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Calais, France

arnaud.liefooghe@univ-littoral.fr

Keiki Takadama
Graduate School of Information and Engineering Sciences

The University of Electro-Communications
Chofu, Tokyo, Japan
keiki@inf.uec.ac.jp

Hiroyuki Sato
Graduate School of Information and Engineering Sciences

The University of Electro-Communications
Chofu, Tokyo, Japan

h.sato@uec.ac.jp

Abstract—Multi-objectivization transforms a single-objective
optimization problem into a multi-objective one in order to
facilitate the search for high-quality solutions with respect to
the original target objective. This paper focuses on the multi-
objectivization strategy of adding a helper objective. Depending
on its definition, the helper objective might have a positive or
negative impact on optimization. For multi-objectivization to
work well, it is essential to select the helper objective with care,
according to the nature of the target objective. However, the
design of this helper objective remains unclear: should it be
completely independent of the target objective or, by contrast,
correlated in some respects? We propose and analyze different
methods for generating helper objectives with varying degrees
of correlation to the target objective, with the aim of guiding
the setting of multi-objectivization. Inspired by existing works
on multi-objective NK landscapes, we are particularly interested
in the joint setting of the correlation between objective-values
and the similarity of variable interactions on both objectives. We
approximately decompose the target function into several sub-
functions based on the Walsh transform. The proposed method
combines these sub-functions to create helper objectives with
different levels of correlation and heterogeneity. By analyzing bi-
objective instances made of a target and of a helper objective
under different definitions, we gain insights into the selection
of helper objectives depending on the target objective. Our
experimental findings suggest that a helper objective with a
positive correlation and a smoother landscape is beneficial for
multi-objectivization.

Index Terms—Multi-objective optimization, Combinatorial
optimization, Multi-objectivization, pseudo-Boolean functions,
Walsh transform.

I. INTRODUCTION

Multi-objectivization [1] consists in re-formulating a single-
objective optimization problem (SOP) into a multi-objective
optimization problem (MOP). In SOP, local search is known to
get stuck into local optima, resulting in premature convergence
to lower quality solutions. However, in MOP, solutions are
compared based on Pareto dominance instead of a single
objective function value. The search is thus not necessarily

trapped into single-objective local optima. Relaxing the selec-
tion pressure through multi-objectivization allows the search
process to escape from a local optimum and to potentially
reach better solutions. Recent studies indicate that, in both
continuous and discrete search spaces, multi-objectivization
can connect local optima with MOP-specific solutions such
as Pareto optimal and Pareto local optimal solutions [2].
Therefore, multi-objectivization fundamentally changes the
landscape and significantly impacts search behavior.

Knowles et al. [1] were the first to introduce the multi-
objectivization paradigm and demonstrated its effect on search
performance. Jensen [3] later multi-objectivized a SOP by
adding a helper objective that is different from the target
(original) objective. Multi-objectivization was found to be
successful for some multi-modal or neutral SOPs. Conversely,
Brockhoff et al. [4] demonstrated that additional objectives
might positively or negatively impact search performance.
Therefore, we argue that the selection of an appropriate helper
objective is crucially important in multi-objectivization.

To facilitate search exploration, we must thoughtfully design
an appropriate helper objective for a given target objective.
However, it remains unclear how to design this helper objec-
tive, and whether it should be completely independent of the
target objective or, by contrast, somehow correlated. Insights
into these issues would be beneficial to practitioners. Specifi-
cally, we investigate the correlation between helper and target
objective values [5], as well as the heterogeneity of variable
interactions [6]. In this paper, we examine how the correlation
and the heterogeneity influence the characteristics of multi-
objectivized problems in order to guide design of helper
objectives. We approximately decompose the target objective
into several sub-functions based on the Walsh transform [7].
This research draws inspiration from [8], where surrogates of
pseudo-Boolean functions are designed based on the Walsh
transform. Decomposing the target objective into several sub-
functions that are optimized simultaneously is one of the main



