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Abstract—The hardness of the Unconstrained Binary
Quadratic Program (UBQP) problem is due its rugged landscape.
Various algorithms have been proposed for UBQP, including the
Landscape Smoothing Iterated Local Search (LSILS). Different
from other UBQP algorithms, LSILS tries to smooth the rugged
landscape by building a convex combination of the original UBQP
and a toy UBQP. In this paper, our study further investigates the
impact of smoothing rugged landscapes using different toy UBQP
problems, including a toy UBQP with matrix Q̂

1
(construct by

“+/-1”), a toy UBQP with matrix Q̂
2

(construct by “+/-i”) and a
toy UBQP with matrix Q̂

3
(construct randomly). We first assess

the landscape flatness of the three toy UBQPs. Subsequently, we
test the efficiency of LSILS with different toy UBQPs. Results
reveal that the toy UBQP with Q̂

1
(construct by “+/-1”) exhibits

the flattest landscape among the three, while the toy UBQP with
Q̂

3
(construct randomly) presents the most non-flat landscape.

Notably, LSILS using the toy UBQP with Q̂
2

(construct by “+/-
i”) emerges as the most effective, while Q̂

3
(construct randomly)

has the poorest result. These findings contribute to a detailed
understanding of landscape smoothing techniques in optimizing
UBQP.

Index Terms—Unconstrained Binary Quadratic Programming
(UBQP), Landscape smoothing, Homotopic convex (HC) trans-
formation.

I. INTRODUCTION

The Unconstrained Binary Quadratic Program (UBQP) [1]

has attracted much attention in the field of combinatorial

optimization due to its practical applications in financial anal-

ysis [2], molecular conformation [3], traffic management [4]

and so on. The aim of this NP-hard problem is to determine

binomial decision variables that will maximize a quadratic

objective function by choosing binary decision variables. The

UBQP problem can be formalized as follows [5]:

maximize f(x) = xTQx =

n∑
i=1

n∑
j=1

Qijxixj

subject to x ∈ {0, 1}n
(1)

where Q = [Qij ] is an n × n-dimensional matrix and

x is an n-dimensional vector with binary variables. UBQP

serves as a common model for a wide range of combinatorial

optimization problems, such as maximum cut problems [6]

and set partitioning problems [7], among many others [8].

There exist difficulties in finding a global optimal solu-

tion within polynomial time because of the NP-hardness of

UBQP [9]. Numerous heuristics and metaheuristics have been

developed over the years in order to cope with this compu-

tational challenge. UBQP is characterized by a rugged and

irregular fitness landscape, which makes the task of solving it

challenging, particularly when there are numerous local optima

within the search landscape [20]. However, to the best of our

knowledge, very few research efforts have been committed to

smoothing the landscape of UBQP.

In an effort, Wang et al. [10] introduce a landscape smooth-

ing method called Homotopic Convex (HC) transformation for

the UBQP by employing a toy UBQP problem formed by 1s

and −1s. They design the Landscape Smoothing Iterated Local

Search (LSILS) algorithm based on this HC transformation.

However, no study has been conducted on the smoothing

effects of HC transformation using different toy problems. This

paper extends the investigation into the smoothing effects of

HC transformation by introducing two additional toy UBQPs,

where the assumption is that toy problems with different

landscape flatness have different landscape smoothing effects.

Subsequently, employing the previously proposed LSILS al-



gorithm, we evaluate the performance of it using the three toy

UBQPs and compare it against a baseline ILS [11]. Results

indeed indicate that different toy UBOPs do have different

effects on smoothing the landscape.

The rest of this paper is organized as follows. Section II

reviews the related work. In Section III, we briefly review the

LSILS presented in [10] and introduce two LSILS algorithms

with different toy problems. Detailed experimental results are

reported in Section IV. Section V presents the conclusion.

II. RELATED WORK

Generally speaking, there exist two types of algorithms

for UBQP: exact methods and heuristics. Since the UBQP

problem is NP-hard [1], [9], exact algorithms tend to be time-

consuming for large-scale problems. They are not able to

obtain the global optimum within limited computing time.

Different from exact algorithms, heuristics can obtain near-

optimal solutions within a reasonable time for large-scale

UBQP instances. Among those are algorithms based on tabu

search [12], [13], simulated annealing [14] [15], iterated local

search [16], evolutionary algorithm (EA) [17], among others.

