

Mechanochemical cleavage of wheat lignin into a more homogeneous fraction

Nadja Cachet, Pierre Lavedan, Michel Baltas, Bouchra Benjelloun-Mlayah

► To cite this version:

Nadja Cachet, Pierre Lavedan, Michel Baltas, Bouchra Benjelloun-Mlayah. Mechanochemical cleavage of wheat lignin into a more homogeneous fraction. Industrial Crops and Products, 2024, 221, pp.119321. 10.1016/j.indcrop.2024.119321. hal-04693246

HAL Id: hal-04693246 https://hal.science/hal-04693246v1

Submitted on 11 Sep 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Mechanochemical cleavage of wheat lignin into a more homogeneous

2 **fraction**

- 3 Nadja Cachet^{1,3}, Pierre Lavedan², Michel Baltas^{3*}, Bouchra Benjelloun-Mlayah^{1*}
- 4

¹ CIMV, 109 rue Jean Bart, Diapason A, F-31670 Labège, France

- ² Institut de Chimie de Toulouse, UAR 2599, 118 Route de Narbonne, Toulouse Cedex
 09, 31062, France
- ³ CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS,
- 9 205 Route de Narbonne, BP 44099, Cedex 4, 31077 Toulouse, France
- 10 * Corresponding authors Email: michel.baltas@lcc-toulouse.fr; b.benjelloun@cimv.fr

11

12 ABSTRACT

Lignin, the second most abundant biopolymer in earth, represents nature's largest 13 carbon sources, has high polydispersity and uncertain reactivity, that limit efficient 14 modification/degradation and use of products obtained. In order to decrease by 15 mechanochemical means the average molecular mass and polydispersity of lignin 16 fragments of the CIMV organosolv lignin named BioligninTM, we applied a sodium 17 hydroxide-assisted planetary ball milling process. Experimental conditions were first 18 optimized on purified BioligninTM then to BioligninTM without prior purification in 20ml 19 jars before applying it successfully to a 500 ml planetary ball milling apparatus. 20 21 Extensive, quantitative HSQC NMR, IR and GPC studies, overtaken supported our three most important findings: reduction of the needed quantity of sodium hydroxide of 22 75% compared to the literature, obtention of halve (-51%) the occurrence of β -O-4' 23

linkages in lignin fragment, an optimum of 14 wt% of moisture is useful in thedegradation process.

Keywords: organosolv lignin degradation, mechanical milling, β-O-4-linkages cleavage
 27

28 **1. Introduction**

29 Lignin, the second most abundant biopolymer in earth after cellulose, represents nature's largest carbon sources with an annual production of about 20 billion tons. In 30 31 contrast to cellulose and hemicellulose, lignin is highly branched heterogenous 32 polyphenolic material, without a recurring structural unit in the biomass. In that respect, lignin has high polydispersity and consequently uncertain reactivity, two important 33 34 factors that limit efficient modification/degradation and use of products obtained. Mechanical energy and mechanochemistry, besides the fact that allowed the 35 development of sustainable and efficient chemical transformations by promoting the 36 formation of new bonds and non-covalent interactions, has also demonstrated its 37 potential in the selective cleavage of specific chemical bonds. 38 39 Lignins can be obtained by various methods resulting in different characteristics. 40 Technical ligning mainly gathered kraft, sulphite, soda-anthaquinone and organosoly lignins. Organosolv lignins are the most recent and promising ones. Organosolv 41 42 processes are considered to be the most efficient and environmentally friendly way to 43 extract lignin from biomass. It allows the obtention of lignin with a relatively lower 44 molecular weight and more homogeneous fragments resulting a lower polydispersity 45 compared to others technical lignins. However, even these more homogeneous lignins are still suitable for direct use to a limited extent. 46

47 The valorisation of lignins in the era of green and environmental preserved world, generated a tremendous activity in fundamental (and consequently industrial) research 48 49 during the last two decades. The quest for lignin derived chemical platforms (low molecular mass compounds and essentially monomers), oriented important work on 50 homogenous, heterogenous catalysis, use of alternative solvents, and thermochemical, 51 52 oxidative, photocatalytic or biochemical depolymerization methods (Zhou et al. 2022 and Sun et al. 2018 and references therein). Usually, each method is associated with its 53 54 own benefits and drawbacks; it is also important to point out that each kind of lignin is unique (purity, dispersity, molecular weight...) so each method should be adapted to the 55 lignin studied. Oxidative depolymerization of lignin is one of the most studied aspects 56 57 (Abdelaziz et al. 2022). Some ten years ago, mechanochemistry entered in the field of lignin degradation. In 58 2013, Kleine et al. reported a pioneering work on the lignin depolymerization via 59 mechanochemical grinding and in the presence of solid bases (Kleine et al. 2013). 60 Mechanochemical oxidative processing is also reported since the last decade by many 61 authors. As an example, the mechanochemical oxidation and cleavage of the β -O-4 in 62 lignin systems has been reported in the presence of catalytic amounts of HO-63 64 TEMPO/KBr/Oxone, resulting in monomeric products efficiently in order to be applied in upscale batch reactions (Dabral et al. 2018). Very recently, a novel mechano-65 66 enzymatic strategy was developed (Xu et al. 2023) for lignin depolymerization leading 67 into functional aromatic monomers considered as high value chemicals for pharmaceutical, material and energy industries. 68

69	Also, very recently, surface modification of a kraft lignin by grinding with sodium
70	percarbonate and sodium hydroxide as an oxidant can lead to reduction in
71	polydispersity and improved water adsorption (Fink et al. 2023).
72	
73	The aim of our study concerns a specific organosolv lignin named Biolignin TM
74	The objective of this work is to halve the average molecular weight lignin fragments of
75	Biolignin TM without highly modifying its functional groups content in order to avoid
76	any decrease of its reactivity and to enhance its ability to substitute phenol or polyols in
77	various industrial applications.
78	Indeed, in some applications in which Biolignin TM was used as the substitute of
79	petrochemical molecules (phenol, PEG) (Tachon et al., 2016; Llovera et al., 2016), the
80	limiting factor of the substitution might be the molecular mass of lignin fragments.
81	Lignin fragments are not totally linear and reactive groups such as phenolic and
82	aliphatic OH, could be sterically shielded, affecting the global reactivity of lignin.
83	Decreasing the length of lignin fragment might enhance the accessibility of such
84	functional groups for further coupling reactions.
85	2. Materials and methods
86	2.1.Extraction and solvent fractionation of the organosolv lignin
87	The organosolv lignin studied below is named Biolignin TM . Biolignin TM was extracted
88	at pilot scale from wheat straw at the CIMV pilot plant (Compiègne, France). The
89	CIMV organosolv process consists in a fractionation of lignocellulosic materials thanks
90	to a mixture of acetic acid/formic acid/water (55:30:15, w/w/w) during 3.5 hours at
91	105°C and at atmospheric pressure. The lignin is separated from the extraction liquor by
92	adding water to the concentrated liquor to induce its precipitation. It is finally recovered

by filtrating the above liquid suspension (Figure 1) (Benjelloun-Mlayah and Delmas2019).

95 [Figure 1]

96 In order to increase the lignin content (increase the purity) and to decrease the

97 polydispersity of lignin fragments, the BioligninTM was sequentially fractionated with

98 diethyl ether (99.7% stabilized with ~6 ppm of BHT, PanReac), dichloromethane

99 (99.8% stabilized with ~20 ppm of amylene, PanReac) and methanol (99.9% UV-IR-

100 HPLC-GPC Grade, PanReac) as illustrated in Figure 2. This purification was previously

101 developed by the CIMV research group in order to obtain a purified BioligninTM, highly

102 concentrated in similar lignin fragments and gathered nearly 50% (w/w) of

103 unfractionated BioligninTM (unpublished results).

104 Before fractionation, the BioligninTM was dried at 50°C in a drying oven, until obtaining

at least 96% of Dry Matter (DM). The dry BioligninTM was then grounded in a ceramic

106 mortar to enhance its contact surface.

107 [Figure 2]

108 An amount (100g) of dried and grounded BioligninTM was introduced in a 2L-

109 cylindrical reactor equipped of a frit $n^{\circ}3$ (pore size: 16-40 μ m). Then, 500 mL of the

respective solvent was added and the mixture was mechanically stirred during 1 hour at

111 room temperature. After removing the solvent by pumping through the frit, 500 mL of

the identical fresh solvent was added and the mixture stirred during 1 hour. This

113 procedure was repeated several times until the majority of the soluble molecules seemed

to be eluted (final filtrate nearly colorless). The next solvent was then added to the

115 remaining BioligninTM sample and the same procedure was applied.

116	All the filtrates of each solvent were combined and evaporated under reduced pressure
117	to obtain the three global fractions: F1 (6.4% ± 0.5 w/w), F2 (16.2% ± 1.2 w/w) and
118	Purified Biolignin TM (48.4% ± 2.2 w/w). The insoluble residue (29.0% ± 2.7 w/w) was
119	composed of the remaining solid residue after methanol elution. F1 was recovered as a
120	brown-yellow sticky residue, F2 as brown-yellow flakes and Purified Biolignin TM as
121	sparkled black flakes.
122	
123	2.2. $Biolignin^{TM}$ content analyses
124	2.2.1. Ash content
125	Ash content was determined by the combustion of 1g of accurately weighted sample
126	(accuracy: 10 ⁻⁴) with a known moisture content. The sample was placed in an oven at
127	600°C during 24h. The weight of ash remaining was calculated as a percentage of the
128	original dry weight of sample. At least two measurements were done on each sample.
129	
130	2.2.2. Elemental analysis and proteins content
131	Elemental analyses were performed on a PerkinElmer 2400 Series II CHNS/O
132	Elemental Analyzer. 2.0 mg (+/- 0.5mg) of sample were weighed. Only C, H and N
133	elements were analyzed. The proteins content was deduced from the % of N using the
134	nitrogen-to-protein conversion factor (5.4 for wheat straw, Marriotti et al. 2008). At
135	least two measurements were done on each sample.
136	
137	2.2.3. Cellulose and hemicellulose content in lignin
138	Residual cellulose and hemicellulose contents of lignin fractions were determined based
139	on NREL method (Sluiter et al. 2008): The glucose and xylose contained in the fraction

140	were quantified by HPLC, after chemical hydrolysis. The hydrolysis was conducted in 2
141	steps: 0.2 g of dry lignin sample was powdered in 1.6 ml of H_2SO_4 72% (12 M) and
142	stirred at room temperature overnight, followed by stirring at 30°C for 1 hour. For the
143	second step, 22.4 g of distilled water was added and the mixture was maintained at
144	120°C for 1 hour.