approach in multi-objectivization [9], [10]. The focus is given
to problems that can be intuitively decomposed into sub-
problems, such as the traveling salesperson problem. Although
we also start by decomposing the target objective into sub-
functions, our method is inherently different as these sub-
functions are further used to design a single helper objective.
The Walsh transform allows us to decompose pseudo-Boolean
black-box functions, where the problem structure is not known
in advance. By employing the sub-functions, it becomes pos-
sible to generate a helper objective from a uni-modal function
without any variable interaction to a highly correlated function
with homogeneous variable interactions. We propose a multi-
objectivization method that generates helper objectives with a
gradual correlation and heterogeneity from solutions sampled
by single-objective search. We compare our method to the
original SOP and explore the impact of multi-objectivization.
Our analysis provides a better understanding of the nature
of the resulting MOP and valuable insights on the design
of helper objectives. Our contributions can be summarized as
follows:

1) We propose a helper objective generator based on the
Walsh transform that can adjust the correlation between
objectives and the heterogeneity of variable interactions
for black-box pseudo-Boolean SOPs ;

2) We investigate the conditions under which multi-
objectivization improves search performance, depending
on the level of correlation and heterogeneity ;

3) We predict the effect of multi-objectivisation from local
landscape features that can be computed during the
generation of the helper objective.

The paper is organized as follows. Section 2 describes single-
and multi-objective optimization. Section 3 provides the basis
for the Walsh transform. Section 4 introduces the proposed
helper objective generator and the related multi-objectivization
search approach. Section 5 gives the details of our experi-
mental setup. Section 6 presents and discusses the results of
our experiments. Section 7 concludes the paper and discusses
future research.

II. DEFINITIONS

This section covers the basics of single- and multi-objective
optimization. It also introduces the benchmark problems con-
sidered for the target objective.

A. Single-objective Optimization

We assume the maximization of an N -dimensional pseudo-
Boolean function f : X = {0, 1}N → R as the target
objective. Candidate solutions x = (x1, . . . xN ) are N -bit
strings, and the size of the solution space |X| is 2N . The
goal is to find the global optimum x∗ with the highest
function value f(x) in the solution space X . SOPs often have
local optima, i.e. solutions that have no improving neighbors.
The neighborhood is defined in terms of Hamming distance.
For given x ∈ X , its neighbors N (x) are solutions whose
Hamming distance to x is 1.

B. NK Landscapes

We consider NK landscapes [11] for defining the target
objective function. They consist of pseudo-Boolean functions.
Their difficulty can be adjusted with two parameters: N is the
number of variables, and K is the number of co-variables per
variable. The objective function of NK landscapes is defined
as follows:

f(x) =
1

N

N∑
i=1

gi(maski(x)) (1)

where gi : {0, 1}K+1 → [0, 1] is a sub-function that deter-
mines the contribution of the i-th variable xi to the objective
value. maski : {0, 1}N → {0, 1}K+1 extracts variable xi and
its K co-variables from solution x. The K co-variables are
randomly selected from the N − 1 variables other than xi.
The maximum value of K is thus N−1. The higher the value
of K, the more local optima there are, which makes it harder
to find a global optimum.

C. Multi-objective Optimization

In multi-objectivization, the target SOP is re-formulated and
explored as a MOP. We define f = (ftarget, fhelper) as a bi-
objective function f : X → Z that maps each solution x ∈ X
to a vector in the objective space z = f(x) ∈ Z ⊆ R2. In
a MOP, solutions are compared based on Pareto dominance,
rather than a single objective value. Given two solutions
x,x′ ∈ X , x is dominated by x′ iff for all i ∈ {1, . . . ,M}
fi(x) ≤ fi(x

′) and there exists j ∈ {1, . . . ,M} such that
fi(x) < fi(x

′). A solution x is Pareto optimal if there does
not exist any solution x′ such that x′ dominates x. Multi-
objective optimization aims to identify or approximate the
set of Pareto optimal solutions, known as the Pareto set. The
concept of local optima can be extended to MOPs: A solution
x is a Pareto local optimal solution if no other solution in its
neighborhood dominates it [12].

