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Abstract: This paper deals with the problem of designing an output feedback controller for the
class of linear systems interconnected with a nonlinearity satisfying a monotonicity assumption.
The control design objective is to ensure the incremental exponential stability of the closed loop.
First, a set of sufficient conditions by relying on a design based on Linear Matrix Inequalities
(LMIs) are proposed. The results are then expanded to include in the design a filter to cancel
additional (unwanted) harmonics of the steady-state solution. The proposed results are validated
via a simplified example of application.

Keywords: Nonlinear systems, contraction, incremental stability, LMI, monotonic, harmonic
filtering

1. INTRODUCTION

Contraction theory (Lohmiller and Slotine [1998], Angeli
[2002], Forni and Sepulchre [2013], Andrieu et al. [2016],
Bullo [2023]) is a valuable tool to provide solutions to
several control problems, such as, for example, output
regulation (Pavlov et al. [2006], Giaccagli et al. [2022b],
Pavlov and Marconi [2008]), multiagent synchronization
(Jafarpour et al. [2021], Giaccagli et al. [2024b], Pavlov
et al. [2022], DeLellis et al. [2010]), and observer design
(Sanfelice and Praly [2011], Yi et al. [2021]). Roughly
speaking, a dynamical system is said to be contractive
(also called incrementally exponentially stable) if the dis-
tance between any two trajectories of the system expo-
nentially shrinks to zero, i.e. trajectories converge to each
other.

As such, great interest has been directed into answer-
ing the question of how to make a system contractive
via feedback. Existing tools can be divided into three
main classes. i) Feedback designs for particular classes
of systems, such as (incremental) backstepping (Zamani
and Tabuada [2011]) and forwarding (Giaccagli et al.
[2024a]). These designs provide tractable conditions with
the drawback that they apply only to specific classes of
systems. ii) Designs achieving similar but subtly different
notions than contraction, such as that of convergent sys-
tems Pavlov et al. [2006], Rüffer et al. [2013]. In this case,
existing tools can be applied, but each case has to be care-
fully addressed. iii) Data-driven and optimization-based
tools, such as Control Contraction Metrics (Manchester
and Slotine [2017]) and neural networks-based designs
(Tsukamoto et al. [2021]). These tools usually apply to
a wide range of systems, with the drawback of requiring
the solution of a (possibly online) optimization problem
and, commonly, the loss of analytical stability guarantees.

In this work, we consider the problem of designing a
contractive feedback controller for linear systems inter-
connected with a nonlinearity satisfying a monotonicity
assumption. As such, our design takes place in the first of
the former classes. The interest in such a class of systems
is that this description commonly appears in many appli-
cations, such that, for example, robotic link manipulators
(Wu et al. [2015]), and medical equipment (Reinders et al.
[2023]).

In particular, with the objective of deriving a set of
practically tractable conditions that do not require a
significant case-by-case mathematical burden, we focus on
a design whose controller structure can be obtained via a
single offline quadratic optimization problem, represented
via a set of Linear Matrix Inequalities (LMIs).

Combining LMIs with this class of systems in the con-
traction framework is not new, and it has been already
considered for instance in Waitman et al. [2017] with piece-
wise affine approximations, in Zhang et al. [2015] in the
context of multiagent synchronization, and in [Scherer and
Weiland, 2000, Chapter 7] in connection to dissipativity.
Our result is grounded on the seminal work of Andrieu and
Tarbouriech [2019] and sequentially developed in Giaccagli
et al. [2022a, 2023a]. The main difference with respect to
the literature is that our design considers purely dynamic
output feedback controllers, while the former works mainly
focus on analysis tools and state-feedback design.

To do so, we blend the tools introduced in Andrieu and
Tarbouriech [2019] to handle the nonlinearity, together
with the congruence transformation presented in Scherer
et al. [1997]. As a consequence, we derive a set of sufficient
conditions for the design of a pure dynamic output feed-
back controller achieving contraction for the closed loop.
Then, we consider the case in which the plant is excited



by a periodic exogenous signal representing disturbances
and/or references. As a consequence, if the closed loop
is incremental Input-to-State Stable (ISS), then its tra-
jectories will converge to a periodic steady-state solution
with the same period, but possibly with higher harmonic
content. We provide an extension of our main result, in
which we present a set of LMIs for the design of a dynamic
controller composed of a filter and a feedback stabilizer
such that the closed-loop system is incrementally stable.
In particular, the filter is designed to filter out a selected
harmonic content of the (periodic) steady-state solution.

