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AbstractÐWe present a simple neighborhood search that aims
at efficiently approximating the Pareto set of particularly difficult
multiobjective combinatorial optimization problems. Unlike (eli-
tist) local search which exclusively accepts improving neighbors,
the proposed walk explores a subset of λ neighbors only,
among which the best one is accepted, whether it improves
the current solution or not. This resembles the comma-selection
from evolutionary computation, which is to contrast with the
plus-selection. This principle was shown to better escape basins
of attraction in the context of single-objective optimization.
Non-elitism has also been recently revised in the context of
multiobjective optimization. However, we emphasize that we do
not generate random offspring here. Instead, we create a whole
set of λ neighbors among which one is carefully selected, thus
providing better control of the selection pressure. In order to
extend the partial neighborhood walk principles to multiobjective
search, we rely on decomposition: multiple scalarizing sub-
problems are uniformly defined and optimized (independently or
cooperatively) in order to form a whole approximation set. Based
on a benchmark of difficult NK-landscapes with two and three
objectives, we show that even independent sub-problem solving
results in a clear improvement over more advanced multiobjective
decomposition approaches such as MOEA/D. We further report
an in-depth analysis of the neighborhood sample size, the number
of sub-problems, and the cooperation among them.

I. INTRODUCTION

This work proposes a multiobjective walk based on the

partial exploration of the neighborhood (MOW-P). This al-

gorithm finds its inspiration in sampled walk (SW) [1], a

straightforward single-objective local search, where a subset

of λ neighbors from the current solution is evaluated, among

which the best one is selected, whether it results in an

improvement or not. This echoes the comma-selection strategy

from evolutionary computation. Our aim is to investigate an

approach that is particularly simple and easy to implement

and configure, but also efficient in obtaining good-quality so-

lutions for difficult multiobjective combinatorial optimization

problems. The adaptation of SW to multiple objectives comes

quite naturally, given that it already meets these criteria for a

single objective. On top of that, it was found to perform a well-

balanced search on different classes of combinatorial optimiza-

tion problems [2]. Meeting these criteria for multiobjective

optimization could be even more valuable, as additional chal-

lenges arise when optimizing several objectives simultaneously

and a whole set of optimal trade-offs among the objectives is

to be identified. The definition of a simple algorithm helps

reduce the scope of optimization-related issues and focus on

multiobjective issues such as selection or archiving.

MOW-P builds upon the concept of decomposition, which

provides a natural framework for extending single-objective

approaches to multi-objective optimization. The most popular

decomposition-based method is certainly MOEA/D [3], which

has become one of the most widely used multiobjective

algorithms from the literature. The MOW-P principles are

as follows: a set of scalarizing sub-problems are defined by

means of uniformly-generated weight vectors. For each sub-

problem, a single-objective walk SW is performed, targeting a

given region of the Pareto front. In its basic variant, each walk

is performed independently and an archive keeps track of non-

dominated solutions. As such, in contrast to MOEA/D, there is

no cooperation between sub-problems Ð although we do study

the impact of injecting cooperation on algorithm performance.

We emphasize that this is therefore a particularly straightfor-

ward approach that requires only a couple of parameters: the

number of sub-problems and the number of neighbors sampled

at each iteration. Despite its simplicity, our experiments on

two- and three-objective ρmnk-landscape benchmark instances

show the superiority of MOW-P over a more sophisticated

algorithm like MOEA/D, especially for difficult problems in

terms of ruggedness and multimodality

Unlike the vast majority of multi-objective evolutionary

and local search, the MOW-P selection is non-elitist. Indeed,

current solutions are not necessarily the best found so far

and additional mechanisms such as archiving are necessary

to avoid the loss of good solutions. Apart from some early

work on the topic [4], we remark that non-elitism was recently

revisited in the multi-objective optimization literature [5], [6],

often leading to an improvement in performance compared

against their elitist counterparts. However, we emphasize that

MOW-P does not simply perform a generational replace-

ment of the population with respect to random offspring. It

indeed selects the best among λ neighbors, thus providing

better control of the selection pressure. We further note that

decomposition-based multiobjective neighborhood search has

been explored previously [7], [8]. However, those attempts

follow an elitist strategy, accepting improving neighbors only.

This is to contrast with the non-elitist strategy from MOW-P.

The paper is organized as follows. Section II provides

the background on multiobjective optimization and SW. Sec-

tion III presents MOW-P in detail. Section IV is dedicated to

the experimental setup while Section V provides experimental

results and discussion. The last section concludes the paper

and discusses possible ways forward.



II. BACKGROUND

This section gives definitions for multiobjective optimiza-

tion and presents the single-objective sampled walk algorithm.