III. WALSH TRANSFORM

A. Walsh Functions

A Walsh function ϕi : [0, 1] → {−1, 1} forms an or-
thonormal basis for the Hilbert space L2([0, 1]) [7]. Similar to
trigonometric functions in Fourier transforms, Walsh functions
can be used as a basis for decomposing pseudo-Boolean
functions. They have been used in the field of evolutionary
computation since the late 1970s [13]. For a pseudo-Boolean
function f : {0, 1} → R, the Walsh function ϕi : {0, 1}N →
[−1, 1] is defined as follows [8]:

ϕkey(x′)(x
′) = (−1)

∑N
j=1 x′

j ·xj (2)

where key(x′) =
∑N−1

i=0 2i × xi is the decimal representation
of x′. We denote the order of the Walsh basis ϕkey(x′) as
o(x′). The order of the basis ϕkey(x′) is o(x′) =

∑N
i=1 x

′
i. For

example, the order of the basis ϕkey(x′)=0 corresponding to
the bit sequence x′ = {0, 0, . . . , 0} is zero. The Walsh basis
ϕkey(x′)=3 corresponds to x′ = {0, . . . , 0, 1, 1} and its order
is 2.



B. Walsh Decomposition

Any pseudo-Boolean function can be converted into a
weighted linear sum of Walsh bases as follows:

f(x) =

2N−1∑
i=0

wi · ϕi(x), wi =
1

2N

∑
x∈X

f(x) · ϕi(x) (3)

The Walsh basis ϕi is uniquely defined and does not depend
on the function f to be transformed. By contrast, the value
of the coefficient wi is dependent on the function. For a
Walsh transform to be accurate, 2N coefficients and 2N

Walsh bases are required. The coefficients of the Walsh basis,
i.e. the Walsh coefficients, loosely relate to the interaction
strength between a subset of variables in the function. For
instance, the Walsh coefficient w6 and basis ϕ6 of a function
with N = 4 and linking to a bit string (0, 1, 1, 0) and the
interaction between variables x2 and x3. A high absolute value
of the coefficient w6 indicates a strong interaction between
variables x2 and x3. Conversely, a value near zero signifies
no interaction. Therefore, the coefficients of a Walsh basis
with order o ∈ {0, . . . , N} capture the interaction among the
o variables in the function.

Unless most variables interact, the majority of coefficients
will be close to zero. Although the number of possible Walsh
bases increases exponentially with the number of variables N ,
the coefficient of the bases with high order are nearly zero
and their effect is often negligible. Therefore, by setting an
upper limit of order O, we can limit the number of bases.
This low-order Walsh transform can be serve as a surrogate
of the original objective function [8]. The low-order function
fO restricted by the upper bound of order O is defined as:

fO(x) =
∑

x′:o(x′)≤O

wkey(x′) · ϕkey(x′)(x) (4)

C. Approximate Walsh Transform

While low-order coefficients allow us to reduce the num-
ber of bases, computing exact Walsh coefficients require a
full-enumeration of the solution space. Based on previous
study [8], we estimate approximate coefficients w̃key(x′) by
means of a sample of solutions together with their objec-
tive function values. Eq. (3) can be formulated as a linear
regression problem with Walsh coefficient wi as independent
variables and function values f(x) as dependant variables. We
refer to this low-order function with estimated coefficients as
the Walsh approximate function. It is defined as follows:

fO,A(x) =
∑

x′:o(x′)≤O

w̃key(x′) · ϕkey(x′)(x) (5)

where A is an archive of sampled solutions along with
their function values, which serve as the input data for the
regression. Following previous studies [8], we employ Lasso
regression [14] to estimate the Walsh coefficients, aiming to
minimize the number of non-zero coefficients.

