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ABELIAN SURFACES OVER FINITE FIELDS CONTAINING NO CURVES
OF GENUS 3 OR LESS

ELENA BERARDINI, ALEJANDRO GIANGRECO MAIDANA, AND STEFANO MARSEGLIA

Abstract. We characterise abelian surfaces defined over finite fields containing no curves of
genus less than or equal to 3. Firstly, we complete and expand the characterisation of isogeny
classes of abelian surfaces with no curves of genus up to 2 initiated by the first author et
al. in previous work. Secondly, we show that, for simple abelian surfaces, containing a curve
of genus 3 is equivalent to admitting a polarisation of degree 4. Thanks to this result, we can
use existing algorithms to check which isomorphism classes in the isogeny classes containing
no genus 2 curves have a polarisation of degree 4. Thirdly, we characterise isogeny classes of
abelian surfaces with no curves of genus ≤ 2, containing no abelian surface with a polarisation
of degree 4. Finally, we describe absolutely irreducible genus 3 curves lying on abelian surfaces
containing no curves of genus less than or equal to 2, and show that their number of rational
points is far from the Serre–Weil bound.

Introduction

Studying the minimal genus of algebraic curves lying on an abelian variety is a classical
question [1, 8, 4]. In this paper we focus our attention on abelian surfaces. Over an algebra-
ically closed field, every abelian surface is isogenous to a principally polarised one [20, Cor. 1,
p. 234], that is, to the Jacobian of a genus 2 curve or to the product of two elliptic curves. A
well-known consequence of this fact is that every abelian surface over an algebraically closed
field contains a (possibly singular) absolutely irreducible curve of geometric genus 2 or 1; see
also Lemma 1.1 below. On another note, one can also study when an abelian surface contains
curves of a fixed genus. Over the complex numbers, this question has been treated in [5] for
genus 3 curves and in [7] for hyperelliptic curves of genus 4. Over non-algebraically closed
fields, the situation is more complicated. For example, it is no longer true that any abelian
surface is isogenous to a principally polarised one.

From now on, we direct our attention to the case of finite fields. Isogeny classes in which
no abelian surface admits a principal polarisation are classified in [14]. Furthermore, even
if an isogeny class is principally polarisable, it might not contain a Jacobian surface nor the
product of two elliptic curves [15]. Indeed, by a theorem of Weil [15, Thm. 1.3], we have one
more option among principally polarisable abelian surfaces, that is, Weil restrictions of elliptic
curves defined over a quadratic extension of the finite field. To sum up, studying the minimal
genus of algebraic curves lying over an abelian surface defined over a finite field is a hard
question, and it is in fact open in its full generality. Besides the intrinsic theoretical interest,
this question was raised in the context of algebraic geometry coding theory. Indeed, the first
author and her co-authors showed in [2] that so called algebraic geometry codes constructed
from abelian surfaces defined over a finite field and containing no curves of small genus respect
a better bound on their minimum distance.
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Our contributions. Let Fq be a finite field of cardinality q the power of a prime p. We recall
that an isogeny class of abelian surfaces over Fq corresponds via the Honda–Tate theory to a
polynomial of the form f(t) = t4 + at3 + bt2 + aqt+ q2, called Weil polynomial.

Previous work by the first author and coauthors showed that abelian surfaces defined over Fq
which are not isogenous to a principally polarised abelian surface or which are isogenous to Weil
restrictions of some elliptic curves defined over Fq2 do not contain absolutely irreducible curves
of arithmetic genus up to 2; see [2, Prop. 4.2 and 4.3]. We denote the set of Weil polynomials
corresponding to the former by P irr

npp while the latter splits into {(t2 − 2)2, (t2 − 3)2} ⊔ P irr
Wres.

As the notation suggests, the Weil polynomials of the aforementioned isogeny classes are all
irreducible except for (t2−2)2 and (t2−3)2. We expand the previous result in Theorem 1.2, by
showing that these abelian surfaces do not contain absolutely irreducible curves of geometric
genus up to 2, and that this is an equivalence. In Remark 1.3 we show that restricting to
absolutely irreducible curves of arithmetic genus up to 2 does not provide an equivalence.

The main goal of the present paper is to determine when an abelian surface A does not
contain curves of genus ≤ 3. Our first main result is the following, which can be found later
in the text as Theorem 2.3.

Main Theorem 1. Let A be a simple abelian surface defined over Fq. Then, the following
are equivalent:

(1) A has a polarisation of degree 4,
(2) A contains an Fq-irreducible curve of arithmetic genus 3.

The isogeny classes determined by (t2 − 2)2 and (t2 − 3)2 are dealt in Proposition 2.1. So
we now assume that f(t) is irreducible, that is f(t) ∈ P irr

npp ⊔ P irr
Wres. When the corresponding

isogeny class C is ordinary, the third author designed an algorithm in [18] to compute the
isomorphism classes of abelian surface in C admitting a polarisation of degree 4. See Section 6
for an overview and examples.

Our second main result gives a complete classification of the isogeny classes determined
by f(t) ∈ P irr

npp ⊔ P irr
Wres that contain an abelian surface with a polarisation of degree 4. The

proof of this classification builds on Howe’s seminal work [12, 13] on kernels of polarisations
of abelian varieties over finite fields. An expanded statement appears later in the paper as
Theorem 5.7.

Main Theorem 2. Assume that f(t) ∈ P irr
npp ⊔ P irr

Wres and let C be the corresponding isogeny
class. Set K = Q[t]/(f(t)), which is a CM field with totally real subfield K+. Consider the
statement:

(⋆) There is no A in C admitting a polarisation of degree 4.

Then, the following statements hold.
(i) Assume C is ordinary. Then (⋆) holds if and only if there is no A in C with maximal

Fq-endomorphism ring admitting a polarisation of degree 4.
(ii) Assume that f(t) ∈ P irr

npp. Then (⋆) holds if and only if 2 is inert in K+.
(iii) Assume that f(t) ∈ P irr

Wres, so that f(t) = t4 + bt2 + q2. Then (⋆) is equivalent to
• b = 1− 2q and q is odd, if C is ordinary,
• q is even, if C is non-ordinary.

Organisation of the paper. In Section 1 we recall and complete the characterisation given
in [2] of isogeny classes of abelian surfaces containing no absolutely irreducible curves of genus
smaller than or equal to 2, and describe some properties of their Weil polynomials. In Section
2, we start the characterisation of abelian surfaces containing no curves of genus 3 among
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those containing no curves of genus up to 2. In particular, in Theorem 2.3, we prove the
key equivalence between containing a curve of arithmetic genus 3 and having a polarisation
of degree 4 stated above as Main Theorem 1. In Section 3 we collect technical results on
the factorisation of 2 in the extension K/Q, that we shall use throughout the paper. Section
4 is devoted to results on kernels of polarisations of abelian varieties, based on the work
of Howe [12, 13]. In Section 5, we prove an expanded version of Main Theorem 2, namely
Theorem 5.7, in which we give necessary and sufficient conditions on an isogeny class to not
contain surfaces admitting a polarisation of degree 4, hence containing no curves of arithmetic
genus up to 3. Section 6 describes the algorithm proposed by the third author [18] to compute
the isomorphism classes of abelian surface in an isogeny class admitting a polarisation of degree
4, and provides examples for our Theorem 5.7. Finally, in Section 7, we characterise curves of
genus 3 lying on abelian surfaces containing no curves of genus less than 2, and give bounds for
their number of rational points, showing that those genus 3 curves are far from being maximal.

1. Abelian surfaces containing no curves of genus ≤ 2

Let A be a g-dimensional abelian variety defined over the finite field Fq of characteristic p.
The characteristic polynomial f(t) of its Frobenius endomorphism acting on the ℓ-Tate module
(for any prime ℓ ̸= p) is a monic polynomial of degree 2g with integer coefficients. All the
complex roots of f(t) have absolute value √

q. We call such a polynomial a Weil polynomial.
Honda and Tate showed in [25, 11, 26] that f(t) completely determines the isogeny class C of
A. Recall that an abelian variety A over Fq of dimension g is called ordinary if the coefficient
of tg in f(t) is coprime with q. In particular, being ordinary is a property of the isogeny class
C of A. We will say that C and f(t) are ordinary if A is so.