A. Multiobjective Optimization

A multi-objective optimization problem aims to maximize

an m-dimensional objective function vector f : X → Z such

that each solution from x ∈ X maps to a vector in the objective

space z ∈ Z , with z = f(x) and Z ⊆ IRm. Given two

objective vectors z, z′ ∈ Z , z is dominated by z′ if there

is a j ∈ {1, . . . ,m} such that zj < z′j , and zi ⩽ z′i for all

i ∈ {1, . . . ,m}. A solution x ∈ X is dominated by x′ ∈ X
if f(x) is dominated by f(x′). An objective vector z⋆ ∈ Z is

non-dominated if there is no z ∈ Z such that z⋆ is dominated

by z. A Pareto optimal solution x⋆ ∈ X is a solution such that

f(x⋆) is non-dominated. The Pareto set is the set of Pareto

optimal solutions, and the Pareto front is its mapping in the

objective space. We here aim to approximate the Pareto set.

B. Single-objective Sampled Walk

Sampled walk (SW) is a straightforward local search al-

gorithm for single-objective optimization [1]. As shown in

Algorithm 1, it requires a single parameter λ and works as

follows: given a solution space X and a neighborhood relation

N : X 7→ 2X , SW modifies the current solution by selecting

the best among λ randomly-generated neighbors. As SW is

straightforward and easy to implement, it can be reminiscent

of hill-climbing algorithms. However, it is important to notice

that the selected neighbor can deteriorate the current solution,

allowing the search to bypass local optima and find better

solutions. Note that SW is quite similar to IDbest [9]. The

major difference lies in the fact that the fitness value of the

current solution does not influence the selection process of SW.

Despite its high simplicity, SW was shown to perform well

compared to well-known generic local search algorithms such

as tabu search and iterated local search on a number of single-

objective combinatorial optimization problems. Its parameter

setting and search trajectories highlight that λ directly controls

the balance between exploration and exploitation [10]. The

optimal setting for λ, i.e. the proportion of neighbors to

evaluate at each step, increases slightly with the size of the

search space and its ruggedness, which refers to the number

of local optima and their distribution in the landscape. When

a proper λ-value is chosen, the search trajectory reveals the

ability of SW to find diverse and promising solutions.

We argue that an algorithm based on similar principles to

SW for multiobjective optimization could potentially deliver

Algorithm 1 Sampled Walk (SW)

1: Choose x ∈ X (initialization)

2: while stop criterion not reached do

3: Nλ ← subset of λ random solutions of N (x)
4: x← argmaxy∈Nλ

f(y)
5: end while

6: return best encountered solution

a substantial benefit, provided that simplicity and efficiency

can be maintained. Multiobjective optimization induces many

additional challenges such as diversity, archiving, or even the

pairwise comparison of solutions for selection. Consequently,

an approach requiring few design choices while being versatile

enough could help maintain focus on these challenging issues.

III. MULTIOBJECTIVE SAMPLED WALK

We rely on the decomposition paradigm in order to propose

a multi-objective sampled walk based on the partial explo-

ration of the neighborhood, together with a number of archiv-

ing techniques to integrate into it. This is developed below.

A. Decomposition in Multiobjective Optimization

The multi-objective optimization problem to be solved

can be decomposed into a number of single-objective sub-

problems that target different regions of the Pareto front.

MOEA/D has become one of the most popular decomposition-

based multi-objective approach [3]. Each sub-problem is de-

fined by a particular weight vector for the considered scalar-

izing function. Different scalarizing functions can be used. A

popular example is the weighted Chebyshev function:

g(x | w) = max
i∈{1,...,m}

wi ·
∣

∣z⋆i − fi(x)
∣

∣ (1)

where x ∈ X is a solution, w = (w1, . . . , wm) is a weighting

coefficient vector with wi ⩾ 0 for all i ∈ {1, . . . ,m}, and

z⋆ = (z⋆1 , . . . , z
⋆
m) is a reference point.

A set of uniformly-generated weight vectors W =
(w1, . . . , wµ) can be used to define the scalar sub-problems,

for which one solution is maintained and evolved in the

population. More particularly, given a scalarizing function

g : X 7→ IR, MOEA/D seeks a solution x ∈ X with the

best scalarizing function value g(x | wi) for each sub-problem

i ∈ {1, . . . , µ}. To this end, it maintains a population P =
(x1, . . . , xµ) such that each individual is the current solution

for the corresponding sub-problem. Therefore, the population

size exactly matches the number of weight vectors µ ∈ N
+.