IV. WALSH-BASED MULTI-OBJECTIVIZATION

We propose an approach that does not only include a
helper objective, but also an optimizer that multi-objectivize a
difficult SOP for solving it. Our method involves two phases:
the first phase generates a helper objective from a sample of
solutions, while the second phase solves the multi-objectivized
problem. This section describes the helper objective based on
the Walsh transform and the multi-objectivization optimizer.

A. Walsh-based Helper Objectives

The Walsh approximate function can be adjusted from a
constant function fO=0,A(x) = w̃0 to the target objective
function itself, depending on the upper limit of order O
and the size of the archive A. When O = N and A =
{(x, f(x)) | x ∈ X}, the Walsh approximation function
perfectly matches the original function. However, under this
definition, existing Walsh approximate functions cannot have
a negative correlation with the original function. Yet, negative
correlations between the target and helper objectives lead to
the acquisition of solution diversity [15]. As such, we extend
the Walsh approximation function as follows:

f ′
O′,A(x) =

{
fO′,A(x) if O′ > 0,

2w̃0 − f−O′,A(x) otherwise.
(6)

w̃0 is the Walsh coefficient corresponding to the bit sequence
x′ = {0, 0, . . . , 0}. ϕ0(x) is 1, regardless of x. The correlation
can then positive or negative, depending on whether the
parameter O′ ∈ {−N, . . . , N} is positive or negative. We
propose this extended Walsh approximate function as a new
helper function.

B. Multi-objectivization Search

We consider a single-objective local search as a sampling
algorithm to generate the helper objective, while Pareto local
search [12] is used as an optimizer for multi-objectivization.

1) Single-objective Local Search: First, we describe the
local search. The local search maintains the best solution as the
current search point x. It evaluates its neighbors and updates it
with the most improved neighbor. The termination criteria are
finding a global optimum x∗ or reaching a maximum number
of evaluations FEmax. Given that local search usually get
stuck in a local optimum, we simply restart from a random
solution until the stopping condition is satisfied. A pseudo-
code of the multi-start local search is given in Alg. 1. It takes
the objective function to be optimized, i.e. the target objective
function f , and a maximum number of evaluations FEmax as
input. We store all evaluated solutions in an archive A such that
its size corresponds to the number of evaluations performed.
To avoid revisiting a solution that has already been chosen as a
search point, we record these points as Xsearched. The archive
A is then used to estimate Walsh coefficients and generate a
Walsh-based helper objective function.



Algorithm 1: Multi-start local search
Procedure Multi-start LS(f, FEmax):

Initialize archive and searched points A,Xsearched ← ∅
while |A| < FEmax or x∗ /∈ Xsearched do

x is randomly selected from X.
A,Xsearched ← LS(x, f, FEmax, A,Xsearched)

return A,Xsearched

Procedure LS(x, f, FEmax, A,Xsearched):
A← A ∪ {(x, f(x))}
while x /∈ Xsearched or |A| < FEmax do

Xsearched ← Xsearched ∪ {x}
foreach neighborhood x′ ∈ N (x) do

A← A ∪ {(x′, f(x′))}
x← argmaxx∈{x}∪N (x) f(x)

return A,Xsearched

2) Pareto Local Search: The single-objective local search
holds a single best solution, in contrast to Pareto Local Search
(PLS) that maintains an unbounded set of candidate search
points [12]. The candidate search points are the set of non-
dominated solutions found so far during the search. In its
standard implementation, PLS selects a solution randomly
from the candidates at each iteration [12]. However, in a
multi-objectivization scenario, the goal is to find a global
optimum for the target objective. As such, we apply a simple
modification by selecting the solution with the highest target
objective value as the current search point. All its neighbors
are evaluated, and dominated solutions are discarded from
the set of candidates. The search point x is then added to
Xsearched. If there are no remaining candidate search points
outside of Xsearched, PLS has converged. If some budget
remains, we restart the process with a different solution until
the stopping condition is met. This restart carries over both the
archive A and the searched point set Xsearched. The pseudo-
code of multi-objectivization PLS is given in Alg. 2.

