) Let S be an optimal solution of the γ-Cluster Editing problem on
G. We denote by S− the set of edge deletions, i.e. S− = S ∩ E and by S+ the set of edge
additions, i.e. S+ = S \ S−. Let G′ = (V,E \ S−), it holds that S+ is an optimal solution
of the γ-Cluster Editing problem on G′. Since it only adds edges, it is also an optimal
solution of the γ-Cluster Completion problem on G′.

Thanks to Corollary 11 we know that there is S+
2 an optimal solution of the γ-Cluster

Completion problem on G′ such that S+
2 does not add any edge between the connected

components of G′. Note that the connected components of G′ are always contained in the
connected components of G, since edges have only been deleted, thus S+

2 does not add any
edges between the connected components of G.

Finally, S2 = S− ∪ S+
2 is an optimal solution of the γ-Cluster Editing problem on G

which does not add any edge between its connected components.

Going back to the γ-Cluster Completion problem, it holds that if the input graph is
connected then the solution graph contains only one γ-quasi-clique. Hence, the γ-Cluster
Completion problem on a connected graph can be reformulated as follows.

Problem 13 (connected γ-Cluster Completion). Given G = (V,E) a connected graph
and k ∈ Z≥0, does it exist a set S ⊆

(
V
2

)
such that |S| ≤ k and, with G ∪ S = (V,E ∪ S),

dG∪S(v) ≥ γ(|V | − 1) for any vertex v ?

Lemma 14. The γ −Cluster Completion problem is solvable in polynomial time on con-
nected graphs.

Proof. (Lemma 14) This result is a consequence of [18]. They introduced the following problem:

Problem 15. Given G = (V,E), n = |V |, V = {v1, ..., vn}, b1, ..., bn ∈ Z≥0, find E′ ⊆ E such
that E′ is maximal and, with G′ = (V,E′), dG′(vi) ≤ bi for all 1 ≤ i ≤ n.

9

In [18], the authors proved that this problem is solvable in polynomial time. Solving the
γ − Cluster Completion problem on a connected graph G is equivalent to solving this
problem with bi = n − 1 − ⌈γ(n − 1)⌉ and the complement graph of G : G = (V,E) , with
E =

(
V
2

)
\ E. Then, an optimal S can be deduced from an optimal E′ by : S = E \ E′.

Remark 16. Note that, in [18], the fact that G is connected is never used in the proof. In
fact we obtain a polynomial algorithm able to find, given a graph G = (V,E), a minimal set
S ⊆

(
V
2

)
such that G ∪ S = (V,E ∪ S) is a γ-quasi-clique.

Theorem 9 is a direct consequence of Corollary 11 and Lemma 14. Also, thanks to this
theorem the following corollary holds.

Corollary 17. Given a graph G = (V,E) and a partition of V : C1, ..., Cr, it is possible to
compute in polynomial time a minimal set S ⊆

(
V
2

)
, such that the connected components of

G′ = (V,E∆S) are C1, ..., Cr and are γ-quasi-cliques.
For G′ = (V,E \ S) and G′ = (V,E ∪ S) such an S may not exists. The existence of such

S can also be decided in polynomial time and if it exists, an optimal S can be computed in
polynomial time.

Proof. (Corollary 17) For G′ = (V,E∆S), to compute an optimal S, one must first remove
all edges between Ci and Cj for any i < j, then one can use Remark 16 on the Cis. For
G′ = (V,E \ S) only the first step is necessary, then one have to check whether the Cis are
γ-quasi-cliques. For G′ = (V,E ∪ S) only the second step is necessary, then one have to check
whether the Cis are disconnected from one another.

3.2 γ-Cluster Deletion and γ-Cluster Editing

In this subsection we prove the following theorem.

Theorem 18. Given γ ∈]12 , 1[, γ-Cluster Editing is NP-hard.

We provide a reduction from Clique restricted to regular graphs which is NP-complete [8].
Let (G = (V,E), k) be an instance of the Clique problem such that G is d-regular. Note
that finding a clique in G of size k is equivalent to finding S ⊆ E such that when removed, S
separates G into a clique of size k and a set of n− k vertices.

The detailed construction of the equivalent instance is described later in this section. We
want to give first an intuitive approach of the proof. The equivalent instance (G′ = (V ′, E′), k′)
of the γ−Cluster Editing problem is constructed as follows: we add two sets of new vertices
X and Y as described in Figure 7.

X Y

G

X2 X1 Y1
Y2

Figure 7: Construction of G′.

The idea of the proof being that X will "attract" a clique of size k in G and Y will attract
the rest of the vertices of G. We first want to show here how to construct such X and Y . The

10

number of authorized editions in the equivalent γ-Cluster Editing instance is:

k′ = nX1(n− k) + k(d− k + 1) + nY1k.

Here nY1k represents the number of edges between Y and K the clique of G of size k. nX1(n−k)
represents the number of edges between X and V \K and k(d− k+1) represents the number
of edges between K and V \K. The following lemma explains why we choose to restrict the
Clique problem on regular graphs.

Lemma 19. Given G = (V,E) a d-regular graph and K ⊆ V of size k ≤ d. It holds that
|E(K,V \K)| ≤ k(d− k+1) if, and only if, K is a clique of G. In that case, |E(K,V \K)| =
k(d− k + 1).

Proof. (Lemma 19) The vertices in K have d neighbors in total and at most k− 1 of them are
also in K, so: |E(K,V \K)| ≥ k(d − k + 1). The equality holds if, and only if, every vertex
in K has exactly k − 1 neighbors in K, i.e. if K is a clique.

Let’s start the formal construction of G′ = (V ′, E′). For some widgets we use a lot of
regular graphs. Since given two odds numbers n and d we cannot construct a d-regular graph
on n vertices, we instead use an almost d-regular graph, i.e. a graph where every vertex has
degree d except one of them whose degree is d + 1. One can obtain a d-regular graph or an
almost d-regular graph via the following construction.

Construction 20. Given n and d < n− 1, let’s see how to construct a d-regular graph, or an
almost d-regular. We start from an empty graph on n vertices and we label them v0, ..., vn−1

and we proceed as follows. See Figure 8 for an illustration.

1. We add an edge between each vi and the ⌊d/2⌋ previous and next vertices in the cyclic
order v0, ..., vn−1.

Now G is a d-regular graph if d is even, and (d− 1)-regular if d is odd.

2. If d is odd. For i in [[0, ⌊n2 ⌋]] we add an edge between vi and vi+⌊n
2
⌋.

If n is even, G is a d-regular graph.

