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Abstract
With the advent of pre-trained self-supervised learning (SSL)
models, speech processing research is showing increasing inter-
est towards disentanglement and explainability. Amongst other
methods, probing speech classifiers has emerged as a promising
approach to gain new insights into SSL models out-of-domain
performances. We explore knowledge transfer capabilities of
pre-trained speech models with vocalizations from the closest
living relatives of humans: non-human primates. We focus on
classifying the identity of northern grey gibbons (Hylobates fu-
nereus) from their calls with probing and layer-wise analysis
of state-of-the-art SSL speech models compared to pre-trained
bird species classifiers and audio taggers. By testing the reliance
of said models on background noise and timewise information,
as well as performance variations across layers, we propose a
new understanding of the mechanisms underlying speech mod-
els efficacy as bioacoustic tools.
Index Terms: transfer learning, self-supervised learning, com-
putational bioacoustics, probing

1. Introduction
In recent years, automatic speech processing research has been
undergoing a slight change of paradigm, partly embodied in the
use of transformer models and SSL [1]. SSL is now adopted as
a state-of-the-art (SOTA) approach relying on the pre-training
of models with large unannotated datasets, and challenges pre-
existing benchmarks in a wide range of speech processing tasks
[2, 3]. Pre-trained SSL models not only show notable perfor-
mance gains compared to supervised methods, they also address
a major limitation in automatic speech processing: dealing with
small and scarcely labeled datasets. This advantage lies in their
ability to extract latent representations which contain varied
phonetic and acoustic information such as prosody, emotional
cues, vocal identity, etc. [2, 4]. This makes SSL speech models
particularly interesting candidates for out-of-domain classifica-
tion of “speech-like” data. The closely related field of compu-
tational bioacoustics, i.e., the automatic processing of acous-
tic data produced by animals, is showing similar interest in the
development of pre-trained foundation models. In bioacous-
tics, the detection and classification of species, call-types or in-
dividual vocal signatures is usually tackled with dataset- and
species-specific supervised classifiers [5]. Yet, novel methods
are emerging to extract meaningful latent representations from
publicly available pre-trained bioacoustic classifiers [6, 7, 8]
and unsupervised methods [9, 10]. Researchers are progres-
sively turning to transfer learning, mostly as a solution to the
scarcity of annotated bioacoustic datasets and the necessity to
efficiently process large quantities of unlabeled animal vocal-
ization recordings with SOTA approaches [11, 12, 13]. In this
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Figure 1: Overview of the approach: we probe pre-trained mod-
els for primate identification based on vocalizations, according
to pre-training configuration (data, task, architecture).

context, bioacoustics and speech processing will benefit from
further investigation and comparison of the mechanisms un-
derlying the use of pre-trained speech models for bioacoustic
tasks. To better understand speech-based SSL models represen-
tations of non-human vocalizations, we propose a set of exper-
iments focused on northern grey gibbons (Hylobates funereus),
a species of singing apes described in 2.2. We evaluate the abil-
ity of pre-trained speech models to extract the vocal signature
of individual gibbons by testing the following hypotheses:

H1: pre-trained speech models are better suited at capturing
primate vocal signatures compared to pre-trained bird-
species classifiers or audio-tagging models

H2: pre-trained speech models specialize along layers, re-
sulting in better bioacoustic probing performance in
initial layers

H3: bird-species classifiers and audio-tagging models tend
to rely on background noise information rather than vo-
cal identity features to solve the task

H4: specific SSL models architectures rely on temporal
rather than spectral information to recognize the iden-
tity of gibbons from their vocalizations.

To investigate these hypotheses we propose a probing method-
ology aimed at evaluating the latent representations of pre-
trained speech models by: 1) comparing their performance with
other pre-trained solutions, 2) assessing performance variations
across layers, 3) evaluating their reliance on the acoustic con-
text of the vocalisations and 4) on temporal segments of varying
granularity.