- 145 Then, the samples were cooled at room temperature before their analysis by HPLC for
- sugars quantification. The following HPLC conditions were used: Eluent: H₂SO₄ 0.005
- 147 M; Flow rate: 0.6 ml/min; Column Hi-Plex H column (300 x 7.7 mm), temperature
- 148 80°C; Detector Refractometer, temperature 50°C. At least two measurements were done
 149 on each sample.
- 150
- 151 2.2.4. Infrared spectroscopic analyses

152 Infrared analyses were conducted with an attenuated total reflectance system (ATR) on

- a PerkinElmer Spectrum 100 Universal ATR-FTIR instrument equipped with a
- diamond/ZnSe crystal single reflection. 10 mg of dried sample were placed on the

155 crystal plate on which a constant pressure of 85 N/mm² was applied. Each spectrum was

obtained after 8 scans at a resolution of 4 cm⁻¹. At least two measurements were done on
each sample.

158

159 2.2.5. Gel Permeation Chromatography (GPC)

160 The molecular-average weights of samples were determined by Gel Permeation

- 161 Chromatography (GPC). GPC analyses were carried out on a Water 1515 Isocratic
- 162 HPLC Pump equipped with a Water 2414 Refractive Index Detector. Three stainless
- 163 steel columns (Phenomenex, Phenogel. $300 \times 7.8 \text{ mm}$. $5 \mu \text{m}$) connected in series and

164	packed with a styrene-divinylbenzene copolymer of porosity 100, 500 and 10^3 Å,
165	respectively, were used. The following operating conditions were employed: Eluent,
166	THF (Panreac, UV-IR-HPLC-GPC Grade); temperature, 38°C; sample concentration,
167	5 mg/mL; injection volume, 20 μ L; flow rate, 0.8 mL/min. Polystyrene (PS) standards
168	used for the GPC calibration curve have a molecular weight of: 4910, 3180, 2590, 2170,
169	1530, 990, 770, 580 and 380 Da. The standards concentration in THF was set at
170	2 mg/mL.
171	The samples were injected without prior derivatization. To limit the presence of
172	insoluble particles in the injected samples, they were previously dissolved in a mixture
173	of 1,4-Dioxane/Methanol (1:1, v/v), (Panreac, UV-IR-HPLC Grade) to reach a
174	concentration of 40 mg/mL. When necessary (samples degraded by NaOH), the samples
175	were neutralized by addition of hydrochloric acid in an amount equivalent to the sodium
176	hydroxide. The solution was then diluted with THF (HPLC Grade) to obtain a final
177	concentration of 10 mg/mL. The solution was then filtrated through a 0.45 μm
178	membrane before analysis. At least two measurements were done on each sample. The
179	molecular weight of lignin was quantified relative to polystyrene standards and was
180	therefore not absolute. M_n represent the number average Molecular weight, M_w , the
181	weight average molecular weight and I the polydispersity index of the polymer
182	$(I=M_w/M_n).$

184 2.2.6. *Quantitative* ³¹*P NMR*

185 Hydroxyl groups and aromatic carboxylic acids of lignin samples were quantified by

³¹P-NMR. Each sample was phosphitylated with 2-Chloro-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholane (95%, Sigma Aldrich, St. Louis, MO, USA). For these experiments,

188	endo-N-hydroxy-5-norbornene-2,3-dicarboximide (97%, Sigma Aldrich, St. Louis, MO
189	USA) was selected as the internal standard. The whole experimental procedure is
190	described by Cachet and Benjelloun-Mlayah (2021). At least two measurements were
191	done on each sample.

193 $2.2.7. {}^{1}H^{-13}C 2D$ -NMR experiments

194 NMR experiments were performed at 25°C on a Bruker Advance 500 MHz

spectrometer equipped with a 5 mm gradient cryoprobe with inverse geometry (5 mm

196 CPTCI 1H-31P/13C Z-GRD Z44913/0001). 125 mg of each sample (without prior

197 derivatization) were dissolved in 750 μ L of DMSO-*d*₆. Chemical shifts (δ in ppm) are

referenced to the carbon ($\delta_{\rm C}$ 39.53 ppm) and the residual proton ($\delta_{\rm H}$ 2.50 ppm) signals of

199 DMSO-*d*₆ (99.8%D, Eurisotop, Saint Aubin, France)

200 The two-dimensional heteronuclear single quantum coherence (HSQC) - NMR

201 experiments were conducted using Bruker's "hsqcetgp" pulse with spectral widths of

202 6002 Hz (from 11.5 to -0.50 ppm) and 22638 Hz (from 175 to -5 ppm) for the ¹H- and

 13 C- dimension, respectively. The number of collection complex points was 1024 for the

 1 H- dimension with a recycle delay of 2 s. The number of transients was 16, and 1024

times increments were always recorded in the ${}^{13}C$ - dimension. The ${}^{1}J_{CH}$ used was 145

Hz. Processing used typical squared sine-bell apodization for the 1 H- and 13 C-

207 dimension. Prior to Fourier transformation, the data matrixes were zero-filled up to

208 1024 points in the 13 C- dimension.

209 The semi-quantitative analysis of the volume integrals (uncorrected) of the HSQC

correlation peaks was performed using MestRec 4.9.9.3 processing software. This

quantification was conducted following the procedure described by Wen *et al.* (2013)
and by Sette *et al.* (2011).

213

214 2.3. Mechanochemical reactions

Mechanochemical reactions were mainly inspired by the work of Brittain et al. (2018). 215 216 Ball-milling of lignin was performed in two ZrO₂ jars (20 mL) in parallel, at room temperature using a planetary Fritsch Pulverisette 7 Premium Line ball mill. The jars 217 218 were equipped with five milling balls each (10 mm diameter, ZrO₂). The ball-milling 219 was carried out at 800 rpm for 15 to 120 min. To avoid overheating at long milling times, the mill was stopped for 5 min after every 30 min of milling. The milling jars 220 were filled with crude or purified BioligninTM and sodium hydroxide powder (97%, 221 Sigma Aldrich, St Louis, MO, USA). The quantity of solid products in each jar was set 222 223 at 700 to 1000 mg according to the experiment. Preliminary experiments confirmed that no positive or negative effects were observed varying the quantity of solid products 224 from 700 mg to 1000 mg. The ratio of BioligninTM/NaOH was adjusted from 1:1 (w/w) 225 226 to 4:1 (w/w) according to the experiment. The samples were left to sit for 5 min-24 h before being prepared for molecular mass analysis in order to study the quenching effect 227 228 of the reaction. Each jar was analyzed separately by GPC in order to evaluate the 229 repeatability of the experiment. If the two results of a same experiment were too different (*i.e.* >10%), the experiment was repeated twice. The values reported on this 230 231 study are the average of the values obtained in experiments under the same conditions. 232 Before analyses, the grinded samples were neutralized by solubilization in water (50 233 mg/mL) and slowly adding dropwise concentrated HCl (37%, Pharma Grade, PanReac) in an amount equivalent to the sodium hydroxide used for the reaction. The pH value 234

was checked with pH test stripes (pH 1-14, ChemSolute) and adjusted if needed in order
to precipitate lignin. The medium was centrifuged (4000 RPM, 2x 15 min). The solid
lignin was then separated to the aqueous phase and washed 3 times with UHQ H₂O by
filtration on a frit n°3 (pore size: 16-40 µm). The final solid was dried at 50°C in a
drying oven during 24 hours.

Some experiments were assisted by a small amount of liquid in order to enhance the reactivity of the depolymerization. The amount of liquid was set in order to respect the conditions of Liquid-assisted grinding (LAG) empirically defined by the parameter η [η =V (liquid; μ L) / m (solid reagents; mg)]. LAG conditions are operating when values of η range 0–2 μ L/mg, the reaction appears independent of reactant solubility (Ying *et al.* 2021).

For ion scavenging tests, methanol (0.27μ L/mg of BioligninTM, η 0.22) was added to the 246 247 lignin/sodium hydroxide mixture in the milling jar. To investigate the influence of the moisture content, water was added to the milling jar to increase the total moisture 248 content in the sample from its original value of 4 wt% to the desired moisture content. 249 A control experiment was made milling *ca*. 700 mg of purified BioligninTM without 250 sodium hydroxide powder (97%, Sigma Aldrich, St Louis, MO, USA) in a 20 mL ZrO₂ 251 jar with five milling balls (10 mm diameter, ZrO2) during 120 min, with a 5 min stop 252 253 every 30 minutes to cool down the system.