The rest of the paper is structured as follows. In Section 2.1
we review the main tools of contraction theory. Then, in
Section 2.2, we present the problem statement. The main
result is given in Section 3.1. The extension to harmonic
filtering is provided in Section 3.2. An illustrative example
is given in Section 3.3. Concluding remarks are then drawn
in Section 4.

Notation: The identity matrix of dimension n is indicated
as In. For any matrix A, we denote its transpose matrix
as A⊤ and, for square matrices, He{A} is the Hermitian
operator He{A} := A + A⊤. Given two square matri-
ces A1, A2, we indicate with blkdiag{A1, A2} the block-
diagonal matrix which has A1 and A2 in the main di-
agonal and 0 everywhere else. We write that P ∈ Sn
if it is a n × n symmetric matrix P = P⊤. We write
P > 0 (≥ 0) if P is symmetric and positive definite (semi-
positive definite), that is, x⊤Px > 0 (≥ 0) for all x ̸= 0. We
write P < 0 (≤ 0) if −P is positive definite (semi-positive
definite). For symmetric matrices, the symbol ⋆ indicates
the symmetric component. We indicate with |·| the vector
Euclidean norm. Given two column vectors x1, x2, we write
x = (x1, x2) to indicate x = [x⊤

1 x⊤
2 ]

⊤.

2. PRELIMINARIES

2.1 Contraction theory

Consider a system of the form

χ̇ = f(χ, t) (1)

with χ ∈ Rη and the vector field f : Rη × R → Rη

to be sufficiently smooth. For the sake of simplicity,
let trajectories be defined for all positive times and let
X (χ0, t, t0) be the solution to (1) with initial condition
(χ0, t0) evaluated at time t ≥ t0.

Definition 1. (Incremental stability). We say that system
(1) is (globally 1 ) incrementally (exponentially) stable if
there exist k, λ > 0 such that

|X (χ1, t, t0)−X (χ2, t, t0)| ≤ k |χ1 − χ2| exp(−λ(t− t0))
(2)

for all t ≥ t0 and all χ1, χ2 ∈ Rη.

A sufficient condition 2 for system (1) to be incrementally
stable, is the existence of a norm such that the flow
generates trajectories for which the distance associated
with the norm is monotonically decreasing forward in time.

1 In this work we focus on global results, with the awareness that
our conditions can be relaxed when considering compact forward
invariant sets.
2 Also necessary in case f has bounded first and second derivative
in its first argument, see Andrieu et al. [2016].

Such a condition, corresponding to the Lie derivative of a
2-tensor to be uniformly decreasing, can be expressed via a
matrix inequality according to the following theorem (see
e.g. Lohmiller and Slotine [1998], Andrieu et al. [2016] and
many others for a proof).

Theorem 1. Consider system (1). If there exist a C1 ma-
trix function P : Rη × R → Sη taking symmetric values
and three positive real numbers p, p, λ > 0 such that 3

pIη ≤ P(χ, t) ≤ pIη (3a)

LfP(χ, t) ≤ −2λP(χ, t) , (3b)

for all (χ, t) ∈ Rη × R, then the system is (globally)
incrementally exponentially stable, that is, contractive.

2.2 Problem statement

In this work, we consider systems of the form

ẋ = Ax+Bu+Gφ(z) +Rw(t) (4a)

y = Cx+Dφ(z) +Qw(t) (4b)

z = Hx (4c)

with x ∈ Rn being the state, u ∈ Rm being a control input,
y ∈ Rp being a (measurable) output, z ∈ Rq being a (pos-
sibly unmeasurable) linear combination of the state, φ :
Rq → Rq, w being a (state-independent) piece-wise con-
tinuous and locally Lipschitz exogenous signal representing
disturbances and/or references, and A,B,G,R,C,D,Q,H
being constant matrices of suitable dimension. In par-
ticular, we assume that the nonlinearity φ satisfies the
following monotonicity assumption.

Assumption 1. (Monotonic). Consider system (4). The
nonlinearity φ is a C1 mapping 4 . Moreover, there exists
a known Γ ∈ Sq positive definite Γ = Γ⊤ > 0 such that

0 ≤
∂φ

∂z
(z) +

∂φ⊤

∂z
(z) ≤ Γ (5)

for all z ∈ Rq.