2. Methods
2.1. Linear probing

Probing aims at understanding what type of information a pre-
trained model can extract and how said information is encoded
within the model parameters. We hereby compute feature em-
beddings from 10 pre-trained models described in Section 2.3
and assess their ability to classify the identity of 10 gibbon fe-
male callers from their songs. An overview of the pipeline can
be seen in Figure 1.

We use linear probing to test the ability of pre-training to
create representation spaces linearly separable according to a
task [14]. Given a training dataset D = {x(i),y(i)} composed
of N couples (audio recording, primate identity), let Ml(x) be
the activations of a model M after layer l. A probe is trained
to minimize the cross-entropy loss CE() over the softmax of
a linear projection of the activations, a logistic regression with
W being a trainable parameter matrix.

minimize
W

− 1

N

N∑
i=1

CE
(
yi, softmax

(
Ml(xi)

TW
))

(1)

In this process, the original model parameters are not mod-
ified, allowing to assess properties of pre-trained representa-
tions instead of the effects of initialization which full fine-
tuning could uncover. Accuracy on the probing classification
task attests of these properties. The code and dataset are avail-
able for replication at https://github.com/jcauzi/
GibbonID.

2.2. Task and dataset

We probe a range of pre-trained models on the task of primate
identity classification, that is the capacity to identify primates
from a set of known individuals after training from recordings
of their calls.

Our experiments focus on northen grey gibbons from North
Borneo. Gibbons (Family Hylobatidae) are singing apes known
for their species- and sex-specific loud calls. Their reliance on
long-distance vocal communication makes them excellent can-
didates for bioacoustics research. Most species of gibbons en-
gage in duets where adult male and females emit alternating
vocal output. The female contribution to the duet, known as the
great call is composed of several short acoustic units (ie notes).
It is a highly stereotyped tonal call with important frequencial
modulations (within 0.2-2 kHz) and has been shown to contain
individual signatures in many gibbon species including grey and
lar gibbons [15, 16]. This northern grey gibbons dataset is com-
prised of focal recordings carried out in their natural habitat be-
tween January 2013 and September 2016 in Sabah, Malaysia.
As gibbons are a territorial species, we used a combination of
recording location and group composition to distinguish differ-
ent gibbon groups and manually identified female great calls to
be considered as individually labeled clips. The full dataset con-
tains 1090 recordings from 91 individuals, segmented by hand
around single great call utterances of around 13.6 seconds.

The number of recordings per individual varies from 1 to
47 and only 10 individuals have more than 25 recordings, moti-
vating a 10-way classification task. Many effects can bias mod-
els for the task of identity classification, such as background
soundscape, microphone distance, atmospheric conditions, data
scarcity, etc. In order to limit such biases, we construct a train-
ing/test set comprised of the 10 females with 25 recordings,
and select a subset of around 5 test samples per class that were

recorded either on different days or on a different time of the
day compared to the training samples. The training set is thus
comprised of 189 samples. This test set, named Full in the fol-
lowing experiments, is comprised of 61 samples with an av-
erage of 6 samples per class. In addition to this, we address
the problem of background noise. This issue is especially im-
portant when carrying out individual recognition in bioacoustics
where large amounts of information can often be extracted from
the acoustic signature of an animal’s territory rather than from
its vocalizations [17]. We thus extract clips which do not con-
tain vocalizations from portions of the unsegmented recordings.
This provides a “background noise test set” labeled in terms of
individuals but containing only the background noise from their
specific territory. We consider a model’s performance on this
background test set to be highly correlated with its tendency to
rely on the acoustic signature of the individual’s territory rather
than its vocal features. This particular test set is comprised of
7 segments of about 4 seconds for each of the 10 classes and
is named Background in the experiments. Finally, we create
a third test set comprised of ≃ 0.5 seconds single note occur-
rences from each great call. As great calls are comprised of
several consecutive and accelerating notes, we define a note as
a unique vocal unit separated by short silences, similarly to the
definition in [18], and select ≃ 0.5 seconds-long notes from
each call. This time-wise ablation allows testing the reliance
of models on temporal and contextual information in their rep-
resentation of vocal signatures. In experiments, this test set is
named Notes.