However, we find that the previous algorithms are rarely

based on landscape smoothing. In [10], Wang et al. propose

a landscape smoothing method HC transformation for UBQPs

and then design a LSILS algorithm based on this method.

The behavior of heuristics is significantly influenced by

the characteristics of fitness landscapes. Therefore, nowadays,

the characteristics of fitness landscapes have been widely

studied in many combinatorial optimization problems [18].

The difficulty to explore a landscape lies in its ruggedness

which is directly related to the number of local optima in

the landscape. A great amount of efforts have been made

on fitness landscape analysis. With regard to UBQP, Tari et

al. found a big-valley structure in UBQP landscapes [19]

[20]. They point out that local optima tend to be grouped

in a sub-region of the landscape. Merz and Katayama [21]

conducted a landscape analysis of UBQP and observed that

local optima are contained in a small fraction of the search

space, which corroborates previous research. Based on this

feature, they proposed a memetic algorithm which is very

effective in solving UBQP problems with up to 2 500 variables.

In the work of Tari et al. [22], they used a recently proposed

method, the monotonic local optima networks [23], to study

the induced fitness landscapes for understanding the difference

in performance among five pivoting rules.

One of the main challenge of combinatorial optimization

comes from rugged landscapes. Some studies have proposed

landscape smoothing based algorithms to improve algorithm

performance. To the best of our knowledge, there are few land-

scape smoothing methods for UBQP, so we briefly introduce

some related methods for other combinatorial optimization

problems below. Gu and Huang [24] proposed a landscape

smoothing method by edge cost manipulation. Liang et al.

[25] considered using local search to smooth the fitness land-

scape and thus preventing sticking in local optima for a long

time. One year later, Coy et al. [26] proposed the sequential

smoothing algorithm (SSA) that alternates between convex and

concave smoothing function to avoid being trapped in poor

local optima. Hasegawa and Hiramatsu [27] suggested that

metropolis algorithm can be used effectively as a local search

algorithm in search-space smoothing strategies. Recently, Shi

et al. [28] proposed a new landscape smoothing method called

HC transformation for the TSP, and this approach was recently

extended to UBQP [10].

III. METHODS

Initially proposed in [28], HC transformation is a technique

to smooth the rugged landscape of the traveling salesperson

problem (TSP), with the detailed process illustrated in Fig. 1.

The TSP can be smoothed by a convex combination of

the original TSP and the unimodal TSP which is generated

based on a known local optimum of the original TSP. This

method was later generalized to UBQP [10]. Given a known

locally optimal solution for the considered UBQP instance, a

toy UBQP of same size is created, represented by a binary

matrix Q constructed with −1s and 1s values. Hence, we say

that the toy UBQP used in [10] is constructed by the “+/-

1” method. The unimodal nature of the toy UBQP landscape

is theoretically established in [10], ensuring that any local

search process consistently converges towards its single global

optimum, mirroring the known local optimum of the original

UBQP. Subsequently, a convex combination of this constructed

toy UBQP and the original UBQP is implemented, introducing

a smoothing effect on the fitness landscape of the original

UBQP. Governed by a coefficient denoted as λ within the

[0, 1] range, this process establishes a path from the original

UBQP to the unimodal toy UBQP, allowing for an exploration

of landscape characteristics and the impact of smoothing on

search performance.

Local Optimum

Toy TSP

…
…

Fig. 1. Effect of HC transformation for the TSP [10].

The LSILS algorithm represents an optimization approach

that integrates the HC transformation technique with ILS. The

HC transformation serves as a main component of LSILS,

contributing to the landscape smoothing of the target UBQP

instance. At the same time, ILS is used to explore and

exploit the smoothed landscape, while concurrently updating

the smoothed UBQP landscape iteratively to maintain the

best solution found so far in the original UBQP. The entire

procedure of LSILS is depicted in Algorithm 1, where the

algorithm executes an iterative process of a local search

procedure and a perturbation procedure. This iterative process

ensures the smoothing effect of the solution space and the

enhancement of optimization outcomes.