In the rest of the paper, whenever we talk about a morphism, we always mean an Fq-
morphism. In particular, we will say simple for Fq-simple, isogeny for Fq-isogeny, etc.

By a curve C we mean a possibly singular one-dimensional Fq-irreducible projective variety
always defined over Fq. We say that a curve is absolutely irreducible if it is irreducible over
the algebraic closure Fq of Fq. Nevertheless, later in the paper, when we want to emphasise
that a curve C is not necessarily absolutely irreducible, we will say that C is Fq-irreducible.
We say that a curve C lies on an abelian surface A or that A contains C, if C is a closed
subvariety of A, or, equivalently, if there is an embedding of C in A. We recall here some
well-known definitions and results, following [23, Ch. 4, Sec. 2]. The arithmetic genus pa of a
curve is defined as 1−χ(C), χ(C) being the Euler-Poincaré characteristic of C. The geometric
genus g of C is by definition the genus of its normalisation C̃. The geometric genus of a curve
is always smaller than or equal to its arithmetic genus, and equality holds if and only if the
curve is smooth. A divisor of A is a formal sum, with integer coefficients, of Fq-irreducible
curves lying on A. It is called effective if all its coefficients are non-negative. By the adjunction
formula [23, Ch. 4, Sec. 2, Prop. 5], since the class of canonical divisor of an abelian surface is
trivial, for any Fq-irreducible curve C of arithmetic genus pa on A we have C2 = 2pa − 2.

The goal of this section is to prove some characterisations and properties of Weil polynomials
of abelian surfaces which do not contain absolutely irreducible curves of geometric genus 0, 1
or 2. We start with the following well-known lemma.

Lemma 1.1. Let f : A→ B be an isogeny of abelian varieties defined over a field k. Let C be
a curve of geometric genus g defined over k, lying on A. Then, f(C) is a curve of geometric
genus g on B. Moreover, if C is absolutely irreducible then f(C) is absolutely irreducible as
well.

Proof. It follows from the fact that f(C) is birationally equivalent to C. □
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Some of the implications of the next theorem are proved in [2]. However, as we will discuss
in Remark 1.3, there were some gaps that we fill in.

Theorem 1.2. Let A be an abelian surface defined over Fq with Weil polynomial

f(t) = t4 + at3 + bt2 + qat+ q2.

Then, the following statements are equivalent:
(1) A does not contain absolutely irreducible curves of geometric genus 0, 1 or 2;
(2) A is simple and not isogenous to the Jacobian of an absolutely irreducible smooth genus

2 curve;
(3) exactly one of the following statements hold:

(a) A is not isogenous to a principally polarised abelian surface, which is equivalent
to have a2 − b = q, b < 0 and all prime divisors of b are congruent to 1 mod 3;

(b) A is isogenous to a Weil restriction of an elliptic curve defined over the quadratic
extension of Fq (hence a = 0), which is equivalent to having A⊗Fq Fq2 not simple,
and one of the following conditions hold:

• b = 1− 2q;
• p > 2 and b = 2− 2q;
• p ≡ 11 mod 12, q is a square and b = −q;
• p = 3, q is a square and b = −q;
• p = 2, q is nonsquare and b = −q;
• q = 2 and b = −4;
• q = 3 and b = −6.

Proof. We start by proving (1) ⇒ (2). By assumption, A does not contain an elliptic curve,
hence it is simple. Assume that A is isogenous to the Jacobian of a smooth absolutely irredu-
cible genus 2 curve C. Since C is canonically embedded into its Jacobian, Lemma 1.1 would
imply that A contains an absolutely irreducible curve of geometric genus 2, in contradiction
with (1).

Now we show that (2) ⇒ (1). First note that A cannot contain a curve D of geometric genus
0. Indeed, the normalisation D̃ of D is birationally equivalent to P1 and, by [19, Cor. 3.8],
the only rational maps from P1 to A are the constant maps. The abelian variety A cannot
contain a curve of geometric genus 1 as well. Indeed, such a curve would be an elliptic curve
and hence an isogeny factor of A by [9, Prop. 1]. Similarly, A cannot contain a curve D of
geometric genus 2 because the induced map D̃ → A would give a morphism Jac(D̃) → A,
which is an isogeny since A is simple.

We now focus on (2) ⇒ (3). We distinguish two cases. Assume first that A is not isogenous
to a principally polarised abelian surface. This corresponds to (3a). The equivalence in terms
of the coefficients of the Weil polynomial follows from [14, Thm. 1]. Assume now that A is
isogenous to a principally polarised abelian surface. By a classification theorem due to Weil
(see for instance [15, Thm. 1.3]), a principally polarised abelian surface defined over Fq is
exactly one of the following: a product of two elliptic curves defined over Fq with the product
polarisation; the Jacobian of a genus 2 curve defined over Fq with the canonical polarisation;
the Weil restriction of an elliptic curve defined over the quadratic extension of Fq with the
induced polarisation. Since we are assuming (2), we exclude the first two cases. So, A is
the Weil restriction of an elliptic curve defined over the quadratic extension of Fq. This is
equivalent to A⊗Fq Fq2 being not simple by [14, Lemma 4]. Finally, the characterisation of the
coefficients of the Weil polynomial follows from [2, Prop. 4.3] and the beginning of its proof.
Hence, we are in case (3b).
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We conclude by showing that (3) ⇒ (2). For A satisfying (3a) the implication is clear. If A
satisfies (3b) the result follows from [15, Thm. 1.2-(2), Table 1.2]. □

Remark 1.3. In [2, Lemma 4.1], it is stated that for an abelian surface A defined over Fq we
have that the following statements are equivalent:

(i) A is simple and not isogenous to a Jacobian surface,
(ii) A does not contain absolutely irreducible curves of arithmetic genus 0, 1 or 2,
(iii) A does not contain absolutely irreducible smooth curves of genus 0, 1 or 2.

Note that the implication (2)⇒(1) of Theorem 1.2 is a stronger statement than the implic-
ation (i)⇒(ii). However, while our reverse implication (1)⇒(2) holds true, the implication
(ii)⇒(i) claimed in [2, Lemma 4.1] is false. Indeed, consider a simple isogeny class containing
a Jacobian surface and non-principally polarisable abelian surfaces. Then, any isomorphism
class of abelian surface admitting no principal polarisation inside such an isogeny class gives
an example of abelian surfaces isogenous to a Jacobian and containing no curves of arithmetic
genus 2. Indeed, using the same argument in the proof of Theorem 2.3 below, such a curve
would define a polarisation of degree 1, that is, a principal polarisation of the surface. An
example of such a class is given in Example 6.2.

Finally, let us remark that the implication (iii)⇒(ii) of [2, Lemma 4.1] still holds true,
but a new proof is necessary, that we offer here. Let us suppose that A contains a curve of
arithmetic genus pa = 1. Then the geometric genus is necessarily 1 as well, since g cannot be
0 and g ≤ pa, thus the curve is smooth, a contradiction. Suppose now that A contains a curve
of arithmetic genus pa = 2. If the geometric genus is 1 then we know by [9, Prop. 1] that the
curve is smooth and has a structure of an elliptic curve, which leads to a contradiction. If the
geometric genus is 2 then the curve is smooth of genus 2, leading again to a contradiction.

Remark 1.4. Lemma 1.1 implies that the property of an abelian surface A to contain or not
curves of geometric genus ≤ 3 is an invariant of its isogeny class. In the previous remark, we
stressed that this is not the case for curves of arithmetic genus ≤ 2. We are going to see below
that this is also the case when considering curves of arithmetic genus ≤ 3.

Remark 1.5. From [14, p. 122], we know that an abelian surface A defined over Fq which is
in a not principally polarisable isogeny class splits over the cubic extension of the base field,
that is A⊗Fq Fq3 is not simple.

The rest of the section is devoted to prove various results about the Weil polynomials from
Theorem 1.2.