To test the scale up of the reaction, ball-milling of lignin was performed in a Tungsten Carbide (WC) jar (500 mL) using a Retcsh PM 100 ball mill at room temperature. The jar was equipped with 10 or 20 milling balls according to the experiment (20 mm diameter, WC). The ball-milling was carried out at 650 rpm for 60 minutes. To avoid overheating at long milling times, the mill was stopped for 10 min after every 15 min of

259	milling. The milling jar was filled with $Biolignin^{TM}$ and sodium hydroxide powder. The
260	quantity of products was set at 21.0g \pm 0.5g. The ratio of Biolignin TM /Sodium
261	hydroxide was set at an equimolar ratio between C9-Unit (162g/ mol) and NaOH. The
262	influence of the moisture content was made by adding water to the milling jar to
263	increase the total moisture content in the sample from its original value of 4 wt% to the
264	desired moisture content.
265 266	3. Results and discussion
267	3.1. Extraction and fractionation of lignin from wheat straw
268	The mechanochemistry is a method of choice to obtain valuable products in a green
269	way. Thus, the more environmentally friendly production of organosolv lignins among
270	technical lignins, leads us to select this kind of lignin. Moreover, organosolv lignins are
271	composed of relatively homogeneous lignin fragments. Indeed, less energy will be
272	required to obtain more homogeneous fragments with a low average molecular weight
273	than if another technical lignin is used.
274	To obtain the organosolv lignin studied below, the wheat straw was treated at
275	atmospheric pressure with a mixture of organic acids (acetic acid and formic acid) and
276	water at 105°C during 3.5 hours (Benjelloun-Mlayah and Delmas 2019). These
277	conditions allowed the dissolution of lignin fragments and hemicelluloses in the acidic
278	media. After filtration to remove the solid part (cellulose fraction), the lignin was
279	precipitated and separated from the extraction liquor. The precipitated fraction mainly
280	composed of lignin, is named Biolignin TM and represents 27% (w/w, Dry Matter) of the
281	initial wheat straw.
282	The Biolignin TM was not entirely composed of lignin fragments. Some constituents of
283	wheat straw, like ashes, residual carbohydrates and proteins, were also precipitated with

lignin fragments during its separation from the extraction liquor. Table 1 summarizedand quantified these constituents (see experimental sections 2.2.1 to 2.2.3).

286 [Table 1]

As, showed in Table 2, lignin fragments of BioligninTM had restricted distribution

288 $(M_w/M_n < 2)$. However, this distribution and the impurities contained in the BioligninTM

fraction (Table 1) could have a negative influence for depolymerization/degradation of

290 lignin fragment by mechanochemistry. In literature, most of the time, the

291 depolymerization of lignin is optimized using synthetic lignin models (dimers or

trimers) before testing on natural lignin (Dabral et *al.* 2018, Sun et *al.* 2020, Xu et *al.*

2023). For the study below, a direct use of lignin fragments was chosen, driving the

experiments by previous works done on lignin models (Brittain et al. 2018, Dabral et al.

2018). However, to overcome the potential negative effects of impurities and lignin

fragments distribution, we proceeded to the fractionation of BioligninTM in order to

297 obtain a purified fraction with a narrower distribution. This purified fraction is

considered as a lignin model of the selected crude organosolv lignin.

299 [Table 2]

300 3.2. Purification of BioligninTM

301 The aim of the fractionation was to isolate a homogeneous lignin fraction with a

302 narrower molecular mass than BioligninTM which can represent the pattern of

BioligninTM (*i.e.* same types of intra-linkages and reactive groups). Three fractions were

isolated from the initial BioligninTM by sequential extraction with diethyl ether (F1),

dichloromethane (F2), methanol (Figure 2). The solid residue obtained after the last

solvent extraction (*i.e.* Methanol) represented 29.0 (\pm 2.7)% w/w of the initial

307 BioligninTM sample and was highly insoluble in a large panel of organic solvents.

308	Methanol fraction represented the main part of the unfractionated materiel with a yield
309	of 48.4 (\pm 2.2)% (w/w) while fractions F1 and F2 were respectively obtained with the
310	yields of 6.4 (\pm 0.5)% and 16.2 (\pm 1.2)% w/w (Table 3). The four fractions were
311	analyzed by Gel Permeation Chromatography (GPC) in order to determine their
312	molecular weight. The results of GPC analysis (Table 3) showed that fractionation
313	yielded fractions of increasing molecular weight. With a M_n and M_w of, respectively,
314	611 and 784 g/mol, 747 and 1116 g/mol, 989 and 1579 g/mol, the distributions of the
315	three first fractions were lower than the one of the initial Biolignin TM material (M_n 999
316	g/mol and $M_{\rm w}$ 1743 g/mol). Fractions F1 and F2 gathered molecules with the lowest
317	average molecular weight but did not yield a large part of the parent Biolignin ^{TM}
318	(F1+F2 < 25% (w/w)). Due to their low yield, these two fractions cannot be considered
319	as a pattern of Biolignin TM .
320	According to the work of Lange and coworkers on wheat straw $Biolignin^{TM}$ (Lange et
321	al. 2016), this lignin has an average molecular weight of a C9-unit of 162 g/mol. Even if
322	the average number molecular weight (M_n) of purified Biolignin TM and Biolignin TM are
323	almost the same (ca. 6 C9-units), the average weight molecular weight (M_w) decreases
324	of one C9-unit in purified Biolignin TM (9.7 u vs. 10.8 u, respectively, Table 3). This
325	offers us the opportunity to explore first the degradation conditions on the purified
326	Biolignin TM that we consider as "lignin model" more homogeneous than its parent one.
327	[Table 3]
328	Thus, in regards to its GPC profile and its yield from Biolignin TM , the third fraction,
329	named Purified Biolignin TM seemed to be a good candidate as a Biolignin TM model to
330	optimize the degradation of lignin fragments by mechanochemistry. The chemical
331	characterization of this fraction is described below.

333 3.3. Composition and ATR-FT-IR of purified BioligninTM fraction

BioligninTM and purified BioligninTM are not entirely composed of lignin fragments.

- However, after fractionation, purified BioligninTM contains 31% less impurities than
- BioligninTM (8.94% *vs.* 12.92%, Table 4). This fractionation can thus be considered as an efficient purification.
- 338 [Table 4]

In order to verify that purified BioligninTM could be used to represent the behavior of BioligninTM during mechanochemical degradation, a comparison of the ATR-FT-IR profile of purified and parent BioligninTM was done. As it is indicated on Table 5, the global shape of these two spectra were similar and perfectly fit with the usual IR profile of lignins containing Guayacyl/Syringyl/ *p*-Hydroxyphenyl units (GSH-lignins) (Bykov 2008, Cronin et *al.* 2017). Then, the purification of BioligninTM did not seem to drastically modify the chemical structure of lignin fragments.

It could be noted that F1, F2 and the insoluble residue did not show an ATR-FT-IR profile that totally fit with lignin profile. The only spectrum with some characteristic lignin IR bands was the one of insoluble residue, however its global shape did not fit with the BioligninTM spectrum. See **Table S1** for more details.

350 [Table 5]

351

352 3.4. NMR analysis of BioligninTM and purified BioligninTM

- Table 6 highlights the amount of hydroxyl groups and carboxylic acids quantified by
- 31 P-NMR. The following signal ranges were integrated: 150.2-144.6, 143.7-140.2,
- 140.2-138.6, 138.6-136.9 and 135.6-133.7. They were attributed to, respectively,

aliphatic hydroxyls, phenolic hydroxyls of S-units and/or condensed G-units, G-units,
H-units and carboxylic acids (Argyropoulos et *al.* 2021).

358 The ³¹P-NMR quantification supported the previous hypothesis that lignin fragments of

359 BioligninTM and Purified BioligninTM are similar. However, a slight decrease of free

360 phenolic hydroxyls of S-, condensed G- and G-units could be pointed on purified

361 BioligninTM compared to BioligninTM. This loss of -0.25mmol/g will be considered in

the following as too weak to influence the behavior of lignin fragments during their

363 mechanochemical cleavage. Thus, the ³¹P NMR analysis validates the use of purified

364 BioligninTM as a model of BioligninTM for the further the mechanochemical reactions.

365 **[Table 6]**

366 Several types of linkages exist in lignins. Their type and ratio are dependent on the plant

source (Strassberger *et al.*, 2014). The most common linkages found in wheat straw

368 BioligninTM are shown in Figure 3.

With nearly 90% of the total identified linkages, the 3 major linkages in BioligninTM and

purified BioligninTM are β -O-4' (1), β -5' (2) and β - β ' (3) (Table 7). 1,2-Diarylpropane

(4), monotetrahydrofuran (5) and α , β -diarylether (6) represented only 7.4% and 10.9%

of the total identified substructures in, respectively, BioligninTM and Purified

373 BioligninTM.

With 69.7% and 73.6% of the identified substructures of, respectively, BioligninTM and

Purified BioligninTM (Table 7), β-O-4' ether unit is the predominant linkage (Figure 3,

Substructure 1). This linkage is the most common one in lignin (40-70 wt%) and is

among the most readily cleaved (Cui *et al.*, 2021). The energy necessary to cleave this

378 linkage varies between 68.2 and 71.8 kcal/mol, depending on substitution pattern, which

is weak compared to other lignin linkages (Sun *et al.*, 2018). The large presence and the

reactivity of β-O-4' lignin units have made them a target for many depolymerization/
degradation strategies.

382 In view of this, we mainly focused on the cleavage of this linkage under mechanochemical conditions. In this work, we did not optimize the experiments on the 383 production of phenolic monomers, as it is largely described in the literature (Sun et al., 384 385 2018; Liu *et al.*, 2020). The aim of the study below is to decrease substantially the average molecular weight of BioligninTM in order to enhance its ability to substitute 386 387 phenol or polyols in various industrial applications. Halving the average molecular 388 weight might be an acceptable goal to enhance the accessibility of functional groups for further coupling reactions. 389

390 The main goal of our study is to decrease the average molecular mass and the

391 polydispersity of lignin fragments of an organosolv lignin source without highly

modifying its functional groups content in order to avoid any decrease of its reactivity.

393 This study is not trying to obtain platform molecules (vanillin etc..) from lignin but to

partially depolymerize lignin fragments in order to optimize its use in applications

395 (polyurethanes, phenolic resins, epoxy resins etc..) without any functional modification.

