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ABSTRACT

The accumulation of accreted matter onto the neutron star surface triggers exothermic reactions in the crust. The heat released as a
result influences the luminosity exhibited by the X-ray transient. The most common approach to the kinetics of exothermic reactions
in the crust of accreting neutron stars is to consider an infinite reaction rate. Here, we investigate accretion-related heat release in
the accreted outer crust of a neutron star by including a time-dependent accretion cycle and experimentally based reaction rates in
the kinetics of electron captures above the reaction threshold. A simple model was used to compute the zero temperature equation
of state of a crust in which two nuclei can coexist. We solved the abundance of parent nuclei as a function of the depth in the star
and the time variable using astrophysically motivated features of the accreting system. We calculated the heat release and neutrino
loss associated to reactions in the outer crust. We report the existence of layers in the outer crust, which contain both parent and
grand-daughter nuclei of electron captures. The reactions can occur deeper in the shell than the reaction threshold, thus releasing
more heat per accreted baryon for a given accretion rate. The electron capture layers continue to exist even when the accretion has
stopped. The heat sources are time- and pressure-dependent in accreting crusts of neutron stars. The total heat released is a function of
astrophysical (active and quiescent time) and microscopic (reaction rate) parameters Therefore, we conclude these parameters should
be considered individually and carefully for a range of different sources.

Key words. accretion, accretion disks – dense matter – equation of state – nuclear reactions, nucleosynthesis, abundances –
stars: neutron

1. Introduction

Neutron stars in binary systems are subject to accretion when
matter is transferred to them by their companion star. This
highly luminous phenomenon is observed especially well in
the X-ray band of the electromagnetic spectrum. Accretion can
occur through stellar winds or through an accretion disk if the
companion star has evolved into a Roche Lobe donor. In the case
of accretion by Roche Lobe overflow, accreted material crashes
onto the neutron star surface (spinning up the star in the process)
when a loss of angular momentum is triggered in the accretion
disk.

The composition and the equation of state of the crust of an
accreting neutron star is different from that of the crust of an
isolated (catalyzed) neutron star. As material originating from
the companion star crashes onto the neutron star envelope, ther-
monuclear burning occurs (Meisel et al. 2018). As a result, ashes
with a nucleon number of A = 50−110 are deposited on the crust
surface and progressively pushed deeper in the star. Contrary to
a catalyzed crust that is at global equilibrium, for an accreted
crust, the element that falls onto the surface is compressed and
subject to non-equilibrium and exothermic reactions. The energy
released by electron captures and pycnonuclear fusions deposit
heat in the crust: this process is called deep crustal heating
(Brown et al. 1998). The heat deposited is transported in the
star and radiated through the atmosphere. Then, the resulting
luminosity exhibited by the star can be observed after the active
accretion process has stopped, that is to say, during quiescence.
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Consequently, models of accretion related heating of the crust
can be compared to the thermal relaxation of X-ray transient
sources.

The most common approximation to modeling the crust of an
accreting neutron star is the fully accreted crust approximation,
where the original crust (i.e., the crust present before any accre-
tion has taken place) is neglected. In this approximation, the
crust is solely made of accreted material and the heat sources are
always located the same in the crust. Partially accreted crusts are
considered when the amount of accreted matter is small enough
that the original crust must be studied while it is being com-
pressed under accreted material (more details on this topic are
given in Suleiman et al. 2022 and references therein). The usual
approach to the crust equation of state and composition is the sin-
gle nucleus model (Haensel & Zdunik 2008; Fantina et al. 2018;
Potekhin & Chabrier 2021). The role of neutron diffusion was
investigated recently (Shchechilin et al. 2022), but it was found
that it does not significantly affect the heat release of the outer
crust (Potekhin et al. 2023).

Electron captures on an even-even parent nucleus (A,Z),
with A as the nucleon number and Z as the proton number, occur
according to the following pair of reactions:

(A,Z) + e− → (A,Z − 1) + ν slow, (1)
(A,Z − 1) + e− → (A,Z − 2) + ν fast, (2)

with ν denoting the electronic neutrinos, (A,Z − 1) the daugh-
ter nucleus, and (A,Z − 2) the grand-daughter nucleus. The
first electron capture is slow, whereas the second electron cap-
ture can be considered instantaneous due to the nuclear energy
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drop when passing from an odd-odd nucleus (A,Z − 1) to an
even-even (A,Z − 2) one. Therefore, the kinetics of the pair of
reactions is dominated by the first electron capture. The pre-
vailing approach to the kinetics of electron captures in deep
crustal heating is that all nuclei in an infinitesimally small
piece of accreted matter are instantaneously changed from par-
ent to daughter nuclei once the pressure threshold of the reaction
has been reached Sato (1979), Haensel & Zdunik (1990, 2003,
2008), Fantina et al. (2018), Shchechilin & Chugunov (2019),
Chugunov & Shchechilin (2020), Shchechilin et al. (2022); in
the following, this approximation is referred to as the “instan-
taneous approach”.

Full reaction networks beyond the one-component approach
were discussed in Gupta et al. (2007, 2008), Steiner (2012),
Lau et al. (2018), Schatz et al. (2022). Shchechilin et al. (2021)
found that complete reaction networks lead to a total heat
deposited similar to the heat deposited in the “instantaneous
approach”. The impact of time-dependent accretion on the heat
release subsequent to the pycnonuclear fusion of 34Ne in the
inner crust while considering a finite reaction rate and transient
accretion model was studied in Yakovlev et al. (2006). How-
ever, the physical processes leading to the reactions are com-
pletely different from those considered in this paper, as we
study electron captures. Finite reaction rates of electron cap-
tures in the crust of accreting neutron stars were discussed
in Bildsten & Cumming (1998), Ushomirsky et al. (2000): their
study which includes temperature effects, focused solely on sta-
tionary accretion and does not include nucleus dependence of the
half life in electron capture rates. In this paper, we discuss how
including the reaction rate of electron captures with a complete
nuclei dependence informed by nuclear experiments affects the
composition and the heat release in a fully accreted outer crust
constructed within the single nucleus model at zero temperature
and subject to time-dependent and transient accretion.

In Section 2, we present the simple approximation taken to
model the behavior of a piece of matter with a mixture of par-
ent and grand-daughter nuclei in the outer crust of a neutron star
in an accreting binary system. The equation of state followed
by the mixture of parent and grand-daughter nuclei is derived
in Sect. 2.1. Transitions between the different shells of the outer
crust in this approach are established in Sect. 2.2. Section 2.3
details the derivation of electron capture reaction rates and the
equation to solve the parent nuclei abundance is presented in
Sect. 2.4. Astrophysically motivated cycles of accretion alternat-
ing active and quiescent phases, as well as values of accretion
rates are discussed in Sect. 2.5. The heat release and neutrino
loss related to the parent nuclei abundance is derived in Sect. 2.6
and Sect. 2.7. Results for the parent nucleus abundance are pre-
sented in Sect. 3 for the shells of an 56Fe ashes accreted outer
crust for various scenarios of the accretion cycle. In addition, the
results for the heat released as well as the neutrino loss are pre-
sented in this section and compared to the results in the instanta-
neous approach.

2. Methods

2.1. The accreted outer crust equation of state

A simple approach is taken to establish the zero-temperature
relation between the pressure and the density (equation of state)
in the outer crust of an accreted neutron star: a lattice allowing
for the mixture of two nuclei is permeated by a gas of electrons.
The pressure and energy density of a degenerate gas of electrons

are given by

Pe =
(mec2)4

(~c)3 φ(ξ) , (3)

Ee =
(mec2)4

(~c)3 χ (ξ) , (4)

with ~ as the reduced Planck constant and c as the light velocity
such that ~c = 197.33 MeV fm. The electron Fermi momentum
is pFe = n1/3

e (3π2)1/3~ and the relativity parameter is ξ = pFe/mec
with ne and me, respectively, the number density and mass of
the electron (see e.g., Shapiro & Teukolsky 1986). The expres-
sion of the electron’s pressure and energy density involves the
dimensionless functions:

φ(ξ) =

ξ
(
1 + ξ2

)1/2 (
2
3ξ

2 − 1
)

+ ln
(
ξ +

(
1 + ξ2

)1/2
)

8π2 , (5)

χ(ξ) =

ξ
(
1 + ξ2

)1/2 (
1 + 2ξ2

)
− ln

(
ξ +

(
1 + ξ2

)1/2
)

8π2 . (6)

In the outer crust, below the liquid ocean, electrons are rela-
tivistic: ξ � 1. In the considered reaction layers, the relativity
parameter ξ is between 8 (for the first layer), up to ∼40 (for the
deepest one). With an accuracy better than ∼1%, one can use
ultra-relativistic approximation φ(ξ) ' ξ4/(12π2).