Lemma 1.6. Let f(t) be a Weil polynomial of an abelian surface satisfying one of the equivalent
conditions of Theorem 1.2. Then either f(t) = (t2 − q)2 with q ∈ {2, 3}, or f(t) is irreducible
over Q[x].

Proof. Since f(t) is the Weil polynomial of a simple abelian surface then either it is irreducible
or it is the square of a quadratic polynomial. Assume that f(t) is reducible. Then either
f(t) = (t2 − q)2 or f(t) = (t2 − βt+ q)2 for some β ∈ Z. If we are the in the former case, then
by comparing with Theorem 1.2, we see that q ∈ {2, 3}, and we are done. So assume that we
are in the latter case. Then a = −2β and b = 2q + β2. Observe that b > 0 which implies that
f(t) does not satisfy condition (3a). So we must be in case (3b). Hence a = 0 which implies
that β = 0 and b = 2q, giving a contradiction with the constraints on b from (3b). Therefore
f(t) is irreducible. □

In view of Lemma 1.6, the set of Weil polynomials described in Theorem 1.2 can be parti-
tioned as follows.
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Definition 1.7. Let P irr
npp (resp. P irr

Wres) be the set of Weil polynomials described in The-
orem 1.2.(3a) (resp. Theorem 1.2.(3b)) which are irreducible over Q[x]. The set of Weil poly-
nomials described in Theorem 1.2 is partitioned as follows:

P irr
npp ⊔ P irr

Wres ⊔ {(t2 − 2)2, (t2 − 3)2}.

Recall that if A is an abelian variety over Fq whose Weil polynomial f(t) has complex roots
α1 . . . , α2g, then the Weil polynomial of the extension of scalars AFqn

= A⊗Fq Fqn has complex
roots αn1 , . . . , αn2g. This observation, combined with the next result, gives us an effective way
to test whether an irreducible Weil polynomial belongs to P irr

Wres.

Lemma 1.8. Let A be an abelian surface over Fq with Weil polynomial f(t) = t4+at3+ bt2+
qat + q2. Then f(t) ∈ P irr

Wres if and only if f(t) is irreducible, the Weil polynomial of AFq2
is

not irreducible, and b is as in Theorem 1.2.(3b).

Proof. It follows from Theorem 1.2.(3b). □

For the rest of the section we focus on Weil polynomials belonging to P irr
npp ⊔ P irr

Wres.

Lemma 1.9. Let A be an abelian surface over Fq with Weil polynomial f(t) = t4+at3+ bt2+
qat + q2 in P irr

npp ⊔ P irr
Wres. Then A is either ordinary or supersingular. If f(t) ∈ P irr

npp then A

is ordinary if and only if a ̸= 0. If f(t) ∈ P irr
Wres, then A is ordinary if and only if b = 1− 2q

or, b = 2− 2q and p > 2.

Proof. Assume that f(t) ∈ P irr
npp. Note that A cannot have p-rank 1 since in that case it

would be principally polarisable by [17, Thm. 4.3]1. If a = 0 then we have b = a2 − q = −q,
and therefore A is supersingular. Suppose a ̸= 0. By [14, Thm. 2], the abelian variety A
cannot be supersingular. Hence, A is ordinary. Now, assume that f(t) ∈ P irr

Wres. Obviously if
b = 1−2q, or b = 2−2q and p > 2 then A is ordinary. By Theorem 1.2.(3b), those are the only
possible values for b to have ordinarity. To conclude the proof, we need to show that if A is
non-ordinary then it is supersingular. Say that A is the Weil restriction of an elliptic curve E
over Fq2 . If A is non-ordinary, then E is supersingular, and hence A is also supersingular. □

Proposition 1.10. Let f(t) = t4 + at3 + bt2 + qat+ q2 be a Weil polynomial in P irr
npp ⊔P irr

Wres.
Then, the number field K = Q[t]/f(t) is Galois.

Proof. Let α, q/α, β, q/β be the complex roots of f(t). Then −a = α+q/α+β+q/β. If a = 0
then either α = −β or α = −q/β. In both cases β ∈ Q(α), so the extension is normal and K
is Galois. If a ̸= 0 then f(t) is in P irr

npp and A is ordinary by Lemma 1.9. Hence K is Galois
by [12, Lemma 12.1]. □

Lemma 1.11. Every polynomial f(t) ∈ P irr
npp ⊔ P irr

Wres is congruent to the product of two
quadratic polynomials modulo 2.

Proof. If f(t) ∈ P irr
Wres then it is an easy calculation. Assume now that f(t) ∈ P irr

npp. As usual,
write f(t) = t4 + at3 + bt2 + aqt+ q2. The statement follows from two remarks. Firstly, since
all prime divisors of b are ≡ 1 mod 3, b must be odd. Secondly, since b = a2 − q, if q is even
then we must have a2 (and thus a) odd, while if q is odd we must have a2 (and thus a) even.
Therefore, an easy calculation shows that if q is even then f(t) ≡ t2(t2 + t + 1) mod 2, and
that if q is odd then f(t) ≡ (t2 + t+ 1)2 mod 2. □

1The authors of [17] call the neither ordinary nor supersingular case “mixed”.
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2. Abelian surfaces containing genus 3 curves

The key question of the paper is characterising abelian surfaces which do not contain genus 3
curves. Our main focus will be to characterise such surfaces among those with Weil polynomial
in P irr

npp ⊔P irr
Wres ⊔ {(t2 − 2)2, (t2 − 3)2}, which we know by Theorem 1.2 do not contain curves

of geometric (hence arithmetic) genus up to 2.
We start by analysing the two cases of (t2 − 2)2 and (t2 − 3)2 in Proposition 2.1. Then,

in Theorem 2.3, we prove a criterion to check when a simple abelian surface contains a genus
3 curve. This criterion will be applied in the following sections to characterise which isogeny
classes with Weil polynomial in P irr

npp ⊔P irr
Wres contain an abelian surface containing a curve of

genus 3.

Proposition 2.1. Let C (resp. C′) be be the isogeny class determined by (t2 − 2)2 (resp. (t2 −
3)2). Then

• no abelian surface in C contains an absolutely irreducible curve of geometric (and thus
arithmetic) genus 3.

• there exists an abelian surface in C′ containing an absolutely irreducible smooth curve
of genus 3.

Proof. If an abelian surface A in C contains an absolutely irreducible curve C of geometric
genus 3, then A is an isogeny factor of the Jacobian Jac(C̃) of the normalisation C̃ of C by
[9, Prop. 2]2. Hence, the Weil polynomial of Jac(C̃) must be of the form (t2− 2)2fE(t), where
fE(t) is the Weil polynomial of an elliptic curve over F2.

Note that there are only 5 distinct isogeny classes of elliptic curves over F2. A search in the
database of isogeny classes abelian threefolds defined over F2 in the LMFDB [16] returns the
isogeny classes 3.2.ac_ac_i, 3.2.ab_ac_ e, 3.2.a_ac_a, 3.2.b_ac_ae and 3.2.c_ac_ai. None
of them contains a Jacobian, which implies that A does not contain an absolutely irreducible
curve of geometric genus 3. Hence, A does not contain an absolutely irreducible curve of
arithmetic genus 3, as well.

We now apply the same reasoning to C′. By searching in the LMFDB, we find 7 isogeny
classes of the form (t2 − 3)2fE′(t) for some elliptic curve E′/F3. Moreover, 6 of these 7
isogeny classes do not contain a Jacobian. See 3.3.ad_ad_s, 3.3.ac_ad_m, 3.3.ab_ad_g,
3.3.b_ad_ag, 3.3.c_ad_am and 3.3.d_ad_as. The remaining one has label 3.3.a_ad_a and
Weil polynomial (t2 − 3)2(t2 + 3). It contains only one Jacobian surface, of the curve C :
y4 + xz3 + 2x3z. The degree 2 map sending (x : y : z) 7→ (x : −y : z) defines a double cover
of C over the elliptic curve F : y2z + 2x3 + xz2. Hence, C is bielliptic. So, by [5, Prop. 1.8],
C is contained in an abelian surface in C′. □

Lemma 2.2. Let A be a simple abelian surface defined over Fq. Let D be an effective divisor
on A such that D2 = 4 Then, D is an Fq-irreducible curve of arithmetic genus 3. More
precisely, D is one of the following:

• an absolutely irreducible smooth curve of genus 3;
• an absolutely irreducible curve of geometric genus 2 with a double point;
• an Fq-irreducible curve of arithmetic genus 3 which is not absolutely irreducible.