Moreover, for each sub-problem i ∈ {1, . . . , µ}, a set of coop-

erating sub-problems B(i) is defined with the t closest weight

vectors. The population evolves such that sub-problems are

optimized iteratively and cooperatively. At a given iteration,

and for a given sub-problem i ∈ {1, . . . , µ}, some solutions

are selected from B(i) and an offspring y is created by means

of variation operators (crossover and mutation). Next, for every

sub-problem j ∈ B(i), the offspring y replaces the current

solution xj if there is an improvement with respect to the

scalarizing function, i.e. if g(y | wj) is better than g(xj | wj).
The algorithm loops over sub-problems, attempting to improve

them one after the other until a stopping condition is satisfied.

An external archive is optionally maintained to keep track of

all non-dominated solutions found so far.

B. Baseline MOW-P Algorithm

We present MOW-P, the proposed multiobjective walk based

on partial neighborhood exploration. Similar to MOEA/D, the

approach is based on a set of µ weight vectors defining the



Algorithm 2 MOW-P

1: Define a set W of µ weight vectors

2: Initialize {x1, .., xµ}, xi randomly taken from X
3: A← ∅
4: update_archive(A, {x1, .., xµ})
5: while stopping criterion not reached do

6: randomly select i ∈ {1, . . . , µ} (round-robin)

7: Nλ ← subset of λ random neighbors from N (xi)
8: update_archive (A,Nλ)
9: xi ← argminy∈Nλ\{xi} g(y | wi)

10: end while

11: return A

scalar sub-problems. In its default setting, MOW-P simply

consists of performing µ independent sampled walks Ð one

per sub-problem. The pseudo-code is given in Algorithm 2.

Based on a set of weight vectors, MOW-P starts by initializing

a population with one random solution per walk and an

archive of non-dominated solutions. At each iteration, a sub-

problem i ∈ {1, . . . , µ} is randomly selected in a round-

robin fashion, such that xi is the current solution for this

sub-problem. A subset of λ neighbors from xi are randomly

generated, evaluated, and archived. Among them, the one with

the best scalar value for the current sub-problem is selected.

The chosen neighbor then replaces xi, regardless of whether

it results in an improvement. The algorithm iterates until a

stopping condition is met ; e.g., a maximum evaluation budget.

An important difference with the single-objective SW al-

gorithm concerns the update_archive routine. In SW, the

archive somehow contains a single solution that corresponds to

the best solution encountered since the beginning of the search.

In a multiobjective setting, we aim at returning a whole set of

mutually non-dominated solutions. We discuss different ways

of implementing update_archive hereafter.

C. Archiving Strategies

We present three definitions of update_archive(A,S),

which aims at updating an archive A w.r.t a set S of candidate

solutions. Note that these different implementations do not

affect the search process since the only purpose of archived

solutions is to be returned at the end of the search process.

1) Single Global Archive: This is the standard method used

in most multi-objective approaches. An archive A of mutually

non-dominated solutions is maintained and updated after the

evaluation of any solution. The archive goes through a filtering

process: a solution x ∈ S is added to the archive if it is not

dominated by any solution from A, and solutions from A that

happen to be dominated by x are discarded.

Notice, however, that this procedure can be time consuming.

Indeed, the archive may contain a large number of solutions,

and each new solution must be compared to the whole archive

in the worst case. Although several efficient archiving algo-

rithms exist in the literature [11], this remains a recurring issue

in multiobjective optimization.

2) One Archived Solution per Sub-Problem: A possibility

to reduce the cost of archiving is to store only one solution

per walk. This can be seen as an inherent way of bounding

the size of the archive [12]. In this case, Pareto dominance

is not used, only the best solution found for each scalar sub-

problem is kept. When the search process ends, non-dominated

solutions among these µ are filtered and returned.

Since the archiving procedure has no impact on the search

process, the resulting archive is a subset of the one obtained

with the previous approach. A benefit is that the archiving cost

is often significantly reduced.

3) One Sub-Archive per Sub-Problem: With this last ap-

proach, µ sub-archives {A1, . . . , Aµ} are maintained, one per

sub-problem. Each archive Ai is being updated with the values

successively taken by Nλ ∈ N (xi) only. When the search

process ends, the sub-archives are then merged and filtered to

return a single set of mutually non-dominated solutions.Since

each sub-archive focuses on a specific region of the objective

space, the size of each one of them tends to be much smaller

than the global archive. As such, although µ archives are

maintained, we expect each update to be much faster.

Despite the use of multiple sub-archives, the final solutions

returned by this strategy exactly matches the ones from the first

(global) archiving strategy. Indeed, as there are only external

archives in MOW-P, they do not take part in the selection

process. The algorithm behavior remains unchanged even if

solutions are archived differently. The corresponding MOW-P

versions differ only in their computational cost.

IV. EXPERIMENTAL SETUP

This section describes the experimental setup of our analy-

sis, covering the considered problems and related parameters.