An ion lattice correction to the pressure, denoted Plat, is
added to the rigid electron background pressure by considering
nuclei of number density nI . The volume per nucleus is 1/nI and
the volume of a sphere centered at a nucleus (the ion sphere) has
the radius aI = (4π/3 nI)−1/3. The number density of nuclei nI is
related to the electron density, ne, by

ne = nI (XZ0 + (1 − X)Z2) (7)

for the capture of two electrons, where the parent nucleus pro-
ton number is denoted Z0 and the grand-daughter nucleus proton
number is denoted Z2 = Z0 − 2. The quantity X = N0/(N0 + N2)
designates the nucleus (A,Z0) abundance, with N0 the number of
parent nuclei (A,Z0) and N2 the number of grand-daughter nuclei
(A,Z2).

The lattice pressure Plat for a mixture of two nuclei is given
by

Plat = −0.3
(4π

3

)1/3
n4/3

e e2 F (X) , (8)

with e the elementary charge and F a function determined by the
linear mixing rule (for details, see Section 2.4.7 of Haensel et al.
2007), which for a mixture of parent and grand-daughter ions is
given by the formula

F (X) =
(Z0 − 2)5/3 + X

[
Z5/3

0 − (Z0 − 2)5/3]
Z0 + 2

(
X − 1

) . (9)

The relation between the baryon density denoted n and the
density of electrons in the linear mixing rule approximation is

n(P, X) =
ne(P, X)
γ(X)

, (10)

with

γ(X) =
XZ0 +

(
1 − X

)(
Z0 − 2

)
A

. (11)
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The relation between the pressure and the baryon density in this
approximation is given by

P =
(mec2)4

(~c)3 φ
(
α(X)n1/3

)
+ β(X)n4/3 , (12)

with

α(X) =
(3π2)1/3~c

mec2

(
γ(X)

)1/3
, (13)

β(X) = −0.3
(4π

3

)1/3
e2F (X)

(
γ(X)

)4/3
. (14)

The chemical potential of a degenerate gas of electrons in a lat-
tice is given by

µe =
√

n2/3[α(X)mec2]2 + (mec2)2 + 4
β(X)
γ(X)

n1/3 . (15)

The energy of the nucleus (A,Z) in the heavy nucleus approxi-
mation is given by its nuclear mass

M(A,Z)c2 =Mat(A,Z)c2 − Zmec2 + Bel(Z) + Eexc(A,Z), (16)

with Mat(A,Z) as the atomic mass of the ground state nucleus
(A,Z) and Bel(Z) the binding energy of Z electrons, as reported
in Lunney et al. (2003). The total energy density is given by the
formula

E = X
M(A,Z)c2

A
n + (1 − X)

M(A,Z − 2)c2

A
n + Elat + Ee , (17)

where the lattice energy is Elat = 3Plat.

2.2. Composition of the outer crust

In this paper, the composition of the outer crust is estab-
lished starting from the fully accreted crust approximation. The
crust of the neutron star is entirely composed of accreted mat-
ter. The boundaries of shells are defined by the pressure thresh-
old of reactions. We consider the five shells of an accreted outer
crust made originally of 56Fe ashes from thermonuclear flashes.
Nuclei in the entire outer crust have the nucleon number A = 56
because pycnonuclear fusions are not allowed there. The pro-
ton numbers from the neutron star crust surface to the outer and
inner crust transition are Z = 26, 24, 22, 20, 18, namely : there
are four pairs of electron captures that occur during the accretion
process onto a fully accreted outer crust.

The composition of the outer crust is determined either
by the table of experimentally measured nuclei mass table
AME2020 presented in Wang et al. (2021), or by the theoreti-
cal model HFB-21 presented in Goriely et al. (2010) if masses
of nuclei are not available from experimental data (it is the case
for Z = 19, 18). The nuclear masses that we use here, as well as
their β-decay schemes, are in vacuum. This stems from the fact
that the electron gas does not influence the structure of the nuclei
involved, including their excited states.

In the reactions studied in this paper, we only consider the
excited state of the daughter nuclei of the first electron capture,
with an excitation energy of Eexc(A,Z − 1). Actually, it is only
the first electron capture in the first shell in the crust that involves
an excited state of the nucleus 56Mn, with an excited energy of
110 keV, see Appendix B. The pressure threshold and conse-
quently the boundaries of the five shells of the outer crust are

defined by the energy threshold, W1 and W2, for the first and
second electron capture, respectively, and is given by:

W1 =Mat(A,Z − 1)c2 −Mat(A,Z)c2 + mec2 (18)
+ Bel(Z − 1) − Bel(Z) + Eexc(A,Z − 1) ,

W2 =Mat(A,Z − 2)c2 −Mat(A,Z − 1)c2 + mec2 (19)
+ Bel(Z − 2) − Bel(Z − 1) .

The atomic mass Mat(A,Z) is extracted from experimental
data for nuclei Z = [26 − 20] and calculated, using a theoreti-
cal approach for Z = 19, 18. The pressure and density thresh-
old denoted Pth and nth, respectively, defining the transition
between each shell is determined by solving µe(X = 1, nth) = W.
In Table 1, we present the transition pressures and densities, as
well as the energy threshold of the first and second electron cap-
tures, respectively, denoted W1 and W2. Our approach is different
than the single-nucleus model considered in Fantina et al. (2018)
in two respects. On the one hand, experimentally measured
nuclei masses used in Fantina et al. (2018) are taken from the
AME2016 Wang et al. (2017) data table and we used the updated
AME2020 data table in our calculations; this is the main source
of discrepancy (for the first transition pressure Pth(Z = 26),
including the excitation energy plays a significant role). On the
other hand, we do not require a simultaneous transition of all
nuclei (A,Z) → (A,Z − 1) and, as a result, the threshold pres-
sure in our model is slightly different (for different treatment
of threshold pressure for two models, see Chamel et al. (2015),
Chamel & Fantina (2016)).

2.3. Rates of β-decays and electron captures

The reaction rate of β-decays and electron captures can be
established from the Fermi golden rule (originally presented
and applied by Dirac 1927). For details on the derivation
of the reaction rates, see Appendix A. For the β-decay rate
(A,Z − 1)→ (A,Z) denoted Rβ the calculation is done in vac-
uum and exclusively for allowed type of decays, resulting in the
following formula:

Rβ =
2JZ + 1

2JZ−1 + 1
|Mβ|

2 4m5
ec4

(2π)3~7 f , (20)

with JZ as the spin of nucleus (A,Z) and here the factor f is the
available momentum space factor; notably, the matrix element,
Mβ, does not depend on the nuclei spins.

The electron capture rate on nuclei immersed in the Fermi
sea of electrons (A,Z)→ (A,Z − 1) is denoted by Rec and can
then be expressed as:

Rec =
2JZ−1 + 1
2(2JZ + 1)

|Mec|
2 4m5

ec4

(2π)3~7G , (21)

where G is a dimensionless available momentum space factor,
given by

G (ĒF , W̄) =

∫ ĒF

W̄
Ē

√
Ē2 − 1 (Ē − W̄)2dĒ,

=
[
Gb(ĒF , W̄) − Gb(W̄, W̄)

]
, (22)

with ĒF = EF/(mec2), W̄ = W/(mec2) and EF the Fermi energy
of electrons. For the β-decay reactions, the factor f is
∝Gb(W̄1, W̄1) − Gb(1, W̄1) and often includes corrections for
the Coulomb interaction. The generalized function, Gb, can
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Table 1. Pressure, Pth, density, nth, and energy threshold, W1,W2, of the four pairs of electron captures in the outer crust made of 56Fe ashes,
calculated in the framework of the linear mixing rule approximation for the equation of state discussed in Section 2.1.