Proof. By the adjunction formula, for an Fq-irreducible curve C over A we have C2 = 2pa−2.
Thus, the above divisors clearly have self-intersection equal to 4. Hence, we only need to prove

2The author requires the curve to have a rational point on the smooth curve to guarantee the existence of
an embedding into its Jacobian. However, the existence of a divisor of degree 1 is sufficient. A curve defined
over a finite field always admits such a divisor.

http://www.lmfdb.org/Variety/Abelian/Fq/3/2/ac_ac_i
http://www.lmfdb.org/Variety/Abelian/Fq/3/2/ab_ac_e
http://www.lmfdb.org/Variety/Abelian/Fq/3/2/a_ac_a
http://www.lmfdb.org/Variety/Abelian/Fq/3/2/b_ac_ae
http://www.lmfdb.org/Variety/Abelian/Fq/3/2/c_ac_ai
http://www.lmfdb.org/Variety/Abelian/Fq/3/3/ad_ad_s
http://www.lmfdb.org/Variety/Abelian/Fq/3/3/ac_ad_m
http://www.lmfdb.org/Variety/Abelian/Fq/3/3/ab_ad_g
http://www.lmfdb.org/Variety/Abelian/Fq/3/3/b_ad_ag
http://www.lmfdb.org/Variety/Abelian/Fq/3/3/c_ad_am
http://www.lmfdb.org/Variety/Abelian/Fq/3/3/d_ad_as
http://www.lmfdb.org/Variety/Abelian/Fq/3/3/a_ad_a
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that the list is complete. If D is a single curve then it necessarily has arithmetic genus 3. If
D = E + F is reducible, since it is effective, its components have genus strictly lower than 3.
Since A is simple, the components of D cannot be elliptic curves. Hence they necessarily have
arithmetic genus 2. Then, we get D2 = E2 + F 2 + 2 · E.F > 4 as E2 = F 2 = 2 and E.F > 0
by [5, Lemma 1.1]. □

Theorem 2.3. Let A be a simple abelian surface defined over Fq. Then, the following state-
ments are equivalent:

(1) A has a polarisation of degree 4,
(2) A contains an Fq-irreducible curve of arithmetic genus 3.

Proof. We start by proving (1) ⇒ (2). Since Fq is finite, the existence of a polarisation
guarantees the existence of an ample invertible sheaf L ∈ Pic(A) such that the polarisation is
given by λL [19, Remark 13.2]. From [20, p. 150] we know that, writing L = L(D), we have
deg λL = χ(D)2 = ((D2)/2)2. It follows that there exists an effective divisor D on A such
that D2 = 4. By Lemma 2.2 we conclude.

To prove (2) ⇒ (1), let C be an Fq-irreducible curve of arithmetic genus 3 lying over A.
Note that by the adjunction formula C2 = 2 · 3 − 2 = 4. By [5, Lemma 1.1] C intersects
any other Fq-irreducible curve on A positively. Hence, by the Nakai–Moishezon criterion [10,
Sec. 5, Thm. 1.10], C is an ample divisor. Therefore, C defines a polarisation of degree 4 on
A. □

Remark 2.4. If A does not contain an absolutely irreducible curve of geometric genus 2, then
from Lemma 2.2 we entail that the genus 3 curve in the statement of Theorem 2.3 is either an
absolutely irreducible smooth curve of genus 3 or an Fq-irreducible curve of arithmetic genus
3 which is not absolutely irreducible.

Having this characterisation at hand, our new goal is to study when an isogeny class contains
an abelian surface admitting a polarisation of degree 4. This question will be answered in
Section 4. In light of Proposition 2.1, from now on we will focus on Weil polynomials f(t) ∈
P irr
npp ⊔ P irr

Wres only. To start with, we need some technical results concerning the factorisation
of 2 in the extension K = Q[t]/f(t), which is the main topic of the next section.

3. Factorisation of 2

Let f(t) be a polynomial from P irr
npp⊔P irr

Wres. For the rest of the paper, we set K = Q[t]/f(t).
Then K is a CM-field, that is, a totally imaginary quadratic extension of a totally real field
K+. Concretely, if we denote by π the class of t in K, then K+ = Q(π + q/π). Moreover, if
we write

f(t) = t4 + at3 + bt2 + aqt+ q2

then the minimal polynomial of π + q/π is

f+(t) = t2 + at+ (b− 2q).

We will denote by O (resp. O+) the ring of integers of K (resp. K+).
In this section, we study the factorisation of 2 in K+ and K. We shall use these technical

results in the following sections to study when an isogeny class contains an abelian surface
admitting a polarisation of degree 4.

Lemma 3.1. Assume that f(t) ∈ P irr
Wres. Then 2 ramifies in K+.
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Proof. Since f(t) ∈ P irr
Wres then a = 0. Hence, ∆f+ = 4(2q− b). Let d be a positive squarefree

integer such that 2q− b = c2d with c ∈ Z. Note that if c is odd then 2q− b ≡ d mod 4. Recall
that 2 ramifies in K+ = Q(

√
d) if and only if d = 1 or d ≡ 2, 3 mod 4. We now analyse all the

possible cases, which are described in Theorem 1.2.(3b).
• If b = 1− 2q then 2q − b = 4q − 1. So c is odd. Hence d ≡ 3 mod 4.
• If b = 2− 2q then 2q − b = 4q − 2. So c is odd. Hence d ≡ 2 mod 4.
• If b = −q and q is a square then d = 3.
• If b = −q, p = 2 and q is not a square then d = 6 ≡ 2 mod 4.

□

Lemma 3.2. Assume that f(t) ∈ P irr
Wres. Let m be the unique maximal ideal of O+ above 2

(cf. Lemma 3.1). Then the following are equivalent:
(i) K/K+ is ramified.
(ii) m is the unique maximal ideal of O+ that ramifies in K.
(iii) 2 is totally ramified in K.
(iv) b = 2− 2q with q odd.

In particular, if any of the above equivalent conditions holds then f(t) is ordinary.

Proof. Clearly, (ii) ⇒ (i) and (iii) ⇒ (i). Before proving the remaining implications, we pause
to prove a general claim. Set N := NK+/Q(∆K/K+). We have

∆f = 16q2(4q2 − b2)2 = [O : Z[π]]2∆K = [O : R]2q2∆K ,

∆f+ = 4(2q − b) = [O+ : R+]2∆K+ , and

∆K = ∆2
K+N.

Combining these relations, we obtain

N ·
(

[O : R]

[O+ : R+]2

)2

= (2q + b)2.

Note that R = R+[π] (resp. O+[π]) is locally free of rank 2 over R+ (resp. O+). Hence
[O+ : R+]2 = [O+[π] : R] divides [O : R]. Therefore,

(1) N divides (2q + b)2.

Now, we show that (i) ⇒ (iv) and (i) ⇒(ii). So we assume that N ̸= 1.
Assume first that f is non-ordinary. Then f(t) = t4 − qt2 + q2 by Theorem 1.2 and

Lemma 1.9. Note that ζ3 7→ −π2/q gives an embedding of Q(ζ3) in K (cf. [14, Sec. 4]).
Moreover, as we have shown in the proof of Lemma 3.1, we have that K+ = Q(

√
3) or

K+ = Q(
√
6). In the first case, we have K = Q(ζ3,

√
3) and one computes that ∆K+ = 12

and ∆K = 122. In the second case, we have K = Q(ζ3,
√
6) and one computes that ∆K+ = 24

and ∆K = 242. In both cases K/K+ is unramified.
Hence, f(t) must be ordinary. Then, by Lemma 1.9, either b = 1−2q or, b = 2−2q and q is

odd. In the first case, Equation (1) implies that N = 1, which cannot happen by assumption.
So we must be in the second case, that is, (iv) holds. Equation (1) implies that if b = 2− 2q
(with q odd) then N ∈ {1, 2, 4}, and in fact N ∈ {2, 4} since we are assuming that K/K+ is
ramified. Since m is the unique maximal ideal of O+ above 2 by Lemma 3.1, we obtain that
m ramifies in K, that is, (ii) holds.