A. Benchmark Problems: ρmnk-Landscapes

We experiment MOW-P on pseudo-Boolean multiobjec-

tive multimodal problems with correlated objectives: ρmnk-

landscapes [13]. They are described by four parameters:

the length of binary strings (solutions) n, the number of

objectives to optimize m, the rate of variable interdepen-

dency k, and the objective correlation ρ. The objective

function vector f = (f1, . . . , fi, . . . , fm), to be maximized,

is defined as f : {0, 1}n → [0, 1]m. For a solution x =
(x1, . . . , xj , . . . , xn), its objective value fi(x) is an average

value of the individual contributions associated with each

variable xj . The contribution of a variable xj is determined by

its own value and the values of k other variables in interaction

with xj . For each variable xj , the k variables influencing

its contribution are chosen uniformly at random among the

(n − 1) variables other than xj [14]. The value of k directly

influences the ruggedness of landscapes: k = 0 corresponds to

a completely smooth landscape while k = n− 1 corresponds

to an extremely rugged landscape. In ρmnk-landscapes, the

contribution values follow a multivariate uniform distribution

such that ρ > −1
m−1 defines the correlation among the objec-

tives [13]. The positive (resp. negative) correlation ρ decreases

(resp. increases) the degree of conflict between the objective



TABLE I
INSTANCE PARAMETERS.

description values

number of variables n ∈ {128, 512}
number of interactions k ∈ {2, 4, 6, 8, 10}
number of objectives m ∈ {2, 3}
objective correlation ρ ∈ {−0.4, 0.0, 0.4}

values. ρmnk-landscapes exhibit different characteristics and

degrees of difficulty for multiobjective algorithms [15]. The

source code of the benchmark generator is available at the

following URL: https://gitlab.com/aliefooghe/mocobench.

B. Parameter Setting

1) Instance Parameters: The benchmark is composed of 48
ρmnk-landscapes generated following the parameters listed in

Table I. All parameter combinations have been considered,

except k ∈ {4, 8} for n = 512. Experiments have been

conducted on 30 medium-size instances (n = 128) and 18
large-size instances (n = 512). This allows us to investigate

the behavior of MOW-P on relatively smooth to relatively

rugged landscapes, with two and three objectives, and with

conflicting, uncorrelated or correlated objectives.

2) Algorithm Parameters: We compare MOW-P against

MOEA/D. Both algorithms use the same set of parameter

values (when applicable):

• Variation: 1-flip (MOEA/D, MOW-P), uniform crossover

and standard bit-flip with rate 1/n (MOEA/D only).

• Population size: µ ∈ {21, 51, 101, 201} for m = 2; µ ∈
{66, 231, 861} for m = 3. Values of µ were chosen to

ensure weights made of decimal values.

• Number of collaborating sub-problems t = 0 (no com-

munication), m, 5 ·m, µ− 1 (full communication).

• Scalarizing function: Chebyshev.

• Sample size: λ ∈ {8, 16, 32, 64, 128} (MOW-P only).

• Archiving: (single) global archive (for both algorithms).

• Stopping condition: up to 107 evaluations.

We experiment using all possible combinations of these pa-

rameter values. This corresponds to 80 (resp. 60) MOW-P and

32 (resp. 24) MOEA/D versions for m = 2 (resp. m = 3). We

perform 20 independent runs for each algorithm and instance.

In total, 97 440 runs were performed.

3) Performance Assessment: We report the hypervol-

ume [16] relative deviation hvrd covered by the final archive

obtained by each algorithm with respect to the best-known

Pareto front for the considered instance. The lower the value

the better. Thus, hvrd = 0 means the best-known Pareto

front was actually found by the algorithm. The hypervolume

reference point is set to the origin. The algorithms were imple-

mented using Paradiseo [17], executed on the CALCULCO

computing platform, hypervolume computed with the eaf

package [18], and figures produced with ggplot [19].

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we report and discuss a number of exper-

imental results with two goals in mind. The first one is to

TABLE II
DEFAULT MOW-P AND MOEA/D CONFIGURATIONS.

algorithm nb. obj.
neighborhood pop. nb. sub-

/ mutation size problems

MOW-P
m = 2

1-flip
µ = 21 ±

m = 3 µ = 66 ±

MOEA/D same
m = 2

1-flip
µ = 21 t = 0

m = 3 µ = 66 t = 0

MOEA/D default
m = 2

standard 1/n
µ = 101 t = 10

m = 3 µ = 231 t = 15

MOEA/D tuned
m = 2 standard 1/n µ = 201 t = 2
m = 3 1-flip µ = 861 t = 15

highlight the efficiency of the simple MOW-P approach. To

do so, we compare it against the state-of-the-art MOEA/D. We

pay a particular attention to the neighborhood sample size λ,

a key feature of the proposed method. The second purpose is

to show the straightforwardness of MOW-P. To this aim we

analyze the impact of other parameters on its performance.