If n is odd, every vertex has degree d except vn−1 whose degree is d− 1.

3. If both d and n are odd, we now add an edge between vn−1 and a random vertex.

Now each vertex in V has degree d except one of them whose degree is d+ 1.

We call a graph construct this way an (n, d)-dreamcatcher graph.

Remark 21. Given γ ∈]12 , 1[for all integer n, at least one of the following holds:

• ⌈γn⌉ < ⌈γ(n+ 1)⌉.

• ⌈γ(n+ 1)⌉ < ⌈γ(n+ 2)⌉.

We present here a general widget used in the construction of G′, allowing us to construct
the sets X and Y such that X attracts necessarily a clique of size K, and Y attracts the other
vertices of G.

Lemma 22. Given a graph G = (V,E) three integers k, dK and N one can construct a set X
of new vertices, i.e. X ∩ V = ∅, such that: |X| > N , for K ⊆ V , X ∪K is a γ-quasi-clique
=⇒ |K| ≤ k and if |K| = k, δ(G[K]) ≥ dK .

Proof. (Lemma 22) Let G, k, dK and N be as in the Lemma. We note n = |V (G)|. Let
nX be such that, nX > N , (1 − γ)nX > n and ⌈γ(nX + k − 1)⌉ < ⌈γ(nX + k)⌉ (thanks to
the Remark 21 such an nX always exist). Let dX = ⌈γ(nX + k − 1)⌉, nX1 = dX − dK and
nX2 = nX − nX1 .

11

Step 0 Step 1

Step 2 (n even) Step 2 (n odd)

Step 3 (n odd)

Figure 8: Steps of the construction of an (n, d)-dreamcatcher graph.

12

First we construct X, an (nX , dX)-dreamcatcher we note X = {x1, ..., xn}. Let X1 =
{x1, ..., xnX1

} and X2 = X \ X1. Second we add all possible edges between X1 and V as
done in Figure 9.

X

G

X2 X1

Figure 9: Construction of the widget.

Let’s K ⊆ V such that X ∪K is a γ-quasi-clique. First, the vertices in X2 (or all of them
except one) have exactly dX = ⌈γ(nX +k−1)⌉ neighbors in X ∪K, since dX < γ(nX +k) and
X ∪K is a γ-quasi-clique it holds that |X ∪K| ≤ nX + k and thus, |K| ≤ k. Also, if |K| = k,
then the vertices in K have exactly nX1 = ⌈γ(nX + k − 1)⌉ − dK neighbors in X, hence they
must have at least dK neighbors in K.

This construction will later be used in the reduction so it is important to note that nX can
be chosen such that nX < max(N, 1

1−γn) + 2, and thus is polynomial in N,n.

Remark 23. Note that for K ⊆ V , |K| > k, to transform X ∪K into a γ-quasi-clique one
must add at least one neighbor to any element of X2 (except for maybe one of them). Hence,
one must add at least nX2

−1

2 edges.

Remark 24. Finally, if nX1 is a given value and is large enough, i.e. such that nX1 >
γ(N + k) − dK . Then one can construct the same set of vertices with exactly nX1 vertices
in X1 by choosing nX = ⌊ 1γ (nX1 + dK)⌋ − k + 1, or this value plus one, so that nX verifies
⌈γ(nX + k − 1)⌉ < ⌈γ(nX + k)⌉.

We want to ensure that there is a clique of size k in G if, and only if, there is S ⊆ E′ such
that |S| ≤ k′ and the connected components of (V ′, E′∆S) are γ-quasi-cliques. Actually we
ensure that there is a clique K of size k in G if, and only if, X ∪K and Y ∪ (V \K) are both
γ-quasi-cliques and there are at most k′ edges between them.

Let’s start the formal construction of G′.

Construction 25 (G′, k′). We start with G′ = (V ′, E′) where V ′ = V and E′ = E (a copy of
G). We note n = |V |. Let

N =

⌈
2

1− γ
max

(
(n+ 1)2,

1

γ − 1
2

n

)⌉
+ 2n

and N ′ = N + ⌈ 1γn⌉+ n.
The purpose of N and N ′ is described later. The intuitive idea is that N and N ′ are

polynomial in n and N >> n, so any inequality involving N and n will always favor N .

1. Using Lemma 22 with G, k, dK = k − 1 and N ′, we create a set of nX vertices such that
nX > N ′, and for K ⊆ V , X ∪K is a γ-quasi-clique implies that |K| ≤ k and if |K| = k
then δ(G[K]) ≥ k − 1. We use the notations X1, X2, dX , nX1 , nX2 given in the Lemma.

13

2. Using Lemma 22 and Remark 24 with G,n− k, dK = 0 and nX1 given, we create a set of
nY vertices such that nY1 = nX1 and for K ′ ⊆ V , Y ∪K ′ is a γ-quasi-clique implies that
|K ′| ≤ n− k. We also use the notations Y1, Y2, dY , nY1 , nY2 for respectively, the vertices
of Y linked to V , the other vertices of Y , i.e. Y \ Y1, the degree inside Y of the vertices
in Y (except maybe one of them), the number of vertices in Y1 and the number Y2.

3. The number of authorized editions is

k′ = nX1k + nY1(n− k) + k(d− k + 1)

= nX1n+ k(d− k + 1).

See Figure 7 for an illustration of the construction of G′.

To ensure that the edge editions are properly placed we need a few inequalities involving
the values of n,N,N ′ and k′. These inequalities are actually what motivated the values of N
and N ′.

Lemma 26. It holds that:

1. dX > 2(n+ 1)2.

2. nX1 > 2(n+ 1)2.

3. nX2 > 2(n+ 1)2.

4. nX > 4(n+ 1)2.

5. 1
2(γ −

1
2)nX > n.

6. Similar points hold for Y .

7. 1
2 (γ(nX + nY − 2n− 1)− (dX + n)) (nX − n) > k′.

Proof. (Lemma 26)
Note first that:

• γ > 1
2 > 1− γ.

• dX ≥ γ(nX + k − 1) ≥ γN .

• nX1 ≥ γnX − n ≥ γN − n.

• nX2 ≥ (1− γ)nX ≥ (1− γ)N .

1. N > 1
γ 2(n+ 1)2, so dX > 2(n+ 1)2.

2. N > 1
γ 2(n+ 1)2 + n, so nX1 > 2(n+ 1)2.

3. N > 1
1−γ 2(n+ 1)2, so nX2 > 2(n+ 1)2.

4. nX = nX1 + nX2 > 4(n+ 1)2.

