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Abstract
Due to the anisotropy properties of graphite flakes (Gf), the control of their orientation inside copper
(Cu)matrice is strictly correlatedwith the final properties of suchmetalmatrix composite (MMC). In
this study,MMCs are fabricated by powdermetallurgy process using three types of Cu powder
particles (flake, dendritic, and spherical) as well as different powder fillingmethods. By usingCuflake
powderwith a relatively lower apparent density as compared to the two other Cu powder types
(dendritic and spherical), high alignedGf could be easily obtained, after uniaxial hot pressing, in a one-
step powder filling approach. For the other two types of powders, a comparable orientation degree of
Gf could be achieved only via several steps of delicate powder pressing. In-plane thermal conductivities
of Cu/Gf composites were enhanced by improving the orientation degree of Gf, agreeingwith effective
medium approximation predictions (MaximumTCup to 540WmK−1). Amodeling, based on the
apparent density of Cu powders, was discussed to show the effect of the alignment process on the final
thermal property of suchMMCs. Thismodel supplies a basic guideline to obtain highly orientatedGf.

1. Introduction

With the advent of artificial intelligence (AI) and the boosting need for information processing capability, the
trend for themicroelectronic chip’s development is toward the fabrication of parts with higher integration, high
power density, and high frequency. This trend has induced a drastic increase in the heat generation of chips in a
confined space. In order tomaintain the electronic devices’ performances, heat dissipation ability has become a
key challenge in the design of electronic devices [1]. A solution to this issue is to apply thermalmanagement
materials with high thermal conductivity (TC) that could effectively cool down the chips through heat transfer.

Recently, due to their high potential in showing tailored thermal properties, graphite flakes (Gf) reinforced
MMCs, have been extensively investigated. These investigations have beenmainly focused onGf orientation
improvement and interfacial property control [2–7]. It is noted that Gf is a highly anisotropicmaterial as it has
different thermal properties between its a axis (highTC close to 1000WmK−1) and c axis (lowTC ranging from
10 to 20WmK−1). Considering the initial investigation done onGf reinforcedMMCs, the orientation ofGfwas
regarded as a key parameter affecting the in-plane TCof the composites [2].Moreover, Gf has poorwettability to

OPEN ACCESS

RECEIVED

18October 2023

REVISED

15December 2023

ACCEPTED FOR PUBLICATION

27December 2023

PUBLISHED

24 January 2024

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2024TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2053-1591/ad18f1
https://orcid.org/0009-0003-2017-8041
https://orcid.org/0009-0003-2017-8041
mailto:shenzhengyan@gdinm.com
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1591/ad18f1&domain=pdf&date_stamp=2024-01-24
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1591/ad18f1&domain=pdf&date_stamp=2024-01-24
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


copperwhich is not a favor for heat transfer [8]. Increasing the relative density offinal compositematerials via
hot pressing is also necessary for improving the thermal conductivity.

It is thought that due to theflake like geometry of theGf (in-plane ‘diameter’ ranging from100 to 600μm
and out of plane thickness in the range of 10 to 30μm), Gf tend to be aligned on top of each other under uniaxial
hot pressing. This is linked to the large ratio between diameter and thickness orflakymorphology. Usually, full
oriented graphite flakes are achieved by step-by-step powder filling process or stacking-pressing [3, 4, 9] and so
with the control of the thickness of each powder layer. Indeed,misalignments of Gf tend to occurwhen the
powder filling process is done via one-step process [10, 11]. However, it is reported that onceflake powder
metallurgy is applied, Gf with a high orientation degree could be obtained in compositematerials processed
through a one-step powder pressing procedure [10, 12, 13]. This effect was attributed to the platelet geometry of
the usedmatrixmetal powderwhich tends to get aligned as the addedGf [10, 12, 13]. It ismentioned thatflake
metal powders after the ballmilling process have a lower apparent density as comparedwith the spherical one
[14]. This can be a key factor for obtainingGf with a high orientation degree. However, no systematic work has
yet been done to understand the critical parameters being required to achieve the composites with highly
orientedGf.