A. Comparison against MOEA/D

In order to ease the readability of results, we start by

focusing on the following eight settings:

• Five MOW-P variants corresponding to five λ-values: 8,

16, 32, 64, and 128. The population size is set to µ = 21
for m = 2 and µ = 66 for m = 3.

• Three MOEA/D variants : same refers to the same setting

used by MOW-P, default refers to MOEA/D’s default

setting [3], and tuned refers to the best overall setting

for MOEA/D, one per number of objectives.

These settings are summarized in Table II.

The first set of results is reported in Table III. Given that

eight algorithms are compared, each one of them is assigned

a rank from 0 to 7, based on pairwise statistical testing.

The lower the rank, the better. The rank corresponds to the

number of competing algorithms that significantly outperform

the one under consideration in terms of hypervolume. Several

observations can be drawn from the table. First, there is

always at least one MOW-P variant that is not statistically

outperformed by any other considered algorithm. Moreover,

all MOEA/D variants are statistically outperformed by at least

two MOW-P configurations. Noticeably, MOW-P with λ = 32
is never statistically outperformed by any MOEA/D variant.

Comparing the different instances, the best λ-value slightly

increases with the problem size (n) and the interdependency

level (k). Interestingly, its does not seem to be affected by the

objective correlation (ρ) nor the number of objectives (m).

This corroborates results from SW on single-objective nk-

landscapes [2]: the λ-value that lead to better solutions also

increase with k and n. This goes along with the low impact

of the number of objectives on which λ-value to chose.

Fig. 1 reports the empirical attainment function (EAF)

differences [18] between MOW-P with λ = 32 and the

tuned version of MOEA/D. The EAF provides the empirical

probability distribution that an objective vector is (weakly)



TABLE III
COMPARISON OF MOW-P AND MOEA/D VARIANTS WITH RESPECT TO THE HYPERVOLUME RELATIVE DEVIATION FOR A BUDGET OF 107 CALLS TO THE

EVALUATION FUNCTION. FOR EACH INSTANCE, THE FIRST VALUE GIVES THE NUMBER OF COMPETING ALGORITHMS THAT SIGNIFICANTLY OUTPERFORM

THE ONE UNDER CONSIDERATION ACCORDING TO A (NON-PARAMETRIC) WILCOXON SIGNED RANK TEST AT A SIGNIFICANCE LEVEL OF 0.05 WITH

BONFERRONI CORRECTION (LOWER IS BETTER). RANKS IN BOLD CORRESPOND TO APPROACHES THAT ARE NOT SIGNIFICANTLY OUTPERFORMED BY

ANY OTHER, THE NUMBER IN BRACKETS IS THE AVERAGE HYPERVOLUME RELATIVE DEVIATION ROUNDED TO THE HIGHEST VALUE (LOWER IS BETTER).

MOW-P MOEA/D
instance λ = 8 λ = 16 λ = 32 λ = 64 λ = 128 same default tuned

m = 2 n = 128 ρ = −0.4 k = 2 1 (0.02) 0 (0.01) 1 (0.02) 4 (0.05) 6 (0.07) 7 (0.11) 4 (0.04) 2 (0.03)

k = 4 2 (0.04) 0 (0.02) 1 (0.03) 3 (0.06) 6 (0.11) 7 (0.16) 5 (0.08) 3 (0.06)

k = 6 3 (0.09) 0 (0.04) 0 (0.04) 2 (0.07) 4 (0.11) 7 (0.19) 4 (0.11) 3 (0.10)

k = 8 5 (0.13) 1 (0.06) 0 (0.04) 1 (0.07) 3 (0.10) 7 (0.19) 4 (0.11) 3 (0.11)

k = 10 6 (0.14) 2 (0.08) 0 (0.04) 1 (0.05) 3 (0.09) 7 (0.19) 4 (0.11) 4 (0.12)

ρ = 0.0 k = 2 1 (0.02) 0 (0.01) 1 (0.02) 3 (0.04) 6 (0.07) 7 (0.11) 4 (0.05) 3 (0.03)

k = 4 2 (0.04) 0 (0.01) 1 (0.03) 3 (0.06) 5 (0.09) 7 (0.16) 4 (0.08) 4 (0.08)

k = 6 3 (0.09) 0 (0.03) 1 (0.04) 2 (0.07) 4 (0.10) 7 (0.19) 4 (0.12) 4 (0.11)

k = 8 4 (0.12) 1 (0.05) 0 (0.04) 2 (0.06) 3 (0.10) 7 (0.19) 4 (0.13) 4 (0.11)

k = 10 6 (0.14) 2 (0.08) 0 (0.04) 1 (0.06) 3 (0.09) 7 (0.19) 4 (0.12) 4 (0.12)

