

Differentiable Simulator for Coded-Aperture Spectral Imaging

<u>Léo Paillet^{1,2}</u>, Antoine Rouxel¹, Hervé Carfantan², Antoine Monmayrant¹, Simon Lacroix¹

leo.paillet@laas.fr

¹LAAS-CNRS, ²IRAP Toulouse

Hyperspectral scene

LAAS CNRS

LAAS CNRS

- > Methods inspired by compressed sensing
- > Stands out from traditional methods
- > Based on a coded aperture known as « mask »

Coded hyperspectral imagery with CASSI

> Acquisitions depend on optical system and mask's parameters

Coded hyperspectral imagery with CASSI

DD-CASSI system: Double Disperser Coded Aperture Snapshot Spectral Imager

> The sensing matrix is implicitly created by the programmable mask

AAS

- > Zemax: For optical design
 - No image rendering available
 - Cannot be interfaced with processing algorithms

- > Zemax: For optical design
 - No image rendering available
 - Cannot be interfaced with processing algorithms
- > Using a simplified propagation model
 No allowance for optical distortions

J. Bacca, et al. Deep Coded Aperture Design 2021. IEEE Transactions on computational imaging. DOI: 10.1109/TCI.2021.3122285

Existing simulators

- > Zemax: For optical design
 - No image rendering available
 - Cannot be interfaced with processing algorithms
- > Using a simplified propagation model
 No allowance for optical distortions

J. Bacca, et al. Deep Coded Aperture Design 2021. IEEE Transactions on computational imaging. DOI: 10.1109/TCI.2021.3122285

Complete and differentiable ray tracing
 Slow in hyperspectral context

C. Wang, et al. dO: A Differentiable Engine 2022. IEEE Transactions on computational imaging. DOI: 10.1109/TCI.2022.3212837

Existing simulators

- > Zemax: For optical design
 - No image rendering available
 - Cannot be interfaced with processing algorithms
- > Using a simplified propagation model
 No allowance for optical distortions

J. Bacca, et al. Deep Coded Aperture Design 2021. IEEE Transactions on computational imaging. DOI: 10.1109/TCI.2021.3122285

Complete and differentiable ray tracing
Slow in hyperspectral context

C. Wang, et al. dO: A Differentiable Engine 2022. IEEE Transactions on computational imaging. DOI: 10.1109/TCI.2022.3212837

> Do not allow for co-design

> Able to render

- > Accurate propagation model
- > Fast
- > Differentiable

> Optics and processing co-design

Modular optics model

AAS

Composition of elementary transformations

$$M_{d \to m} = l_{a,p} \circ R \circ p \circ R \circ l_{p,a}$$

A. Rouxel, et al. Accurate ray-tracing optical model Applied Optics 2024. DOI: 10.1364/AO.515775

Analytical but modular model based on ray tracing

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

Taking account of distorsions

> Suggested model:

Composition of elementary transformations

$$M_{d \to m} = l_{a,p} \circ R \circ p \circ R \circ l_{p,a}$$

A. Rouxel, et al. Accurate ray-tracing optical model Applied Optics 2024. DOI: 10.1364/AO.515775

_AAS

Taking account of distorsions

> Suggested model:

Composition of elementary transformations

$$M_{d \to m} = l_{a,p} \circ R \circ p \circ R \circ l_{p,a}$$

A. Rouxel, et al. Accurate ray-tracing optical model Applied Optics 2024. DOI: 10.1364/AO.515775

_AAS

Taking account of distorsions

> Suggested model:

Composition of elementary transformations

$$M_{d \to m} = l_{a,p} \circ R \circ p \circ R \circ l_{p,a}$$

A. Rouxel, et al. Accurate ray-tracing optical model Applied Optics 2024. DOI: 10.1364/AO.515775

AAS CNRS

Validation with Zemax

Metric : $D [\mu m]$, Euclidean distance between the image points of the two models.

> Similar accuracy to Zemax

> Taking care of the PSF: in progress

A. Rouxel, et al. Accurate ray-tracing optical model Applied Optics 2024. DOI: 10.1364/AO.515775

AAS

> Can optimise parameters at each stage of the environment, based on constraints

A. Rouxel, L. Paillet et al. <u>https://github.com/a-rouxel/simca</u>. 2023

Optical parameters optimisation

LAAS CNRS

Optical parameters optimisation

4000

2000

-2000

-4000

-5000

-2500

0 0 2 X coordinates

Y coordinates

Constraint: \mathcal{L}_{optic}

Examples :

- > Spectral dispersion
- > Direct view
- > Compactness
- > Geometric distortions

Examples :

- > Prisms materials
- > Prisms angles
- > Prisms orientation

2500

5000

LAAS CNRS

Hyperspectral reconstruction with DAUHST

Yuanhao Cai et al. Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral Compressive Imaging. 2022, https://doi.org/10.48550/arXiv.2205.10102

AAS

> First step: DAUHST pre-training

Improves convergence

> Second step: Joint training of parameters

Fumihito Yasuma, et al. CAVE Dataset. https://www.cs.columbia.edu/CAVE/databases/multispectral/, 2008.

Fumihito Yasuma, et al. CAVE Dataset. https://www.cs.columbia.edu/CAVE/databases/multispectral/, 2008.

Fumihito Yasuma, et al. CAVE Dataset. https://www.cs.columbia.edu/CAVE/databases/multispectral/, 2008.

Fumihito Yasuma, et al. CAVE Dataset. https://www.cs.columbia.edu/CAVE/databases/multispectral/, 2008.

LAAS CNRS

> Realistic optical model of propagation

- > Differentiable co-design environment:
 - Optics design
 - Simulation of coded hyperspectral acquisitions
 - Acquisitions processing
 - Joint optimisation optics-processing

Prospects: Towards full co-design

> Joint optimisation of optical, mask, and acquisition processing parameters

LAAS CNRS

Prospects: Towards active perception

> Adaptive mask generation for each scene

Thank you for your attention

Léo Paillet PhD student

leo.paillet@laas.fr

- > Regular PSFs database for a fixed optical system
- > Database compression with SVD, NMF, ...
- > Bilinear interpolation to estimate PSFs at required locations

Yanny, K., Antipa, N., Liberti, W. et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. Light Sci Appl 9, 171 (2020). <u>https://doi.org/10.1038/s41377-020-00403-7</u> Zhang, Y., Song, X., Xie, J. et al. Large depth-of-field ultra-compact microscope by progressive optimization and deep learning. Nat Commun 14, 4118 (2023). https://doi.org/10.1038/s41467-023-39860-0 **PSF** estimation (impulse response)

> Examples of PSFs

AAS

> Database generation by discretizing their distribution

PSF generating family with SVD

LAAS

PSF generating family with SVD

> Higher frequencies are seen in higher-ranking family members

> Bilinear interpolation with the 4 known neighbours

> Error between original and estimated PSFs

Error between original and estimated PSF throughout the field of view
Mean RMSE for K=[12] RMSE for 9919 rays