Algorithm 1: Landscape Smoothing Iterated Local

Search for UBQPs

1 xini ← Randomly generated solution;

2 x(0) ← ILS(xini|fo);
3 x� ← x(0);

4 j ← 0;

5 while stopping criterion is not met do
6 Construct the unimodal UBQP f̂ based on x�;

7 g ← (1− λ)fo + λf̂ ;

8 x′
(j) ←Perturbation(x(j));

9 {x(j+1),x
�} ←LS(x′

(j),x
�|g);

10 j ← j + 1;

11 λ = Update(λ);

12 return x�

Lines 1-4 initiate the LSILS algorithm, initializing the

current best solution denoted as x� with respect to fo, where

fo represents the original objective function. Subsequently,

LSILS iteratively executes the ensuing steps until the termi-

nation criterion is satisfied (lines 5-11). At each iteration, the

procedure starts by constructing the objective function g for

the smoothed UBQP based on the current best solution x�

(line 7). This objective function g is obtained by integrating

the original UBQP objective function fo and the objective

function f̂ of the toy UBQP, employing a smoothing factor λ.

After that, a local search operation is applied to the smoothed

UBQP, initiating from a perturbed solution x′
(j) derived from

the current solution x(j) (line 8). Here, LS(x′
(j), x

�|g) denotes

the execution of a local search from x′
(j) on the smoothed

UBQP g, concurrently updating x� by tracking the original ob-

jective function fo. The resultant solution, denoted as x(j+1),

represents the local optimum for the smoothed UBQP g (line

9) and is utilized as the input for the next local search after

perturbation (line 10). The final step involves the update

of the smoothing coefficient λ (line 11), with the specific

methodology for this update being user-defined.

In [10], the construction of the toy UBQP (line 6 in

Algorithm 1) is based on a simple method called “+/-1”, which

is detailed as follows. Given a solution vector x� of dimension

n, the generation of the specialized matrix Q̂
1

is executed

through the following process,

Q̂1
ij =

{
1, if x�

i x
�
j = 1

−1, if x�
i x

�
j �= 1

, i, j ∈ {1, 2, · · · , n} (2)

where the i-th and j-th binary variables (0-1) of solution x�

are denoted by x�
i and x�

j , respectively. Q̂
1
= [Q̂1

ij ] represents

an n × n matrix of the constructed toy UBQP. From the

construction process of Q̂
1
, we can see that only when the

solution of the toy problem is x�, all the positive elements in

Q̂
1

are obtained, while for any solution except x�, a certain

number of negative elements will be taken. This reflects the

unimodality of the toy UBQP. In [10], it is theoretically proven

that the toy UBQP f̂1 defined by Q̂
1

exhibits unimodal behav-

ior, indicating that a local search algorithm will consistently

converge towards the unique global optimum of f̂1, i.e., x�.

The unimodal characteristic of f̂1 can be used to smooth the

landscape of the original UBQP while preserving valuable

information in the high quality solution x�, thereby facilitating

a more efficient search towards optimal solutions.

Given the unique features of the problem landscape, the

efficiency of an algorithm is influenced not only by the

smoothness of the landscape but also by its flatness. While

smoothness denotes the global regularity within the solution

space, flatness focuses on the horizontal characteristics of

local regions. In this paper, in order to further examine

the impact of the HC transformation on smoothing rugged

landscapes by employing different toy problems, we offer two

new constructions of the toy UBQP with different flatness,

designated as Q̂
2

and Q̂
3
.

Similar to Q̂
1
, the matrix Q̂

2
is constructed based on a

method called “+/-i” as follows:

Q̂2
ij =

{
i, if x�

i x
�
j = 1

−i, if x�
i x

�
j �= 1

(3)

where i ∈ {1, 2, · · · , n} and j ∈ {1, 2, · · · , i}, i is the i-th row

of matrix Q̂
2
. Let Q̂2

ji = Q̂2
ij to construct the symmetric Q̂

2
.

By contrast, the matrix Q̂
3

is constructed based on a so-called

“randomly” method:

Q̂3
ij =

{
u1
ij , if x�

i x
�
j = 1

u2
ij , if x�

i x
�
j �= 1

(4)

where i ∈ {1, 2, · · · , n} and j ∈ {1, 2, · · · , i}, u1
ij is a ran-

domly generated integer from a discrete uniform distribution

in the range [1, 100], that is P (u1
ij = k1) = 1

100 , k1 ∈
{1, 2, ..., 100} and u2

ij is a randomly generated integer from

a discrete uniform distribution in the range [-100, -1], that

is P (u2
ij = k2) = 1

100 , k2 ∈ {−100,−99, ...,−1}. Then let

Q̂3
ji = Q̂3

ij to construct the symmetric Q̂
3
.