To conclude, we prove that (iv) ⇒ (iii). Since b = 2 − 2q with q odd, we have that
f(t) ≡ (t + 1)4 mod 2. By the Kummer-Dedekind theorem [24, Thm. 8.2], the order Z[π] in
K has a unique maximal ideal above 2 which is regular since the remainder of the division of
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f(t) by t+ 1 is (q − 1)2 + 2 ≡ 2 mod 22, because q is odd. This implies that O has a unique
maximal ideal above 2 with residue field F2, that is, 2 is totally ramified in K. □

Lemma 3.3. Let f(t) ∈ P irr
npp ⊔ P irr

Wres. If K/K+ is ramified, or if K/K+ is unramified
and there exists a maximal ideal of O+ that divides (π − q/π) which stays inert in K, then
f ∈ P irr

Wres. Moreover, in the latter case, f(t) is non-ordinary.

Proof. If K/K+ is ramified or if there exists a prime in K+ that divides (π− q/π) and which
stays inert in K, then, by [13, Thm. 1.1], there is a principally polarised abelian surface in the
isogeny class associated to f(t). Hence f ∈ P irr

Wres by Theorem 1.2.
To show the last statement, assume that K/K+ is unramified and that there exists a

maximal ideal n of O+ dividing (π − q/π) which stays inert in O. Write f(t) = t4 + bt2 + q2,
as usual. Since the minimal polynomial of π + q/π is f+(t) = t2 + b − 2q, we have that
(π + q/π)2 + b− 2q = 0, which combined with (π − q/π)2 = π2 + (q/π)2 − 2q gives

(π − q/π)2 = −b− 2q.

Assume by contradiction that f(t) is ordinary. Then, by Lemma 1.9, either b = 1 − 2q, or
b = 2− 2q with q odd. If b = 1− 2q then (π − q/π)2 = −1 which implies that 1 ∈ n2O. This
is not possible since nO is a maximal ideal of O by assumption. If b = 2− 2q with q odd, then
2 ∈ n2O. By Lemma 3.1, it follows that n is the unique maximal ideal of O+ above 2. By
Lemma 3.2, n is ramified in K, leading to a contradiction also in this case. Therefore f(t) is
non-ordinary. □

Lemma 3.4. Assume that f(t) ∈ P irr
npp. Then K contains M = Q(ζ3).

Proof. If f(t) is ordinary then [12, proof of Lemma 12.2] shows that K contains M = Q(ζ3).
If f(t) is not ordinary, then [14, Thm. 2] tells us that

f(t) = t4 − qt2 + q2.

Then ζ3 7→ −π2/q gives an embedding of M in K (cf. [14, Sec. 4]). □

Proposition 3.5. Let f(t) ∈ P irr
npp⊔P irr

Wres. The possible factorisations of 2 in K are as follows
and all of them do occur.

(i) if f(t) ∈ P irr
npp then

• if 2 is inert in K+ then 2O = M1M2 with O/M1 ≃ O/M2 ≃ F4 and M1 = M2;
• if 2 is split in K+ then 2O = M1M2 with O/M1 ≃ O/M2 ≃ F4 and M1 = M1

and M2 = M2;
• if 2 is ramified in K+ then 2O = M2 with O/M ≃ F4 and M = M;

(ii) if f(t) ∈ P irr
Wres then there is a unique maximal ideal m of O+ above 2 which can either

ramify, split or stay inert in K.

Proof. By Lemma 1.11, 2 is not inert in K. We now show that 2 cannot be totally split in
K. If f(t) ∈ P irr

Wres then 2 ramifies in K+ by Lemma 3.1 and we are done. Assume then that
f(t) ∈ P irr

npp. Then, by Lemma 3.4, K contains M = Q(ζ3). Note that 2 is inert in M , so 2 is
not totally split in K.

Since K is Galois by Proposition 1.10, then the possible factorisations are 2O = M4,
2O = M2

1M
2
2, 2O = M1M2 and 2O = M2.

We start by proving (i). So, assume that f(t) ∈ P irr
npp. Then M = Q(ζ3) is a subfield of K

by Lemma 3.4. Since 2 is inert in M then 2 cannot be totally ramified in K. Also, K/K+ is
unramified by Lemma 3.3. If 2 is inert in K+ then we must have 2O = M1M2, with M1 = M̄2.
If 2 splits in K+ then 2O = m1m2, that is each maximal ideal of O+ above 2 stays inert in
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K. In particular, M1 = M1 and M2 = M2. If 2 is ramified in K+ then 2O = M2 must occur
and M is stable under conjugation. Part (ii) is Lemma 3.1. A search on the Weil polynomials
shows that all listed factorisation occur; see Example 6.4. □

K

K+

Q 2

m1m2

m1m2

npp

m = 2O+

M1M2

npp

m2

m2 M2
1M

2
2 M4

npp,Wres

Wres Wresnpp,Wres

Figure 1. Possible factorisations of the prime 2 in K/K+/Q.

4. Kernels of polarisations of abelian varieties

In [12, 13], Howe studied when an isogeny class of abelian varieties contains at least one
variety with a polarisation with prescribed kernel by means of Grothendieck groups of finite
modules over orders associated to the isogeny class. In this section, everything is recalled from
[13], but Theorem 4.5, Lemmas 4.6 and 4.7 which are novel, to the best of our knowledge.

Fix an irreducible Weil polynomial f(t) determining an isogeny class C of abelian varieties
over Fq. We stress that in this section we do not make assumptions on the dimension. We
set, as usual, K = Q[x]/f(t) = Q(π) and K+ = Q(π + q/π). Let R = Z[π, q/π] ⊂ K and
R+ = Z[π+q/π] ⊂ K+. In what follows, S will denote a generic order in K, possibly satisfying
additional hypothesis. Denote by ModS the category of finite length S-modules. Since S is
an order, it follows that an S-module M has finite length if and only if M is a finite set. We
denote by |M | the number of elements of M .

Let G(ModS) be the Grothendieck group of ModS which is defined as the quotient of the
free abelian group on the isomorphism classes of objects in ModS by the subgroup generated
by the expressions M −M ′ −M ′′ for all exact sequences 0 →M ′ →M →M ′′ → 0 in ModS .
For M ∈ ModS , we denote its class in G(ModS) by [M ]S . The association M 7→ |M | induces
a group homomorphism G(ModS) → Q∗. Note that G(ModS) is a free abelian group on
the simple objects of ModS . Every such simple object is S-linearly isomorphic to S/N for a
maximal S-ideal N. An element ofG(ModS) is called effective if it is a sum of positive multiples
of simple objects. Let α = a/b be an element of K×. The principal element generated by
α is the element PrS(α) = [S/aS]S − [S/bS]R of G(ModS). Note that PrS induces a group
homomorphism from K× to G(ModS).

Assume now that the order S satisfies S = S. For M ∈ ModS , define M̂ = HomZ(M,Q/Z)
where the S-module structure is defined by (rψ)(m) = ψ(rm) for every ψ ∈ M̂ , r ∈ S and
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m ∈ M . The association M 7→ M̂ induces a duality on ModS , which defines an involution ·
on G(ModS) by setting [M ]S = [M̂ ]S . An element P of G(ModS) is symmetric if P = P .

Lemma 4.1. Let S be an order in K such that S = S. Let M a maximal ideal of S and I ⊆ S
be a fractional S-ideal. Then

[S/M]S = [S/M]S

and
[S/I]S = [S/I]S .