In this work, various Cu powders, such as flake, spherical, and dendritic, were selected asmatrixmaterials
corresponding to different ranges of apparent density. One-step and step-by-step powder fillingmethodswere
also implemented to investigate the effect offilling step numbers on the alignment ofGf under the application of
different Cu powders. The TCsweremeasured to confirm the relationship between the orientation degree ofGf

and theTC improvement. Furthermore, amodel was proposed that shows the dependence of theGf orientation
process on the apparent density of Cu powderwhen using uniaxial hot pressing as the densification approach.

2. Experimental

Commercial Cu powders, including spherical (figure 1(a)), dendritic (figure 1(b)), andflaky (figure 1(c)) types,
weremanuallymixedwithGf (Yanxin-Granphite Co., Ltd.,figure 1(d)), respectively, inwhich the volume
fraction ofGfwas fixed at 40% for eachMMC type. The apparent densities of three types of Cu+Gfmixtures
weremeasured by a standard container and scale.

TheGf+Cupowdermixtures werefilled in a graphitemold under both one-step and step-by-stepmethods
consisting of 9 and 15 steps. In each step, the Cu/Gf powdermixture was put into the graphitemold, spread, and

Figure 1. SEMmicrographs showing themorphologies of as-receivedCupowders andGf: (a) spherical Cu powder, (b) dendritic Cu
powder, (c)flakeCupowder, (d)Gf; Insets showing the transparent bottles with 8 g of Cu powder inside.
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then pressed using a punch under 1MPa. TheCu/Gf compositematerials were fabricated by the spark plasma
sintering (SPS) technique. The heating and pressing curves of the SPS process are illustrated in Figure 2. In brief,
under a vacuum environment, the samplewas heated to the temperature of 500 °C for 8 min andmeanwhile, an
axial pressure of 10 MPawas appliedwithin 10 min [15–17]. The sample was then heated to 800℃ and
maintained for 30 min. The uniaxial pressure was also increased to 60MPa. The procedure was then followed by
natural cooling to room temperature. These SPS samples had a dimension of 45 mm in diameter and 7 mm in
height. Three types of specimens obtained frompureCu powder particles were also sintered tomeasure the
physical properties of thematrices withoutGf.

Orientations ofGf in the composites were determined by combining bothfield emission scanning electron
microscopy analysis (FE-SEM, Zeiss Gemini 300 system) and image analysis. TCswere calculated bymultiplying
the thermal diffusivities, the density, and the heat capacity (Cp) of the densifiedmaterials. A laserflashmethod
(NETZSCHLFA457)was used tomeasure the in-plane thermal diffusivity at 70℃. The density wasmeasured
based onArchimedes’method using a densimeter (ANDGHe202). TheCp of the powders (Cu andGf)were
measured using the differential scanning calorimetermethod (DSC, PerkinElmerDSC8000)with the sapphire
as a reference. TheCp of theCu/Gf compositematerials were calculated according to the rule ofmixture.

3. Results and discussion

3.1.Microstructures of Cu/Gf composites and their orientation analysis
Themicrographs of Cu/Gf composites using different Cu types of powder and powder filling process strategies
are presented in Figure 3. In all of the samples,most of theGf were preferentially aligned in a direction
perpendicular to the pressing direction, indicating that Gf tend to be naturally oriented during the uniaxial
pressing. It has to bementioned that some disorientationswere observed in the samples fabricatedwith both
spherical and dendritic Cu powders being treated by the one-step powder filling (figures 3(a) and (d)), As noted,
this phenomenonwasmore evident in the spherical ones (figure 3(a)). Using 9-stepmethod, this phenomenon
became less obvious, and got almost disappeared after 15-step process (figures 3(c) and (f)). On the other hand,
such disorientation behavior was hardly seen in the compositematerials fabricatedwithCuflake powder
(figures 3(g), (h), and (i)), even if the process was done in a one-step route (figure 3(g)).

According to the effectivemedium approximation (EMA) [18],<cos2θ> is used to represent the alignment
degree of reinforcement in thematrix.