Here we will consider the design of a (dynamic) output
feedback controller of the form

ẋc = Acxc +Bcy

u = Ccxc +Dcy
(6)

with xc ∈ Rnc such that the closed loop with extended
state χ = (x, xc) associating (4) and (6) is defined by

χ̇ = Aχ+ Gφ(Hχ) +Rw (7a)

and

A =

(
A+BDcC BCc

BcC Ac

)
, G =

(
G+BDcD

BcD

)
H = (H 0) , R =

(
(R+BDcQ)⊤ (BcQ)⊤

)⊤
.
(7b)

3 The symbol LfP(χ, t) indicates the Lie derivative
of the tensor P along f defined as LfP(χ, t) :=

P(χ, t) ∂f
∂χ

(χ, t) + ∂f
∂χ

⊤
(χ, t)P(χ, t) + dfP(χ, t), where dfP(χ, t) :=

limh→0
P(X(χ,t+h,t),t)−P(χ,t)

h
+ ∂P

∂t
(χ, t) with coordinates

(LfP(χ, t))i,j =
∑
k

[
2Pik(χ, t)

∂fk
∂χj

(χ, t) +
∂Pij

∂χk
(χ, t)fk(χ, t)

]
+

∂Pij

∂t
(χ, t).

4 Some of the results in this paper (in particular, Proposition 1) can
be generalized in case φ = φ(z, t), with the mapping being piece-wise
continuous and locally Lipschitz in its second argument.



The objective of this work is to derive a set of sufficient
conditions to design a controller of the form (6) such that
the closed-loop dynamics (7) is incrementally exponen-
tially stable.

To do so, we would like to make use of Theorem 1.
However, finding a suitable matrix function P satisfying
(3) might be practically difficult, as this is a matrix
inequality that has to be verified in an infinite set of
points (for all (χ, t)). To provide an algorithmic design
that is easy to implement, we focus on the case in which
the metric P in Theorem 1 is a constant positive definite
matrix, i.e., P ∈ Sn+nc , P = P⊤ > 0. In other words, we
trade a set of possible solutions with an easy-to-compute
design. As a consequence, this will allow us to represent
our conditions via a set of LMIs. As a drawback, however,
the conditions that we will derive will be, in general,
only sufficient and not necessary. Before presenting the
main contributions of the paper, let us recall the following
theorem, [Giaccagli et al., 2023a, Proposition 2], for which
the notations are adapted to the closed-loop dynamics (7).

Theorem 2. [Giaccagli et al., 2023a, Proposition 2] Con-
sider system (7) and assume that φ satisfies Assumption 1.
If there exist a positive definite matrix P ∈ Sn+nc and a
positive scalar λ, such that the following inequality holds(

PA+A⊤P + 2λP PG +H⊤

G⊤P +H −4Γ−1

)
≤ 0 , (8)

then system (7) is incrementally exponentially stable.

3. MAIN RESULTS

3.1 Dynamic output feedback contractive design

In this section, we deal with the first result of the paper.
The controller design can be obtained by the solution of
a Bilinear Matrix Inequality (BMI), or more specifically,
a hyperparameterized LMI, which is an LMI by fixing a
scalar hyperparameter 5 λ > 0 representing the contrac-
tion rate in (1), i.e. λ = λ. From now on, to help the reader,
we indicate with bold letters the LMI optimization vari-
ables. For the time being, we focus on the case in which
the dimension of the controller is the same as the plant, i.e.
nc = n. This framework allows us to consider and adapt
the congruence transformation presented in Scherer et al.
[1997]. We have the following result.

Proposition 1. Consider system (4) and let Assumption 1
hold. Assume there exist matrices X ∈ Sn,Y ∈ Sn,A ∈
Rn, B ∈ Rn×p,C ∈ Rm×n,D ∈ Rm×p and a positive
real number λ > 0 such that (18) holds. Then, for all
nonsingular matrices M,N satisfying

MN⊤ = In −XY , (9)

the system (4) in closed loop with (6) where(
Ac Bc

Cc Dc

)
=

(
N Y B
0 In

)−1

×
(
A− Y AX B

C D

)(
M⊤ 0
CX In

)−1

(10)

5 The bilinearity follows from the fact that the right-hand-side of
(3b) contains the product of two unknowns: the contraction rate λ
and the metric P. In case one aims not to have such a bilinearity,
the BMI can be rewritten as a pure LMI by noticing that (3b) can
be substituted with LfP(χ, t) ≤ −2σIη for σ = λp/p thanks to (3a).

is globally incrementally exponentially stable.