ρ = 0.4 k = 2 1 (0.02) 0 (0.01) 1 (0.02) 3 (0.03) 6 (0.05) 7 (0.09) 3 (0.03) 3 (0.03)

k = 4 2 (0.04) 0 (0.01) 1 (0.03) 3 (0.05) 5 (0.08) 7 (0.15) 4 (0.07) 4 (0.07)

k = 6 3 (0.08) 0 (0.03) 1 (0.03) 2 (0.06) 4 (0.10) 7 (0.18) 4 (0.11) 4 (0.11)

k = 8 4 (0.12) 1 (0.05) 0 (0.03) 1 (0.06) 3 (0.10) 7 (0.18) 4 (0.12) 5 (0.13)

k = 10 5 (0.13) 2 (0.07) 0 (0.03) 1 (0.05) 3 (0.09) 7 (0.18) 4 (0.13) 4 (0.11)

n = 512 ρ = −0.4 k = 2 2 (0.04) 0 (0.02) 1 (0.03) 4 (0.06) 5 (0.08) 7 (0.10) 5 (0.07) 3 (0.05)

k = 6 5 (0.13) 2 (0.05) 0 (0.03) 1 (0.04) 3 (0.07) 7 (0.15) 5 (0.13) 4 (0.10)

k = 10 7 (0.17) 3 (0.10) 1 (0.04) 0 (0.03) 2 (0.05) 6 (0.14) 5 (0.12) 3 (0.10)

ρ = 0.0 k = 2 2 (0.04) 0 (0.02) 1 (0.03) 3 (0.05) 5 (0.07) 7 (0.10) 5 (0.07) 3 (0.05)

k = 6 5 (0.13) 1 (0.05) 0 (0.03) 1 (0.05) 3 (0.07) 7 (0.16) 5 (0.13) 4 (0.11)

k = 10 7 (0.17) 3 (0.10) 0 (0.04) 0 (0.03) 2 (0.05) 6 (0.14) 5 (0.11) 3 (0.10)

ρ = 0.4 k = 2 2 (0.03) 0 (0.01) 1 (0.03) 3 (0.05) 6 (0.07) 7 (0.10) 4 (0.05) 3 (0.04)

k = 6 6 (0.12) 1 (0.04) 0 (0.02) 1 (0.04) 3 (0.07) 7 (0.15) 4 (0.10) 4 (0.10)

k = 10 7 (0.17) 3 (0.09) 1 (0.03) 0 (0.02) 2 (0.05) 6 (0.14) 3 (0.09) 3 (0.09)

m = 3 n = 128 ρ = −0.4 k = 2 1 (0.04) 0 (0.03) 2 (0.05) 5 (0.08) 6 (0.11) 7 (0.16) 3 (0.07) 3 (0.06)

k = 4 2 (0.08) 0 (0.05) 1 (0.07) 3 (0.11) 6 (0.15) 7 (0.22) 5 (0.13) 3 (0.10)

k = 6 4 (0.14) 0 (0.08) 0 (0.08) 2 (0.11) 5 (0.16) 7 (0.24) 5 (0.16) 3 (0.13)

k = 8 6 (0.18) 1 (0.10) 0 (0.07) 1 (0.10) 4 (0.15) 7 (0.25) 4 (0.16) 3 (0.13)

k = 10 6 (0.19) 2 (0.12) 0 (0.08) 1 (0.09) 2 (0.13) 7 (0.24) 5 (0.15) 2 (0.13)

ρ = 0.0 k = 2 1 (0.03) 0 (0.02) 1 (0.03) 5 (0.07) 6 (0.10) 7 (0.16) 3 (0.05) 3 (0.05)

k = 4 2 (0.07) 0 (0.04) 1 (0.06) 3 (0.10) 6 (0.15) 7 (0.23) 4 (0.12) 3 (0.10)

k = 6 4 (0.14) 0 (0.06) 1 (0.07) 2 (0.11) 5 (0.17) 7 (0.26) 4 (0.15) 2 (0.13)

k = 8 6 (0.18) 1 (0.09) 0 (0.06) 2 (0.10) 4 (0.15) 7 (0.26) 3 (0.15) 3 (0.13)

k = 10 6 (0.20) 2 (0.11) 0 (0.06) 1 (0.08) 3 (0.14) 7 (0.25) 4 (0.14) 2 (0.12)