( )

( )
( )ò

ò
q

j q q q q

j q q q
á ñ =cos

cos sin d

sin d
62

2

where ρ(θ) is a distribution function describing the angle distribution of the reinforcement in thematrix. In this
work, θ is the angle between the basic graphite plane and the x-y plane of the compositematerials.When the
value of<cos2θ> is equal to 1 theGf reinforcements are exactly oriented in a plane perpendicular to the pressing
direction.However, if this value is close to 1/3 theGf reinforcements are randomly distributed inside theCu
matrix. Image analysis was used to statistically calculate the angle θ distribution ofGf [19, 20]. Figure 4 shows the

Figure 2. (a)Temperature and pressure conditions of the SPS operation. (b) Schematic of the SPS specimen showing the dimensions
of the specimen and the definition of the in-plane and through-plane directions.
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results containing the fittings of angle distribution ofGf existing in the nine samples shown infigure 3.Herein, a
functionj(θ)was used tofit the curves of the frequency (the number ofGf at certain θ in all theGf) versus θusing
Origin software [19, 21].

( ) ( )( )j q = +q-A e y 5t
1 0

1/

where the symbolj(θ) denotes the statistical distribution of the reinforcing graphite phasewithin the copper
matrix, withA1, t1, and y0 serving asfitting variables.

Upon substituting the values obtained from the fitting process, the specificj(θ) functionswere presented,
and subsequent numerical integration facilitates the computation of the<cos2θ> values obtained from the SEM
micrographs of eachmaterial.<cos2θ> values are also shown in thefigure 4. Except for the samples processed
using spherical and dendritic Cu powders and under one-step powder fillingway, the values of<cos2θ> in all
the othermaterials were higher than 0.8. Especially, the<cos2θ> values were greater than 0.9 for those samples
fabricated using theCuflake powder. This is in accordance with the observation obtained fromSEM
micrographs (figure 3).

The interface features of all the samples are shown infigure 5. As the copper became soft at 800℃, the
coppermatrix was tightly attached to the graphite flake in a flat interface even in the samples using spherical Cu
powder, which is different from the puckered interface using spherical Al powder [10]. 99%of relative densities
can be explained by those interface characterizations. In addition, this void-free interface is also favorable for the
thermal transfer between thematrix and reinforcement.

3.2. Thermal conductivity of Cu/Gf compositematerials
Figure 6 shows the values of the calculated TC and their corresponding<cos2θ> valueswithin the in-plane
direction of Cu/Gf compositematerials fabricated utilizing both the one-step filling and step-by-step filling
approaches. The specimen fabricated usingCuflake powder shows the highest TC as compared to the other two
types ofmaterials processed under the one-step processing route and using the other powder types. However,
this difference in TC values became smaller when the step-by-step powder fillingmethodwas applied. It can be
claimed that the increase of<cos2θ> values or improved orientation degree leads to the increase of TC values.
Moreover, themultiple-step filling process had amuchweaker effect on the increase of the TC values of the
Cu/Gf composites prepared using theCuflake powder. This ismerely because theGf reached a relatively high
orientation degree via the one-step route in these parts and therewas notmuch space left for improvement. It

Figure 3. SEMmicrographs of Cu/Gf (40 vol.%) compositematerials using different Cu powder types and filling processes: (a)
spherical 1-step, (b) spherical 9-step, (c) spherical 15-step, (d) dendritic 1-step, (e) dendritic 9-step, (f) dendritic 15-step, (g)flaky
1-step, (h)flaky 9-step, (i)flaky 15-step.
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should be noted that the<cos2θ> values of samples processed using dendritic and spherical powders and
treated by the 15-step powder filling process were almost identical. These resultsfit with previous research
findings [22]. However, their TC values showed a significant difference. This can be traced back to the noticeable
difference observed in the TC values of the sintered pure copper samples (cf table 1).

In this study, given that the size and volume fraction ofGfwere fixed and by ignoring the little effect caused
by the TCproperties of different Cumatrices and their interfacial thermal conductance, it could be concluded
that, according to the EMAmodel, the TC value along the in-plane direction has a strong relationshipwith the
orientation degree ofGf.Here, we present the in-plane TC formula as follows:

[ ( )( ) ( )( )]
[ ( ) ( )]

( )b q b q
b q b q
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+ - + á ñ + - - á ñ
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where the subscripts L andT are noted as the in-plane and through-plane directions ofGf, respectively, f is the
volume fraction ofGf, and S is the geometrical factor, whereD and t are the diameter and thickness of the
reinforcement, respectively [10], Km is the TCof theCumatrix, whichwas from themeasured TCof the as-
sinteredCu samples using different copper powders, Ki is intrinsic TC ofGf andKL, KT is 1000WmK−1 [3], and
10Wm−1 K−1 −1 [23], respectively.