Since Q̂
2

(Eq. (3)) and Q̂
3

(Eq. (4)) have the same

positive/negative element distribution as Q̂
1

(Eq. (2)), which

is determined by x�, we can say that the landscapes defined by

Q̂
2

and Q̂
3

are both unimodal with x� as the unique optimum.

As an example, for a 5-dimensional UBQP, given x� =
(0, 1, 0, 1, 1), we construct three toy UBQPs based on

the above constructions. Initially, it can be seen that

x�
1 = 0, x�

2 = 1, x�
3 = 0, x�

4 = 1, x�
5 =

1, according to Eq. (2), Eq. (3) and Eq. (4), we have

Q̂1
22, Q̂

1
44, Q̂

1
55, Q̂

1
24, Q̂

1
42, Q̂

1
25, Q̂

1
52, Q̂

1
45, Q̂

1
54 > 0, the remain-

ing elements are all negative.

Q̂
1
=

⎛
⎜⎜⎜⎜⎝
−1 −1 −1 −1 −1
−1 1 −1 1 1
−1 −1 −1 −1 −1
−1 1 −1 1 1
−1 1 −1 1 1

⎞
⎟⎟⎟⎟⎠



Q̂
2
=

⎛
⎜⎜⎜⎜⎝
−1 −2 −3 −4 −5
−2 2 −3 4 5
−3 −3 −3 −4 −5
−4 4 −4 4 5
−5 5 −5 5 5

⎞
⎟⎟⎟⎟⎠

Q̂
3
=

⎛
⎜⎜⎜⎜⎝
−33 −27 −52 −46 −40
−27 62 −72 95 11
−52 −72 −24 −18 −44
−46 95 −18 1 17
−40 11 −44 17 21

⎞
⎟⎟⎟⎟⎠

The aforementioned toy UBQP instances defined by

Q̂
m
, m ∈ {1, 2, 3} can be used to smooth the original UBQP.

After smoothing, the objective function (g) is defined as:

g(x|λ, α,m) = (1− λ)fo(x) + λαf̂m(x)

= (1− λ)xTQx+ λαxT Q̂
m
x, m ∈ {1, 2, 3},

where fo is the objective function of the original UBQP, Q
is the matrix of fo, f̂m is the objective function of the toy

UBQP defined by matrix Q̂
m
, m ∈ {1, 2, 3}. λ ∈ [0, 1]

controls the strength of smoothing and α is a scaling factor

to make sure that the original UBQP fo and the toy UBQP

f̂m are on the same scale. We can see that, when λ = 0, the

smoothed UBQP g degenerates to the original UBQP fo, when

λ = 1, it is smoothed to the unimodal UBQP f̂m and when

0 < λ < 1, the original UBQP fo can be gradually smoothed

to the unimodal UBQP f̂m. In fact, The smoothed objective

function g is a homotopic transformation from fo to f̂m.

IV. EXPERIMENTAL ANALYSIS

To comprehensively investigate the impact of the HC trans-

formation on smoothing rugged landscapes using various toy

problems, a series of experiments are conducted. To better

understand the solution distributions of different toy UBQPs,

we first conduct landscape flatness experiments, and then we

apply LSILS algorithms to the smoothed UBQPs, which have

been modified by means of the HC transformation.

In order to carry out the experiments, we select 10 UBQP

instances with a size of n = 2500 from the ORLIB [29].

These instances possess a density of 0.1, where density denotes

the proportion of non-zero elements in the matrix Q. All 10

instances have known optimal solutions. The experiments are

conducted using GNU C++ with the -O2 optimization option

on the Tianhe-2 supercomputer, which is equipped with 17 920
computer nodes, each comprising two Intel Xeon E5-2692 12C

(2.200 GHz) processors.