Reaction Pth (MeV/fm3) nth (fm−3) W1 (MeV) W2 (MeV)

Z = 26→ 24 4.13 × 10−7 8.42 × 10−7 4.31 2.13
Z = 24→ 22 1.04 × 10−5 1.02 × 10−5 9.61 7.27
Z = 22→ 20 5.28 × 10−5 3.73 × 10−5 14.42 12.51
Z = 20→ 18 2.40 × 10−4 1.28 × 10−4 21.09 19.73

be obtained via an analytical formula, first presented in
Frank-Kamenetskii (1962)1 as:

Gb(x, w) =

√
x2 − 1
60

(
x3(12x − 30w) − 4x2(1 − 5w2) (23)

+ 15wx − 20w2 − 8
)

+
1
4
w log

(√
x2 − 1 + x

)
.

In the ultra-relativistic approach (ĒF ≥ W̄ � 1), the expan-
sion up to the first order in W̄−2 yields the approximation G ≈
Gultra:

Gultra(EF ,W) =
W̄5

3

(EF

W
− 1

)3[
1 −

1
2W̄2

+
3
2

(EF

W
− 1

)
+

3
5

(EF

W
− 1

)2]
. (24)

For an electron Fermi energy close to the reaction threshold
energy (EF −W � W), the leading order expression is:

Gultra(EF ,W) =
W̄5

3

(EF

W
− 1

)3
, (25)

here, we also refer to Eq. (4) and the zero temperature limit of
Eq. (6) in Bildsten & Cumming (1998). We note that the ultra-
relativistic approximation is used in this paper only to make
analytical estimates, the full numerical solution makes use of
Eq. (23) to formulate the reaction rate.

Using charge conjugation symmetry as well as time reversal
symmetry, we can show that the matrix element for the electron
capture and its corresponding β-decay in the above mentioned
approximations are equal. Therefore, we can make use of the
experimental data available for β-decay reactions to compute the
reaction rate of the first electron capture per parent nucleus:

Rec =
ln(2)
f t1/2

2Jec;Z−1 + 1
2(2Jec;Z + 1)

2Jβ;Z−1 + 1
2Jβ;Z + 1

G (ĒF , W̄1), (26)

≡
1
τec
G (ĒF , W̄1) , (27)

where Jec;Z and Jβ;Z are nuclear spins for the electron capture
and its corresponding β-decay, respectively. The quantity t1/2
is the half-life of the β-decay for a specific reaction channel
and can be extracted from experimental data or estimated ana-
lytically, τec is the electron capture timescale. Electron cap-
tures and β-decays are subject to selection rules (Povh et al.
2004) that specify allowed changes of nuclear spins for nuclei
involved in electron captures and β-decays. We selected the
dominant channel in the energy level diagrams presented
in National Nuclear Data Center (2022) for each reaction. In
Appendix B, we give some details on the calculation of the elec-
tron capture rates. In Table 2, we present values of τec for the first
electron capture involved in the four shells of the outer crust.
1 Note, however, that the integrand in Eq. (4) in Frank-Kamenetskii
(1962) has to be corrected by replacing ε2 in the brackets by ε.

Table 2. Electron capture timescale and accretion timescale for the first
electron capture for the four pairs in the outer crust made of 56Fe
ashes.

Reaction τec (in s) τacc (in s)

Z = 26→ 25 8.67 × 106 9.50 × 107

Z = 24→ 23 1.37 × 104 2.40 × 109

Z = 22→ 21 7.34 × 103 1.21 × 1010

Z = 20→ 19 1.59 × 105 5.67 × 1010

Notes. The accretion timescale is calculated for a 1.4 M� neutron star
mass and 11 km radius considering a constant accretion rate of 10−8 M�

per year.

2.4. Continuity equation

During the active phases of accretion, freshly accreted matter is
flowing and sinking towards the core with a velocity:

v(z) =
Ṁ

4πR2mBn(z)
, (28)

with Ṁ the mass accretion rate, R the total radius of the star,
mB the rest mass of a baryon, and z = R − r the proper distance
from the surface in the plane-parallel approximation. It should be
noted that even if the accretion stops (quiescent phase), nuclear
reactions still occur leading to a slow change of the equation of
state in the mixed layer. This results in a shrinking of the reaction
layer, and therefore to a certain (low) velocity. In our consider-
ations we use the pressure as an independent variable (in place
of z or r). For a given piece of matter, the pressure changes due
to accretion with the increase proportional to the accreted mass;
during quiescent phases, the pressure does not change as the col-
umn of matter above is fixed when the reactions take place.

The most important quantity introduced in the previous
section is the parent nucleus abundance, X. The layers of elec-
tron captures are defined as the thickness in pressure, for which
X ∈ [0 − 1]. The product of the parent nucleus abundance, X,
with the baryon density corresponds to the number density of
parent nuclei, and is governed by the continuity equation. This
equation is written in the local frame with τ and z corresponding
to the proper time and proper distance in the neutron star crust.
In what follows, we use the Newtonian approach

∂P
∂r

= −
GM
R2 ρ , (29)

where ρ = ε/c2 ≈ nmB, and M is the total mass of the star; in
the following the mass and the radius of the star are chosen to
be 1.4 M� (solar mass) and 11 km, respectively. The continuity
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equation is therefore given by:

∂

∂t
ln

(
n
(
X(P, t), P

)
X(P, t)

)
+

1
τacc(t)

∂ ln X(P, t)
∂P̃

= −Rec
(
X(P, t), P

)
, (30)

with P̃ = P/Pth, with n = n(P, X) and X = X(P, t), and τacc is the
accretion timescale,

τacc(t) =
4πR4Pth

GMṀ(t)
. (31)

Typical values of the accretion timescale are presented in
Table 2. In the general relativity approach, with a metric
ds2 = e2φdt2 − e2λdr2 − dΩ2, the continuity equation has the
same form as in the Newtonian one in the local frame with coor-
dinates (teφ, reλ), and the boundary condition at the surface is
eφ(R)+λ(R) = 1. By choosing the pressure, P, as the independent
variable instead of z, the relativistic equivalent of Eq. (30) would
include Ṁ multiplied by a factor eφ(R) = (1 − 2GM/Rc2)1/2 in
the expression of the accretion timescale (Eq. (31)); in our case
(M = 1.4 M�, R = 11 km), this factor is ∼ 0.8. The mass accre-
tion rate would be defined as Ṁ = Ṅ/mB, with Ṅ = dN/dt,
as measured by a distant observer. In the rest of the paper, we
neglect relativistic effects and treat the Newtonian approach of
the continuity equation.

2.5. Astrophysically motivated accretion cycle

We intend to study a realistic cycle of accretion (sequence of
active and quiescent phases) motivated by X-ray observations of
sources in accreting low-mass X-ray binaries. Several sources
have been observed alternating between active accretion stages
lasting from weeks to years and quiescent stages lasting from
months to decades. The information on characteristic duration of
active accretion can be extracted from the observations of X-ray
outbursts (a lasting surge in luminosity) of sources EXO 0748–
676 (see Parikh et al. 2020 and references therein), KS 1731–
260 (see Merritt 2017 and references therein), XTE J1701–462
(Fridriksson et al. 2010), and IGR J17480–2446 (see Ootes et al.
2019 and references therein). This lasted 24 years, 12.5 years,
1.6 years, and 10 weeks, respectively; all four sources are now
in quiescence. The source MXB 1659–29 (see Parikh et al. 2019
and references therein) presented two well monitored outbursts
lasting, respectively, 2.5 and 1.7 years, interspersed by a quies-
cent period of 14 years. This source was first observed in 1976
during an outburst estimated to last between 2 and 2.5 years as
well. Unless otherwise stipulated, in this paper we study the fol-
lowing cycle: an active phase period, ta, of four years and a qui-
escent period of tq = 10ta.