5. N > 2
γ− 1

2

n, so 1
2(γ −

1
2)nX > n.

6. The previous points are all consequences of nX > N . By construction, nY ≥ ⌊ 1γ (nX1)⌋−
n + k + 1. Since nX1 ≥ γN ′ − n ≥ γ(N + n), it holds that nY ≥ N and the same
properties holds for nY , dY , nY1 and nY2 .

14

7. γ(nX + nY − 2n − 1) − (dX + n) ≥ 1
2γnY − 3n − 1 > n + 1 and (n + 1)(nX − n) =

(n+ 1)nX − n(n+ 1). So,
1

2
(γ(nX + nY − 2n− 1)− (dX + n)) (nX − n)− k′

≥ (n+ 1)nX − (n+ 1)2 − nnX1 − (n+ 1)2

≥ nX − 2(n+ 1)2 > 0.

We are now ready to prove Theorem 18.

Proof. (Theorem 18) Since N ′ is polynomial in n, so is the size of G′. Hence, in order to prove
that the γ-Cluster Editing problem is NP-hard we only have to prove that:

G has a clique of size k ⇐⇒ (G′, k′) is a yes-instance of the γ-Cluster Editing problem.

=⇒ Let K be a clique of G of size k. Let’s consider: QX = X ∪K and QY = Y ∪ (V \K).

– QX is a γ-quasi-clique. Indeed, |QX | = nX + k, for all x ∈ X, dQX
(x) ≥ dX ≥

γ(nX+k−1) and for all v ∈ K, dQX
(v) = dX(v)+dK(v) = γ(nX+k−1)−k+1+k−1.

– Similarly QY is a γ-quasi-clique.
– There are nX1(n−k) edges between X and (V \K). Thanks to Lemma 19 there are

k(d − k + 1) edges between K and (V \K). There are nY1k edges between Y and
K. Hence there are excatly nX1n+ k(d− k + 1) = k′ edges between QX and QY .

Hence, QX and QY are γ-quasi-cliques and can be disconnected by removing k′ edges.
Thus, (G′, k′) is a yes-instance of the γ-Cluster Editing problem.

⇐= Let S ⊆
(
V ′

2

)
, such that |S| ≤ k′ and the connected components of G′′ = (V ′, E′∆S) are

γ-quasi-cliques.

We decompose this part of the proof into several claims. We postpone the proofs of these
claims after the last one of them.

Claim 27. At least nX − n (resp. nY − n) elements of X (resp. Y) are connected to
each other in G′′.

We note XA (resp. YA) the set of at least nX − n (resp. nY − n) vertices of X (resp. Y)
connected to each other in G′′ and XB = X \XA (resp. YB = Y \ YA).

Claim 28. Let Q be a connected component of G′′, Q contains at most one of the following
sets: XA, YA.

Claim 29. For all v ∈ V , v is either connected to XA or to YA in G′′.

Claim 30. X (resp. Y) is connected in G′′.

We note QX (resp. QY) the connected of G′′ containing X (resp. Y).

Claim 31. QX contains X and at most k other vertices. QY contains Y and at most
n− k other vertices.

Claim 32. K = QX ∩ V is a clique of G of size k.

Proof. (Claim 27) Let’s assume that G′′[X] is not connected. Let (A,B) be a partition
of X such that |A| ≥ 1

2nX ≥ |B|, and EG′′(A,B) = ∅. Since there are no edges between
A and B in G′′, S contain all edges of EG′(A,B). Also, since dX > nX/2 ≥ |B|, each
vertex of B is linked to at least dX − |B| elements of A in G′. Thus there are at least
(dX − |B|)|B| edges between A and B in G′.

15

Let f : x ∈ [0, nX
2] 7→ (dX − x)x, it holds that for all x ∈ [n+ 1, nX

2], f(x) > k′.

Indeed, f increases on [0, dX2] and n + 1 ≤ dX
2 (cf. Lemma 26.1) and f(n + 1) =

(dX − n− 1)(n+ 1).

f(n+ 1)− k′ = dX(n+ 1)− (n+ 1)2 − nX1n− k(d− k + 1)

≥ (nX1 + k − 1)(n+ 1)− (n+ 1)2 − nX1n− k(d− k + 1)

≥ nX1 + (k − 1)(n+ 1)− (n+ 1)2 − k(d− k + 1)

≥ nX1 − (n+ 1)2 − k(d− k + 1)

> nX1 − 2(n+ 1)2 > 0. (cf. Lemma 26.2)

So f(n+ 1) > k′.

And f decreases on [dX2 , nX
2] and f(nX

2) = (dX − nX
2)nX

2 .

f(
nX

2
)− k′ = (dX −

nX

2
)
nX

2
− k′

≥ (γ(nX + k − 1)− nX

2
)
nX

2
− k′

≥ 1

2
(γ − 1

2
)n2

X − k′

≥ n · nX − n · nX1 − k(d− k + 1)

> n · nX2 − n2 > 0. (cf. Lemma 26.3)

So f(nX
2) > k′.

Since |S| ≤ k′, it holds that |B| ≤ n.

Let’s prove that there is a connected component of G′′[X] containing at least half of the
vertices of X. Assuming otherwise let C1, ..., Cr be the connected components of G′′[X]
(we assume that |C1| ≥ ... ≥ |Cr|).

– If |C1| ≤ nX
4 . Let B = C1 ∪ ... ∪ Ci such that |B| ≤ nX

2 and |B ∪ Ci+1| ≥ nX
2 . Let

A = X \ B. Then it holds that (A,B) is a partition of X, with |A| ≥ 1
2nX ≥ |B|,

no edges between A and B in G′′, and |B| ≥ nX
4 ≥ n+ 1 (cf. Lemma 26.4) which is

impossible.

– If nX
4 ≤ |C1| ≤ nX

2 . Let B = C1 and A = X \ B. This case is impossible for the
same reasons.

– Hence |C1| ≥ nX
2 .

Hence it holds that for (A,B) a partition of X such that EG′′(A,B) = ∅ and |A| ≥
nX/2 ≥ |B|: A is connected and |B| ≤ n.

Proof. (Claim 28) Let’s assume that there is Q a connected component of G′′ containing
XA and YA. Let x ∈ XA, x has at most dX +n neighbors in Q when considering only the
edges of E′. Hence when editing with S we must at least add γ(|XA|+|YA|−1)−(dX + n)
neighbors to x. Hence we must add at least 1

2 (γ(nX + nY − 2n− 1)− (dX + n)) (nX − n)
edges to G′ which is impossible since this number is stricly greater than k′ (cf. Lemma 26.7).