Proof. Let inequalities (18) hold. Inequality (18b) implies
that X and Y are positive definite and thus nonsingular.
By taking the Schur’s complement of (18b), it yields that
X − Y −1 > 0, which is nonsingular. The product of
two nonsingular matrices being nonsingular, In −XY =
−(X − Y −1)Y is nonsingular. Therefore, there always
exist square nonsingular matrices M,N such that (9)
holds. Let

Π1 :=

(
X In
M⊤ 0

)
, (11)

and note that Π1 is nonsingular since M is so. Therefore,
we define the metric P as

P := Π−⊤
1

(
X In
In Y

)
Π−1

1 . (12)

In light of (18b), we have that P is symmetric and positive
definite: P = P⊤ > 0. We would like to show that if (18a)
holds, then this is also the case of inequality (8). For this
purpose, we use a nonlinear change of variable depending
on X and Y , and the choice for M and N , that is:(

A B
C D

)
=

(
Y AX 0

0 0

)
+

(
N Y B
0 In

)
×

(
Ac Bc

Cc Dc

)(
M⊤ 0
CX In

)
.

(13)

Note that the latter relation can be inverted when X, Y ,
M and N are known, to result in relation (10). Thanks
to simple calculus and the relation (12), we obtain the
following relations:

Π⊤
1 λPΠ1 =λ

(
X In
In Y

)
, (14)

Π⊤
1 PAΠ1 =

(
AX +BC A+BDC

A Y A+BC

)
, (15)

Π⊤
1 PG =

(
G+BDD
Y G+BD

)
, (16)

Π⊤
1 H=

(
XH⊤

H⊤

)
. (17)

By identifying these terms in the blocks in (18a), multi-
plying inequality (18a) at right by blkdiag{Π−1

1 ,Iq} and at
left by its transpose leads to inequality (8) in Theorem 2.
By invoking Theorem 2, the closed-loop system (7) is then
contractive. And this concludes the proof. □
Remark 1. In the formulation of Proposition 1, we kept
the bilinear formulation with the hyperparameter λ in-
stead of having a pure LMI (see footnote 5). This because
λ represents the contraction rate in (3), i.e. λ = λ. As such,
the control engineer can fix a priori the λ representing
the speed of convergence of trajectories depending on the
desired performances (related to the requirements of the
control task), and then check if the LMIs have a solution.
Alternatively, in order to maximize the value λ, one can
rely on quasi-convex Generalized Eigenvalue Minimization
LMI tools available in common software, such as Matlab.

Remark 2. Inequality (18b) may lead to an issue of ill-
conditionning of In − XY appearing in Equation (9).
To avoid ill-conditionning, it may be possible to modify
Inequality (18b) by following the discussion in [Scherer
et al., 1997, Section IV.B].



He


AX +BC + λX A+BDC + λIn G+BDD +XH⊤

A+ λIn Y A+BC + λY Y G+BD +H⊤

0 0 −2Γ−1

 ≤ 0 (18a)

(
X In
In Y

)
> 0 . (18b)

To summarize the main result, we highlight the main
Proposition in an algorithmic way in Algorithm 1.

Algorithm 1 LMI-based output feedback controller

1: Input: System (4) and matrix Γ satisfying Assump-
tion 1

2: Data: Select any λ > 0.
3: while (LMIs (18) are not solvable) do

Decrease λ keeping the sign constraint.

4: Select any nonsingular matrices M,N satisfying (9);
5: Select Ac, Bc, Cc, Dc according to (10);
6: Output: Implement the controller (6).