396 **[Table 7]**

397 [Figure 3]

398 3.5. Mechanochemical cleavage of purified BioligninTM with sodium hydroxide

399 The double objective of this mechanochemical cleavage is to decrease the average

400 relative molecular mass and the polydispersity of lignin fragments but also to optimize a

401 protocol using cheap and widely available reagents. The literature highlighted

402 promising results using sodium hydroxide to depolymerize an organosolv lignin (Kleine

403 et al. 2013; Brittain et al. 2018). In contrast to Brittain and co-workers who tried to

404 optimize their experimental conditions in view of maximizing the production of 405 monomers, this work focused on reaching a final homogeneous fraction, with roughly 406 half of the original average molecular mass minimizing the condensation reaction as it 407 could occur during lignin depolymerization (Li et al., 2015). To our knowledge, only 408 Fink et al. had the same approach using Kraft lignin with sodium percarbonate (Fink et 409 al. 2023). In contrast to our study, Fink and co-workers worked on a Kraft lignin, which is highly branched, very heterogeneous and has higher average molar mass than 410 411 organosolv lignins (~1500-25000 g/mol vs. 500-5000 g/mol for organosolv lignins) and 412 consequently significantly less reactive than organosolv lignins. The author tried to cleave, to homogenize lignin fragments from Kraft lignin but also to increase some 413 414 functional groups (mainly carbonyl groups) in order to improve its reactivity. In our case, BioligninTM is already very reactive. The incorporation of new functional groups 415 416 is unnecessary. The main point we focused on is the limitation of condensation reaction often observed during the depolymerization of lignin (Li et al., 2015). 417 In order to optimize the conditions of the reaction, purified BioligninTM was chosen as 418

an initial substrate. The experiments are described in Table 8.

420 [Table 8]

421 *3.5.1 Optimization of the milling time and the quantity of sodium hydroxide*

422 In their study, Brittain et al. (2014) used lignin and NaOH in an equimass ratio. In order

to evaluate the performance of the degradation on purified BioligninTM, our four first

424 experiments were also done with this ratio (Table 8, experiments D1 to D4) allowing a

decrease of the average molecular mass of *ca*. 30% in only 15 min-milling and reach its

426 lower average molecular mass after 60 min-milling (*ca.* -50%, See supporting

427 information Fig. S1). However, the quantity of NaOH seem to be overdosed according

428	to the possible reaction mechanism between lignin and NaOH (Sun et al. 2020). Sodium
429	hydroxide reacts with $C_{\beta}H$ of arylglycerol- β -arylether substructure (Figure 3,
430	Substructure 1) by breaking β -O-4' linkage, the major linkage of purified Biolignin TM .
431	It seems to be more consistent if a mole of NaOH is added for a mole of arylglycerol- β -
432	arylether substructure (equimolar ratio). For convenience, we worked on the average
433	C9-unit of Biolignin TM as the reference unit instead of the arylglycerol- β -arylether
434	substructure. Lange <i>et al.</i> determined the average C9-unit of wheat straw Biolignin TM at
435	162g/mol (Lange et al., 2016). Thus, the experiments D5 to D10 (Table 8) were
436	conducted with a molar ratio C9-unit/NaOH of 1:1 (D5, D7, D9) and 1:2 (D6, D8,
437	D10). It is interesting to note that an equimass ratio purified Biolignin TM / NaOH is
438	equivalent to a 1:4 molar ratio C9-unit/NaOH. Decreasing NaOH quantity resulted in a
439	final fraction with higher average molecular mass. Indeed, instead of a decrease of <i>ca</i> .
440	50% after 60 min-milling, the average molar mass decreased of 28% and 36% for,
441	respectively, 1:1 ratio C9-unit/NaOH (D7) and 1:2 ratio C9-unit/NaOH (D8). However,
442	the study of FT-IR spectra gave some precious information (the normalized absorbances
443	of measured FT-IR spectra can be found on Table S2). Sodium hydroxide cannot cause
444	a ring cleavage, then, spectra were normalized against the vibration of the aromatic
445	framework at 1510 cm ⁻¹ which is supposed to not vary. A simultaneous decrease of
446	intensity at 1210 cm ⁻¹ (vibration of C-O-C) and 1140 cm ⁻¹ (C-O stretch, Faix, O. 1991)
447	indicates a cleavage of the ether bonds (Fink et al. 2023). Figure 4 represents the
448	normalized FTIR absorption values of these two vibration bands exposed to different
449	quantity of sodium hydroxide and time of milling. It clearly appeared that, after only 30
450	min-milling, the equimass ratio purified Biolignin TM / NaOH led to a significant increase
451	of intensity at 1210 cm ⁻¹ and 1140 cm ⁻¹ while the (1:1) or (1:2) C9-unit/ NaOH molar

452	ratio show a decrease of these bands. Thus, it seemed that the milder conditions allowed
453	the cleavage of ether bonds without any recombination of fragments while the use of an
454	equimass quantity of NaOH leads to a cleavage of C-O-C bond quickly following by a
455	rearrangement of new fragments, increasing the intensity at 1210 and 1140 cm ⁻¹ .
456	[Figure 4]
457	
458	Seeking to avoid any recombination of cleaved lignin fragments, the equimass ratio
459	reaction was ruled out. According to GPC and FTIR analyses, the improvement of C-O-
460	C cleavage between reactions with (1:2) and (1:1) C9-Units/NaOH was not sufficiently
461	significant to favor the use of a (1:2) C9-Units/NaOH ratio.
462	Then, in the following, the mechanochemical reaction between lignin and sodium
463	hydroxide will be equimolar (1:1 C9-Unit/NaOH), thus, leading to a drastic reduction of
464	the quantity of NaOH (<i>i.e.</i> -75%) compared to the literature (Kleine et al. 2013, Brittain
465	et <i>al</i> . 2018).
466	
467	The three samples D5, D7 and D9, obtained after the (1:1) C9-unit/NaOH
468	mechanochemical reaction were analyzed by HSQC NMR spectroscopy and compared
469	with unmilled lignin sample. Figure 5 represents the evolution of the three main
470	linkages (β -O-4', β -5' and β - β ') in which the aromatic unit (C9-unit) is defined as the
471	internal standard (IS) of the sample. Indeed, aromatics are not supposed to vary during
472	the discussed mechanochemical degradation because of their resistance to cleavage with
473	NaOH. This method used a cluster of signals that are representative to all C9-units (<i>i.e.</i>
474	IS) as following:

 $\label{eq:IC9} \text{475} \qquad I_{C9} \, units = 0.5 IS_{2,6} + IG_2 + 0.5 IH_{2,6}.$

- 476 Where $IS_{2,6}$ is the integration of $S_{2,6}$, IG_2 is the integral value of G_2 and $IH_{2,6}$ is the
- 477 integral value of $H_{2,6}$. This formula was determined by Wen and co-workers for grass
- 478 lignin (Wen *et al.* 2012, Wen *et al.* 2013)
- 479 I_{C9} represents the integral value of the aromatic ring. According to the internal standard
- 480 (I_{C9}), the amount of I_X % could be obtained by the following formula:
- 481 $I_X\% = I_X/I_{C9} \times 100\%$
- 482 Where I_X is the integral value of the α -position of the substructures 1 (β -O-4), 2 (β -5), 483 and 3 (β - β).
- 484 The inter-unit bonding spin system shows three different signals due to CH and CH₂
- groups in the positions α , β and γ of the side chain (Figure 3). T_2 relaxations of each
- 486 signal is dependent on carbon substitution. Then, only the CH signals were selected for
- 487 quantitative analyses. Among the CH signals for each spin system, we focused on the
- 488 better-resolved resonances that did not overlap with signals. Hence, for quantification,
- 489 the following signals were used: $1-\alpha$, $2-\alpha$ and $3-\beta$ (Figure 6). These selected signals are
- 490 in accordance with those selected in literature (Sette et *al.* 2011).
- 491 [Figure 5]
- 492 [Figure 6]
- 493 Before milling, purified BioligninTM contained, respectively, 20.5%, 4.3% and 1.6% of
- 494 Arylglycerol- β -arylether (β -O-4), Phenylcoumaran (β -5) and Resinol (β - β). After 2h of
- 495 milling purified BioligninTM without any presence of sodium hydroxide (C1
- 496 experiment), this ratio reached 19.8%, 4.5% and 1.7% confirming that the mechanical
- 497 energy given during the milling is insufficient to cleave lignin linkages.
- 498 Focusing on β -O-4' linkage, it clearly appeared that the main C-O-C cleavage occurred
- during the first 60 min of milling. Reaching 5.9% after 60 min of milling, more than

500	71% of the initial β -O-4' are cleaved. Then, with a slower degradation rate, more than
501	86% of the initial β -O-4' are cleaved after 120 min of milling. Considering the energy
502	cost of milling (Sealy et al. 2016) and setting the milling duration at 60 min seemed
503	more beneficial from the perspective of the process scale-up to industrial scale.
504	We expected that resinol (Substructure 3, β - β ' linkage) was not impacted by the
505	degradation, because of the resistance of C-C bonds to cleavage with basic catalysts
506	(Zakzeski et al. 2010, Kleine et al. 2013). However, the HSQC quantification seemed to
507	indicate that a cleavage of this linkage occurred. From 2.0% before milling, this linkage
508	reached 0.2% after 60 min of milling. After 120 min of milling, an odd phenomenon
509	appeared: the quantity of β - β ' linkage increased until reaching 0.8%. It may indicate
510	that some slight rearrangements occurred after 60 min of milling.
511	Phenylcoumaran (Substructure 2, β -5' linkage) was also affected by the
512	mechanochemical degradation. From 4.3% before milling, this linkage slowly
513	decreased, reaching 1.9%, then 1.4% after, respectively 60 min and 120 min of milling.
514	The above discussed cleavages were visually observed on Figure 6 where the intensity
515	of correlation spots of 1- α , 2- α and 3- β progressively decreased with the milling time.
516	Hence, in view of the above results, the best compromise between the efficiency of the
517	cleavage of purified Biolignin TM and the quantity of sodium hydroxide/ time of milling
518	was the use of an equimolar ratio C9-unit/NaOH during 60 min of milling.
519	

3.5.2 Influence of moisture content 520

Cleavage of lignin is mainly a hydrolysis reaction under strong basic conditions 521

(Klapiszewski et al. 2018). A molecule of water is required for each C-O-C bond 522

cleavage. In the present study, the moisture content of Purified BioligninTM was 523