The average accretion rate during active phases were esti-
mated for the sources XTE J1701–462 (Fridriksson et al. 2010)
and IGR J17480–2446 (Degenaar & Wijnands 2011) to be
1.7 × 10−8 M� per year and 3 × 10−9 M� per year, respectively.
The observation of X-ray bursts indicate a luminosity variability
in the active phase from which the accretion rate as a function of
time can be inferred, however, we do not intend to discuss this
variability; rather, we aim to use a mean value of the accretion
rate in the active phase. The active accretion rate, denoted Ṁa, is
described by an exponential onset and offset such that:

Ṁa(t) = Ṁmax

( 1
1 + ea(t−ta+to) +

1
1 + e−a(t−to) − 1

)
, (32)

with Ṁmax the accretion rate outside the onset and offset of active
accretion and a a constant controlling the steepness of the Ṁ

increase and decrease during onset and offset. For a ' 118 (in
yr−1), the onset and offset are very steep. We consider the accre-
tion is switched on as soon as Ṁ reaches 10−10Ṁmax. At to, half
of the maximum value of the accretion rate Ṁmax/2 is reached.
After to, because a is so large and the onset so steep, we quickly
reach Ṁmax to a very high precision. Unless otherwise stipulated,
in this paper we set Ṁmax = 10−8 M� per year, a reasonable value
with regard to observed mean accretion rate during active accre-
tion, and to = 0.05ta.

The number of accreted baryons during an accretion cycle
denoted Nb is defined by the time integral of the accretion rate
during the cycle

Nb =

∫ ta+tq

0

Ṁa(t)
mB

dt . (33)

Given that we consider a finite reaction rate, the number of
accreted nuclei over one accretion cycle is not a priori the same
as the number of nuclei undergoing electron captures. Therefore,
we define Ṅr the rate of baryons involved in an electron capture
per unit time and per unit volume

Ṅr(P, t) = Rec(P, X)X(P, t) . (34)

The number of reactive baryons per unit time in the shell gives

Nr(t) =
4πR4Pth

GMmB

∫ P̃0

1
Rec(P̃, X)X(P̃, t)dP̃ , (35)

where P̃0 = P(X = 0)/Pth . The number of reactive baryons in
the shell over the cycle of accretion

Nr =

∫ ta+tq

0
Nr(t)dt . (36)

2.6. Heat release from electron captures

We consider the first electron capture presented in Eq. (1), while
neglecting the neutrino heat loss (cooling). We also consider
that processes under consideration proceed at constant pressure
and temperature in a piece of matter. Following the derivation
of Chapter X in Landau & Lifshitz (1969), we define an ele-
mentary reaction e− + (A,Z) −→ (A,Z − 1), with the coefficients
νe = νA,Z = 1 and νA,Z−1 = −1. The number of electron captures
in the time interval dt is denoted δNec; the changes of num-
bers of particles i are δNi = −νiδNec, while the thermodynamic
potential Φ changes by δΦ =

∑
i δNiµi = −

∑
i νiµiδNec. The heat

released at constant pressure and temperature is (Chapter X in
Landau & Lifshitz (1969)):

δQP = TδS = −T 2
(
∂

∂T
δΦ

T

)
, (37)

with T the temperature and S entropy. In our approximation, µi
values do not depend on T (electrons are fully degenerate and
nuclear masses do not depend on T ), so that

δQP = −
∑

i

νiµiδNec . (38)

The heating rate is therefore

Q̇P = TṠ = −
∑

i

νiµiṄec . (39)
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The heat release per nucleus for the first and second electron
capture of the pair, denoted respectively q1 and q2, neglecting
neutrino heat loss, are

q1(P, X) =M(A,Z)c2 −M(A,Z − 1)c2 + µe(P, X) , (40)

q2(P, X) =M(A,Z − 1)c2 −M(A,Z − 2)c2 + µe(P, X) . (41)

The heat released by the pair of electron captures per nucleus is
denoted q and is given by

q(P, X) = 2µe(P, X) − (W1 + W2) + Eexc , (42)

with Eexc the excitation energy of the first electron capture
daughter nucleus; note that except for 56Mn∗, we only consider
ground-state to ground-state reactions. Therefore, the heating
rate per unit volume is given by

q̇(P, t) = q(P, X)Rec(P, X)
n(P, X)

A
X(P, t) . (43)

The heat released in the layer of electron captures per unit
time is

Q̇(t) =
4πR4Pth

GMmB

∫ P̃0

1

q̇(P̃, t)
n(P̃, X)

dP̃ . (44)

The total heat released in a layer per one accreted nucleon
during one accretion cycle is

Q =
1

Nb

∫ ta+tq

0
Q̇(t)dt , (45)

with Nb the number of accreted nucleons during this cycle.

2.7. Neutrino energy loss

In the assessment of the heat release in the outer crust of a neu-
tron star in an accreting binary system, the neutrinos must be
taken into consideration: in conditions relevant for adult neutron
stars, neutrinos escape the system taking away energy.

Similarly to Eq. (42), we can define the energy allocated to
neutrinos in the pair of electron captures per nucleus

qν(P, X) = mec2
(
Gν(ĒF , W̄1)
G (ĒF , W̄1)

+
Gν(ĒF , W̄2)
G (ĒF , W̄2)

)
. (46)

The energy of neutrinos per electron capture and per parent
nucleus, in the units of mec2, denoted Gν, is given by

Gν(ĒF , W̄) =

∫ ĒF

W̄
Ē

√
Ē2 − 1 (Ē − W̄)3dĒ

=
[
Gνb(ĒF , W̄) − Gνb(W̄, W̄)

]
; (47)

the function Gνb can be obtained analytically as

Gνb(x, w) =
1

240

(√
x2 − 1

[
40x5 − 144wx4 (48)

+ 10x3(18w2 − 1) + 16wx2(3 − 5w2)

− 15x(1 + 6w2) + 16w(6 + 5w2)
]

− 15(1 + 6w2)
[

log
(√

x2 − 1 + x
) ])

,

see also Bisnovatyi-Kogan (2001).

The energy radiated away by neutrinos per unit time and per
unit volume εν is given by

εν(P, t) = qν(P, X)Rec(P, X)
n
A

X(P, t) . (49)

The heat deposited in the layer of electron capture per time
unit is defined as the integral over the volume of the difference
between the heating rate and the cooling rate due to neutrino
emission

Ḣ(t) =
4πR4Pth

GMmB

∫ P̃0

1

q̇(P̃, t) − εν(P̃, t)
n(P̃, X)

dP̃ . (50)

The total heat deposited per one accreted baryon during one
accretion cycle gives

H =
1

Nb

∫ ta+tq

0
Ḣ(t)dt . (51)

2.8. Heating from (A,Z − 1)∗ decay versus neutrino cooling

The daughter nucleus (A,Z − 1) from the first electron capture
in Eq. (1) has odd numbers of neutrons and protons. There-
fore, it has a lower energy threshold for the second electron
capture, W2 < W1. Moreover, it has numerous excited states
above the ground state one. This means that there is an energy
range of electrons W2 < Ee < EF , whose capture leads to the
excited states (A,Z − 1)∗. These excited states with energies 0 <
Eexc < Ee − W2 de-excite via electromagnetic transition, heat-
ing the matter. The multi-component plasma calculations of the
accreting crust evolution show that the de-excitation heating bal-
ances the neutrino heat losses calculated in Sect. 2.7 (Gupta et al.
2007). Therefore, neglecting neutrino losses and using the heat-
ing rate calculated in Sect. 2.6 is a reasonable approximation.
Such an approximation was used in (Haensel & Zdunik 2008;
Fantina et al. 2018).