The parameter setting is as follows: the maximum value

of λ is set to 0.004. The time point to increase λ is based

on the CPU time, changing from 0 to 0.001 at 200 s, from

0.001 to 0.002 at 400 s, and so forth. This is because the

smoothing effect of the HC transformation depends highly on

the quality of the local optimum used to construct the toy

UBQP. At the beginning of the search, the quality of the

solution is poor, so we set a small λ. As search goes by,

better solutions are found, a larger λ is set to make full use

of the high-quality solutions. Considering the zero elements

of the original matrix Q and the non-sparse nature of the

toy UBQPs, to smooth the landscape of the original UBQP

without causing great damage, we introduce α to constrain

the elements of Q̂
m

to be less than or equal to 5. Notably,

the choice of 5 is proximate to the average absolute value

of the original matrix Q. Specifically, for the three different

toy UBQPs, α is set to be 5 for Q̂
1

(construct by “+/-1”),

0.002 for Q̂
2

(construct by “+/-i”) and 0.05 for Q̂
3

(construct

randomly). The stopping criterion is at 1 000 seconds of CPU

runtime, with information logging conducted every 10 sec-

onds. Each algorithm was executed for 20 independent runs on

each benchmark instance, employing different random initial

solutions. The local search implementation incorporates the 1-
bit-flip local search, while perturbation is executed randomly,

flipping n/4 bits at each call, where n is the instance size.

A. Landscape Analysis of Toy UBQPs

Before the implementation of LSILS on UBQP instances,

an initial experimental analysis is conducted to evaluate the

landscape flatness of the three different toy problems. This

comprehensive experiment aims to provide a thorough under-

standing of the landscape characteristics.

As a first step of the experiment, we use a 18-dimensional

UBQP problem as an example. A 18-dimensional symmetric

matrix is generated randomly as an original UBQP prob-

lem, whose elements follow a discrete uniform distribu-

tion in the range [-100,100]. Based on a solution x� =
(1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0), we build the cor-

responding Q̂
1

(construct by “+/-1”), Q̂
2

(construct by “+/-i”)

and Q̂
3

(construct randomly) for the 18-dimensional randomly

generated UBQP. Since the instance size is small, we traverse

all solutions from the search space.

We first focus on the number of 1-bit-flip local optimum

in the solution space of the four UBQPs which can reflect

the ruggedness of the landscape. As shown in TABLE I, the

original randomly generated Q has 5 1-bit-flip local optima,

while Q̂
1

(construct by “+/-1”), Q̂
2

(construct by “+/-i”)

and Q̂
3

(construct randomly) all have only 1, that is x�. This

experiment confirms the unimodality of the three toy UBQPs.

We also conduct HC transformation using the three toy UBQPs

on the original randomly generated problem with different λ
values. To make sure the original UBQP and the three toy

UBQPs are in the same scale, we let α = 50 in the HC

transformation with Q̂
1

(construct by “+/-1”), α = 2.8 in the

HC transformation with Q̂
2

(construct by “+/-i”), α = 1 in

the HC transformation with Q̂
3

(construct randomly), where

50 is proximate to the average absolute value of the original

randomly generated matrix Q. Fig. 2 shows how the number

of local optimum of the smoothed UBQP landscape changes

against λ. In general, we can see that the number of local

optima is approximately negatively related to λ and when

λ > 0.8, all the smoothed UBQPs tend to have only 1 local

optimum. Based on the above observations, we can conclude

that Q̂
1

(construct by “+/-1”), Q̂
2

(construct by “+/-i”) and Q̂
3



(construct randomly) are unimodal and the HC transformation

can indeed smooth the UBQP landscape, where the smoothing

effect is controlled by λ.

TABLE I
LOCAL OPTIMA OF FOUR DIFFERENT 18-DIMENSIONAL UBQPS.

Instance
Number of

local optimum
1-bit local optimum

Original randomly
generated Q

5

x1 = (0, 1, 0, 0, 0, 0, 0, 1, 1,
1, 0, 1, 1, 0, 0, 0, 0, 0)

x2 = (1, 0, 1, 1, 1, 0, 0, 0, 1,
0, 1, 1, 1, 0, 0, 0, 1, 0)

x3 = (1, 1, 1, 0, 1, 0, 0, 1, 1,
0, 1, 1, 1, 0, 0, 0, 1, 0)

x4 = (0, 0, 0, 1, 1, 0, 0, 1, 1,
1, 1, 1, 1, 0, 0, 0, 1, 0)

x5 = (1, 1, 1, 0, 1, 0, 0, 1, 1,
0, 0, 1, 1, 0, 1, 0, 1, 0)

Q̂
1

(construct
by “+/-1”)

1
x1 = (1, 1, 0, 0, 1, 0, 0, 0, 0,

0, 1, 1, 1, 1, 1, 1, 1, 0)

Q̂
2

(construct
by “+/-i”)

1
x1 = (1, 1, 0, 0, 1, 0, 0, 0, 0,

0, 1, 1, 1, 1, 1, 1, 1, 0)

Q̂
3

(construct
randomly)

1
x1 = (1, 1, 0, 0, 1, 0, 0, 0, 0,

0, 1, 1, 1, 1, 1, 1, 1, 0)

0 0.2 0.4 0.6 0.8 1
0

1
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Fig. 2. Number of local optima of the smoothed UBQPs with different λ
values.