The proposed optimizer takes the target objective func-
tion f , a maximum number of evaluations FEmax, and two
parameters α ∈]0, 1] and O ∈ {−N, . . . , N} as input. The
parameter α adjusts the proportion of evaluations devoted to
the sampling phase. When α is 1, the optimizer simply works
as a local search, as all evaluations are used for sampling.
If a global optimum is found during sampling, the optimizer
terminates without performing multi-objectivization PLS. The
lower α, the less budget is devoted to sampling and the more
budget is devoted to multi-objectivization PLS. The parameter
O′ adjusts the upper bound of the order of the Walsh basis used
for the helper objective function and controls the correlation
between the helper and the target objectives.

After sampling, a helper objective is generated from the
archive A, as described in Eq. (6). Though we could con-
tinuously update the helper function as the archive expands,
within this paper we set it at the end of sampling. The
function values of the solutions in the archive are updated
from f(x) to f(x) = (f(x), fO′,A(x)). Lastly, the multi-
objectivized function f is solved by means of PLS, the number
of evaluations for PLS being (1− α)× FEmax.

Algorithm 2: Multi-objectivization Pareto local search
Procedure Multi-objectivization
PLS(f , FEmax, O′, α):

Sampling phase:
A,Xsearched ← Multi-start LS(f, FEmax × α)

Multi-objectivization phase:
if global optimum x∗ /∈ Xsearched then

Generate helper objective f ′
O′,A. (Eq. (6))

Multi-objectivize: f(x) = (f(x), f ′
O′,A(x))

Update archive A:
A,Xsearched ← Multi-start
PLS(f, FEmax, A,Xsearched)

return A,Xsearched

Procedure Multi-start PLS(f , FEmax, A,Xsearched):
while |A| < FEmax or x∗ /∈ Xsearched do

x is randomly selected from X.
A,Xsearched ← PLS(x, f , FEmax, A,Xsearched)
return A,Xsearched

Procedure PLS(x, f , FEmax, A,Xsearched):
Initialize candidate of search points Xc ← {x}
Xc−s ← Xc \Xsearched
while Xc−s ̸= ∅ or |A| < FEmaxor x∗ /∈ Xsearched do

x← argmaxx∈Xc−s
f(x)

Xsearched ← Xsearched ∪ {x}
foreach neighborhood x′ ∈ N (x) do

A← A ∪ {(x′, f(x′))}
Xc ← non-dominated(Xc ∪N1(x))
Xc−s ← Xc \Xsearched

return A,Xsearched

V. EXPERIMENTAL SETUP

We provide the experimental setup of our analysis, which in-
clude the benchmark problem setting and the parameters of the
proposed optimizer. We conduct two sets of experiments. The
first investigates the properties of Walsh-based helper objective
functions, while the second benchmarks the performance of
the whole multi-objectivization optimizer.

A. Properties of Helper Objectives

We investigate the properties of Walsh-based helper objec-
tives on small instances. We consider NK landscapes with
N = 16 and K ∈ {2, 3, 4, 6} as target objective functions. For
each setting, we generate 50 independent instances, resulting
in a total of 200 small-size instances. We also generate an
helper objective function f ′

O′,A with different A and different
parameters O′ for each target objective. The parameters are
given in Table I. The solution space is fully enumerated
for all generated helper objectives in order to examine their
correlation with the target objectives and the resulting number
of local optima.

B. Benchmarking of Multi-objectivization Search

We evaluate the impact of the Walsh-based helper objective
on relatively small instances with N = 20 and K ∈ {2, 3, 4}.
For each K, we generate 25 independent instances, that is 75
instances in total. Parameters are given in Table II. For bench-
marking purposes, we set the parameters more practicality.