Hence Q cannot contain both XA and YA.

16

Proof. (Claim 29) Let v ∈ V , v cannot be connected to both XA and YA in G′′ otherwise
they would also be connected. Hence either all edges between v and XA are removed
when editing with S, or all edges between v and YA are removed. In both cases at least
nX1 − n edges are removed, leading to a total of (nX1 − n)n removed edges when taking
into account all vertices of V .

Also, if there is v ∈ V which is not connected to XA nor to YA in G′′ then an extra
nX1 − n edges must be deleted. Thus the total number of edges deleted is at least:

(nX1 − n) (n+ 1) > k′.

Hence, any v ∈ V is either connected to XA or to YA in G′′.

Proof. (Claim 30) Thanks to the previous claim we know that at least (nX1 − n)n edges
are removed between the vertices in V and vertices in XA or YA. Hence, there are at
most k′ − nX1 · n + n2 editions left in S. For all i ∈ [[1, nX]] it holds that xi and xi+1

are linked in G′ and have at least dX − 2 common neighbors in G′. Hence to disconnect
xi and xi+1 we need to remove at least dX − 1 edges. Since dX − 1 > k′ − nX1 · n + n2

(cf. Lemma 26.1) it holds that xi and xi+1 are connected in G′′ and thus X remains
connected in G′′. A similar result holds for Y .

Proof. (Claim 31) Thanks to the two previous claims we know that for each v ∈ V we
must remove either all the edges between v and X or all the edges between v and Y .
Thus, there are at least nX1 ·n edges removed this way. Note that vertices of X2 (except
for maybe one of them) have originally only dX < γ(nX + k) neighbors. Hence if QX

contains X and more than k+1 other vertices, it holds that each vertex in X2 (except for
maybe one of them) is originally missing at least one neighbor. Thus, when editing with
S we must add at least 1

2(nX2−1) edges which is impossible since 1
2(nX2−1) > k′−nX1 ·n

(cf. Lemma 26.3). A similar result holds for QY .

Proof. (Claim 32) Thanks to the previous claims we know that each v ∈ V remains
connected to exactly one of the two sets: X or Y . So, exactly nX1n edges have already
been deleted. In order to disconnect QX and QY we must remove all edges between
QX∩V and QY ∩V . Let’s note K = QX∩V , it holds that |K| = k. Also QY ∩V = (V \K).
There are only k(d − k + 1) editions left and thanks to Lemma 19, it holds that K is a
clique of G, otherwise QX and QY would be impossible to disconnect with this number
of editions.

This concludes the proof of Theorem 18.

It is important to note that with this construction any optimal solution only involve edge
deletions. Thus, using the exact same proof, one can find that the γ-Cluster Deletion
problem is also NP-hard.

Theorem 33. Given γ ∈
]
1
2 , 1
[
, γ-Cluster Deletion is NP-hard.

3.3 Fixed number of clusters

In this section we study a variant of the γ-clustering problems where the final number of
clusters is fixed to a given constant p. We call these variants the (γ, p)-clustering problems.

First, note that the (γ, p)-clustering problems are all solvable in polynomial time when
p = 1. Indeed, with only one cluster we can apply Corollary 17 with r = 1 and C1 = V .
Then, we already prove that the (γ, p)-Cluster Deletion and γ-Cluster Editing are

17

NP-complete for every p ≥ 2. Indeed, in the proof of Theorem 18 it is clear that there are
always exactly two clusters QX and QY which proves the NP-completeness for p = 2. For
p ≥ 2 one only have to add p− 2 isolated vertices. Finally, only the complexity of the (γ, p)-
Cluster Completion problem for p ≥ 2 is still open. We prove here that these problems
are all solvable in polynomial time.

Theorem 34. For any p ≥ 1, the (γ, p)-Cluster Completion problem can be solved in
polynomial time.

Proof. (Theorem 34) Again, since edges can only be added to the graph, a connected compo-
nent always remain connected, hence if the input graph has less than p connected components
there are no solutions. Thus, we assume that the input graph always has more than p con-
nected components. As opposed to the γ-Cluster Completion problem and in order to
have exactly p clusters, an optimal solution to the (γ, p)-Cluster Completion problem
sometimes involve adding edges between connected components. Hence, to solve the (γ, p)-
Cluster Completion problem we need to find a p-partition of the connected components
of the input graph G such that the number of edge additions required to transform each part
into a γ-quasi-clique is minimal.

This problem is solved using a dynamic programming algorithm. Before, describing the
table we want to highlight by Lemma 35 that "most" of the connected components, i.e. except
a finite number of them, can be completed into cliques.

Given γ ∈]12 , 1[we denote εγ a non-negative real such that for all 0 ≤ ε ≤ εγ it holds that:(
γε

1− γ − ε
+ (1− γ) + ε

)
< γ.

Such an εγ always exists because γ > 1
2 and 1− γ < γ.

First we prove in the following lemma that we can always add all possible edges inside the
"small" sets of vertices, i.e. of relative size lower than εγ .

Lemma 35. Let G = (V,E), let A,B ⊆ V such that E(A,B) = ∅, and |B| ≤ εγ |V |. There
exists S ⊆

(
V
2

)
of minimal size such that G∪S = (V,E ∪S) is a γ-quasi-clique, verifying that

B is a clique of G ∪ S.

Proof. (Lemma 35) Let G = (V,E), A,B, S ⊆
(
V
2

)
of minimal size such that G∪S = (V,E∪S)

is a γ-quasi-clique and dγ = ⌈γ(|V | − 1)⌉ the required degree. Let ε = |B|
|V | ≤ εγ . Let’s construct

S′ another solution such that B is a clique of G ∪ S′ = (V,E ∪ S′).
We start with S′ = S and we apply Rules 1.2 and 1.4 from the proof of Lemma 10 labeled

here Rule 2.1 and Rule 2.2. We also assume that Rule 2.2 is applied only if Rule 2.1 cannot be
applied anywhere. Again these rules only concerns edges of S′ between A and B. These edges
are denoted e = {a, b} with a ∈ A and b ∈ B, if either a or b already exists in the context we
use instead a′, a′′, ... and b′, b′′, The degrees and neighbors are also always consider with
respect to the graph G ∪ S′ = (V,E ∪ S′).

Rule 2.1: If there are a, b, b′ such that {a, b} ∈ S′ and {b, b′} /∈ E ∪S′ and d(a) ≥ dγ +1 then
we can replace {a, b} by {b, b′} as in Figure 10.