We then focus on the flatness of the original randomly

generated Q, Q̂
1

(construct by “+/-1”), Q̂
2

(construct by “+/-

i”) and Q̂
3

(construct randomly). Fig. 3a gives a histogram

of the original Q with function values as x axis and the

corresponding frequency of each function value as y axis.

From Fig. 3a, we can see that the function values tend to

cluster around the central region and relatively few values are

distributed at both ends, with a range of function values be-

tween -1935 and 922. To examine the distributions of function

values of the three different toy UBQPs, an 18-dimensional

vector is randomly generated from the solution space of the

original UBQP, serving as the basis for constructing the toy

UBQPs. By following the steps specified for constructing toy

UBQPs in Eqs. (2), (3) and (4), three different toy UBQP

instances are obtained. The distributions of function values in

the solution space for these three toy UBQPs are illustrated

in Fig. 3b, Fig. 3c, and Fig. 3d, respectively. Results reveal

that the toy UBQP with Q̂
1

(construct by “+/-1”) exhibits

a relatively flat landscape, with more solutions sharing the

same function values. In contrast, Q̂
3

(construct randomly)

possesses a relatively non-flat landscape, with fewer solutions

with the same function values. The landscape flatness of the

toy UBQP with Q̂
2

(construct by “+/-i”) falls between Q̂
1

(construct by “+/-1”) and Q̂
3

(construct randomly), being

flatter than Q̂
3

(construct randomly).

To quantify landscape flatness more precisely, the possibility

of obtaining two solutions with different function values is

calculated. This involves first summing the function value

possibilities and then squaring the result. The resulting possi-

bilities for the original UBQP, toy UBQP with Q̂
1

(construct

by “+/-1”), toy UBQP with Q̂
2

(construct by “+/-i’), and toy

UBQP with Q̂
3

(construct randomly) are 0.000795, 0.054152,

0.001924, and 0.000413, respectively. This metric reflects that

though the landscape of the toy UBQP with Q̂
3

(construct ran-

domly) is not as flat as the original UBQP, it remains unimodal.

Conversely, the landscape of the toy UBQP with Q̂
1

(construct

by “+/-1”) appears excessively flat. The varying flatness of the

toy UBQPs will imply diverse landscape smoothing effects on

the original UBQP while owning the unimodal structure. The

landscapes of the four UBQP problems are sketched in Fig. 4.

B. Performance of LSILS with Different Toy UBQPs

According to the previous analysis, three different toy

UBQPs we designed have different landscapes. To study the

landscape smoothing effects of the HC transformation with

different toy UBQPs, we then conduct experiments on 10 large

UBQP instances using LSILS. To measure the quality of a

solution, we use its relative deviation to the optimum, which

is defined as:

excess =
f(xLO)− f(xopt)

f(xopt)
, (5)

where f(xopt) denotes the known global optimum and f(xLO)
is the solution returned by the algorithm. In order to compare

the effect of LSILS algorithms with different toy UBQPs, we

use the result of ILS and LSILS using the toy UBQP with

Q̂
1

(construct by “+/-1”) from [10]. ILS iteratively executes

a local search procedure and a perturbation procedure on the

original UBQP landscape until the stopping criterion is met.

The experimental settings are the same as before.

Fig. 5 reports the average relative deviation of the best

solution found by LSILS and ILS against CPU time. A lower

value is better. From Fig. 5, we can see that in all instances,

LSILS using the toy UBQP with Q̂
2

(construct by “+/-i”)

performs better than ILS. LSILS using the toy UBQP with Q̂
1

(construct by “+/-1”) performs better than ILS on 8 instances

except bqp2500.5 and bqp2500.9. In 9 out of 10 instances,
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Fig. 3. Distribution of function values in the solution space of different 18-dimensional UBQPs, frequency versus the function value. (a) Original randomly

generated Q. (b) Q̂
1

(construct by “+/-1”). (c) Q̂
2

(construct by “+/-i”). (d) Q̂
3

(construct randomly).