As shown infigure 7, the theoretical in-plane TC values increase as the<cos2θ> value changes from0.5 to 1
covering the range for the samples processed using three types of powders. Asmentioned above, a small
deviation between the three curves ismainly caused by the different TC values of the pureCu powders. The

Figure 4.Orientation degree analyses of the Cu/Gf compositematerials processed using different Cu powder types and filling
processes: (a) spherical 1-step, (b) spherical 9-step, (c) spherical 15-step, (d) dendritic 1-step, (e) dendritic 9-step, (f) dendritic 15-step,
(g)flake 1-step, (h)flake 9-step, (i)flake 15-step.
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Figure 5. SEMmicrographs of copper/Gf (40 vol.%) compositematerials interfaces prepared using different copper powder types and
filling processes: (a) spherical 1-step, (b) spherical 9-step, (c) spherical 15-step, (d) dendritic 1-step, (e) dendritic 9-step, (f) dendritic
15-step, (g)flaky 1-step, (h)flaky 9-step, (i)flaky 15 steps.

Figure 6.Thermal conductivities and orientation degrees along the in-plane direction of Cu/Gf composites fabricated using different
copper powder and filling processes.

Table 1.Physical properties of sinteredCu samples using as-received pure Cupowders.

Materials ρ (g/cm3) Apparent density (g/cm3) Cp (J/kg·K) TC (W/mK)

CuF 8.86 0.5 299 370

CuD 8.90 2.3 283 366

CuS 8.89 3.7 222 342
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measured TCs of Cu/Gf composites are well consistent with the predictions. It demonstrates that an efficient
way tomaximize the in-plane TC is to tailor the<cos2θ> value or orientation degree.

3.3. An interpretation of achieving high in-plane TCof Cu/Gf composites
As shown in table 1, themajor difference existing among the three Cu powders is the difference in the apparent
densities of the powders. The apparent density value of spherical Cu powder is seven times than that forflakeCu
one, (cf the inset photos of figure 1). It is worth noting that theGf can get distributed in a larger space after getting
mixedwithCupowder particles with a lower apparent density. As illustrated infigure 8, regardless of the type of
the usedCu powders, the samemass of Gf are distributed in the samemass of Cu powder particles. As Cu
powders have different apparent densities, diverse volumes of Cu+Gfmixtures can be observed inside the
graphitemold for the same quantity of each of these Cu powders. It was assumed that Gf are randomly
distributed inside the copper powder after themold filling. During the uniaxial hot densification step, Gf can
move inside of theCu+Gfmixture and tend to orient in a plane perpendicular to the pressure direction. From
the non-dense packing state to the dense state, during the pressing step, Gf would travel a greater distance to be
aligned inCuflake+Gfmixture, as indicated by the yellow arrows in figure 8.

For the step-by-stepmethod, the thickness of the powder layer for each stepwas determined by the amount
of powdermixtures filled in the graphite die.When the thickness of the powder layer was controlled under the
average value of the diameter of Gf, theGfwas constrained in a laying state. Thus, almost all theGf lieflat in a
single powder layer.When theCu/Gf composites are stacked by this powder layer, a highly orientedGf can be
obtained.However, this process is still unclear, and further investigation via in situ industrial X-ray computed
tomography can be a proper approach.

4. Conclusions

Flake, dendritic, and spherical Cu powders were used to fabricate Cu/Gf compositematerials. Those three
powders show various apparent densities. FlakeCu powder has the lowest apparent density as comparedwith
the others.High orientation ofGfwas successfully achieved usingflake Cu powder and a one-step powder filling
method. This could be obtained in parts processed by the others only undermultiple-step processes. Under the
one-step approach, disorderedGf, inwhichGfwere not oriented fully, were easily observed in the samples
processed by dendritic or spherical copper powders. Increased orientation degree ofGf enhances in-plane TCof
Cu/Gf composites (MaximumTCup to 540WmK−1). An interpretation based on the apparent density and
multiple-step powder filling approachwas proposed to explain themechanismof obtaining highly orientedGf

in the coppermatrix under powdermetallurgy. The lower the apparent densities of the usedmetal powder, the
fewer steps of powder filling are required to obtainGfwith high orientation.

Figure 7.Theoretical and experimental thermal conductivity of Cu/Gf composites as a function of<cos2θ> value.
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