524	increased from 4 wt% (D7, initial moisture of Purified Biolignin TM) to 24% (D14)
525	(Table 8) by adding water with purified $Biolignin^{TM}$ and sodium hydroxide in the two
526	jars before grinding. Mechanochemistry has the advantage of being a solvent-free
527	technique. However, adding a small amount of liquid could enhance the reactivity. In
528	order to be considered as a solvent-free reaction, it has to respect the Liquid-Assisted
529	Grinding (LAG) zone (<i>i.e.</i> $0 \le \eta \le 2 \mu L/mg$) (Ying <i>et al.</i> 2021). Beyond $\eta = 2 \mu L/mg$, the
530	added solvent is too high to consider the reaction as solvent-free. The solvent could
531	slurrying the medium and affect the efficiency of the grinding. The $\boldsymbol{\eta}$ value was
532	calculated for each experiment in order to always respect the LAG condition. The
533	calculated η value is indicated on Table 8.
534	The average relative molecular mass of the grinded samples with an increase of
535	moisture (D7 to D14) is illustrated on Table 9.
536	Surprisingly, the average molecular mass of milled sample constantly decreases until
537	D13, the experiment with a moisture content of 18 wt%. At this point, the
538	mechanochemical reaction allowed an average molecular mass reduction of ca. 40%, in
539	other words it allowed the obtention of a fraction with lignin fragments with ca. 4 C9-
540	units. Keeping on mind the industrialization of the process, this is a particularly
541	interesting result because it could suggest the use of a less dry lignin, thus implying
542	much less energy cost compared to the actual one for lignin drying,
543	When the sample contains 24 wt% of water (Experiment D14), the average molecular
544	mass increases, reaching the same weight, or even worse, than D7, the sample with only
545	4 wt% water. However, this phenomenon was already observed by Brittain and co-
546	workers (Brittain et <i>al.</i> 2018). For higher percentage of water (<i>i.e.</i> \ge 24 wt% in the

547 present study), the mixture grinded is no longer a powder but rather a slurry affecting

the efficiency of the mechanochemical conditions as it was on lignin/NaOH powder.

549 [Table 9]

550 *3.5.3 Influence of methanol as a scavenger for reactive intermediates*

551 In the literature, the biggest challenge of lignin depolymerization is to avoid

repolymerization/ condensation reactions. Lignin hydrolysis with a basic catalyst

553 generates unstable intermediates. These reactive intermediates are easily recombined in

new oligomers with C-C linkages, unbreakable in the presence of basic catalysts (Li et

555 *al.* 2015).

556 Brittain and co-workers (Brittain et *al.* 2018) had promising results using methanol as a

scavenger to prevent any repolymerization reaction during the milling of lignin and

sodium hydroxide. In their study, they added 0.40 mL of methanol for 1.50 g of lignin

and 1.50 g of sodium hydroxide, so 0.27μ L/mg of lignin. They observed a quicker and a

560 more efficient depolymerization, with a final average relative molecular mass 40%

smaller compared to the samples milled with sodium hydroxide in absence of methanol.

562 In the following, methanol was added before the reaction between Purified BioligninTM

and sodium hydroxide using (1:1) C9-Unit/NaOH ratio ($\eta = 0.27 \mu L/mg$ of lignin). Two

milling time were tested, 30 min (D15) and 60 min (D16), and compared with the

samples milled without methanol (*i.e.* D5, D7 and D13, Table 8). The average

566 molecular mass of the compared samples is shown in Table 10).

567 [Table 10]

568 Two samples, D5 and D15, were milled during 30 minutes without and in the presence

of methanol. The results obtained indicated that methanol increases obviously the rate

of depolymerization. With only 30 min of milling, the presence of methanol to the

571 system allowed the recovery of lignin fragments 29% smaller than in its the absence (in regards to M_n value). However, contrary to Brittain et al. (2018) findings, milling for a 572 573 longer time in presence of methanol (i.e. D16, 60 min of milling) did not improve the 574 efficiency of the depolymerization. The obtained fragments had nearly the same average relative molecular mass than those obtained after 30 min of milling. A slight increase of 575 FTIR bands 1210 cm⁻¹ and 1140 cm⁻¹ between D15 and D16 indicated that D16 contains 576 more C-O-C linkages than D15 (See Supporting information, Table S2). According to 577 578 Aboagye and co-workers, this could be the result of additional methoxy groups (Aboagye et al. 2023). Concerning our experiment, the band on D16 FTIR spectrum is 579 7% and 12% higher than D15 FTIR and Purified BioligninTM spectrum. 580 581 582 It is interesting to note that D13 experiment (60 min milling with 18 wt% H₂O, without

583 MeOH) gave same, or slightly smaller lignin fragments than those obtained by D15 584 experiment (30 minutes milling with a dry lignin and the presence of MeOH). In view 585 of these results and considering an environmentally friendly process, it seems more 586 advantageous to optimize the process without the presence of methanol, even if the 587 needed milling time is twice longer.

588

589 3.6. Mechanochemical cleavage of BioligninTM with sodium hydroxide

590 3.6.1. Reaction on P7 Premium Line ball mill (20 mL ZrO₂ jars with 5 ZrO₂ balls)

591 The promising results obtained using purified BioligninTM encouraged us to directly test

the mechanochemical cleavage on BioligninTM, without any prior purification (C2, D17,

593 D18, 19, Table 11). The experiments were tested on BioligninTM using the same

planetary mill as above (Fritsch Pulverisette 7 Premium Line ball mill). For C2

experiment, BioligninTM was milled without sodium hydroxide. The average relative 595 molecular mass of the recovered sample confirms that grinding BioligninTM without the 596 597 presence of an appropriate reagent did not allow a significant depolymerization. Concerning the experiment D19, using a BioligninTM of 18 wt% of H₂O, the reaction 598 mixture was not recoverable. After milling, a very sticky slurry surrounded the balls. 599 600 The scale up of such process seemed to be too hazardous to be considered. Most gratifyingly, the mechanochemical cleavage of BioligninTM, without its prior 601 602 purification, afforded lignin fragments in final samples ca. 40% smaller than in the initial BioligninTM (Table 11), indicating the presence of oligomers with less than 4 C9-603 604 units in average. 605 Comparison of 4% wt and 14% wt water (D17, D18 experiments respectively) showed 606 that M_n values are similar while M_w showed 10% decrease for experiment D18 with

14% wt water (Table 11). Using a wetter lignin did not significantly affect the M_n value

608 of the milled sample but decrease the $M_{\rm w}$, resulting the recovery of a more

609 homogeneous fraction.

610 Most importantly, our findings indicate the same decrease as the optimized reaction

611 with purified BioligninTM (D13, Purified BioligninTM/ NaOH 1:1 C9-unit/NaOH + 18

612 wt% H_2O , 60 min milling, Table 9) was observed.

613 [Table 11]

⁶¹⁴Before milling, BioligninTM contained, respectively, 16.8/100 C9, 4.9/100 C9 and

615 1.3/100 C9 of Arylglycerol- β -arylether (β -O-4'), Phenylcoumaran (β -5') and Resinol

616 (β - β '). After 60 min of milling and in the presence of 4% (w/w) and 14% (w/w) of H₂O,

617 the occurrence of β -O-4' decreased of 38% and more than 44%, respectively (Figure 7).

⁶¹⁸ These decreases were weaker than those observed on Purified BioligninTM, however,

619	Biolignin TM contains more hemicelluloses than purified Biolignin TM . A part of NaOH
620	was probably used to cleave C-O-C linkages between lignin fragments and
621	hemicellulose. The ³¹ P-NMR spectrum gave also some precious information.
622	The 4-O-5' linkage of condensed G-units significantly decreased (Table 12) while the
623	other moieties seemed almost constant before and after the mechanochemical
624	degradation. Surprisingly, the ³¹ P-NMR spectrum seemed to indicate NaOH cleavage of
625	C-O-C of 4-O-5' linkage. This cleavage was not distinguished by HSQC analysis
626	because no HSQC correlations are observed for carbons in positions 4, 4', 5 and 5' of
627	the aromatics. The combination of both NMR techniques was thus essential for a better
628	understanding of all the different cleavages produced during the reaction.
629	The ³¹ P-NMR spectrum also confirmed that reactive groups of Biolignin TM (mostly
630	phenolic and aliphatic OH) are almost unchanged after degradation (Table 12). This
631	point was primordial to validate the degradation without affecting the reactivity of the
632	sample.
633	The C-O-C cleavage of β -O-4' linkage seemed to be improved when Biolignin TM
634	moisture is increased ((<i>i.e.</i> 14% H ₂ O (w/w) vs. 4% H ₂ O (w/w)). This is an interesting

635 result that encourages us to reduce the BioligninTM drying rate.

636 [Figure 7]

637 In view of the above results, using a mechanical reaction with sodium hydroxide,

- 638 impurities of BioligninTM do not impact on the efficient cleavage of lignin fragments.
- 639 [Table 12]
- 640 3.6.2. Scale up and Optimization of the reaction between BioligninTM and NaOH on
 641 Retcsh PM 100 ball mill

643 The positive results described above were enough encouraging to scale up the reaction 644 to the planetary 500 mL mill available in the CIMV lab (Retcsh PM 100 ball mill 645 equipped with a tungsten carbide (WC) jar and 20 mm diameter WC balls). The 646 maximum RPM of this mill is 650, 150 RPM less than the previous planetary mill used. The density of WC (14.80 g/cm³) is higher than ZrO_2 (6.05 g/cm³), thus providing in 647 648 principle better results due to the capability of imparting strong impact forces to the particles (Sitotaw et al. 2023). Then, the large scale mechanochemical cleavage of 649 BioligninTM was tested adapting some parameters to the available materials. Instead of 650 650 mg, the initial BioligninTM added to the system was 17.000g, a 26-fold greater 651 quantity than in prior experiments (Table 13). 652

653 **[Table 13]**

At the beginning, 10 WC balls was used at 650 RPM during 60 minutes (D20). The

milled sample recovered after this experiment has lignin fragments 41-45% smaller than

those of the initial BioligninTM (Table 13). This was the smallest lignin fragments

recovered from all our experiments described above.

In order to improve the reaction, 20 WC balls (Experiment D21) were used instead of

the initial 10 WC balls (Experiment D20). Increasing the number of ball mills gave

660 positive results. The recovery fraction contained an average of trimers of lignin (51-

661 55% smaller than the initial BioligninTM). A lignin fraction containing trimers seems to

be very promising to improve its use on applications avoiding issues of sterically

shielded reactive groups.