Proof. Observe that [S/M]S = [S/M]S if and only if there is an S-linear isomorphism

Ŝ/M ≃ S/M.

Let ψ : S/M → Q/Z be a non-zero additive homomorphism. Consider the S-linear morphism
f : S → Ŝ/M defined by f(1) = ψ. Note that M ⊆ ker(f). Since M is maximal and f is
non-zero, we get that M = ker(f). By Pontrjagin duality, we have that

|Ŝ/M| = |S/M|.

Hence the injective S-linear morphism S/M ↪→ Ŝ/M induced by f is an isomorphism.
For the second equality in the statement, write

[S/I]S =
n∑
i=1

ni[S/Mi]S ,

where the Mi’s are the maximal ideals of S containing I, and ni is the length of (S/I)Mi as
an SMi-module. Then

[S/I]S =

n∑
i=1

ni[S/Mi]R =

n∑
i=1

ni[S/Mi]S = [S/I]S ,

where the central equality holds by the first part. □

Again, let S be an order in K such that S = S. Set S+ = S∩K+. By considering finite the
S-modules as finite S+-modules, we obtain the norm homomorphism NS/S+([M ]S) = [M ]S+

from G(ModS) to G(ModS+). Define Z(S) as the set of symmetric elements of

ker

(
G(ModS)

NS/S+⊗ Z
2Z−→ G(ModS+)⊗Z

Z
2Z

)
.

Let B(S) be the subgroup {P + P : P ∈ G(ModS)} of Z(S). Finally, set

B(S) := Z(S)

(B(S) · PrS(K†))
,

where K† is the groups of squares of totally positive elements of K+.
Let KerC be the category whose objects are finite commutative group schemes that can be

embedded as closed subgroup-schemes in some abelian variety in the isogeny class C. Every
object of KerC is of the form ker(φ) for some isogeny φ : A→ B, where A and B are elements
in C.

Definition 4.2. A finite group scheme G is attainable in C if there is a variety in C with a
polarisation whose kernel is isomorphic to G.
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Let G(KerC) be the associated Grothendieck group, which is defined analogously to the one
of an order. For an element G in KerC we denote its class in G(KerC) by [G]C . Moreover, we
denote by Ĝ its Cartier dual.

The category KerC splits into a product of four subcategories Krr, Krl, Klr and Kll, whose
objects are respectively reduced elements of KerC with reduced Cartier dual, reduced elements
of KerC with local Cartier dual, local elements of KerC with reduced Cartier dual, and local
elements of KerC with local Cartier dual. For an isogeny φ : A → B, the set of geometric
points G(Fq) of G = kerφ admits a natural R-module structure by identifying π with the
Frobenius of A. If Kll is non-empty then it contains a unique simple element αp. This occurs
if and only if C is non-ordinary.

A crucial point of [13] is that G(KerC) and G(ModR) are isomorphic, as we now recall.
Consider the association given by the following rules:

• for G in Krr ×Krl, set ϵ([G]C) = [G(Fq)]R,

• for G in Klr, set ϵ([G]C) = [
̂̂
G(Fq)]R,

• set ϵ([αp]C) = [M ]R where M = Z/pZ with the R-module structure induced by letting
π and q/π act as 0.

By extending ϵ by linearity to G(KerC), we obtain a group homomorphism ϵ : G(KerC) →
G(ModR).

Theorem 4.3 ([13, Thm. 3.5]). The group homomorphism ϵ : G(KerC) → G(ModR) is an
isomorphism.

Definition 4.4. A finite R-module M is attainable if ϵ([G]C) = [M ]R for some attainable G
in C.

By the very construction of ϵ, we can deduce the following result.

Theorem 4.5. Let φ : A → B be an isogeny between elements of C. Let M be a finite
R-module such that ϵ([kerϕ]C) = [M ]R. Then

deg(φ) = |M |.

Proof. Set G = kerφ, so that deg(φ) equals the rank rk(G) of G as a group scheme. There
exist a non-negative integer n and a group scheme G′ ∈ Krr ×Krl ×Klr such that

[G]C = [αnp ×G′]C = n[αp]C ⊕ [G′]C .

It follows that

(2) rk(G) = rk(αnp ) · rk(G′) = pn rk(G′).

Let Mp be Z/pZ with the trivial R-module structure and M ′ be a finite R-module such that
ϵ([G′]C) = [M ′]R. By Theorem 4.3, we have

[M ]R = n[Mp]R ⊕ [M ′]R.

Hence

(3) |M | = |Mp|n · |M ′| = pn|M ′|.
Since, by construction of M ′, we have that rk(G′) = |M ′|, by combining Equations (2) and (3)
it follows that rk(G) = |M |. □

Since R is a locally free R+-module, the association M 7→M ⊗R+ R induces a well defined
homomorphism tR/R+ : G(ModR+) → G(ModR).
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Lemma 4.6. Let S be an order in K such that S = S and that S is locally free of rank 2
over S+ = S ∩K+. Then Z(S) = tS/S+(G(ModS+)). Moreover, if M ∈ ModS is such that
[M ]S ∈ Z(S) then [M ]S = tS/S+(P ′) for some effective P ′ ∈ G(ModS+).

Proof. Let P ′ be an element of G(ModS+). Write

P ′ =
∑
n

nn[S
+/n]S+ ,

where n runs over the maximal ideals of S+. Then

tS/S+(P ′) =
∑
n

nn[S
+/n⊗S+ S]S .

We have a natural S-linear isomorphism S+/n⊗S+ S ≃ S/nS. So

NS/S+([S/nS]S) = 2[S+/n]S+

because S is locally free of rank 2 over S+. Hence NS/S+([S/nS]S) ∈ 2G(ModS+). Since
S = S and nS = nS, by Lemma 4.1, we get that [S+/n⊗S+ S]S = [S/nS]S is symmetric. This
concludes the proof that

tS/S+(G(ModS+)) ⊆ Z(S).

Now we prove the reverse inclusion. Let P be a symmetric element of G(ModS). Write

P =
∑
N

nN[S/N]S ,

where the sum is taken over all maximal ideals N of S. Since P is symmetric we must have
nN = nN for every maximal ideal N of S. Write

P =
∑
N ̸=N

nN
(
[S/N⊕ S/N]S

)
+
∑
N=N

nN ([S/N]S) .

Fix a maximal ideal N of S and set n = N ∩ S+ = N ∩ S+.
Assume first that N ̸= N. Then nS ⊆ NN. Hence we have a surjective map

S/nS ↠ S/NN ≃ S/N× S/N.

Since S/nS is a 2-dimensional vector space over S+/n, we get that S/N ≃ S/N ≃ S+/n. This
means that nS = NN. Therefore

[S/N⊕ S/N]S = [S/NN]S = [S/nS]S = tS/S+([S+/n]S+).

Now consider the case N = N. Observe that the residue field extension S+/n → S/N is of
degree 1 or 2. Let M1 (resp. M2) be the set of maximal ideals N of S such that N = N and
the degree is 1 (resp. 2). If N ∈ M2 then N = nS, since S/nS is has dimension 2 over S+/n.
Hence

[S/N]S = [S/nS]S = tS/S+([S+/n]S+).

By the first part of the proof, we get that P = P ∈ Z(S) if and only if∑
N∈M1

nN ([S/N]S) = P −
∑
N ̸=N

nN
(
[S/N⊕ S/N]S

)
−
∑

N∈M2

nN ([S/N]S)

is in Z(S) as well. This happens precisely when nNNS/S+ ([S/N]S) is in 2G(ModS+) for every
N ∈ M1, that is, when each nN is even, since S/N ≃ S+/n is a simple S+-module. Since, for
N ∈ M1, we have S-linear isomorphisms

tS/S+([S+/n]S+) ≃ S/nS ≃ (S/N)2,
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we conclude the proof that Z(S) ⊆ tS/S+(G(ModS+)) by additivity of tS/S+ . □

Recall that the order R = Z[π, q/π] is locally free of rank 2 over R+ = Z[π + q/π].