TABLE I: Problem parameters for analyzing helper objectives.

description values

number of variables N = 16
number of interactions K ∈ {2, 3, 4, 6}
parameter of order O′ ∈ {−7,−6, . . . , 7} s.t. O′ ≤ K + 1
archive size |A| ∈ 3276(5%), 6553(10%), 65536(100%)

TABLE II: Problems and algorithms parameters for bench-
marking.

description values

number of variables N = 20
number of interactions K ∈ {2, 3, 4}
parameter of order O′ ∈ {−3,−2,−1, 0, 1, 2, 3}
archive size FEmax = 5000
proportion of sampling α ∈ {0.25, 0.5, 0.75}

TABLE III: Considered local features from [16].

features description

inf.avg average proportion of dominated neighbors
sup.avg average proportion of dominating neighbors
inc.avg average proportion of incomparable neighbors

For instance, generating helper objectives with a high order
|O′| requires regression of a tremendous number of Walsh
coefficients, thus the maximum order |O′| should be 2 or 3.
With this setup, we use FEmax × α ∈ {1250, 2500, 3750}
sampled solutions to generate the helper objectives. This is
about 0.12-0.36% of the solution space. When O′ = 0, the
helper objective function is a constant function fO′=0,A = w̃0.
As a result, it has no effect on search. In this case, the proposed
optimizer is functionally identical to a multi-start local search.

We conduct 31 independent runs per instance for each
parameter combination (O′, α) . We consider the success rate
(succ) as a performance measure, defined as the proportion
of trials in which a global optimum is found. We note that this
global optimum may be found before the multi-objectivization
process, i.e. during the sampling phase by local search. We
therefore also evaluate the success rate in trials in which multi-
objectivization was performed (succ2).

After multi-objectivization, during the archive update step,
the features shown in Table 3 are additionally computed
from the sampled solution Xsearched and the archive A. The
features, proposed in [16], are derived from trajectories of
adaptive and random walks. The objective values of each
search point’s neighbors are already stored in the archive, so
no extra evaluations are required to compute these features.
They are only computed on trials where multi-objectivization
is performed. The average value of features is then assigned
to a combination of a target objective f and parameters O′

and α.

VI. RESULTS AND DISCUSSION

A. Characteristics of Helper Objectives

1) Correlation between the Target and the Helper Objec-
tives: The correlation between the target objective f and
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Fig. 1: Correlation between target objectives f and helper
objectives fO′,A. The archive size |A| is 100% (top), 10%
(middle), and 5% (bottom) of the solution space.
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Fig. 2: Relative number of local optima of the helper objective
fO′,A to the target objective f . The archive size |A| is 100%
(top), 10% (middle), and 5% (bottom) of the solution space.

the Walsh-based helper objective f ′
O′,A is reported in Fig. 1.

The x-axis represents the parameter O′, which determines the
upper bound of the Walsh order and whether the correlation
is positive or negative. The Spearman’s correlation coefficient
between the target and helper objective function values for
all solutions in X is shown on the y-axis. The color of each
box indicates the number of co-variables of the NK landscape
(target objective). First, Fig. 1 (top) is for a helper objective
with Walsh coefficients obtained from 100% of solutions. The
correlation strength increases with the absolute value of the
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Fig. 3: Success rate of Multi-objectivization PLS with different
parameters O′ and α. The ratio of evaluations devoted to
sampling α is 0.25 (top), 0.5 (middle), and 0.75 (bottom).

order O′. The number of orders required to achieve a corre-
lation of 1 or −1 depends on the value of K. The condition
for fully positive or negative correlation is |O′| = K+1, both
empirically and theoretically. In NK landscapes, each variable
interacts with K co-variables, meaning there is interaction
between the K + 1 variables. The minimal order that can
represent an interaction between K +1 variables is K +1, as
confirmed by Fig. 1 (top).