2.3. Pre-trained models

In order to test hypotheses H1-H4, we harness a set of pre-
trained models to cover a range of conditions along the kind
and size of training data as well as model architectures and
pre-training tasks. In particular, we use six speech models
built for automatic speech transcription with capabilities in
out-of-domain classification or specifically tailored for speaker
identification (HuBERT [19], UniSpeech, wav2vec 2.0 [21],
WavLM, APC [23]). All speech models are trained on mask-
based pretext tasks to recover masked targets from left and right
sound contexts. Wav2vec 2.0 and APC use contrastive losses
and learn to extract masked targets representations from lo-
cal features while HuBERT, WavLM and UniSpeech-SAT are
trained with classification losses. Their targets are represented
as discrete cluster IDs coming from intermediary layers of ear-
lier model iterations. Except for APC and HuBERT base, those
models are trained on relatively large quantities of speech, span-
ning different recording conditions. We also select two bird
species classification models that were shown to perform well
in out-of-domain bioacoustic tasks [12] (Google perch [7] and
BirdNET [6]). They are trained to recognize ≃ 1000 species
from recordings of bird vocalizations and cover a wide range of
soundscapes. Finally, we use two audio-tagging models tailored
for music tagging, acoustic scene classification or audio-event
detection. VGGish [25], trained on AudioSet, is a popular op-
tion for bioacoustic classification [12] and Audio-MAE [24] is
a SOTA audio-tagging model partly trained on speech data and
Youtube audios.

Given that models diverge in embedding sizes and frame
rates, we apply mean pooling of the activation vectors over en-
tire sound segments prior to passing them to the probing model,
resulting in a single input vector for each example. The charac-
teristics of each model are summarized in Table 1.

In the experiments, we compare probing results to two sim-



Table 1: Pre-trained model characteristics.
number of Transformer Layers (n TL) - Masked Prediction (MP) - Predictive Coding (PC) - Convolutional Neural Network (CNN)

Model Genre Hours Arch. Task #param. Embedding Window

[19] HuBERT Large speech 60k 24 TL MP 317M 1280 20 ms
[19] HuBERT Base speech 960 12 TL MP 95M 768 20 ms
[20] UniSpeech SAT Large speech 94k 24 TL MP + speaker 317M 1280 20 ms
[21] Wav2vec 2.0 Large speech 53k 24 TL contrastive PC 317M 1280 20 ms
[22] WavLM Large speech 94k 24 TL MP + robustness 90M 1280 20 ms
[23] APC speech 360 3 TL autoregressive PC 4M 512 10 ms
[7] Google perch bird 10k CNN supervised 20M 1280 5000 ms
[6] BirdNET 2.3 bird 4k CNN supervised 10M 1280 3000 ms
[24] Audio-MAE AST general + speech 50k + 960 MAE MP 90M 768 20 ms
[25] Vggish general 5k CNN supervised 10M 128 96 ms

ple baselines: chance which is 0.1 for the 10-way classification,
and 12 MFCC-vectors extracted each 25 ms time windows and
mean pooled before probing [13].

3. Results
Table 2: Probing accuracy on full segments (Full), background
noise (Background), and single notes (Notes). Bayes Factor
(BF) - (Best, second best, lowest) - Transformer models results
correspond to their second layer and to the last layer for APC
and Audio-MAE.

Model Full Background Notes BF

HuBERT Large 0.95 0.12 0.13 7.76
HuBERT Base 0.72 0.21 0.17 3.39
UniSpeech-SAT 0.87 0.19 0.14 4.64
Wav2vec 2.0 Large 0.86 0.14 0.44 5.96
WavLM Large 0.94 0.22 0.62 4.23
APC 0.75 0.14 0.14 5.44
Google perch 0.87 0.69 – 1.26
BirdNET 2.3 0.87 0.63 – 1.39
Audio-MAE AST 0.95 0.43 0.82 2.21
Vggish 0.66 0.43 – 1.52
MFCC 0.82 0.22 0.94 3.66
Chance 0.10 0.10 0.10 1.00

Experiments correspond to training a probe on the 10-way
classification task and reporting accuracy when activations from
a given model layer are used as input. Model-wise results are
reported at the second layer in transformer-based models, and
the last layer of APC and Audio-MAE AST, after inspecting
best layer-wise performance on a validation set (20% of the
train set). Given the small dataset size and constraints for se-
lecting test sets, we resort to statistical bootstrapping: probes
are trained on samples drawn from 80% of the available train-
ing data, and we report mean performance on the test set over
10 folds.