Rule 2.2: If there are a, a′ and b, b′ such that {a, b} ∈ S′, {a′, b′} ∈ S′, {a, a′} /∈ E ∪ S′,
{b, b′} /∈ E ∪ S′. Then we can replace {a, b} and {a′, b′} by {a, a′} and {b, b′} as in
Figure 11.

Before applying the rules, since we start with S′ = S, it holds that G∪S′ is a γ-quasi-clique
and thus the degree of vertices are all greater than dγ . When applying the rules the degree

18

A B

b′
a b

︸ ︷︷ ︸
≥ dγ

=⇒ A B

b′
a b

︸ ︷︷ ︸
≥ dγ

Figure 10: Application of Rule 2.1.

A B

a

a′

b

b′

=⇒ A B

a

a′

b

b′

Figure 11: Application of Rule 2.2.

of each vertex either increases, stays constant or stays greater than dγ . Hence, after applying
the rules, each vertex has a degree still greater than dγ and G ∪ S′ is still a γ-quasi-clique.

Let’s now prove that, if these rules cannot be applied then B is a clique of G∪S′. Let assume
the opposite, let b, b′ be two vertices in B such that {b, b′} /∈ E ∪ S′, let A1 = NA(b) ∪NA(b

′)
and A2 = A \A1. We note nA = |A|, nB = |B|, nA1 = |A1| and nA2 = |A2|.

b

b′

A1︷ ︸︸ ︷

A2

︸ ︷︷ ︸
≤ dγnB edges

B \ {b, b′}

Figure 12: State of the graph after applying the rules exhaustively in the case where B is not
a clique.

We present here a few useful properties that describe the state of the graph G ∪ S′ after
applying Rules 2.1 and 2.2. Figure 12 presents an overview of these properties.

• NA(b) ∩NA(b
′) ̸= ∅. Indeed, thanks to Lemma 7, the number of common neighbors of b

and b′ is at least (2γ − 1)(|V | − 1) > nB, so they share at least a neighbor in A.

• Let a ∈ NA(b) ∩NA(b
′), a is linked to every other element of A1 otherwise Rule 2 could

be applied.

• |A1| < dγ . Indeed, if for a ∈ NA(b) ∩ NA(b
′) it holds that a has at least |A1| − 1 + 2

neighbors: all A1 except a itself, b and b′. Also, d(a) = dγ otherwise Rule 2.1 could be
applied.

• Let a ∈ A1, dA1(a) ≥ dγ − nB. Indeed, if a ∈ NA(b), then a must be link to all NA(b
′)

otherwise Rule 2.2 could be applied. Also, |NA(b
′)| = d(b′)− dB(b

′) ≥ dγ − nB + 2.

19

• The elements of A1 have exactly dγ neighbors in total otherwise Rule 2.1 could be applied.
Hence they have at most nB neighbors in A2. Also, |A1| ≤ dγ . Thus, there are at most
dγnB edges between A1 and A2.

• For an element of A2, the average number of neighbors in A1 is lower than: dγnB

nA2
. Let

a ∈ A2 such that: dA1(a) ≤
dγnB

nA2
. It holds that a has strictly less than dγ neighbors in

total. Indeed, note that:

– nA = (1− ε)n,

– nA1 ≥ dγ − nB ≥ γ(n− 1)− εn,

– nA1 ≤ γ(n− 1),

– nA2 = |A| − nA1 ≤ (1− γ)n+ γ

– nA2 ≥ (1− γ − ε)n.

So,

d(a) ≤ dA1(a) + dA2(a) + dB(a)

≤ dγnB

nA2

+ nA2 − 1 + nB

≤ n

(
γε

1− γ − ε
+ (1− γ) + ε

)
< γn ≤ dγ .

This contradicts the fact that G∪S′ is a γ-quasi-clique. Hence, B must be a clique of G∪S′.

Second, using the pigeonhole principle one can see that there is a finite number of disjoint
"regular" sets of vertices, i.e. not "small".

Remark 36. Given a set X, there are at most 1
εγ

disjoints sets X1, ..., X⌊ 1
εγ

⌋ such that:

Xi ⊆ X and |Xi| > εγ |X|.

Let’s note CC1, ..., CCr the connected components of G. The final γ-quasi-cliques are
denoted Q1, ..., Qp, as previously said the Qis form a partition of the CCℓs. Let pγ = ⌊ 1

εγ
⌋.

The idea is to represent each cluster using 2pγ + 1 sets of vertices which we call bags: two
for each "regular" set and one for the rest of the vertices. We want the bags to be always
"small" so that they can be completed into cliques and thus be represented only by their
number of vertices. For the "regular" sets of vertices we use two bags so that they can both
be "small" and form a "regular" set of vertices. In total we have to consider p(2pγ + 1) bags
labeled respectively (1, 1) for bag 1 of cluster 1 up to (p, 2pγ + 1) for bag 2pγ + 1 of cluster p.

We decompose the procedure into three algorithms. The first one is a branching algorithm
used to process the connected components of relative size greater than εγ . It sometimes
"guesses" values meaning in practice that it will create a new branch for each possibility. The
second one is a dynamic programming algorithm used to process the connected components
of relative size smaller or equal to εγ . The third one finalizes the computation.

Branching algorithm:

1. We start by guessing |Q1|, ..., |Qp| the size of the final γ-quasi-cliques.

2. For each final γ-quasi-cliques Qi we guess at most pγ connected components of G con-
tained in Qi and of size greater than εγ |Qi|.

20

3. For each component CC which has not been guessed during the previous step, we add
(for this branch only) all possible edges inside CC. We note κ0 the total number of edges
added this way.

Now, for each leaf of the branching tree, we design a dynamic programming algorithm.
This algorithm uses a table T with p× (2pγ +1) cells representing the bags. The values of the
cells vary from 0 to n. Let T = [[0, n]]p×(2pγ+1) be the set of all possible tables. Let’s describe
ω : T → [[0, n2]]∪{⊥} the weight function associating a table T with the corresponding number
of edges already added to the graph.

Dynamic programming algorithm:

1. We start with ω(0)(0p×(2pγ+1)) = κ0 and ω(0)(T) = ⊥ for all T ∈ T \ {0p×(2pγ+1)}, where
0p×(2pγ+1) represents the table containing only zeros.