ρ = 0.4 k = 2 1 (0.02) 0 (0.02) 2 (0.04) 5 (0.06) 6 (0.09) 7 (0.13) 2 (0.04) 4 (0.05)

k = 4 2 (0.06) 0 (0.03) 1 (0.05) 3 (0.09) 6 (0.14) 7 (0.21) 3 (0.10) 4 (0.11)

k = 6 3 (0.13) 0 (0.05) 1 (0.06) 2 (0.10) 5 (0.15) 7 (0.25) 3 (0.14) 3 (0.13)

k = 8 6 (0.17) 1 (0.08) 0 (0.05) 2 (0.09) 3 (0.14) 7 (0.24) 3 (0.15) 3 (0.14)

k = 10 6 (0.19) 2 (0.10) 0 (0.05) 1 (0.08) 3 (0.12) 7 (0.23) 4 (0.15) 4 (0.14)

n = 512 ρ = −0.4 k = 2 2 (0.07) 0 (0.04) 1 (0.06) 3 (0.09) 5 (0.10) 6 (0.14) 7 (0.17) 3 (0.08)

k = 6 5 (0.16) 2 (0.07) 0 (0.05) 1 (0.07) 3 (0.10) 6 (0.18) 7 (0.23) 4 (0.12)

k = 10 6 (0.21) 4 (0.12) 1 (0.05) 0 (0.05) 2 (0.07) 5 (0.17) 6 (0.21) 3 (0.11)

ρ = 0.0 k = 2 2 (0.06) 0 (0.03) 1 (0.05) 4 (0.08) 5 (0.10) 7 (0.14) 6 (0.13) 3 (0.07)

k = 6 5 (0.17) 1 (0.07) 0 (0.05) 1 (0.07) 3 (0.11) 6 (0.19) 7 (0.21) 4 (0.12)

k = 10 7 (0.24) 4 (0.14) 1 (0.06) 0 (0.05) 2 (0.09) 5 (0.18) 5 (0.19) 3 (0.12)

ρ = 0.4 k = 2 2 (0.05) 0 (0.03) 1 (0.04) 3 (0.08) 5 (0.10) 7 (0.14) 5 (0.10) 3 (0.07)

k = 6 6 (0.17) 1 (0.06) 0 (0.05) 1 (0.07) 3 (0.11) 7 (0.20) 5 (0.16) 3 (0.11)

k = 10 7 (0.24) 4 (0.13) 0 (0.05) 0 (0.05) 2 (0.08) 6 (0.18) 5 (0.15) 3 (0.09)

dominated by a solution obtained by an algorithm. The EAF

differences show regions where one algorithm outperforms

the other. The magnitude of the difference in favor of one

algorithm is plotted in a colored scale. One can observe

that MOW-P performs significantly better than MOEA/D, and

often finds solutions not likely to be found by MOEA/D,

especially on the lexicographically optimal regions of the

Pareto front Ð the ªextremesº. This observation increases

with the ruggedness (k). On relatively smooth landscapes,

MOEA/D appears to perform slightly better in the central area

of the Pareto front. This is only observed when n = 512, yet

as ruggedness is determined by the rate between k and n, this

instance is the smoothest among the ones considered here.

The comments so far are for the largest budget of 107 evalu-

ations. Fig. 2 now reports the anytime performance of the three

most efficient versions of MOW-P and the two most efficient

versions of MOEA/D observed above. A subset of instances

was selected due to space restrictions, but the trends are similar

on other instances. Note the log-scale on both axes. A lower

hypervolume relative deviation means a better performance.

Except for particularly small computational budgets, MOW-P

consistently outperforms MOEA/D. For two objectives, the

superiority of MOW-P occurs for a smaller budget than for

three objectives. The increase in objectives also impacts the

gap between the two MOEA/D variants. Note that the relative

efficiency of MOW-P variants may change with the budget:

lower λ-values are more recommended for small budgets.

Overall, MOW-P outperforms MOEA/D on this benchmark,

provided that an appropriate setting of λ is chosen, with the

exception of very low computational budgets. While affected
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Fig. 1. Empirical attainment function differences between MOW-P and MOEA/D for instances with m = 2, ρ = 0, n = 128 (left) and n = 512 (right),
k = 2 (top), k = 6 (middle) and k = 10 (bottom).
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Fig. 2. Impact of the neighborhood sample size λ (n = 128, ρ = 0).

by n and k, the appropriate λ-value is rather stable and λ = 32
always outperforms any MOEA/D variant. MOW-P provides a

good coverage of the Pareto front, especially at the extremes.

A notable observation is that the MOW-P version that achieves

such results turns out to be particularly straightforward.

B. Investigating Other MOW-P Settings

After λ, we investigate other settings of MOW-P below.

1) Population Size (µ): We recall that µ corresponds to the

number of weight vectors of the decomposition, and therefore

to the number of walks performed during MOW-P’s execution.

Fig. 3 reports the anytime behavior of MOW-P for different

population sizes when λ = 32. For two objectives, the lower

population size generally leads to a better hypervolume for

different budgets. The only exception is for k = 2 and a budget

of 107 evaluations, where there is no significant difference.