3. Results

3.1. Thickness of the layer of electron capture

3.1.1. Stationary solution

As a first approach to the behavior of the parent nucleus abun-
dance, X, in each shell of the outer crust, we establish the
solution of the continuity equation for a constant accretion
rate; the solution depends only on the pressure. Equation (30)
is reduced to an ordinary differential equation treated with a
Runge-Kutta numerical approach, with a constant accretion rate
of Ṁ = Ṁmax = 10−8 M� per year. The boundary condition
X(P = Pth) = 1 is used: at the pressure threshold, all nuclei
are parent nuclei. The accreted material is continuously pushed
deeper in the crust by freshly accreted material and the solution
does not depend on time.

When a piece of matter composed of parent nuclei reaches
the pressure threshold of the first electron capture, parent nuclei
are allowed to transform into daughter (and immediately grand-
daughter) nuclei. In the instantaneous approximation, all parent
nuclei react at the threshold pressure of the first electron capture.
However, when considering finite reaction rates, parent nuclei
electron captures take place according to the finite reaction rate
and as the piece of matter is still pushed deeper in the crust. Con-
trary to the instantaneous approximation, in our approach (later
referred to as the mixed layer approach), the sinking piece of
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Fig. 1. Stationary solution for the parent nucleus abundance, X, as a
function of the pressure for the four reactions in the outer crust.

matter still contains parent nuclei that shall be changed to grand-
daughter nuclei at values of the pressure higher than the thresh-
old pressure. The stationary solution corresponds to a particular
distribution of the parent nuclei number as a function of the pres-
sure: it appears during active phases of accretion if a steady state
has been reached between a continuous supply of parent nuclei
(and compression) provided by accretion and the reactions oper-
ating on the parent nuclei.

The stationary solution Xstat(P) is presented for parent pro-
ton number Z0 = 26, 24, 22, 20, in Fig. 1. We define the
thickness in pressure of the layer of electron capture, that is
to say, the region in the shell where both parent and grand-
daughter nuclei are found, using the value of the pressure at
which the shell is made of only 1% of parent nuclei. It is
denoted ∆Player = P(X = 10−2) − Pth ; this quantity is also pre-
sented in Table 3 for the stationary solution. For all four pairs
of electron captures, the thickness of the layer is on the order of
10−7 MeV/fm3. The slope of decrease in the parent abundance
for the stationary solution is correlated with the ratio τacc/τec
(see Table 2): the higher the ratio, the steeper the decrease.

It is important to note that the thickness of the electron cap-
ture layer is much smaller than the thickness of the shell com-
posed of the grand-daughter nuclei. The thickness in pressure for
all considered shells is ∼10−5−10−3 MeV/fm3; the reaction layer
thickness represents at most one percent of the shell thickness, as
said shells are located deeper in the crust and the layer thickness
is on the same order of magnitude throughout the outer crust.
This implies that no shell of the outer crust with parent number
nucleus, Z′, is also composed of its shallower neighbor parent
nucleus, Z′ − 4.

Using the ultra-relativistic approximation of the electron
capture reaction rate presented in Eq. (24), we can provide a
simple analytical approximation of the increase in pressure δP
required to reach the region in which most of the parent nuclei
are transformed into grand-daughter nuclei. The stationary form
of the continuity equation for ultra-relativistic electrons is writ-

Table 3. Estimation in the ultra-relativistic electron approximation of
the thickness, δP(X = 0.95) = P(X = 0.95) − Pth, and thickness in
pressure of the layer, ∆Player, of electron capture established from the
stationary solution.

Reaction δP(X = 0.95) MeV/fm3 ∆Player MeV/fm3

Z0 = 26 3.86 × 10−8 1.24 × 10−7

Z0 = 24 3.18 × 10−8 6.20 × 10−8

Z0 = 22 5.53 × 10−8 6.71 × 10−8

Z0 = 20 2.31 × 10−7 2.68 × 10−7

ten as

τec

τacc
Pth

∂ ln(X)
∂(δP)

= −
W̄5

1

3

( EF

W1
− 1

)3
. (52)

In this approximation, we include only the leading term in
Eq. (24) – it is valid for EF/W1 − 1 � 1, equivalent to the con-
dition δP/P � 1, (see Eq. (25)). This condition is fulfilled for
all considered reaction layers but the first one, for which it is
on the order of 0.1–0.2 (see Tables 1, 3). Under the assump-
tion that the parent nuclei abundance is close to one, the fac-
tor α (see Eq. (13)) related to the linear mixing rule function is
considered to be constant; thus, the right hand side of Eq. (52)
is independent of X. Solving the approximation of the conti-
nuity equation in the ultra-relativistic approach (P ∼ E4

F and
δP/P ' 4(EF/W − 1)), we obtain the approximate solution to
Eq. (52) X(δP) = exp [−(δP/δPs)4],where δPs is e-folding value
of δP at which X = 1/e defined by:

δPs = 4Pth

( 3
W̄5

1

τec

τacc

)1/4
. (53)

This approximation works well for the a small decrease of X: for
X = 0.95, it can be quite accurately determined by

δP(X = 0.95) = 0.476 δPs = 2.51Pth

( 1
W̄5

1

τec

τacc

)1/4
, (54)

a quantity presented in Table 3.
Similarly to the estimation of the pressure thickness in

Eq. (53), we can estimate the radius thickness of the electron
capture layers without solving the continuity equation as:

δR = 4
R2Pth

GMρth

( 3
W̄5

1

τec

τacc

)1/4
, (55)

with ρth = nthmB. For a neutron star mass of M = 1.4 M�
and radius R = 11 km: the layers for Z0 = 26, Z0 = 24,
Z0 = 22, and Z0 = 20 are about 6 m, 0.4 m, 0.2 m, and 0.2 m
thick, respectively. This is much less than the thickness of the
shells which in all studied cases are larger than 100 m (see Eq.
(10) in Suleiman et al. 2022). The maximum size of the reac-
tion layer (corresponding to stationary solution) is significantly
smaller than the thickness of the shell also for other, astrophysi-
cally relevant accretion rates. The presented numbers correspond
to Ṁ = 10−8 M�/yr, but even a decrease of Ṁ by two orders of
magnitude only leads to a factor of ∼0.3 in Eqs. (53)–(55). For a
small (5%) decrease in X, we get:

δR(X = 0.95) = 2.5
R2Pth

GMρth

( 1
W̄5

1

τec

τacc

)1/4
, (56)
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in the case of which we obtained about 3 m for the first reaction
layer and ∼0.1−0.2 m for deeper reaction layers2.

3.1.2. Time-dependent active phase solution for Z0 = 26

To solve the complete continuity equation in Eq. (30) during
active accretion, we used a time-dependent accretion timescale
with Ṁmax = 10−8 M�. The following accretion cycle parame-
ters were used in Eq. (32): ta = 4 years and to = 0.2 years. The
boundary condition is the same as the stationary case and the ini-
tial condition is X(P, t = 0) = Xstat(P). This simplistic approach
is reasonable if the equation is solved for multiple accretion
cycles and we present results for the fourth accretion cycle for
the shell with Z0 = 26. It turned out that after two cycles, we
reached a stable solution, in which X(P, t) = X(P, t + τcycle),
where τcycle = ta + tq is the full period of our accreting source.
After reaching this stable solution all cycles look identical.

Results for the parent nucleus abundance X(P, t) for Z0 = 26
are presented in Fig. 2. This figure shows that the pre-accretion
profile X(P, t − t0 = 0) (shown in black) is not step-like: the
quiescent time from the previous cycle is not sufficient to reach
a very small abundance of parent nuclei in the whole layer.
After the accretion is switched on, the parent abundance pro-
file increases (in dark blue) and reaches the stationary profile
(in orange). At t − t0 = 3.8 years (dashed brown), the off-
set has already started and we have Ṁa(t − t0 = 3.8) = Ṁmax/2:
we observe that a decrease by half of the accretion rate barely
changes the profile of X(P). However, at t − t0 = 3.9 years
(in teal), for which the accretion rate can be considered negli-
gible with Ṁa(t − t0 = 3.9)/Ṁmax ' 10−5, X(P) has significantly
evolved from the stationary profile.