Original randomly generated 

(construct randomly)

(construct by “+/- 1” )

(construct by “+/- i” )

Fig. 4. A diagram of the landscapes of different 18-dimensional UBQPs.

LSILS using the toy UBQP with Q̂
3

(construct randomly)

performs worse than ILS. These results compared with ILS

confirm the effectiveness of LSILS using the toy UBQP with

Q̂
1

(construct by “+/-1”) and Q̂
2

(construct by “+/-i”) on

smoothing the landscape of the original UBQP. In contrast,

the toy UBQP with Q̂
3

(construct randomly) has no landscape

smoothing effect and even makes the original UBQP more

difficult to solve. From previous landscape flatness analysis,

we can find that the toy UBQP with Q̂
3

(construct randomly)

possesses a non-flat landscape, with a lower likelihood of

generating solutions with identical function values than the

original UBQP.

In addition, Fig. 5 shows that among the 10 instances,

LSILS using the toy UBQP with Q̂
2

(construct by “+/-i”)

ultimately achieves better performance than with Q̂
1

(con-

struct by “+/-1”), except for the bqp2500.7 instance. This

indicates that the toy UBQP with Q̂
2

(construct by “+/-i”)

has better landscape smoothing effect than with Q̂
1

(construct

by “+/-1”). Based on the landscape flatness analysis mentioned

previously, a possible reason is that the toy UBQP with Q̂
1

(construct by “+/-1”) has flatter landscape and these flat areas

actually have almost no smoothing effect on the original

UBQP by HC transformation, thus remaining the rugged land-

scape of the original UBQP landscape. These results reveal

that the smoothing effect of the HC transformation is not only

affected by the smoothness of the landscape but also by the

flatness of the landscape, therefore, striking a balance between

smoothness and flatness of the toy UBQP is crucial for HC



transformation to guide the landscape smoothing algorithms.

In summary, the experimental results highlight that the toy

UBQP with Q̂
1

(construct by “+/-1”) displays the flattest

landscape among the three toy UBQPs and the toy UBQP

with Q̂
3

(construct randomly) demonstrates the most non-flat

landscape while remaining unimodal. This landscape feature

indeed makes the LSILS algorithm, which is based on the HC

transformation, performs differently for different toy UBQPs.

We can not simply assume that the flatter the landscape,

the better the smoothing effect. To have a better landscape

smoothing effect, choosing a suitable toy UBQP is a key issue.

V. CONCLUSION

In this study, we extended the HC transformation based

landscape smoothing method for UBQP by studying its impact

when employing different toy problems: the toy UBQP with

Q̂
1

(construct by “+/-1”), the toy UBQP with Q̂
2

(construct

by “+/-i”), and the toy UBQP with Q̂
3

(construct randomly).

Firstly, landscape analysis experiments were conducted to

assess the flatness of the three toy UBQPs. The results demon-

strate that the toy UBQP with Q̂
1

(construct by “+/-1”) has

the flattest landscape, while the toy UBQP with Q̂
3

(construct

randomly) exhibits the most non-flat landscape among the

three. Secondly, the LSILS algorithm was applied to 10 UBQP

benchmark instances utilizing each of the aforementioned toy

UBQPs. Our findings show a different performance of LSILS

with the three toy UBQPs, where LSILS using the toy UBQP

with Q̂
1

(construct by “+/-1”) and with Q̂
2

(construct by “+/-

i”) both having beneficial smoothing effects on the original

UBQP. Among the two, the latter consistently outperforms

the former. However, LSILS using the toy UBQP with Q̂
3

(construct randomly) even has a poorer performance than ILS.

This reinforces the notion that different toy UBQPs exercise

varying landscape smoothing effects on the original UBQP.

The smoothness and flatness are both important landscape

characteristics of the toy problem, emphasizing the important

role of selecting an appropriate toy UBQP in enhancing the

performance of LSILS. In conclusion, our study contributes

valuable insights into the area of landscape smoothing through

the utilization of the HC transformation with different toy

problems. The observed variations in landscape flatness among

the toy UBQPs directly influence the effectiveness of LSILS.

In the future, we plan to investigate deep learning (DL) models

in order to smooth difficult optimization problems whose

solution spaces are rugged.