Next, the correlation between the target and the Walsh-based
helper objective, estimated using 10% of solutions is shown in
Fig. 1 (middle). For the most part, trends similar to the fully-
enumerated case are visible. However, for instances with K =
6 (red box), the correlation peaks at |O′| = K = 6 instead of
|O′| = K+1 = 7, and does not reach 1 or −1. As K increases,
the accuracy of estimating the coefficients and approximating
the target objective decreases. This is clearer in the results
of the helper objective estimated by 5% solutions, shown in
Fig. 1 (bottom). For instances with K = 6, the maximum
absolute value of the correlation coefficient is around 0.6, and
even instances with K = 4 do not correlate perfectly with
|O′| = K + 1. These results suggest that approximating a
target objective with many interacting variables from a sample
of solutions is challenging. However, such a complex objective
function is unusual in the real world, and the approximation
accuracy does not necessarily reflect the effectiveness of the
helper objective for multi-objectivization search.
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Fig. 4: Percentage of runs for which a global optimum is found
after multi-objectivization. α is 0.25 (top), 0.5 (middle), and
0.75 (bottom).

The number of local optima in the Walsh-based helper
objective is reported in Fig. 2. The y-axis gives the proportion
of local optima of the helper objective, that is the number
of local optima of the helper objective divided by those of
the target objective. A proportion of 1 indicates that the
helper and target objectives have the same number of local
optima. A lower value implies fewer local optima in the helper
objective. Fig. 2 (top) is for a helper objective obtained by
100% of solutions. As the absolute value of the order |O′|
increases, the value approaches 1, and as it decreases, the value
approaches 0. This is because the number of local optima in
the target objective remains unaffected by the order, leading to
a decrease in local optima in the helper objective as parameter
|O′| decreases. This decrease is attributed to the reduction
of the basis, cutting off some variable interactions. Weaker
interactions between variables typically results in fewer local
optima. The low-order Walsh transform relaxes the degree of
variable dependency of the target objective.

2) Multi-modality of the Helper Objective: The proportion
of local optima in the helper objective estimated by 10% of
solutions is reported in Fig. 2 (middle). Here as well, a trend
similar to the fully enumerated case can be observed. However,
in the helper objective with O′ ∈ {−1, 1}, there are significant
variations in the number of local optima. When |O′| = 1, there
is typically a single local optimum, as there is no interaction
between variables, similar to NK landscapes with K = 0 or the
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Fig. 5: The value of considered local landscape features with
different parameter O′.

OneMax problem. The increase in the number of local optima
is due to the existence of plateaus on the helper objective,
which are sub-spaces composed of solutions with equal objec-
tive values. We recall that we estimated the Walsh coefficients
using Lasso regression, which minimizes the number of non-
zero coefficients. If there is a Walsh basis with O′ = 1 and
zero-valued coefficients w̃ = 0, the corresponding variables
to the basis have no effect on the objective function value.
This is more evident in the results for the helper objective
estimated by 5% of solutions, shown in Fig. 2 (bottom). In
the case of |O′| = 1, the number of local optima in the helper
objective exceeds that of the target objective. These findings
imply that, when estimating coefficients with Lasso regression,
a low order not only reduces the number of local optima, but
also causes the existence of plateaus. However, this issue could
be mitigated by adding noise to the coefficients to ensure they
are non-zero.

B. Benchmarking of Multi-objectivization Search

We now analyze the performance of the entire multi-
objectivization search process. The success rate of the multi-
objectivization PLS optimizer with varying parameters O′

and α is depicted in Fig. 3. When the order is zero, the helper
objective has no influence on search, making it equivalent to
the multi-start local search. Therefore, we can assess the effect
of the helper objective and multi-objectivization by comparing
the results to the case of order O′ = 0. In Fig. 3 (left and
middle), a positive order O′ > 0 outperforms the setting of

sup.avg

sup.avginf.avg

 ≤ >

Fig. 6: Recommendations for multi-objectivization based on
local landscape features.