664 [**Figure 8**]

After 60 min of milling with 10 WC-balls and 20 WC-balls in the WC-500mL jar, the

occurrence of β -O-4' linkages decreased of 35.4% and more than 51.0%, respectively

667 (Figure 8). Hence, doubling the number of milling balls allowed a significant decrease668 of occurrence of β-O-4' linkages.

669 So, to summarize this part, the final protocol allowed to halve the average molecular 670 mass of lignin fragments and to halve the occurrence of β-O-4' linkages of BioligninTM 671 without any prior purification.

672

673 **4.** Conclusion

674 Our study aimed to decrease by mechanochemical means the average molecular mass

and the polydispersity of lignin fragments of the organosolv lignin named BioligninTM,

676 without highly impacting its functional groups content. This is the first mechano-

677 chemical study on this kind of lignin. The reaction was firstly optimized on "purified

678 BioligninTM", containing more uniform lignin fragments and less impurities than

679 BioligninTM. Comparative studies between BioligninTM and purified BioligninTM by

680 their ATR-FT-IR profile and by ³¹P-NMR quantification demonstrated that the chemical

681 structure of their lignin fragments is similar, thus validating the use of purified

682 BioligninTM as a model of BioligninTM.

For both studies on purified BioligninTM and BioligninTM, quantitative HSQC NMR, IR

and GPC studies, supported our findings.

An important point highlighted by our study is the efficiency of the reaction when using

an equimolar quantity (and not equimass) of sodium hydroxide related to C-9 unit of

687 BioligninTM needed to break interunits lignin bonds. This corresponds to a 75%

reduction of sodium hydroxide quantity compared to the literature. Under these

689 conditions and after 60 min-grinding in the planetary ball milling apparatus, more than

690 71% of the initial β -O-4' bonds are cleaved.

The effect of Liquid Assisted Grinding (LAG), using water or methanol, showed a slightly better result with water. The mechanochemical reaction with a 18 wt% moisture content allowed an average molecular mass reduction of *ca*. 40%, indicating the obtention of lignin fragments with *ca*. 4 C9-units. Analogous results were observed on Purified BioligninTM and on BioligninTM.

- 696 Mechanochemical results with BioligninTM under LAG conditions are particularly
- 697 important. Obtention of BioligninTM at 18 wt% moisture content implies much less

698 energy input needed. This, in conjuction with the use of an equimolar ratio of sodium

699 hydroxide could be the base of an economically feasible industrialized process for the

- 700 mechanochemical cleavage $Biolignin^{TM}$.
- Finally, for the first time the mechanochemical cleavage was conducted in a planetary
- 500mL mill. For a total of 14 wt% moisture on BioligninTM and an equimolar amount of

sodium hydroxide, a 60 min grinding afforded halve (-51%) the average molecular mass

of lignin fragments and decreased for more than 44% the occurrence of β -O-4' linkages

- in lignin fragment, suggesting the feasibility of scaling-up.
- 706 The significant improvements (sodium hydroxide reduction and moisture precise

content) can pave the way for using less energetically demanding process for obtaining

708 BioligninTM and also envision an industrial scale up for lignin cleavage.

In addition, we envision to explore in the near future the combined opportunities that
 might be offered by our results and the potential oxidative cleavage of BioligninTM.

711 Acknowledgements

- 712 The authors are grateful to the Centre National de la Recherche Scientifique (CNRS)
- and the Université Paul Sabatier for financial support. The authors (N.C., M.B., B.B.-

714	M.) are particularly thankful to French Government, the CNRS and the ANR (Agence
715	Nationale de Recherche) for financing this work through the "Plan Préservation
716	Emplois R&D - 2236394_CIMV_upr8241 LCC - DRARI-31-300; project: "Catalyzed
717	degradation of lignin". The authors thank the members of the CIMV technical team for
718	their contribution to the experimental data and Dr. Dominique Agustin (Associate
719	Professor, LCC, Laboratoire de Chimie de Coordination, Team G "Ligands, complex
720	architectures and catalysis" for fruitful discussions on this part of the project.
721	
722	Appendix A. Supplementary data
723	Supplementary data associated with this article can be found in the online version.
724	
725	References
726 727 728 729 720	Abdelaziz, O.Y., Clemmensen, I., Meier, S., Costa, C.A.E., Rodrigues, A., Hulteberg, C.P., Riisager, A., 2022. On the Oxidative Valorization of Lignin to High-Value Chemicals: A Critical Review of Opportunities and Challenges. Chem. Sust. Chem. 15, 1-20. DOI: 10.1002/cssc.202201232
726 727 728 729 730 731 732 733 734 735	 Abdelaziz, O.Y., Clemmensen, I., Meier, S., Costa, C.A.E., Rodrigues, A., Hulteberg, C.P., Riisager, A., 2022. On the Oxidative Valorization of Lignin to High-Value Chemicals: A Critical Review of Opportunities and Challenges. Chem. Sust. Chem. 15, 1-20. DOI: 10.1002/cssc.202201232 Aboagye, D., Medina, F., Contreras, S., 2023. Toward a facile depolymerization of alkaline lignin into high-value platform chemicals via the synergetic combination of mechanocatalysis with photocatalysis or Fenton process. Catal. Today, 413-415. DOI: 10.1016/j.cattod.2022.11.030
726 727 728 729 730 731 732 733 734 735 736 736 737 738	 Abdelaziz, O.Y., Clemmensen, I., Meier, S., Costa, C.A.E., Rodrigues, A., Hulteberg, C.P., Riisager, A., 2022. On the Oxidative Valorization of Lignin to High-Value Chemicals: A Critical Review of Opportunities and Challenges. Chem. Sust. Chem. 15, 1-20. DOI: 10.1002/cssc.202201232 Aboagye, D., Medina, F., Contreras, S., 2023. Toward a facile depolymerization of alkaline lignin into high-value platform chemicals via the synergetic combination of mechanocatalysis with photocatalysis or Fenton process. Catal. Today, 413-415. DOI: 10.1016/j.cattod.2022.11.030 Argyropoulos, D.S., Pajer, N., Crestini, C., 2021. Quantitative 31P NMR Analysis of Lignins and Tannins. JoVE 174, 1-21, DOI: 10.3791/62696

742	Brittain, A.D., Chrisandina, N.J., Cooper, R.E., Buchanan, M., Cort, J.R., Olarte, M.V.,		
743	Sievers, C., 2018. Quenching of reactive intermediates during mechanochemical		
744	depolymerization of lignin. Catal. Today 302, 180-189. DOI:		
745	10.1016/j.cattod.2017.04.066		
746			
747	Bykov, Y. 2008. Characterization of natural and technical lignins using FTIR		
748	spectroscopy. Master's Thesis Dissertation. Retrieved from		
749	https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-42881		
750			
751	Cachet, N., Benjelloun-Mlayah, B., 2021. Comparison of organic acid-based organosolv		
752	lignins extracted from the residues of five annual crops. Bioresources 16 (4), 7966-7990.		
753	DOI: 10.15376/biores.16.4.7966-7990		
754			
755	Cronin, D. J., Dunn, K., Zhang, X., Doherty, W. O. S., 2017. Relating Dicarboxylic Acid		
756	Yield to Residual Lignin Structural Features. ACS Sustain. Chem. Eng. 5 (12), 11695-		
757	11705. DOI: 10.1021/acssuschemeng.7b03164		
758			
759	Cui, Y., Goes, S.L., and Stahl, S.S., 2021. Sequential Oxidation-Depolymerization		
760	Strategies for Lignin Conversion to Low Molecular Weight Aromatic Chemicals. Adv.		
761	Inorg. Chem. 77, 99-136 DOI: 10.1016/bs.adioch.2021.02.003		
762			
763	Dabral, S., Wotruba, H., Hernandez, J.G., Bolm, C., 2018. Mechanochemical oxidation		
764	and cleavage of lignin β -O-4 model compounds and Lignin. ACS Sustain. Chem. Eng. 6,		
765	3242-3254. DOI: 10.1021/acssuschemeng.7b03418		
766			
767	Faix, O., 1991. Classification of lignins from different botanic origins by FT-IR		
768	spectroscopy. Holzforschung 45 Suppl., 21-27.		
769			
770	Fink, F., Stawski, T.M., Stockmann, J.M., Emmerling, F., Falkenhagen, J., 2023. Surface		
771	modification of Kraft lignin by mechanochemical processing with sodium percarbonate.		
772	BioMacromolecules 24, 4274-4284. DOI: 10.1021/acs.biomac.3c000584		
773			

- Klapiszewski, L., Szalaty, T.J., Jesionowski, T., 2018. Chap. 1 Depolymerization and
 Activation of Lignin: Current State of Knowledge and Perspectives. In "Lignin Trends
 and Applications" DOI: 10.5772/intechopen.70376
- 777

Kleine, T., Buendia, J., Bolm, C., 2013. Mechanochemical degradation of lignin and
wood by solvent-free grinding in a reactive medium. Green Chem. 15, 160-166. DOI:
10.1039/c2gc36456e

781

Lange, H., Schiffels, P., Sette, M., Sevastyanova, O. and Crestini, C., 2016. Fractional
Precipitation of Wheat Straw Organosolv Lignin: Macroscopic Properties and Structural
Insight. ACS Sustain. Chem. Eng. 4(10), 5136-5151

785

Llovera, L., Benjelloun-Mlayah, B., Delmas, M., 2016. Organic acid lignin-based
polyurethane films: Synthesis parameter optimization. Bioresources 11(3), 6320-6334.