3.2 Adding harmonic regulation

In this section, we present the second result of the paper.
It is known that the trajectories of an incremental Input-
to-State Stable (ISS) system excited by a T -periodic
exogenous input w, i.e. there exists T > 0 such that w(t) =
w(t+T ) for all t asymptotically converge to a steady-state
trajectory which is T -periodic as well (see e.g. [Angeli,
2002, Proposition 4.4]), but possibly containing higher-
order harmonics due to the presence of nonlinear terms
in the vector field. In many applications (e.g. mechanical
vibration systems and power electronics), it is desirable to
filter out a certain harmonic content when it appears in
the output y. In the following, we show a straightforward
extension to Proposition 1 which allows canceling a desired
harmonic content for systems of the form (4) in case the
exogenous signal w is defined as a T -periodic signal

w(t) = w(t+ T ) for some T > 0 . (19)

Following classical repetitive control schemes (see, e.g.
Ghosh and Paden [2000], Astolfi et al. [2022], Blin et al.
[2021], Giaccagli et al. [2024a] and references therein), we
first extend the plant (4) with a filter of the form

ẋf = Φxf +Ψy (20a)

where

Φ := blkdiag{Φ1, . . . ,ΦL} , Φk :=

(
0 2πk

T

− 2πk
T 0

)
,

(20b)
where k = 1, . . . , L are all the harmonics to be filtered out,
and Ψ is chosen such that (Φ,Ψ) is controllable. Thus, we
can define an “extended” plant xe = (x, xf ) composed
of the real plant and the filter state with xf being fully
measurable of the form

ẋe = Aexe +Beu+Geφ(Hexe) +Rew(t)

ye = Cexe +Deφ(Hexe) +Qew(t)
(21)

where ye = (y, xf ), and

Ae =

(
A 0
ΨC Φ

)
, Be =

(
B
0

)
, Ge =

(
G
ΨD

)
, Re =

(
R
ΨQ

)
,

Ce =

(
C 0
0 I2L

)
, De =

(
D
0

)
, He = (H 0) , Qe =

(
Q
0

)
.

As the extended plant (21) is, again, composed of a linear
part interconnected with a monotonic nonlinearity, we can
take advantage of Proposition 1. In this case, however,
the feedback controller design has to keep in consideration
both the dynamics of the plant and of the filter, i.e.
nc = n+ 2L. We have the following Corollary.

Corollary 1. Consider system (4) with the exogenous sig-
nal w satisfying (19) and let Assumption 1 hold. Extend
the system with a dynamical filter of the form (20). As-
sume there exist matrices X,Y ,A,B,C,D and a pos-
itive real number λ > 0 such that (18) holds, where
A,B,C,D,G,H are replaced by Ae, Be, Ce, De, Ge, He.
Then, for all nonsingular matrices M,N satisfying (9),
the system (4) extended with (20) in closed loop with
(6) where Ac, Bc, Cc, Dc are defined as in (10) where
A,B,C,D are replaced with Ae, Be, Ce, De, is (globally)
incrementally (exponentially) stable. Moreover, the tra-
jectories of the closed loop are periodic with no harmonic
content at the frequencies ωk = 2πk

T for all k = 1, . . . , L,
namely, the first L Fourier coefficients are zero, i.e.

ck :=
1

T

∫ T

0

y(t) exp

(
2ikπ

t

T

)
dt = 0, ∀ k = 1, . . . , L.

(22)

Proof. By Proposition 1, the closed loop (x, xf , xc) is
incrementally globally exponentially stable, with respect
to a certain constant metric P . Since Re, Qe are constant
as well, then their columns are Killing vector fields 6 for
such a P , i.e. the Lie derivative of P along the vector
field defined by the columns of Re, Qe is zero, namely 7 ,
LReP = 0 and LQeP = 0. Hence, by [Giaccagli et al.,
2023b, Theorem 2] the closed-loop system is incrementally
input-to-state stable 8 with respect to the input w. Since w
is T−periodic, by [Angeli, 2002, Proposition 4.4] it implies
that its output asymptotically converges to a T -periodic
trajectory as well. By construction of the matrices Φ,Ψ
as in (20b) and by [Astolfi et al., 2022, Proposition 1], the
first L-Fourier coefficients of the output y are zero, i.e. (22)
holds. And this concludes the proof. □