The time needed to reach the stationary profile for a given
reaction layer can be estimated from the formula in Eq. (31) with
Pth replaced by δP defined by Eq. (53):

τstat = τacc
δP
Pth

. (57)

The formula is most accurate close to the threshold; therefore,
we can defined the time needed to reach the stationary profile at
X = 0.95 and use the following formula:

τstat(X = 0.95) = 2.5
( 1
W̄5

1

τecτ
3
acc

)1/4

= 0.4 yr R3
10τ

1/4
ec,5W−5/4

10

(
Pth,−5

Ṁ−8M/M�

)3/4

(58)

where R10 = R/10km, τec,5 = τec/105s, W10 = W/10MeV,
Pth,−5 = Pth/10−5Mev/fm3, and Ṁ−8 = Ṁ/10−8M�/yr. The
timescale needed to reach the stationary state is on the order
of the active phase (accretion) in low mass X-ray binaries. To
decide whether this state is reached for a given reaction layer,
one needs to study the full solution of the continuity equation.

To assess the role of the value of the maximum accretion
rate on our results, we present in Fig. 2 the parent nucleus abun-
dance X(P, t) for Ṁmax = 10−10 M� per year instead of 10−8 M�
per year; the same accretion cycle parameters are used. The sta-
tionary profile for Ṁmax = 10−10 M� is different from the station-
ary profile for Ṁmax = 10−8 M� presented in Fig. 1. The solution
X(P, t) does not reach the stationary profile before the accretion
is switched off. The profile of X(P, t) evolves slower than for

2 See also similar considerations for the hydrogen electron capture in
the NS ocean in Bildsten & Cumming (1998), Eqs. (13,14).

the value of the accretion rate Ṁ = 10−8 M� per year; the layer
of electron captures is also much thinner. The accretion rate is
directly related to the number of parent nuclei deposited onto the
neutron star surface, and the speed at which nuclei are pushed to
higher pressures. Therefore, this quantity dictates how fast the
solution X(P, t) increases towards the stationary profile.

The time of active accretion ta also plays a role on the thick-
ness of the electron capture layer: from Fig. 2 with an accre-
tion rate Ṁ = 10−8 M� per year, we can infer that if the accre-
tion is switched off before or around 0.6 years (blue curve in
the figure), the stationary profile is not reached during the active
phase period; in this case, the stationary state is reached after
∼1 yr.

3.1.3. Quiescence following a stationary profile

We now consider the particular case of quiescence (Ṁ(t) = 0) for
the continuity equation Eq. (30):

d
dt

ln
(
n
(
X(P, t), P

)
X(P, t)

)
= −Rec

(
X(P, t), P

)
, (59)

which follows a stationary profile, namely, with the initial con-
dition X(P, t = 0) = Xstat(P). Results for 40 years of quiescence
are presented in the movie available online.

In the mixed layer approach, X(P, t) in the quiescent phase
is not zero in the shell, contrary to the instantaneous approach:
electron captures still occur even when the accretion-related
pressure increase is switched off. All X(P) profiles evolve very
rapidly during the first ∼10 years after the beginning of quies-
cence. However, the profiles evolve increasingly slowly (simi-
larly to an exponential decrease) in the remaining years of the
quiescent phase towards a step-like function that is not actually
reached.

3.1.4. Accreted versus reactive baryons

The number of accreted baryons Nb (see Eq. (33)) and the num-
ber of baryons effectively involved in electron captures (reac-
tive baryons) Nr (see Eq. (36)), are equal in the instantaneous
approach, but not in the mixed layer approach. For the mixed
layer approach, when considering only the stationary case of
active accretion, we also have Nb = Nr: the stationary solution
represents an equilibrium between the number of parent nuclei
pushed beyond the threshold pressure of the reaction by contin-
uous accretion and the number of parent nuclei transformed into
daughter nuclei when they react deeper in the shell.

When considering the time-dependent solution X(P, t) dur-
ing the active phase, not all parent nuclei accreted necessar-
ily have time to undergo their electron capture. For an active
phase of four years with Ṁmax = 10−8M� per year, the num-
ber of accreted baryons is Nb = 4.3 × 1049. During the same
period of active accretion, the time-dependent solution for
Z0 = 26 leads to Nr ' 3.9 × 1049: this corresponds to
∼90% of the baryons accreted during the active phase having
reacted.

During the quiescent phase, in the assumption that it follows
from a stationary profile, the number of reactive baryons
during quiescence is directly related to the speed of evolu-
tion of the X(P) profile: we have Nr(Z0 = 26) ' 6.1 × 1048,
Nr(Z0 = 24) ' 4.2 × 1048, Nr(Z0 = 22) ' 5.5 × 1048 and
Nr(Z0 = 20) ' 2.1 × 1049. Those number represent 14%, 10%,
13%, and 48% of the number of accreted baryons respectively
for Z0 = 26, 24, 22, and 20. For Z0 = 20, the number of baryons
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Fig. 2. Time-dependent solution, X(P, t), represented as snapshot at various times during the four years of active accretion cycle, starting at t0. (a)
Ṁmax = 10−8 M� per year. (b) Ṁmax = 10−10 M� per year.

that react during quiescence is not negligible compared to the
number of reactive baryons during four years of the active phase
in the stationary profile.

By adding the number of reactive baryons in the active
phase and in quiescence for the full time-dependent solution for
Z0 = 26, we obtain Ncycle

r = Nb although a step-like function is
not reached at the end of quiescence for the profile X(P, t − tq).
Let us denote Nnr as the number of nuclei that have not reacted
at the end of the quiescent phase. At the end of cycle i, we
have N i

nr parent nuclei that have not reacted in a small layer
close to the reaction threshold (black line in Fig. 2a) of size
Pi

nr − Pth. The value of Pi
nr and the number of nuclei that have

not reacted during this cycle (proportional to Pi
nr − Pth

3 can be
estimated comparing reaction the time (1/Rec) for Pi

nr with the
quiescence timescale, τq. For example, given the solution pre-
sented in Fig. 2b, the value of τqRec(P) is on the order of 1 for
P̄ ∼ 1.03.

3.2. Heat deposition in layers of electron capture

3.2.1. Heat release in active phase: Stationary solution

During active phases of accretion, the amount of heat released in
the mixed layer approach and in the instantaneous approach are
different. The reason lies in the pressure dependence, as demon-
strated via Eq. (42): the chemical potential of electrons ensures
that electron captures occurring at larger pressure (deeper in
the layer) release more heat. In the instantaneous approach,
all the heat is released exactly at the pressure threshold of the
first electron capture and the heat release per parent nucleus is
given by

qth = W1 −W2 + Eexc . (60)

In Fig. 3, we present the heating rate per unit volume q̇(P) for
the stationary solution of Z0 = 26. To emphasize the role of
3 The number of nuclei compressed above the pressure Pth that did not
have enough time to react is ∼ 4πR4

GMmB
(Pi

nr − Pth).

Fig. 3. Heating rate per unit volume q̇ in the shell with proton number
Z0 = 26 as a function of the pressure during active accretion. This quan-
tity is given for the mixed layer approach in blue and compared to the
quasi-instantaneous approach in orange.

the pressure dependence in the amount of heat released in lay-
ers of electron capture, we compare it to the heating rate per
unit volume established from a “quasi-instantaneous” approach
q̇(qth) in which we assume that the energy release is equal to
that at the threshold pressure. The pressure dependence of q
implies that the amount of heat released during the active phase
is larger in the mixed layer approach than in the instantaneous
approach. To illustrate this point, we computed the heat release
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Table 4. Heat release, neutrino emission and heat deposited in keV per accreted baryon for the four outer crust shells discussed in this paper, with
parent proton number, Z0.