ACKNOWLEDGMENT

The work described in this paper was supported in part

by Sichuan Science and Technology Program (No. 2022NS-

FSC1907), in part by National Natural Science Foundation

of China (grant no. 62076197, 61903294), in part by Key

Research and Development Project of Shaanxi Province (grant

no. 2022GXLH-01-15), in part by Research Grants Council of

the Hong Kong Special Administrative Region, China (GRF

Project No. CityU11215622), in part by Guangdong Basic and

Applied Basic Research Foundation (No.2021A1515110077)

and in part by Fundamental Research Founds for Central

Universities (No.D5000210692).

REFERENCES

[1] G. Kochenberger et al., “The unconstrained binary quadratic program-
ming problem: a survey,” J Comb Optim, vol. 28, no. 1, pp. 58–81, Jul.
2014.

[2] R. D. McBride and J. S. Yormark, “An Implicit Enumeration Algorithm
for Quadratic Integer Programming,” Management Science, vol. 26, no.
3, pp. 282–296, Mar. 1980.

[3] A. T. Phillips and J. B. Rosen, “A quadratic assignment formulation of
the molecular conformation problem,” J Glob Optim, vol. 4, no. 2, pp.
229–241, Mar. 1994.

[4] G. Gallo, P. L. Hammer, and B. Simeone, “Quadratic knapsack prob-
lems,” Combinatorial Optimization, pp. 132–149. 1980.

[5] A. Liefooghe, S. Verel, and J.-K. Hao, “A hybrid metaheuristic for
multiobjective unconstrained binary quadratic programming,” Applied
Soft Computing, vol. 16, pp. 10–19, Mar. 2014.

[6] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The Max-
imum Clique Problem,” in Handbook of Combinatorial Optimization:
Supplement Volume A, D.-Z. Du and P. M. Pardalos, Eds., Boston, MA:
Springer US, 1999, pp. 1–74.

[7] M. Lewis, G. Kochenberger, and B. Alidaee, “A new modeling and solu-
tion approach for the set-partitioning problem,” Computers & Operations
Research, vol. 35, no. 3, pp. 807–813, Mar. 2008.

[8] G. A. Kochenberger, F. Glover, B. Alidaee, and C. Rego, “A unified
modeling and solution framework for combinatorial optimization prob-
lems,” OR Spectrum, vol. 26, no. 2, pp. 237–250, Mar. 2004.

[9] M. R. Garey, and D. S. Johnson, “Computers and Intractability: A Guide
to the Theory of NP-Completeness,”. W. H. Freeman & Co Ltd, 1979.

[10] W. Wang, J. Shi, J. Sun, A. Liefooghe, and Q. Zhang, “A New Parallel
Cooperative Landscape Smoothing Algorithm and Its Applications on
TSP and UBQP.” arXiv e-prints arXiv:2401.03237, 2024.

[11] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated Local Search:
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tion, B. Hu and M. López-Ibáñez, Eds., in Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2017, pp. 233–248.

[24] J. Gu and X. Huang, “Efficient local search with search space smoothing:
a case study of the traveling salesman problem (TSP),” IEEE Trans.
Syst., Man, Cybern., vol. 24, no. 5, pp. 728–735, May 1994.

[25] K. H. Liang, X. Yao, and C. Newton, “Combining landscape approxi-
mation and local search in global optimization,” in Proceedings of the
1999 Congress on Evolutionary Computation-CEC99, Washington, DC,
USA: IEEE, 1999, pp. 1514–1520.

[26] S. P. Coy, B. L. Golden, and E. A. Wasil, “A computational study
of smoothing heuristics for the traveling salesman problem,” European
Journal of Operational Research, vol. 124, no. 1, pp. 15–27, Jul. 2000.

[27] M. Hasegawa and K. Hiramatsu, “Mutually beneficial relationship in
optimization between search-space smoothing and stochastic search,”
Physica A: Statistical Mechanics and its Applications, vol. 392, no. 19,
pp. 4491–4501, Oct. 2013.

[28] J. Shi, J. Sun, Q. Zhang, and K. Ye, “Homotopic Convex Transformation:
A New Landscape Smoothing Method for the Traveling Salesman
Problem,” IEEE Trans. Cybern., vol. 52, no. 1, pp. 495–507, Jan. 2022.

[29] J. E. Beasley, “Obtaining test problems via Internet,” J Glob Optim, vol.
8, no. 4, pp. 429–433, Jun. 1996.