2. For ℓ = 1 to r we create ω(ℓ) using ω(ℓ−1) and the following rules.

2.1 If CC(ℓ) is one of the components guessed at step 2 of the branch algorithm then
ωℓ = ωℓ−1.

2.2 Otherwise, for all (i, j) and all T ∈ T . Let T (i,j) be a copy of T except for cell
(i, j) which verifies T (i,j)[i, j] = T [i, j] − |CCℓ|. Let κ

(i,j)
ℓ = |CCℓ| × T (i,j)[i, j] be

the number of edge additions required to transform the union of two cliques of size
|CCℓ| and T (i,j)[i, j] into a single clique.

We set ω(ℓ)(T) = min 1≤i≤p
1≤j≤2pγ+1

(
ω(ℓ−1)(T (i,j)) + κ

(i,j)
ℓ

)
.

For the sake of clarity we only described here the general case. If some values are
out of bounds: for instance T (i,j)[i, j] < 0 or ω(ℓ−1)(T (i,j)) + κ

(i,j)
ℓ > n2, we replace

the corresponding value with ⊥. Also, when computing the minimum, we assume
that ∀q ∈ Z≥0,⊥ > q.

Let’s now see how to compute the optimal number of edge addition given ω = ωr.

Final checking algorithm:

1. For all table T , we must check first if T corresponds to a solution verifying the first guesses.
Hence, if for some 1 ≤ i ≤ p, T [i, j] > ε|Qi| , or if T [i, 1] + ...+ T [i, 2pγ + 1] ̸= |Qi| − ti,
where ti is the total size of the components guess for Qi at step 2 of the Branching
algorithm. Then, we update ω: ω(T) = ⊥.

2. Now, for all T such that ω(T) ̸= ⊥. We create a graph GT corresponding to the table
T and the guesses, i.e. a union of the components guessed at step 2 of the Branching
algorithm and a clique of size T [i, j] for each cell (i, j). Using Corollary 17 we compute
κ′ the optimal number of edge additions required to transform the Qis into γ-quasi-
cliques. The total number of edge additions corresponding to T and the current branch
is ω(T) + κ′.

3. The optimal number of edge additions required to transform G into a γ-cluster graph
with exactly p connected components is the minimal value on all the branches.

Let’s now evaluate the total time-complexity of these algorithms. First, there are less than
np ·n(p+1)pγ = nO(1) possibilities for the guesses. Hence, the Branching algorithm creates nO(1)

branches. Then, the Dynamic programming algorithm processes r times |T | tables. Hence,
this algorithm runs in time r× (n+1)p×(2pγ+1) = nO(1). Finally, the Checking algorithm uses
|T | times Corollary 17, hence it also runs in nO(1). Thus, the total complexity of the process
is polynomial in n.

21

4 Parameterized Complexity

Thanks to the previous section we know that the γ-Cluster Deletion and the γ-Cluster
Editing problems are NP-complete. In order to provide an efficient algorithm for these
problems, we consider them with regard to the parameterized complexity point of view. We
choose k, the size of the solution as parameter. This parameter is usually the most natural one
when studying optimization problems, also such parameterization has already given interesting
results on the classical Cluster Deletion and Cluster Editing problems with several
FPT algorithms and kernalizations [5, 10]. When parameterized by k, it is trivial that these
problems are XP. Indeed the brute-force algorithm which tries every S ⊆

(
V
2

)
of size k runs in

time n2k+O(1). In this section we provide FPT algorithms solving the γ-Cluster Deletion
problem and the γ-Cluster Editing problem.

Note that when solving the γ-Cluster Deletion problem, edges are never added and
thus disconnected vertices always remain disconnected. Hence, the problem can be solved inde-
pendently on the connected components. The same result holds for the γ-Cluster Editing
problem and is a consequence of Corollary 12.

The idea behind the algorithms for the γ-Cluster Deletion problem and the γ-Cluster
Editing problem is based on Lemmas 7 and 8 presented earlier in Section 2. First using
Lemma 7 we show how to restrain ourselves to graph with connected components of diameter
2. Then, using the definition of a γ-quasi-clique and Lemma 8 we show how to handle connected
components of size unbounded by f(k) for some function f . Since connected components of
size ≤ f(k) can be solved in FPT time by a brute-force algorithm, all the possible cases are
covered and we obtain a general FPT algorithm.

4.1 γ-Cluster Deletion

Theorem 37. The γ-Cluster Deletion problem can be solved in time 2k log(2k) · nO(1).

Proof. (Theorem 37) Without loss of generality we assume that k ≥ 2. The algorithm is a
search tree algorithm based on the following rules. When applying the rules we sometimes
"try" to remove edges meaning that the algorithm creates a new branch for each possibility,
removing the corresponding edges and updating k accordingly. Let G = (V,E) be a graph
and k be an integer representing the number of edge deletions.

Rule 3.1: If there exist two vertices u, x ∈ V such that distG(u, x) = 3. Then, for any solution
S of the γ-Cluster Deletion problem on G, it holds that u and x are not contained
in the same γ-quasi-clique of G \ S = (V,E \ S). Hence, we can try to delete each one of
the three edges on the shortest path between u and x, as shown in Figure 13, and update
the value of k: k ← k − 1.

u
v

w
x =⇒

=⇒

=⇒

u
v

w
x

u
v

w
x

u
v

w
x

Figure 13: Application of Rule 3.1.

Note that if there exist two vertices u, x ∈ V , in the same connected component of G, such
that distG(u, x) > 3. Then, on the shortest path between u and x one can find a vertex y
such that distG(u, y) = 3 and Rule 3.1 could be applied. Hence, if Rule 3.1 cannot be applied
then, the diameter of the connected components of G is always at most 2.

22

Rule 3.2: If there is CC ⊆ V a connected component of G such that CC is a γ-quasi-clique
then, we can remove the vertices of CC and solve the problem on G[V \ CC].

If CC a connected component of G is not a γ-quasi-clique. Then, it holds that u, the vertex
of minimal degree in CC, has a degree strictly lower than γ(|CC| − 1). Conversely, if CC is a
connected component of G and u is the vertex of minimal degree in CC and |CC| ≥ ⌊ 1γd(u)⌋+2,
then CC is not a γ-quasi-clique (cf. Remark 6).

Rule 3.3: If there is CC a connected component of G and u the vertex of minimal degree in
CC such that d(u) ≤ k. Then, let C ⊆ CC of size |C| = ⌊ 1γd(u)⌋ + 2 such that u ∈ C
and G[C] is connected. For any solution, it holds that u cannot remain connected to all
C. Hence, for T a spanning tree of G[C] we can try to delete any edge of T , as shown in
Figure 14, and update k: k ← k − 1. Note that |C| < 2k + 2, since d(u) ≤ k and γ > 1

2 .

u

︸︷︷︸
≤k

T

u =⇒
=⇒

=⇒

uu

uu

Figure 14: Application of Rule 3.3.