Note that k = 2 means a low variable interaction and leads to

smooth landscapes that are easier to tackle with local search.

For three objectives, the lowest µ-value is consistently better,

whatever the budget. The gap in performance induced by the

population size is larger for 3 objectives and tend to increase

with k. We note that this difference may be due to a slower

convergence with this higher number of objectives. The bottom

line of this results is that too many sub-problems does not

lead to the best possible results for MOW-P: To ensure good

results under a given total budget, not too many walks should

be performed in parallel but still in sufficient numbers for

providing a good coverage of the Pareto front.
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Fig. 3. MOW-P ± Impact of the population size µ for λ = 32 (n = 128, ρ = 0).

2) Cooperation among Sub-problems (t): Although we did

not consider cooperation between sub-problems in the baseline

version of MOW-P introduced in Section III, we here study

the possible benefits of cooperative MOW-P’s walks. To do

so, we follow a similar approach to MOEA/D [3]: For each

sub-problem i ∈ {1, . . . , µ}, we define a set of cooperating

sub-problems B(i) with its t closest weight vectors. However,

unlike MOEA/D, we must also define which of the λ evaluated

neighbors (Nλ) is to be selected at a given iteration. We

follow the strategy of selecting the neighbor with the smallest

(normalized) deviation among cooperating sub-problems:

argmin
y∈Nλ, j∈B(i)∪{i}

g(xj | wj)− g(y | wj)

g(xj | wj)
(2)

The selected solution replaces the current solution of the

corresponding sub-problem j. As in the baseline MOW-P, the

selected neighbor may or may not result in an improvement.

Fig. 4 reports the anytime behavior of MOW-P with differ-

ent numbers of cooperating sub-problems t. While cooperation

does help MOW-P to achieve better results for smaller budgets,

it usually performs significantly better without any cooperation

between the walks (t = 0). Although the results achieved for

the three MOW-P versions with cooperation are particularly

close, the gap in efficiency without communication signifi-

cantly increases with the budget. This observation is similar

regardless of the number of objectives or the k-value, except

for the instance with m = 3 and k = 2.

VI. CONCLUSION AND FURTHER CONSIDERATIONS

In this paper, we proposed MOW-P, a multi-objective algo-

rithm that demonstrated compelling results on difficult prob-

lems despite its high simplicity. Its principles are based on SW,

a straightforward single-objective local search that selects the

best among λ random neighbors. The main difference is that

MOW-P applies SW to a set of scalar sub-problems obtained

by decomposition of the target multi-objective problem.

The uncommon characteristics of MOW-P compared to

existing approaches stem from its simplicity. For example,

it operates on a single solution at each step, the selection

process never relies on the archive nor the fitness of the current

solution, and it never explicitly aims at converging towards

local optima. A key feature that differentiates MOW-P from

the single-objective setting is its (external) archive. However,

archiving has no influence on the search process, yet it ensures

that a good-quality set of mutually non-dominated solutions

is returned. We highlighted that MOW-P could use multi-

archiving, in which each walk manages its own archive of

solutions that are all merged only once, at the end of the search

process. This allows MOW-P to handle multiple, smaller sub-

archives, while still managing to cover a reasonable portion

of the Pareto front. On top of that, this gives the potential of

solving the sub-problems in parallel, each one independently

of the others. This is illustrated in Fig. 5. We argue that multi-

archiving leads to the same final archive as the standard single

global archive in a significantly reduced computational time.

The simplicity of MOW-P provides a great advantage,

given that some issues that are difficult to handle with most

algorithms can be managed with minor tweaks. In particular,

the following refinements could be considered:

• an adaptive setting of λ, as proposed, e.g., in [9];

• an anytime version whose convergence would speed up

by starting with a small number of sub-problems that

would gradually increase during the search process;

• a preference-based version in which the decision maker

would provide their preferences by means of a single

weight vector that could be updated at runtime;

• hybridizations with other types of algorithms, even just

executing a simple local search following MOW-P in

order to ensure that the final solutions are local optima;

• a parallel version in which each thread performs a walk,

which could be easily implemented with no communica-

tion, apart from filtering once the final archive;
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Fig. 4. MOW-P ± Impact of the number of cooperating sub-problems t for λ = 32 (n = 128, ρ = 0).
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Fig. 5. Illustration of the multiple archiving process for µ = 6 (left) and
µ = 21 (right) sub-problems (n = 128, k = 6, ρ = 0). Each sub-archive
appears in a different color.

• covering a wider range of problems, including various

solution representations and neighborhood structures;

• comparison against other classes of multi-objective algo-

rithms, including multi-objective local search.
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