3.3 Application example

We show in the following a simple application for which
previous results apply. We consider in particular a manip-
ulator constituted by a single flexible link connected to a
DC-motor considered in Spong [1987], Wu et al. [2015].
The state is defined by x = (θm, ωm, θℓ, ωℓ) and it is
composed by, respectively, the angle and angular velocity
of the motor and the angle and angular velocity of the link.
6 We refer to Giaccagli et al. [2023b] for details about the Killing
vector field notion and related properties.
7 We refer to footnote 3 for more details on the notation of Lie
derivative. With abuse of notation, we write LReP = 0 to indicate
that each column Ri

e of Re satisfy LRi
e
P = 0 (similarly for LQeP )

8 See [Giaccagli et al., 2023b, Definition 2] for a formal definition.



Fig. 1. Block scheme of the closed loop. The link’s Figure
is taken from [Spong, 1987, Fig. 1]

We let y = θℓ be the measured output. This system can
be represented in the form (4) where

A =


1 0 0 0

− k
Im

−Cf

Im
k
Im

0
0 0 0 1
k
Iℓ

0 − k
Iℓ

+ mgh
Im

ρ 0

 , B =

 0
κτ

Im
0
0

 ,

G⊤ =
(
0 0 0 −mgh

Im

)
, H = (0 0 1 0)

C = (0 0 1 0) , D = 0, φ(z) = sin(z) + ρz

where k is the torsional spring constant, Im is the motor
inertia, Cf is the viscous friction coefficient, Iℓ is the link
inertia, m is the pointer mass, h is the link’s length, g is
the gravitational acceleration constant, κτ is the amplifier
gain and ρ is a free-to-chose parameter. In particular, for
any ρ > 1, the nonlinearity φ satisfies Assumption 1 with
0 ≤ 2(ρ − 1) ≤ He{∂φ

∂z (z)} ≤ Γ = 2(ρ + 1). We let the
system be affected by a sinusoidal exosignal w(t) = sin(t)
where we select R⊤ = (0.01 0 0 0) , Q = 1. In particular,
we first design a filter xf rejecting the 3rd and 5th harmonic
of the exogenous signal, i.e. we define (20) where we choose

Φ = blkdiag

{(
0 3
−3 0

)
,

(
0 5
−5 0

)}
, Ψ⊤ = (0 1 0 1) .

Note that (Φ,Ψ) is controllable. By selecting the param-
eters as in [Wu et al., 2015, eq. (35)-(36)] the LMIs (18)
admit a solution with e.g. ρ = 1.5 and the hyperparameter
λ = 0.1. The block scheme of the closed loop is shown
in Fig. 1. Similarly, Figure 2 shows the behavior of the
output y of the system with respect to three different
initial conditions. The trajectories of the system converge
to a single trajectory which is T -periodic which is not
a pure sinusoidal but contains higher order harmonics.
This is highlighted in Figure 3. To conclude, the spectral
analysis of the steady-state response is shown in Fig. 4.
As it is possible to see, the harmonics related to the 3rd

and 5th-harmonics become negligible with respect to the
fundamental one. Due to the numerical implementation
and to the fact that the incremental property is an asymp-
totic one, and therefore the Fourier transform has been
computed on a shifted finite time-window, they are not
precisely canceled.

4. CONCLUSION

We presented a set of parameterized LMI conditions to
design an output feedback controller for a linear system
coupled with a monotonic nonlinearity to be incrementally
stable in closed loop. Then, we provided an extension
to cancel out a desired harmonic content of the output,

Fig. 2. Plot of the link angle θℓ for three different random
sets of initial conditions.

Fig. 3. Zoom of the link angle θℓ for three different
random sets of initial conditions. The trajectories
of the system converge to a single trajectory which
is T -periodic which is not a pure sinusoidal but
contains higher order harmonics (highlighted with
purple circles).
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Fig. 4. Fast Fourier Transform of the steady-state output.

when the plant is excited by a periodic exosignal. We
validated our result via simulation on a flexible joint
manipulator affected by a sinusoidal exogenous signal.
Future perspectives will include: i) the case in which the
nonlinearity φ is not differentiable, using, for instance, the
tools in Bullo [2023]; ii) the introduction of saturation in
the controller and related anti-windup problems (Gomes
da Silva Jr and Tarbouriech [2005]), iii) the use of dynamic
controllers with state dimension higher than the plant
one, nc > n, to generalize the results and (possibly) add
feasibility (see e.g. Boyd and Vandenberghe [2004]), iv)
the introduction of more robustness guarantees, such as a
tunable incremental gain (Manchester and Slotine [2018]).
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