Solution Z0 = 26 Z0 = 24 Z0 = 22 Z0 = 20

Heat release
Instantaneous 38.9 41.8 34.0 24.3

Mixed layer

47.5 42.5 34.5 25.1
Stationary active phase Neutrino emission

36.0 32.7 26.2 19.0
Heat deposited

11.5 9.8 8.3 6.1
Heat release

Instantaneous 0.0 0.0 0.0 0.0

Mixed layer

6.5 4.2 4.4 12.1
Neutrino emission

Quiescence following stationary 4.9 3.2 3.3 9.1
Heat deposited

1.6 1.0 1.1 3.0

Notes. Results are presented for the stationary solution and for 40 years of quiescence following a stationary profile.

per accreted baryon (see Eq. (45)) for the stationary solution in
the mixed layer approach for four years of active accretion with
constant accretion rate. We then compared the outcome to the
instantaneous approach, with the results presented in Table 4 for
Z0 = 26, 24, 22, and 20.

The stationary profiles presented in Fig. 1 represent the limit-
ing case for the maximum potential heat release: X(P) can never
go beyond the stationary profiles at zero temperature. The sta-
tionary case corresponds to the maximum increase of the energy
release due to the increase of the pressure and chemical potential
at the point where most of the reactions take place compared to
the instantaneous approach. This increase in δE can be estimated
from Eq. (42) as δE = 2δµe ' 0.5µthδP/Pth with µth = W1.
This approximation gives the increase in energy release (per
nucleon) equal to ∼10, 0.5, 0.2, 0.2 keV for Z0 = 26, 24, 22,
and 20, respectively (on the same order as the numbers given in
Table 4).

3.2.2. Heat release in quiescence following a stationary
profile

We compute the released heat during the forty years of qui-
escence phase that occur following a stationary profile and
present results in Table 4. The heat release per accreted baryon
by the deepest reaction layer (Z0 = 20) is quite large com-
pared to other shells. When considering heat release per reac-
tive baryons however, the values are very similar to what we
see for the stationary heat release. For the deepest shell, the
heat release per accreted baryon during quiescence is signif-
icant compared to the heat release during an active phase in
the stationary profile. There are layers of electron captures
present in the crust of accreting neutron stars for which the heat
release during quiescence phases is quite large; hence, it is not
negligible.

Finally, we note that the energy release in the instantaneous
and mixed layer approach are on the same order of magnitude
because the energy reservoir is directly connected to the mass
(energy) difference of a nuclei under consideration. In this sense,
the conclusions concerning the shallow heating problem where
a much larger energy release is needed are the same as in the
instantaneous approach (see e.g., Table 1 in Chamel et al. 2020).

3.2.3. Heat release in the active phase: Time-dependent
solution for Z0 = 26

We computed the released heat per accreted baryon, by solv-
ing the full continuity equation during 4 years of active accre-
tion followed by 40 years of quiescence with a time-dependent
accretion rate following Eq. (32) and Ṁmax = 10−8 M� in the
case of Z0 = 26. During the active phase, we obtain a heat
release of 42.9 keV per accreted baryon. We have shown that
the pressure dependence of Eq. (42) leads to an increase in heat
release ∼22% with respect to the instantaneous approach when
considering stationary accretion in Section 3.2.1. However, over
the same period of time in active phase, including a realistic
time-dependent accretion cycle only leads to an increase of the
heat release per accreted baryon by ∼10% when compared to the
instantaneous approach. This is due to the decreased number of
baryons that effectively react (Nr = 3.9 × 1049) compared to the
number of accreted baryon (Nb = 4.3× 1049). If we compute the
heat release per reactive baryons (and not per accreted baryons)
for the time-dependent solution, we obtain 47.3 keV per baryon
during the active phase. This value is closer to the heat release
per accreted baryon in the stationary case.

During quiescence, an additional 4 × 1048 baryons are
involved in electron captures, leading to a total heat release
(active phase and quiescence) of 46.4 keV per accreted baryon.
This represents an increase of ∼19% compared to the heat
release in the instantaneous approach.

3.2.4. Heat deposited

Finally, in Fig. 4, we present the heating rate per unit volume
q̇(P) and the neutrino loss rate εν(P) for the stationary solu-
tion of Z0 = 26. The neutrino loss (see Eq. (49)) and total heat
deposited (see Eq. (51)) for 4 years of stationary active accre-
tion and for 40 years of quiescence with Ṁmax = 10−8 M�, are
presented in Table 4. Overall, considerations of neutrino loss
in an accreted outer crust with 56Fe ashes implies that the heat
deposited is approximately one quarter of the heat released. The
role of excited states of daughter and grand-daughter nuclei was
discussed in Gupta et al. (2007), who reported that the portion of
heat release allocated to excitation energy compensated signifi-
cantly the neutrino heat loss (see discussion in Section 2.8). In
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Fig. 4. Heating rate per unit volume q̇ and neutrino loss εν as a function
of the pressure established from the stationary solution of Z0 = 26.

the current paper, we only consider excited states for the daugh-
ter nucleus of the first electron capture.

4. Conclusion

We studied the composition and heat release associated to elec-
tron captures in a fully accreted outer crust with 56Fe ashes
when the kinetics of those reactions are taken into account. Mak-
ing use of the mixed layer approach, we established the rela-
tion between the baryon density and the pressure of a lattice of
nuclei permeated by a gas of degenerate electrons for a mix-
ture of two nuclear species. Using recent nuclear physics exper-
iments of nuclear mass measurements as well as the theoretical
approach of Skyrme force based on the energy density functional
described in Goriely et al. (2010), we calculated the threshold
density and pressure for each of the four pairs of electron cap-
tures in our accreted outer crust. Nuclear data sheets, containing
experimental data on nuclei lifetime with respect to β-decays,
were used to derive the reaction rates of the four electron cap-
tures that dictate the kinetics relevant to our study. We explored
the literature to find values for the accretion rate and typical
durations for the active and quiescence phases that stem from
observations of X-ray transient sources. We derived the continu-
ity equation followed by the parent nuclei abundance and solved
it numerically for realistic accretion parameters. The impact of
electron capture kinetics on the composition in the shell was
evaluated and we computed the thickness of the layers compris-
ing both parent and grand-daughter nuclei for each pair of elec-
tron captures in the outer crust. Finally, we studied the impact of
kinetics on the heat release, and on the neutrino heat loss in the
shells.

We find that the thickness in pressure for the layer con-
taining a mixture of parent and grand-daughter nuclei of elec-
tron captures are on the order of 10−7 MeV/fm3 for the four
pairs of electron captures in the outer crust. Our calculations
were done neglecting thermal effects. Finite temperature would
increase the reaction rates for the electrons due to the expansion

of the available momentum space. Captures then become pos-
sible even below the zero temperature threshold of the reaction
(Ushomirsky et al. 2000), shifting the reaction layers to lower
densities.

During the active phase of accretion, in the case of a constant
accretion rate and studying the stationary solution, we find that
including a finite reaction rate leads to an increase in heat release
compared to the instantaneous approach that considers an infi-
nite reaction rate for electron captures because electron captures
can occur deeper in the shell. For a time-dependent active accre-
tion of four years with a maximum accretion rate of 10−8 M� per
year, we find that the number of accreted baryons Nb is larger
than the number of baryons that are involved in electron cap-
tures Nr during the active phase of accretion; this is contrary to
the stationary solution, for which Nb = Nr. This effect can then
significantly decrease the heat release per accreted baryon, as the
time-dependent solution X(P, t) does not remain in the stationary
profile for the entire phase of active accretion.

We find that heat release occurs also during quiescence
phases in the mixed layer approach (contrary to the instanta-
neous approach) and that said heat for some shells is not neg-
ligible, with respect to the heat released during the active phase.
The neutrino loss significantly reduces the heat deposited in the
matter, however, a more complete consideration of excited states
is likely to compensate this loss. Those new results imply that
the modeling of accreting neutron star thermal relaxation should
be reevaluated by including time-dependent sources that would
also cover the quiescent phases of the accretion process.

Data availability

Movie is available at https://www.aanda.org
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Appendix A: Derivation of the β-decay and electron
capture rates

From Fermi’s golden rule (Dirac 1927), the probability of tran-
sition from an initial state denoted i to a final state denoted f is
given by

Γi→ f =
2π
~
|Mi→ f |

2ρ(E f ) , (A.1)

withM the matrix element of the reaction and ρ(E f ) the density
of final states with energy E f .