O′ = 0. Conversely, for α = 0.75, the increase in success rate
due to multi-objectivization, even in positive orders, is tiny
compared to the settings of α = 0.25 and 0.5. This is because
75% of the budget of evaluations are devoted to sampling. The
performance decay due to multi-objectivization with negative
order can be attributed to the growth in the number of solu-
tions the algorithm can move towards. A negative correlation
between the objectives weakens the selection pressure and
increases solution diversity, but necessitate a large number of
evaluations to converge. Success rates that only focus on trials
where multi-objectivization was performed are displayed in
Fig. 4. These results also confirms that helper objectives with a
positive correlation achieve a higher success rate. Interestingly,
The performance does not peak when O′ = 3, suggesting that
a positive correlation is not the sole factor of success. As O′

increases, so does the number of local optima, revealing a
trade-off between multi-modality and correlation.

In summary, our experiments reveal that helper objectives
with a positive correlation and relaxed variable interactions
greatly improve search performance. A small number of eval-
uations were spent on generating the helper objective: 1250
(≈ 0.1%), 2500 (≈ 0.2%) and 3750 (≈ 0.3%). This suggests
that it is possible to generate helper objectives during the
optimization process.

C. Recommendations for the Helper Objective

Finally, we analyse the local features derived from the
sample of solutions Xsearched. The ratios of dominating,
dominated and incomparable neighbors are reported in Fig. 5.
These features are significantly influenced by the correlation
between the objectives, causing feature values to change based
on the order that determines correlation. When there is a strong
negative correlation between the objectives, most solutions



are Pareto optimal. These solutions neither dominate nor
are dominated, making them incomparable one another. The
ratios of dominated neighbors (inf.avg) and incomparable
neighbors (inc.avg) are contrasted. There are more domi-
nating neighbors with increasing O′, thus facilitating the early
discovery of a global optimum.

We have demonstrated the potential of generating a helper
objective from sampled solutions. However, the critical deci-
sion is to determine whether multi-objectivization is actually
necessary. For the 75 SOP instances considered in our experi-
ments, helper objectives were generated from archives of three
different sizes and six different orders, excluding O′ = 0.
We focus on 75 × 6 = 450 combinations of instances and
parameters O′ with α = 0.5. For each combination, we have
the three features sup.avg, inf.avg, and inc.avg. We
train a simple CART decision tree [17] to predict whether
multi-objectivization would improve performance compared to
standard single-objective optimization (case with O′ = 0). An
example of the decision tree using local features is shown in
Fig. 6. After 30 runs of 10-fold cross-validation, the average
classification accuracy is 76%. The decision tree visualization
indicates that multi-objectivization is not effective in combina-
tions with low sup.avg. These results make sense consider-
ing that the parameters O′ and sup.avg are correlated. A low
sup.avg value implies a negative O′, indicating a negative
correlation between the objectives. Similar to the relationship
between O′ and the success rate, multi-objectivization does not
always prove effective in combinations with high sup.avg.

VII. CONCLUSIONS

In order to clarify the design of a helper objective in
multi-objectivization, we proposed a helper objective gen-
erator whose correlation with the target objective and the
heterogeneity of variable interactions can be adjusted. Our
suggested helper objective is grounded on the Walsh trans-
form. From a sample of solutions, the target objective is
decomposed into sub-functions, which are then combined to
create a helper objective. This Walsh-based helper objective
can adjust the correlation and the number of local optima
by relaxing the variable interactions of the target objective.
We also proposed an optimizer based on Pareto local search
for multi-objectivization. Our experimental results suggest that
multi-objectivization under a helper objective that is positively
correlated and has relaxed variable dependencies facilitates the
search for a global optimum. We also computed landscape
features from the sample of solutions, predicting with 76%
accuracy whether multi-objectivization improves performance.

Future research will focus on adaptive parameter tuning
and advanced analysis of landscape features. In particular,
there is a need for complementary informative multi-objective
landscape features to recommend a suitable helper objective.
The features considered in this study are mutually correlated
and do not sufficiently explain the successful cases of multi-
objectivization. We are considering the Pareto local optimal
solutions network [18] to aid in generating the helper objective
and to analyze it using a wider set of landscape features.
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