788

Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T., 2015. Catalytic Transformation of
Lignin for the Production of Chemicals and Fuels. Chem. Rev. 115 (21), 11559–11624.
DOI: 10.1021/acs.chemrev.5b00155

792

Liu, X., Bouxin, F.P., Fan, J., Budarin, V.L., Hu, C. and Clark, J.H., 2020. Recent
Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A
Review. Chem. Sus. Chem. 13, 4296-4317. DOI: 10.1002/cssc.202001213

796

Marriotti, F., Tomé, D., and Mirand, P., 2008. Converting Nitrogen into Proteins Beyond 6.25 and Jones' factors. Crit. Rev. Food Sci. Nutr. 48, 177-184. DOI:
10.1080/10408390701279749

800

Sealy, M.P., Liu, Z.Y., Zhang, D. Guo, Y.B., Liu, Z.Q., 2016. Energy consumption and
modeling in precision hard milling. J. Clean. Prod. 135, 1591-1601. DOI:
10.1016/j.jclepro.2015.10.094

805	Sette, M., Wechselberger, R., and Crestini, C., 2011. Elucidation of lignin structure by
806	quantitative 2D NMR. Chem. Eur. J. 17, 9529-9535. DOI: 10.1002/chem.201003045
807	
808	Sitotaw, Y.W., Habtu, N.G., Gebreyohannes, A.Y., Nunes, S., Gerven, T.V., 2023. Ball
809	milling as an important pretreatment technique in lignocellulose biorefineries: a review.
810	Biomass Convers. Biorefin. 13, 15593-15616. DOI: 10.1007/s13399-021-01800-7
811	
812	Sluiter, A., Hames, B. R, Scarlata, C., Sluiter, J., Templeton, D., and Crocker, D., 2008.
813	Determination of structural carbohydrates and lignin in biomass, in: Laboratory
814	Analytical Procedure (LAP). National Renewable Energy Laboratory.
815	
816	Strassberger, Z., Tanase, S. and Rothenberg, G., 2014. The Pros and Cons of Lignin
817	Valorization in an Integrated Biorefinery. RSC Adv. 4, 25310-25318.
818	
819	Sun, C., Zheng, L., Xu, W., Dushkinb, A.V., and Su, W., 2020. Mechanochemical
820	cleavage of lignin models and lignin via oxidation and a subsequent base-catalyzed
821	strategy. Green Chem. 22, 3489–3494. DOI: 10.1039/d0gc00372g
822	
823	Sun, Z., Fridrich, B., de Santi, A., Elangovan, S. and Barta, K., 2018. Bright Side of
824	Lignin Depolymerization: Toward New Platform Chemicals. Chem. Rev. 118, 614-678.
825	DOI: 10.1021/acs.chemrev.7b00588
826	
827	Tachon, N., Benjelloun-Mlayah, B., Delmas, M., 2016. Organosolv wheat straw lignin as
828	a phenol substitute for green phenolic resins. Bioresources 11(3), 5797-5815 DOI:
829	10.15376/biores.11.3.5797-5815
830	
831	Wen, JL., Xue, BL., Xu, F., Sun, RC., 2012. Unveiling the structural heterogeneity
832	of bamboo lignin by in situ HSQC NMR technique. Bioenergy Res. 5, 886-903. DOI:
833	10.1007/s12155-012-9203-5

- Wen, J.-L., Sun, S.-L., Xue, B.-L., and Sun, R.-C., 2013. Recent Advances in
 characterization of lignin polymer by solution-state Nuclear Magnetic Resonance (NMR)
 methodology. Materials 6, 359-391. DOI: 10.3390/ma6010359
- 838
- Xu, W., Zhou, C., Hu, K., Yang, J. Su, W., Qiao, P., 2023. Novel Mechanoenzymatic
- Strategy for Lignin Depolymerization. Ind. Eng. Chem. Res. 62(46), 19448-19458. DOI:
 10.1021/acs.iecr.3c02959
- 842

Ying, P., Yu, J., Su, W., 2021. Liquid-Assisted Grinding Mechanochemistry in the
Synthesis of Pharmaceuticals. Adv. Synth. Catal. 363, 1246-1271. DOI:
10.1002/adsc.202001245

846

- 847 Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M., 2010. The
- 848 Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem.

849 Rev. 110, 6, 3552-3599. DOI: 10.1021/cr900354u

850

Zhou, N., Thilakarathna, W.P.D.W., He, Q.S., Rupasinghe, H.P.V., 2022. A Review:

- 852 Depolymerization of lignin to generate High-value bio-products: Opportunities,
- 853 Challenges, and Prospects. Front. Energy Res. 9, Article 758744. DOI:
- 854 10.3389/fenrg.2021.758744

1	Mechanochemical cleavage of lignin in presence of sodium hydroxide
2	to produce a homogeneous lignin fraction optimized for a direct use in
3	applications
4	Nadja Cachet ^{1,3} , Pierre Lavedan ² , Michel Baltas ^{3*} , Bouchra Benjelloun-Mlayah ^{1*}
5	
6	¹ CIMV, 109 rue Jean Bart, Diapason A, F-31670 Labège, France
7	² Institut de Chimie de Toulouse, UAR 2599, 118 Route de Narbonne, Toulouse Cedex
8	09, 31062, France
9	³ CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS,
10	205 Route de Narbonne, BP 44099, Cedex 4, 31077 Toulouse, France
11	* Corresponding authors Email: michel.baltas@lcc-toulouse.fr; b.benjelloun@cimv.fr
12	
13	Figure captions
14	Fig. 1. CIMV organosolv biorefinery process
15	Fig. 2. Scheme of fractionation of the Biolignin ^{TM}
16	Fig. 3. 6 main lignin moieties present in Biolignin TM and Purified Biolignin TM
17	Fig. 4. Normalized FTIR absorption values of Alkyl-aryl ether asymmetric C-O
18	vibration (1210 nm) and C-O stretching (1140 nm) exposed to different quantity of
19	sodium hydroxide
20	Fig. 5 . Evolution of the 3 main linkages of lignin samples (β -O-4', β -5' and β - β ')
21	determined by quantitative HSQC (/100 C9 unit)
22	Fig. 6. HSQC NMR Spectra of Purified Biolignin TM before milling (a); after 120 min
23	milling without the presence of NaOH (C1, b), and with NaOH after 30 min milling
24	(D5, c), 60 min milling (D7, d), 120 min milling (D9, e)
25	Fig. 7 . Occurrence of β -O-4', β -5' and β - β ' (/100 C9 unit) in Biolignin TM , D17 and D18
26	as determined by quantitative NMR HSQC

Fig. 8. Occurrence of β -O-4', β -5' and β - β ' (/100 C9 unit) in BioligninTM, after milling with 10 balls and 20 balls as determined by quantitative NMR HSQC

Figure 1 – CIMV organosolv biorefinery process

36

Figure 3 – 6 Main lignin moieties present in BioligninTM and Purified BioligninTM

Figure 4 – Normalized FTIR absorption values of Alkyl-aryl ether asymmetric C-O vibration (1210 nm) and C-O stretching (1140 nm) exposed to different quantity of sodium hydroxide

	Milling Time (min)	I _{β-04} , (/100C9)	I _{β-5} , (/100C9)	I _{β-β} , (/100C9)
Purified Biolignin TM	0	20.5	4.3	1.6
D5	30	6.4	2.5	0.7
D7	60	5.9	1.9	0.2
D9	120	2.8	1.4	0.8

Figure 5 – Evolution of the 3 main linkages of lignin samples (β -O-4', β -5' and β - β ')

Figure 6 – HSQC NMR Spectra of Purified BioligninTM before milling (a); after 120
 min milling without the presence of NaOH (C1, b), and with NaOH after 30 min milling

Figure 7 - Occurrence of β -O-4', β -5' and β - β ' (/100 C9 unit) in BioligninTM, D17 and

53 D18 as determined by quantitative NMR HSQC

56

Figure 8 - Occurrence of β -O-4', β -5' and β - β ' (/100 C9 unit) in BioligninTM, after milling with 10 balls and 20 balls as determined by quantitative NMR HSQC

1	Mechanochemical cleavage of lignin in presence of sodium hydroxide
2	to produce a homogeneous lignin fraction optimized for a direct use in
3	applications
4	Nadja Cachet ^{1,3} , Pierre Lavedan ² , Michel Baltas ^{3*} , Bouchra Benjelloun-Mlayah ^{1*}
5	
6	¹ CIMV, 109 rue Jean Bart, Diapason A, F-31670 Labège, France
7	² Institut de Chimie de Toulouse, UAR 2599, 118 Route de Narbonne, Toulouse Cedex
8	09, 31062, France
9	³ CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS,
10	205 Route de Narbonne, BP 44099, Cedex 4, 31077 Toulouse, France
11	* Corresponding authors Email: michel.baltas@lcc-toulouse.fr; b.benjelloun@cimv.fr
12	
13	
14	Table captions
15	Table 1. Identification and quantification of the impurities within the Biolignin TM
16	fraction
17	Table 2. Molecular profile of Biolignin TM determined by GPC
18	Table 3. Molecular weight distribution in Biolignin ^{TM} and fractions
19	Table 4. Identification and quantification of the impurities within the Biolignin ^{TM}
20	fractions
21	Table 5. ATR-FT-IR of purified Biolignin TM and Biolignin TM
22	Table 6. ³¹ P NMR quantification of Biolignin TM and purified Biolignin TM using endo-
23	N-hydroxy-5-norbornene-2,3-dicarboximide as an internal standard
24	Table 7. 6 main lignin moieties of Biolignin TM and Purified Biolignin TM quantified by
25	HSQC
26	Table 8. Mechanochemical experiments tested on Purified Biolignin TM and their
27	conditions

28 Table 9. Average relative molecular mass of milled samples as a function of its

- 29 moisture content, as determined by GPC
- Table 10. Average relative molecular mass determined by GPC of milled samples with 30
- or without the presence of methanol as a scavenger 31
- **Table 11.** Average relative molecular mass of milled BioligninTM samples as a function 32
- of its moisture content, as determined by GPC 33
- **Table 12.** ³¹P NMR quantification of COOH and OH groups and Biolignin[™], D17 and 34
- 35 D18
- Table 13. Mechanochemical experiments on BioligninTM tested, their conditions and 36
- 37 the average molecular mass of the final sample as determined by GPC
- 38

Table 1 – Identification and quantification of the impurities within the BioligninTM 39

fraction 40

Ashes content (%, Dry Matter)		1.02
Carbohydratas contant	Glucose (%, DM)	2.31
Carbonydrates content	Xylose (%, DM)	1.83
Protein content (%, DM)		7.80