Let’s assume that G and k are such that Rules 3.1, 3.2 and 3.3 cannot be applied. Let CC be
a connected component of G. It holds that diam(G[CC]) ≤ 2, G[CC] is not a γ-quasi-clique
and δ(G[CC]) ≥ k + 1. Hence, G[CC] is not a γ-quasi-clique and is (k + 1)-edge connected
thanks to Lemma 8. So even after removing k edges G[CC] is connected, thus the γ-Cluster
Deletion problem on G with k deletions has no solution.

Let’s now evaluate the running time of this process. Assuming Rule 3.1 is executed i times
and Rule 3.3 is executed j times. Since each spanning tree T has at most 2k + 1 nodes and
2k edges, the overall complexity can be expressed as : 3i · (2k)j · nO(1). Also each time Rule
3.1 or 3.3 is executed an edge is deleted, hence i+ j ≤ k. Thus, this process can be executed
in 2k log(2k) · nO(1).

4.2 γ-Cluster Editing

Theorem 38. The γ −Cluster Editing problem can be solved in time 2O(k log k) · nO(1).

Proof. (Theorem 38) The FPT algorithm used for this problem is actually very similar to the
one used for the γ-Cluster Deletion problem. Again, trying to remove edges means that
we create a new branch for every possibility. However, since edges can be added to G, the
restriction to connected components of diameter lower than 2 cannot be done as easily and
require the full use of Lemma 7.

23

Let ε = γ− 1
2 > 0. For any given graph G and any given Q, γ-quasi-clique of G, Lemma 7

ensures that:
∀u, v ∈ Q, |NQ(u) ∩NQ(v)| ≥ 2ε (|Q| − 1).

Let G = (V,E) be a graph and k be an integer. The algorithm proceeds as follows.

Rule 4.1: If there exist two vertices u, v ∈ V such that distG(u, v) = 3. Let CC be the
connected component of G containing u and v.

(a) If |CC| ≤ 1
2εk + 1 we can solved this component with the brute-force algorithm in

(1
2εk)

2k and then removed from G.

Assuming that (a) cannot be applied, |CC| ≥ ⌈ 1
2εk⌉+ 2. Let S be an optimal solution.

(b) If u, v are not in the same γ-quasi-clique of G∆S = (V,E∆S), then S contains one
of the three edges on the shortest path between u and v.

(c) Else, u, v are in the same γ-quasi-clique of G∆S, let’s note it Q. It holds that
|N(G∆S)[Q](u) ∩ N(G∆S)[Q](v)| ≥ 2ε (|Q| − 1) and since distG(u, v) = 3, |NG(u) ∩
NG(v)| = 0. So S contains at least 2ε (|Q| − 1) edges with an endpoint being u or
v. Hence, k ≥ |S| ≥ 2ε (|Q| − 1) and |Q| ≤ 1

2εk + 1. In this case, let C ⊆ CC be a
set of vertices such that G[C] is connected, C contains u and |C| = ⌈ 1

2εk⌉ + 2. Let
T be a spanning tree of G[C]. C cannot remain connected in G∆S, thus S contains
at least an edge of T .

We combine cases (b) and (c) by trying to remove successively one of the following edges:
{u,w}, {w,w′}, {w′, v} or one of the edges of E(T), where (u,w,w′, v) is the shortest
path between u and v. Also we update k: k ← k − 1.

As previously, if Rule 4.1 cannot be applied then the connected components of G all have
a diameter lower than 2.

Rule 4.2: If there exists CC a connected component of G such that |CC| ≤ 4k then this
component can be solved using the brute-force algorithm in (4k)2k and then removed
from G.

Rule 4.3: If there exists CC a connected component of G such that |CC| ≥ 4k + 1 and u
the vertex of minimal degree in CC verifies dG(u) ≤ k. Then, for any optimal solution
S it holds that dG∆S(u) ≤ 2k. So, with respect to the solution S, Q, the γ-quasi-clique
of G∆S containing u, contains at most 1

γ 2k + 1 < 4k + 1 vertices. Again, for C ⊆ CC
such that G[C] is connected, |C| = 4k + 1, C contains u and T a spanning tree of G[C],
we can try to remove every edge of T and update k: k ← k − 1.

Rule 4.4: If there exists CC a connected component of G such that u the vertex of minimal
degree in CC verifies dG(u) ≥ k + 1. Then, CC is (k + 1)-edge-connected, thus it is
pointless to remove edges inside CC. So CC is a γ-quasi-clique of G∆S and is only
missing edges in G. Thus, we process CC by solving the γ-Cluster Completion
problem on G[CC]. We then update k and remove CC from G.

Let’s now evaluate the running time of this process. Each Rule can be applied in time
2O(k log k) · nO(1) and/or create a number of branches lower than O(k). Thus, the total time
complexity can be expressed as : 2O(k log k) · nO(1).

24

4.3 Fixed number of clusters

In the section we provide FPT algorithms for both the (γ, p)-Cluster Deletion and the
(γ, p)-Cluster Editing problems. These algorithms are actually really similar to the ones
previously presented and use most of the same rules.

Theorem 39. For p ≥ 2 the (γ, p)-Cluster Deletion problem can be solved in time
2O(k log k) · nO(1).

Proof. (Theorem 39) Let G = (V,E) be a graph and k be an integer. We apply Rules 3.1 and
3.3 from the proof of Theorem 37 as much as possible. After applying these rules let’s note
CC1, ..., CCr the connected components of G. We know that diam(G[CCi]) ≤ 2 and the CCi

either is a γ-quasi-clique or is not and is (k + 1)-edge connected. Several cases are possible.

• If there exist CCi such that CCi is not a γ-quasi-clique and is (k + 1)-edge-connected
then (G, k) is a no-instance.

Hence, let’s assume that all connected components are γ-quasi-cliques. Note that if |CCi| ≥
1
γ (k+ 1)+ 1 then δ(G[CCi]) ≥ γ(|CCi| − 1) ≥ k+ 1 and thus, CCi is (k+ 1)-edge-connected.
Let’s also assume without loss of generality that the first r′ ones are not (k+1)-edge connected
and are of size ≤ 1

γ (k + 1) + 1.

• If r > p then (G, k) is a no-instance. Indeed, when deleting edges the number of connected
components can only increase.