Lemma 4.7. Let ℓ be a rational prime. The following statements are equivalent.
(i) There exists a finite R-module M of order |M | = ℓ2 such that the class of M in

G(ModR) is of the form tR/R+(P ′) for some effective P ′ in G(ModR+).
(ii) There exists a finite R-module M of order |M | = ℓ2 such that [M ]R is in Z(R).
(iii) f+(t) mod ℓ has a linear factor.

If any of the equivalent statements hold then [M ]R = tR/R+([R+/l]R+) where l is the unique
maximal ideal of R+ above ℓ corresponding to any linear factor of f+(t) mod ℓ.

Proof. The equivalence of (i) and (ii) is an immediate consequence of Lemma 4.6.
Let P ′ ∈ G(ModR+) be effective and non-zero. Then there are positive integers n1, . . . , nr

and maximal R+-ideals n1, . . . , nr such that

P ′ =

r∑
i=1

ni[R
+/ni].

Hence

tR/R+(P ′) =
r∑
i=1

ni[R
+/ni ⊗R+ R].

Since R is locally free of rank 2 over R+, we get that

|R+/ni ⊗R+ R| = |R+/ni|2.
If M is a finite R-module whose image in G(ModR) is tR/R+(P ′) for P ′ as above then

|M | =
r∏
i=1

|R+/ni|2ni .

We now show that (i) implies (iii). So, assume also that M as above satisfies |M | = ℓ2 for
a rational prime ℓ. Then r = 1, n1 = 1 and R+/n1 ≃ Fℓ. This implies that f+(t) mod ℓ has a
linear factor (cf. [24, Thm. 8.2]).

Finally, assume that (iii) holds. Let l be the corresponding maximal ideal of R+. Then we
see that R+/l⊗R+ R is an R-module of order ℓ2, as in (i). □

The following result completely describes B(O) for the maximal order O of K.

Proposition 4.8. If K/K+ is ramified at a finite prime then B(O) = 0. Otherwise, the Artin
map induces an isomorphism B(O) ≃ Gal(K/K+).

Proof. This is part of [13, Prop. 6.2]. □

Define
H(R) =

Z(R)

B(R)
.

The group H(R) is a vector space over F2 whose basis is given by the classes of the simple R-
modules R/n where n is a maximal R-ideal such that n = n and the index [R/n : R+/(R+∩n)]
of residue fields is even. Such maximal ideals are called the generating primes of H(R).

The inclusion i : R → O induces a group homomorphism i∗ : B(O) → B(R) by considering
every finite O-module as an R-module.

Let ψ : H(R) → B(R) and χ : H(O) → B(O) denote the canonical reductions. Note that i
induces a norm map G(ModO) → G(ModR) which in turn induces a norm N : H(O) → H(R).
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Proposition 4.9. We have an exact sequence

H(O)
(N,−χ)−→ H(R)⊕ B(O)

ψ⊕i∗−→ B(R) → 0.

Proof. This is a special case of [13, Prop. 6.4]. □

We have the following:

Theorem 4.10 ([13, Thm. 1.3]). There is an element IC of B(R) such that the elements of
G(ModR) that are attainable in C are precisely the effective elements of Z(R) that map to
IC in B(R). In particular, the isogeny class C contains a principal polarisation if and only if
IC = 0.

Proposition 4.11. The obstruction element IC lies in i∗(B(O)).

Proof. This is part of [13, Prop. 7.1]. □

5. Polarisations of degree 4 on abelian surfaces

In Section 2, we showed that an abelian surface with Weil polynomial f ∈ P irr
npp ⊔ P irr

Wres
contains curve of arithmetic genus 3 if and only if it admits a polarisation with kernel of order
4. We now apply the results developed in Section 4 to characterise isogeny classes defined by
a polynomial in P irr

npp ⊔P irr
Wres not containing abelian surfaces with a curve of genus 3 lying on.

In this section, we assume that f(t) ∈ P irr
npp⊔P irr

Wres. As before, we denote the corresponding
isogeny class by C and set K = Q[x]/f(t) = Q(π) and K+ = Q(π + q/π). We fix also
R = Z[π, q/π] ⊂ K and R+ = Z[π + q/π] ⊂ K.

Proposition 5.1. Let f(t) ∈ P irr
npp. Then 2 is inert in K+ if and only if there is no attainable

R-module of order 4.

Proof. If f+(t) mod 2 is irreducible then 2 is inert in K+ and there is no attainable R-module
of order 4 by Lemma 4.7 and Theorem 4.10. So, we assume that f+(t) mod 2 has a linear
factor for the rest of the proof. Hence, again by Lemma 4.7 and Theorem 4.10, if there is an
attainable R-module M of order 4 then we must have

[M ]R = [R+/l⊗R+ R]R = [R/lR]R,

where l is a maximal ideal of R+ such that R+/l ≃ F2. By Lemma 3.3, K/K+ is unramified.
So, the Artin map induces an isomorphism Gal(K/K+) ≃ B(O) by Proposition 4.8. Let α be
the non-zero element of B(O), which corresponds to the Artin symbol of any maximal ideal
of O+ that stays inert in K. By Theorem 4.10 and Proposition 4.11, IC is non-zero and in
i∗(B(O)). Hence IC = i∗(α). Let zl be the image of [R/lR]R in B(R). Note that

zl = (Ψ⊕ i∗)((xl, 0)),

where xl is the image of [R/lR]R in H(R). We obtain that zl − IC = (Ψ⊕ i∗)((xl, α)). Hence
there is an R-module M of order 4 which is attainable if and only if

(xl, α) ∈ ker((Ψ⊕ i∗)) = (N,−χ)(H(O)),

where the equality holds by Proposition 4.9.
Assume that 2 is inert in K+ and write m = 2O+. By Proposition 3.5, we see that m

splits in K, say mO = MM. A preimage of xl in H(O) via N : H(O) → H(R) must be an
F2-linear combination of the images yM and yM of M and M in H(O). Since m is split in K,
then the Artin symbols of M and M are trivial in Gal(K/K+) ≃ B(O). Hence any F2-linear
combination of the images yM and yM won’t be mapped by χ : H(O) → B(O) to α. This
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means that (xl, α) is not in (N,−χ)(H(O)). Hence, there is no R-module M of order 4 which
is attainable.

Assume now that 2 is not inert in K+. Let M be a maximal ideal of O containing lR.
Denote the image of [O/M]O in H(O) by yM. By Proposition 3.5, we have that M = mO for
a maximal ideal m of O+. This implies that χ(yM) = α. So, to prove that R/lR is attainable,
we are left to show that N(yM) = xl. We first consider the case that lR is a maximal ideal of
R. Note that lR = M ∩ R and we have an isomorphism R/lR ≃ O/M. Hence N(yM) = xl.
Therefore, R/lR is attainable. Now we consider the case when lR is not a maximal ideal of
R. Set L = M ∩ R. The natural surjective map R/lR ↠ R/L is not an isomorphism. Since
L = L and [R/lR]R ∈ Z(R) we get that

[R/lR]R = 2[R/L]R.

Moreover, also [O/M]R = 2[R/L]R. Hence, again, N(yM) = xl. Therefore, as before, R/lR is
attainable. □

Proposition 5.2. Assume that f(t) ∈ P irr
Wres. Write 2O+ = m2 and let l = m ∩ R+ be

the unique maximal ideal of R+ above 2. Then there is an R-module M of order 4 which is
attainable if and only if lR is not a maximal ideal of R.

Proof. Observe that f(t) mod 2 is a square of a linear factor. Let l be the corresponding
maximal ideal of R+. By Lemma 4.7 and Theorem 4.10, if there is an attainable R-module
M of order 4 then we must have

[M ]R = [R+/l⊗R+ R]R = [R/lR]R.

Since f(t) ∈ P irr
Wres, the obstruction element IC is trivial by Theorem 4.10. Hence, there is an

R-module M of order 4 which is attainable if and only if the image zl of [R/lR]R in B(R) is
trivial. Note that

zl = (Ψ⊕ i∗)((xl, 0)),

where xl is the image of [R/lR]R in H(R). Also, the R-module R/lR has length at most 2
and that it has length 1 if and only if lR is a maximal ideal of R.