Main result Accuracy on the Full test set show that all mod-
els perform better than chance, reaching high accuracy (as seen
in Table 2). This suggests that representation spaces contain sig-
nificant information about gibbon vocal signatures. Most mod-
els yield better performance than the MFCC baseline, except
for VGGish and APC which do not seem to benefit from the
corresponding pre-training settings. HuBERT Large, WavLM
and Audio-MAE AST show the highest accuracy. Speech mod-

Figure 2: Layer-wise probing performance of 4 “Large” speech
models (Full and Background test sets).

els result in higher accuracy than bird-song models, supporting
hypothesis H1. We further exercise scrutiny on those results to
check whether hypotheses are validated.

Layer depth in speech models This experiment addresses
H2, the effect of layer depth on specialization. According to
Figure 2, the initial layers of pre-trained speech models result
in the best probing accuracy. Except for HuBERT base, which
performances stay relatively consistent between all layers (from
0.69 to 0.84 accuracy for the 8th and 12th layers respectively),
a significant drop can be seen in the last three to four layers
of every Large model, suggesting for strong specialization on
human speech. WavLM, besides being the second most per-
formant speech model on this task, shows lower layer-wise ac-
curacy decrease, with a significant drop only happening in its
20th layer. This might be explained by the specific noise-robust
training setup of WavLM compared to other models [22]. In
general terms, these results indicate that using the last layer of
speech-based transformer models without fine-tuning for fea-
ture extraction in bioacoustic tasks may be a sub-optimal solu-
tion.

Effect of background noise Channel, and in particular back-
ground noise, is a potentially strong source of bias in identity
classification. Results on the Background test set show that
speech-only models such as HuBERT tend to rely less on back-
ground for classifying gibbon identity than models pre-trained
to recognize bird species or to reconstruct acoustic signal from
general audio. To measure this effect, we compare performance
on the Background and Full test sets using a Bayes Factor



[26]. This metric corresponds to the ratio between the prob-
ability to accurately classify an individual given a recording
of its vocalizations and the probability to do so given its ter-
ritorial background only. Given two sub-hypotheses: H3.1—a
model accounts for both vocal features and background noise,
and H3.2—a model only accounts for background noise infor-
mation to predict identity. We formalize the Bayes Factor as:

BF =
P (correct identity|H3.1)
P (correct identity|H3.2)

(2)

Those probabilities can be estimated with the accuracy from
probing the models on the Full and the Background test sets.
Following [26], we consider 3 < BF < 10 to be moderate
evidence for the hypothesis that a model does not significantly
rely on background noise to predict identity. All models with
speech-only pre-training outperform the rest in terms of BF,
with HuBERT Large reaching the highest ratio, and MFCCs
improving compared to all non-speech models. Figure 2 shows
relatively stable background representations among layers of
speech models.

Effect of call structure An interesting question is whether
primate identity is conveyed through low-level features of the
acoustic signal driven by vocal tract morphology, such as pitch
and timbre, or via call structure, such as the duration and ar-
rangement of individual notes. In order to assess H4, we probe
the models on the Notes test set which removes high-level tem-
poral information. As Google perch, BirdNET and VGGish
take segments longer than 0.5 seconds as input they are not
included in the single notes tests. Results tend to show that
Audio-MAE, as well as WavLM and wav2vec 2.0 to a lesser
extent, reach accuracies higher than chance without the need
for temporal information. Interestingly, UniSpeech and Hu-
BERT are unable to classify individuals from short segments,
suggesting their potential reliance on temporal features of the
individual calls. Unsurprisingly, MFCCs are particularly well
suited to recognize vocal signatures from short sound segments
since they do not encode long term structure. Additionally, av-
eraging MFCCs across full segments introduces noise between
notes within the extracted features.