• If the previous cases do not hold then r′ ≤ p and |CC1∪· · ·∪CCr′ | ≤ 1
γ (k+1)p ≤ (2k+2)p.

So, each possible solution S of size at most k on G[CC1∪ · · ·∪CCr′] can be tried in time
((2k+2)p)2k ·nO(1) using the brute-force algorithm. If one of these solutions verifies that
the solution graph G \ S has exactly p connected components which are γ-quasi-clique,
then (G, k) is a yes-instance otherwise it is a no-instance.

The total complexity of this process is 2O(k log k) · nO(1).

Theorem 40. For p ≥ 2 the (γ, p)-Cluster Editing problem can be solved in time 2O(k log k) ·
nO(1).

Proof. (Theorem 40) Let G = (V,E) be a graph and k be an integer. We apply Rule 4.1.b,
Rule 4.3.c and Rule 3 from the proof of Theorem 38 as much as possible. After applying these
rules let’s note CC1, ..., CCr the connected components of G. Note that if r > k + p, then
there are no solution. Indeed, adding an edge can only decrease the number of connected
components by one. Let A = max(1

2ε , 4) . We know that each connected component CCi

verifies:

• |CCi| ≤ 1
2εk + 1 or diam(G[CCi]) ≤ 2,

• |CCi| ≤ 4k or δ(G[CCi]) ≥ k + 1.

Hence, for CCi either |CCi| ≤ Ak + 1 or CCi is (k + 1)-edge connected. Without loss of
generality we assume that the first r′ connected components are not (k + 1)-edge-connected
and the following ones are. Note that it is pointless to remove edges inside a (k + 1)-edge-
connected set of vertices. Also, |CC1 ∪ · · · ∪ CCr′ | ≤ (Ak + 1)(k + p). Hence, we can try
every possible edge deletion set S1 of size at most k on G[CC1∪· · ·∪CCr′] using a brute-force
algorithm in time 2O(k log k). Then, we solve the (γ, p)-Cluster Completion problem on
G \ S1 in polynomial time.

The total complexity of this process is 2O(k log k) · nO(1).

25

5 Conclusion

In this paper, we introduce and study a relaxation of the clustering problems which we call
the γ-clustering problems. In these problems the relaxation is made on the clusters where the
clique constraint is replaced with γ-quasi-cliques. For γ > 1

2 , we prove that the γ-Cluster
Deletion and γ-Cluster Editing problems are NP-complete while the γ-Cluster Com-
pletion problem is solvable in polynomial time. We also provide FPT algorithms parameter-
ized by k, the size of the solution, for the two NP-complete problems. Finally, we also study
variants of the γ-clustering problems, called the (γ, p)-clustering problems, where the number
of final clusters must be a fixed constant p. We obtain similar complexity and parameterized
complexity with these problems.

Future works on the γ-clustering problems could look at other approaches such as ap-
proximations or betterment of our results such as kernalizations. Finally, the study of similar
problems with other relaxations of cliques such as density-based quasi-cliques or s-plexes could
be interesting, revealing new similarities and differences between these concepts.

Acknowledgment: This work is partially funded by Agence Nationale de la Recherche
under grant ANR-20-CE23-0002.

References

[1] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. pages 238 – 247,
2002.

[2] Ambroise Baril, Riccardo Dondi, and Mohammad Mehdi Hosseinzadeh. Hardness and
tractability of the γ-complete subgraph problem. Information Processing Letters, page
106105, 2021.

[3] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns.
Journal of Computational Biology, pages 281 – 297, 1999.

[4] Mauro Brunato, Holger H. Hoos, and Roberto Battiti. On effectively finding maximal
quasi-cliques in graphs. In Learning and Intelligent Optimization, pages 41 – 55, 2008.

[5] Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorith-
mica, pages 152 – 169, 2012.

[6] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, pages 360 – 383, 2005.

[7] Jeffrey Dean and Monika R Henzinger. Finding related pages in the world wide web.
Computer Networks, pages 1467 – 1479, 1999.

[8] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified np-
complete graph problems. Theoretical Computer Science, pages 237 – 267, 1976.

[9] Michelle Girvan and Mark E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, pages 7821 – 7826, 2002.

[10] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clus-
tering: Fixed-parameter algorithms for clique generation. In Algorithms and Complexity,
pages 108 – 119, 2003.

[11] Pinar Heggernes, Daniel Lokshtanov, Jesper Nederlof, Christophe Paul, and Jan Arne
Telle. Generalized graph clustering: Recognizing (p, q)-cluster graphs. In Graph Theoretic
Concepts in Computer Science, pages 171 – 183, 2010.

26

[12] Christian Komusiewicz. Multivariate algorithmics for finding cohesive subnetworks. Al-
gorithms, page 21, 2016.

[13] Daniel Lokshtanov and Dániel Marx. Clustering with local restrictions. Information and
Computation, pages 278 – 292, 2017.

[14] Grigory Pastukhov, Alexander Veremyev, Vladimir Boginski, and Oleg Prokopyev. On
maximum degree-based γ-quasi-clique problem: Complexity and exact approaches. Net-
works, pages 244 – 257, 2017.

[15] Jeffrey Pattillo, Alexander Veremyev, Sergiy Butenko, and Vladimir Boginski. On the
maximum quasi-clique problem. Discrete Applied Mathematics, pages 244 – 257, 2013.

[16] Seyed-Vahid Sanei-Mehri, Apurba Das, and Srikanta Tirthapura. Enumerating top-k
quasi-cliques. In 2018 IEEE International Conference on Big Data (Big Data), pages
1107 – 1112, 2018.

[17] Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Dis-
crete Applied Mathematics, pages 173 – 182, 2004.

[18] Yossi Shiloach. Another look at the degree constrained subgraph problem. Information
Processing Letters, pages 89 – 92, 1981.

[19] Victor Spirin and Leonid A. Mirny. Protein complexes and functional modules in molec-
ular networks. In Proceedings of the national Academy of sciences, pages 12123 – 12128,
2003.

[20] Takeaki Uno. An efficient algorithm for enumerating pseudo cliques. In Proceedings of the
18th International Conference on Algorithms and Computation, pages 402 – 414, 2007.

27

	Introduction
	Preliminaries
	Classical Complexity
	-Cluster Completion
	-Cluster Deletion and -Cluster Editing
	Fixed number of clusters

	Parameterized Complexity
	-Cluster Deletion
	-Cluster Editing
	Fixed number of clusters

	Conclusion