The matrix element for an electron captureMec and its corre-
sponding β-decayMβ are established from initial and final state
products with the Hamiltonian of weak interaction denoted Ĥw

such that

Mec = 〈pνe
, sν| 〈pf ,Mf Jf | Ĥw |pi,MiJi〉 |pe, se〉 , (A.2)

Mβ = 〈pν̄e
, sν̄e | 〈pe, se| 〈pf ,Mf Jf | Ĥw |pi,MiJi〉 , (A.3)

with pνe
, pν̄e

and pe the momenta of the neutrino, anti-neutrino
and electron, s designating the spin of leptons, and M f J f and
MiJi the nuclear spin and its projection on the spin quantization
axis of final and initial nuclei.

By averaging over initial states and summing over final
states, the reaction rates denotedR are

Rec =
2π
~

〈 ∑
pνe ,pZ−1

∑
JZ−1

|Mec|
2δ(Ee −W − Eνe )

〉
pe,se,pZ ,JZ

, (A.4)

Rβ =
2π
~

〈 ∑
pν̄e ,pe,pZ

∑
se

∑
JZ

|Mβ|
2δ(W − Ee − Eν̄e )

〉
pZ−1,JZ−1

, (A.5)

where the Dirac delta functions express the conservation of
energy, and Ee, Eν, and Eν̄ are the energy of the electron, of
the neutrino and the anti-neutrino; for details on the absence of
a sum over the (anti-)neutrino spin, we refer to Goldhaber et al.
(1958).

In the heavy nucleus approximation, the transfer of momen-
tum between the initial and final nuclei is neglected so that

Rec =
2π
~

〈∑
pνe

∑
JZ−1

|Mec|
2δ(Ee −W − Eνe )

〉
pe,se,JZ

, (A.6)

Rβ =
2π
~

〈∑
pν̄e

∑
pe

∑
se

∑
JZ

|Mβ|
2δ(W − Ee − Eν̄e )

〉
JZ−1

. (A.7)

under the assumption that only allowed reactions are studied
and that the lepton states are given by plane wave functions, the
matrix element of each reaction can be simplified by operating a
Taylor expansion of the lepton plane waves and keeping only the
zeroth order term (Povh et al. 2004). The matrix element there-
fore does not depend on the momenta of leptons. Moreover, we
make the assumption that the matrix elements relevant for the
reactions do not depend neither on the spin of leptons nor on
the spin projection M of nuclei. Consequently, we obtain such
simplified expressions

Rec =
2π
~
|Mec|

2
〈∑

pνe

δ(Ee −W − Eνe )
∑
JZ−1

〉
pe,se,JZ

, (A.8)

Rβ =
2π
~
|Mβ|

2
〈∑

pν̄e

∑
pe

δ(W − Ee − Eν̄e )
∑

se

∑
JZ

〉
JZ−1

. (A.9)

Both the the electrons and (anti-)neutrinos have a continuous
spectrum, which translates the sum over their momenta into three
dimensional phase-space integrals Iβ and Iec that appear in the
reaction rates and are given by

Iec =
2π
~

∫
d3 pe

(2π~)3

∫
d3 pν

(2π~)3 δ
(
Ee −W − Eν

)
, (A.10)

Iβ =
2π
~

∫
d3 pe

(2π~)3

∫
d3 pν

(2π~)3 δ
(
W − Ee − Eν̄

)
. (A.11)

These integrals lead to the functions defined in Eq. (23).

Appendix B: Calculating electron capture
timescales

In this section of the Appendix, we present details on how
the values of the electron capture timescale presented in
Table 2 are established for each of the four reactions stud-
ied. Unless explicitly stated otherwise, experimental data from
National Nuclear Data Center (2022) is used.

B.1. Reaction 56Fe→ 56Mn

In the β-reaction 56
25Mn → 56

26Fe, the allowed transition is ener-
getically prohibited, so that the inverse of this reaction produces
an excited state 56Mn∗ with a 110 keV excitation energy. A dou-
bly forbidden reaction is energetically favorable. However, the
timescale of a n-forbidden reaction is much larger than that of
an allowed reaction. Very roughly, the quantity log10( f t1/2) is
increased by some 2n + 1 compared to the allowed decay, see
Sec. 2.1.4 of Grotz & Klapdor (1990). The timescale for γ-
ray deexcitation of 56Mn∗ is less than 10−9 s, see Sec. 3.4 in
Povh et al. (2004). Moreover, we are concerned with the crust of
an accreting neutron star which increases continuously the pres-
sure in a piece of matter subject to electron capture. Assuming
an accretion rate during the active phase 10−8 M� per year, the
time required for the chemical potential to reach the threshold
of the allowed reaction is ∼ 0.3 years, which is small compared
to the timescale of the doubly forbidden reaction. Therefore, we
should consider an allowed reaction with additional heat (exci-
tation energy) of 110 keV from the γ-decay.

Experimental data is available for the quantity f t1/2 of
the β-decay 56

25Mn(3+) →56
26Fe(2+), and we are interested

in establishing the electron capture rate of the reaction
56
26Fe(0+) →56

25Mn∗(1+). We can now calculate the reaction
timescale as

1
τec

=
ln(2)
f t1/2

21
10

= 1.154 × 10−7 s−1 , (B.1)

with f t1/2 = 107.101 s .

B.1.1. From 56Cr→ 56V

Experimental data is available for the quantity f t1/2 of the β-
decay 56

23V(1+) →56
24Cr(0+). We can define the inverse of the

timescale of the electron capture as

1
τec

=
ln(2)
f t1/2

9
2

= 7.312 × 10−5s−1 , (B.2)

with f t1/2 = 104.63 s .
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B.1.2. From 56Ti→ 56Sc

Experimental data is only available for the quantity T1/2 of the
β-decay, the half-time for the decay of the nucleus through all
channels of the reactions. Therefore, we assume that the channel
we are studying, that is the β-decay 56

21Sc(1+) →56
22Ti(0+), is the

dominant channel such that T1/2 ' t1/2, with

T1/2 = 26 ms . (B.3)

The function f which appears in the reaction rate of beta decays
in Eq. (20) is given by

f =

∫ W̄

1

√
Ē2 − 1Ē(Ē − W̄)2dĒ . (B.4)

However, among the assumptions used on the matrix element
of the β-decay, we have neglected the impact of the Coulomb
interaction between electrons and proton on the shape of the
wave functions of particles under consideration. To correct for
that, it is customary to introduce the Fermi function (see, e.g.,
Sect. 2.1.3 in Grotz & Klapdor (1990)).The non-relativistic for-
mulation of the Fermi function is easier to implement than the
relativistic one, however we have considered relativistic particles
so far. To use the non-relativistic formulation, we have verified
that the quantity log( f t1/2) calculated with the non-relativistic
formulation of the Fermi function is close the the experimen-
tal data value for the electron captures involved in the first two
shells of the accreted crust; we found a relative difference of at
most 8%, and therefore kept the non-relativistic formulation of
the Fermi function in the evaluation of f t1/2. For the β-decay
56
21Sc(1+)→56

22Ti(0+) reaction rate we obtain

1
τec

=
ln(2)
f t1/2

9
2

= 1.362 × 10−4s−1 , (B.5)

with f t1/2 = 104.36 s .

B.1.3. From 56Ca→ 56K

Experimental data for this reaction is not available but calcula-
tions in the quasi-particle Random Phase Approximation are pre-
sented in Minato et al. (2021) for the quantity T1/2 of the β-decay
56
19K →56

20Ca. The energy level diagrams are not available either
in National Nuclear Data Center (2022), therefore we assume a
(0+)→ (0+) reaction. Similarly to the treatment of the previous
reaction, we obtain the rate for the electron capture

1
τec

=
ln(2)
f t1/2

1
2

= 6.307 × 10−6s−1 . (B.6)

with f t1/2 = 104.74 s .
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