4. Discussion, prior work & limits
As stated in hypothesis H1, we show the superior ability of SSL
speech models at transferring knowledge from their pre-training
dataset to non-human primate vocalizations for the automatic
classification of individual vocal signatures. The observed su-
perior performances of said models may be explained by our
following three hypotheses.

Regarding hypothesis H2, our experiments show that the
information needed to answer such a task is predominantly en-
coded in the initial transformer layers of speech models. Deeper
layers tend to show lower accuracies, potentially as a result of
their increasing specialization on the extraction of more lexical
and semantic human speech features [27]. This may explain
the divergences in our results compared to similar experiments
which limit their usage of pre-trained speech models to the
extraction of representations from their last transformer layer
[11, 13]. As minor layer-wise performance variation and lower
performances in general can be seen in small models (namely
HuBERT Base and APC), we also note the importance of the
number of parameter and pre-training dataset size for the reso-
lution of the task.

In accordance with hypothesis H3, pre-trained speech mod-
els are particularly adapted to extract meaningful information
from primate vocalizations rather than their territorial back-
ground noise. Pre-trained bird species classifiers and general
audio-tagging models, although relatively performant on the
task, are seemingly relying on the extraction of eco-acoustic
information (i.e., the background forest sounds and territorial
acoustic signatures). This advantage of speech models can be
explained by various factors. In terms of pre-training data,
the phylogenetic link between humans and non-human pri-
mates could be indirectly leveraged by speech models extract-
ing acoustic features common to both species. Vocal signa-
tures are highly influenced by individual physical properties and
anatomical variability [28, 29] in both humans and non-human
primates. Therefore, said features in primates may be easier to
capture by models trained on speech rather than birds or other
types of acoustic data. Yet, the spectral information needed to
recognize vocal features proper to an individual should also be
available in single notes which, as we have shown, do not pro-
vide sufficient information for some pre-trained speech models.
We thus hypothesize that HuBERT and UniSpeech, contrary to
audio-tagging models such as Audio-MAE, rely on the tempo-
ral dynamics of gibbon vocalizations to extract their emitter’s
identity. In addition to spectral features due to anatomical vari-
ation, temporal dynamics and non-linearities in the vocal pro-
duction mechanism can, in fact, lead to significant differences
in individuals’ calls [30, 16, 31].

Similarly, the high performance observed in pre-trained
bird models for background noise classification (hypothesis
H3), could be explained by the presence of forest environments
in their pre-training dataset. We advocate for similar testing
of background effects in experiments involving the use of bird
species classifiers for bioacoustic transfer learning [12]. As
both models learn to extract meaningful information from for-
est acoustic environments, they apparently rely on such infor-
mation for the task at hand. Furthermore, gibbon recordings are
partly ”contaminated” by bird vocalizations. As specific bird
species can be encountered in overlapping territories with in-
dividual gibbons, bird species classifiers could be relying on
background bird vocalizations to solve the task, as indicated
by their low Bayes Factor. Similar yet less significant dynam-
ics can also be observed with Audio-MAE and VGGish, both
trained on the varied set of sounds from AudioSet [32].

From a computational perspective, a link should be made
between the architecture and training objectives of speech mod-
els compared to bird classification and audio-tagging. Our re-
sults show that the use of masked modeling to learn discrete
speech units with contextualized representations can be utilized
on non-speech data, at least for our specific task and dataset.
The observed efficacy of this approach combined with the ex-
tensive availability of speech data should thus be explored as a
potential asset to be leveraged in computational bioacoustics.

Our work is limited in that the variability of each model in
terms of size, embedding dimension and pre-training data can
be a source of bias in their comparison. Yet, retraining mod-
els in comparable setups is a particularly tedious task demand-
ing large computational resources. This work aims at show-
ing how the development of specific tailor-made datasets and
controlled probing experiments can help overcoming these lim-
itations. Further exploration of the aforementioned hypotheses
will also imply conducting similar experiments on additional
species, tasks and models.
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