41 42

Table 2 – Molecular profile of BioligninTM determined by GPC

Mn (g/mol)	999
Mw (g/mol)	1743
$P(M_w/M_n)$	1.8

43 44

Table 3 – Molecular weight distribution in BioligninTM and fractions

	Solvent	Yield (%)	M _n (g/mol)	$M_{\rm w}({ m g/mol})$	$P(M_w/M_n)$
F1	Et ₂ O	6.4 (±0.5)	611 (3.8 u*)	784 (4.8 u)	1.3
F2	CH ₂ Cl ₂	16.2 (±1.2)	747 (4.6 u)	1116 (6.9 u)	1.5
Purified Biolignin TM	MeOH	48.4 (±2.2)	983 (6.1 u)	1579 (9.7 u)	1.6
Insoluble residue	-	29.0 (±2.7)	Highly insoluble	e but > 1700 g/mo	d
Biolignin TM	-	-	999 (6.2 u)	1743 (10.8 u)	1.8

* u = C9-unit of wheat straw BioligninTM (Lange et *al.* 2016)

45

Table 4 - Identification and quantification of the impurities within the BioligninTM 46

fractions 47

	Purified Biolignin TM	Biolignin TM
Ashes content (%, Dry Matter)	0.44	1.02
Hemicelluloses (%, DM)	2.3	4.1
Protein content (%, DM)	6.2	7.8

Total (%, DM)

8.94

12.92

48						
49		Table 5 - ATR-FT-IR of purified Biolignin TM and Biolignin TM				
	Purified Biolignin TM	Biolignin TM				
	3368	3377	O-H Stretch			
	2925	2936	C-H Stretch in CH ₃ /or and CH ₂ groups			
	2850	2855	C-H Stretch in O-CH ₃ groups			
	1713	1714	C=O Stretch in unconjugated ketones, carboxyls and ester groups			
	1653	1654	Ring conjugated C=C Stretch of Coniferyl/ Synapyl alcohol			
	1599	1598	Aryl ring Stretching, symmetric			
	1509	1508	Aryl ring Stretching, asymmetric			
	1458	1456	C-H deformation asymmetric in CH ₃ and CH ₂			
	1422	1425	Aromatic skeletal vibration combined with C-H in-plane deformation			
	1372	1363	C-H deformation asymmetric of O-CH ₃ groups			
	1330	1330(sh)	Syringyl ring breathing with C-O stretch			
	1227	1222	C=C stretching of Guaiacyl ring, Phenolic OH, alkyl-aryl ether asymmetric C-O-C			
	1159	1160	Aromatic C-H in plane deformation, typical of Guaiacyl units			
	1140	1140	Aromatic C-H in-plane deformation; typical of Guaiacyl units ; whereby G Condensed > etherified (typical for S units); C-O Stretching			
	1118	1118	Aromatic C-H in plane deformation, typical of Syringyl units , secondary alcohols			
	1029	1029	Aromatic C-H in plane deformation of Guaiacyl units , C-O deformation in primary alcohols			
	869	869	C-H deformation out of plane, Aromatic ring			
	839	835	C-H deformation out of plane in position 2 and 6 of Syringyl and in all <i>p</i> -Hydroxyphenyl units			

50 * sh: Shoulder

51

Table 6 – ³¹P NMR quantification of BioligninTM and purified BioligninTM using endo-N-hydroxy-5-norbornene-2,3-dicarboximide as an internal standard 52

53

Quantification (mmol/g)	Biolignin TM	Purified Biolignin TM
-COOH	0.76	0.65
H-units phenolic -OH	0.39	0.39
G-units phenolic -OH	0.83	0.74
S-units and condensed G-units phenolic -OH	1.09	0.93
Aliphatic - OH	2.05	2.00
Total -OH (mmol/g)	4.36	4.06
Total Alk-OH (mmol/g)	2.05	2.00
Total Ar-OH (mmol/g)	2.31	2.06

54

Table 7 – 6 main lignin moieties of BioligninTM and Purified BioligninTM quantified by 55

HSQC		U	1 2
Name	Ref. signal	Biolignin TM	Purified Biolignin TM
Arylglycerol-β-arylether (β-O-4') substructure (1)	C _a H (ref)	69.7%	73,6%
Phenylcoumaran (β -5') substructure (2)	CαH	15.4%	10.7%
Resinol (β-β') substructure (3)	$C_{\beta}H$	7.6%	5.1%
1,2-diarylpropane (β-1') substructure (4)	CαH	0.4%	1.1%
Monotetrahydrofuran (α -O- α ' and β - β ') substructure (5)	CαH	3.8%	3.1%

a.B-diary	vlether	(a-0-4'	and	B-O-4''`) substructure ((6)
u.p-ulai	victure v		anu	D-O-T	j substitucture	U /

CαH

3.2%

6.7%

57

Table 8 – Mechanochemical experiments tested on Purified BioligninTM and their 58 conditions

59

		Purified Biolignin TM (mg)	NaOH (mg)	H ₂ O (µL)	MeOH (µL)	Reaction time (min)	wt% H2O	η*
	C1	700	0	0	0	120	4%	0.03
	D1	350	350	0	0	15	4%	0.03
Optimization of reaction time	D2	350	350	0	0	30	4%	0.03
reaction time	D3	350	350	0	0	60	4%	0.03
	D4	350	350	0	0	120	4%	0.03
	D5	650	160.5	0	0	30	4%	0.03
Optimization of	D6	650	321	0	0	30	4%	0.03
	D7	650	160.5	0	0	60	4%	0.03
quantity of NaOH	D8	650	321	0	0	60	4%	0.03
	D9	650	160.5	0	0	120	4%	0.03
	D10	650	321	160.5 0 0 120 321 0 0 120	120	4%	0.03	
	D11	650	160.5	41.6	-	60	10%	0.08
	D12	650	160.5	72.1	-	60	14%	0.11
H ₂ O effect	D13	650	160.5	105.9	-	60	18%	0.14
	D14	650	160.5	141.2	-	60	24%	0.22
MaOII offact	D15	650	160.5	-	175.5	30	4%	0.22
MeOH ellect	D16	650	160.5	-	175.5	60	4%	0.22

*η: empiric parameter which determine if the reaction respect the Liquid-assisted Grinding (LAG) 60

61 condition (*i.e.* $0 \le \eta \le 2 \mu L/mg$). $\eta = V$ (liquid; μL)/m (solid reagents; mg) (Ying et al. 2021)

62

Table 9 – Average relative molecular mass of milled samples as a function of its 63 2

64 moisture content, as determined by GP	64 moisture content,	as det	ermined	by	GP
--	----------------------	--------	---------	----	----

	wt% H2O	M _n (g/mol)	M _w (g/mol)		
Purified Biolignin [™]	4%	983 (6.1 u)	1579 (9.7 u)		
D7	4%	797 (4.9 u)	1143 (7.1 u)		
D11	10%	720 (4.4 u)	1038 (6.4 u)		
D12	14%	688 (4.2 u)	1028 (6.3 u)		
D13	18%	617 (3.8 u)	911 (5.6 u)		
D14	24%	855 (5.3 u)	1167 (7.2 u)		
* $u = C9$ -unit of wheat straw Biolignin TM (Lange et <i>al.</i> 2016)					

 Table 10 - Average relative molecular mass determined by GPC of milled samples with
 66 67

or without the presence of methanol as a scavenger

	wt% H2O N	MeOH	Milling time (min)	$M_{\rm n} \left({\rm g/mol} ight)$	$M_{\rm w}({ m g/mol})$
Purified Biolignin [™]	4%	-	-	983 (6.1 u)	1579 (9.7 u)

D5	4%	-	30	901 (5.5 u)	1201 (7.4 u)		
D7	4%	-	60	797 (4.9 u)	1143 (7.1 u)		
D13	18%	-	60	617 (3.8 u)	911 (5.6 u)		
D15	4%	Yes	30	638 (3.9 u)	988 (6.1 u)		
D16	4%	Yes	60	645 (4.0 u)	1010 (6.2 u)		
* $u = C9$ -unit of wheat straw Biolignin TM (Lange et al. 2016)							

69 Table 11 – Average relative molecular mass of milled BioligninTM samples as a

70 function of its moisture content, as determined by GPC

	Biolignin TM (mg)	NaOH (mg)	H2O (µL)	Reaction time (min)	wt% H2O	η	M _n (g/mol)	$M_{ m w}\left({ m g/mol} ight)$		
Biolignin TM	-	-	-	-	4%		999 (6.2 u)	1743 (10.8 u)		
C2	700	0	0	60	4%	0.03	978 (6.0 u)	1662 (10.3 u)		
D17	650	160.5	0	60	4%	0.03	607 (3.8 u)	1015 (6.3 u)		
D18	650	160.5	72.2	60	14%	0.11	591 (3.7 u)	903 (5.6 u)		
D19	650	160.5	105.8	60	18%	0.14	-	-		
* u = C9-unit	* $u = C9$ -unit of wheat straw Biolignin TM (Lange et al. 2016)									

Table 12 - ³¹P NMR quantification of COOH and OH groups and BioligninTM,

73 D17 and D18

Quantification (mmol/g of sample)	Biolignin TM	D17	D18
-COOH	0.76	1.03	1.04
Phenolic - OH of H-unit	0.39	0.32	0.31
Phenolic - OH of G-unit	0.83	0.76	0.79
Phenolic - OH of S-unit	0.52	0.48	0.51
5-5' condensed unit	0.25	0.22	0.24
4-O-5' condensed unit	0.46	0.08	0.07
Aliphatic - OH	2.05	1.95	1.87

Table 13 - Mechanochemical experiments on BioligninTM tested, their conditions and
 the average molecular mass of the final sample as determined by GPC

average molecular mass of the final sample as determined by GPC									
	Biolignin TM	NaOH (g)	Number of balls	Reaction time (min)	wt% H2O	η	M _n (g/mol)	$M_{\rm w}({ m g/mol})$	
D20	17.000	4.197	10	60	4%	0.03	592 (3.6 u)	939 (5.8)	
D21	17.000	4.197	20	60	4%	0.03	484 (3.0 u)	772 (4.8 u)	