If the length of R/lR is 2 then [R/lR]R = [R/n]R+[R/n]R for a maximal ideal n of R, with
possibly n = n, and so, by Lemma 4.1, [R/lR]R is in B(R). Hence, xl is trivial in H(R) and
so zl = IC in B(R). This means that R/lR is an attainable R-module of order 4.

To conclude the proof, we need to show that if the length of R/lR is 1, that is, lR is a
maximal R-ideal, then (xl, 0) is not in

ker((Ψ⊕ i∗)) = (N,−χ)(H(O)),

where the equality holds by Proposition 4.9. So, assume that lR is a maximal ideal of R. Let
M be a maximal ideal of O above lR. Since we have an inclusion of residue field R/lR→ O/M
and 2 is not inert in O by Proposition 3.5, then

R/lR ≃ O/M ≃ F4.

This implies that [O/M]R = [R/lR]R. If we denote the image of [O/M]O in H(O) by yM,
we get N(yM) = xl. By Proposition 3.5, since O/M ≃ F4, we get that m is inert in K. This
means that the Artin symbol

(
K/K+

m

)
is a generator of Gal(K/K+). We now claim that

K/K+ is unramified. If not, then by Lemma 3.1 and Lemma 3.2, we would get that there is
unique maximal ideal m of O+ above 2 which ramifies in O, say mO = M2. For such M we
would have O/M ≃ F2. Since we know that every maximal ideal of O above l has residue
field isomorphic to F4, we deduce that K/K+ is unramified. Then, by Proposition 4.8, we get
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that χ(yM) ̸= 0 in B(O). So (xl, 0) is not in the image of (N,−χ) and, therefore, there is no
R-module of order 4 which is attainable. □

In Theorem 5.7, we wrap-up the discussion above. Moreover, in certain cases with C or-
dinary, we show that if there is an abelian variety with polarisation with kernel of order 4
then there is an abelian variety with polarisation with kernel of order 4 and maximal endo-
morphism ring. To do so, we use results from [12]. The construction of B(O) in [12] is slightly
different form the one in [13] that we have presented above, but certainly equivalent in view
of Proposition 4.8 and [12, Prop. 10.1].

Definition 5.3. A finite R-module M is strongly attainable if there exists an abelian variety
B in C such that End(B) is the maximal order of K with a polarisation φ : B → B∨ such
that ϵ([kerφ]C) = [M ]R.

Clearly strongly attainable implies attainable, while the contrary does not hold in general.
A characterisation of strongly attainable R-modules is given in [12, Prop. 5.7], repeated below
as Proposition 5.5 for convenience. Such characterisation relates modules with a particular
element IK,Φ of B(O) which depends on a choice of a CM-type Φ of K. The definition of IK,Φ
is given in [12, Def. 5.2]. For our purposes, it sufficient to know whether it is trivial or not in
B(O).

Lemma 5.4. If f ∈ P irr
npp is ordinary then IK,Φ ̸= 0. If f ∈ P irr

Wres is ordinary and either

• K/K+ is ramified, or
• K/K+ is unramified and there is no maximal ideal of O+ dividing π− q/π which stays

inert in K/K+,
then IK,Φ = 0.

Proof. Assume that f ∈ P irr
npp is ordinary. Then C does not contain a principally polarised

abelian variety. The result follows from [12, Prop. 11.3] and [12, Cor. 11.4].
Assume from now that f ∈ P irr

Wres is ordinary. If K/K+ is ramified then the IK,Φ = 0 by
[12, Prop. 11.1]. If K/K+ is unramified and there is no maximal ideal of O+ dividing π− q/π
which stays inert in K/K+ then the result follows, again, by combining [12, Prop. 11.3] and
[12, Cor. 11.4] and the observation that C contains a principally polarised abelian variety. □

Recall that, by Proposition 4.8, we have a natural surjective homomorphism fromG(ModO+)
to B(O) defined by sending a maximal ideal to its Artin symbol.

Proposition 5.5. [12, Prop. 5.7] Let M be finite R-module. Then M is strongly attainable if
and only if M ≃ O/aO for some O+-ideal a ⊆ O+ such that the image in B(O) of the class
of O+/a in G(ModO+) equals IK,Φ.

Proposition 5.6. Assume that f(t) ∈ P irr
Wres is ordinary. Write 2O+ = m2, Then either

(a) K/K+ is ramified and there is a strongly attainable R-module of order 4, or
(b) K/K+ is unramified, there is no maximal ideal of O+ dividing π − q/π which stays

inert in K and, there is a strongly attainable R-module of order 4 if and only if m
splits in K.

Proof. Note that M = O/mO has order 4. By Lemmas 3.2 and 3.3, either K/K+ is ramified
or, K/K+ is unramified and there is no maximal ideal of O+ dividing π − q/π which stays
inert in K.
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If K/K+ is ramified then B(O) = 0 by Proposition 4.8. So IK,Φ and the image in B(O) of
the class of M in G(ModO+) are equal. Hence M is a strongly attainable module of order 4
by Proposition 5.5. that is, we are in case (a).

Assume now that K/K+ is unramified and there is no maximal ideal of O+ dividing π−q/π
which stays inert in K. By Lemma 5.4, we have that IK,Φ = 0. Since K/K+ is unramified, the
maximal ideal m is either split or inert in K. Also, m is split if and only if the Artin symbol
of m in Gal(K/K+) is trivial. By Proposition 4.8, this happens precisely when the image in
B(O) of the class of M in G(ModO+) is trivial, that is, equal to IK,Φ. We conclude the proof
of (b) by applying Proposition 5.5. □

Theorem 5.7. Assume that f ∈ P irr
npp ⊔ P irr

Wres.

(i) The following are equivalent:
(a) There is no attainable R-module of order 4.
(b) There is no A in C admitting a polarisation of degree 4.
Moreover, if C is ordinary then (a) and (b) are also equivalent to:
(c) There is no strongly attainable R-module of order 4.
(d) There is no A in C with maximal Fq-endomorphism ring admitting a polarisation

of degree 4.
(ii) Assume that f ∈ P irr

npp. Then (a) and (b) are also equivalent to:
(e) 2 is inert in K+.

(iii) Assume that f(t) ∈ P irr
Wres and write f(t) = t4 + bt2 + q2. Write 2O+ = m2 and let

l = m ∩ R+ be the unique maximal ideal of R+ above 2. Then (a) and (b) are also
equivalent to each of the following statements:
(f) lR is a maximal ideal of R.
(g) b = 1− 2q and q is odd, if C is ordinary; q is even, if C is non-ordinary.

Proof. The equivalences (a) ⇐⇒ (b) and (c) ⇐⇒ (d) follow from the definitions of attainable
and strongly attainable module and Theorem 4.5. The implications (a)⇒(c) and (b)⇒(d) are
clear. The reverse implications will be proven below distinguishing several cases.

We now show Part (ii). So, assume that f(t) ∈ P irr
npp. The equivalence (e) ⇐⇒ (a) is

Proposition 5.1. We show that (c) implies (e) by contraposition, when C is ordinary. So, say
that 2 is not inert in K+. Then, by Proposition 3.5, there exists a maximal ideal l of O+

above 2 such that l stays inert in K. Hence, the Artin symbol of l is not trivial in Gal(K/K+).
Since K/K+ is unramified by Lemma 3.3, we get that the image in B(O) of the class of O+/l
in G(ModO+) is non trivial by Proposition 4.8. Then by Lemma 5.4 and Proposition 5.5, the
module O/lO, which has order 4, is strongly attainable. Therefore (c)⇒(a) and (d)⇒(b) for
f(t) ∈ P irr

npp.
We now move to Part (iii). Assume now that f ∈ P irr

Wres. The equivalence (f) ⇐⇒ (a) is
Proposition 5.2. We deal with the ordinary and non-ordinary cases separately.

Assume first that C is ordinary. We now show (c)⇒(g). So, we assume that there are no
strongly attainable R-modules of order 4. By Proposition 5.6, this is equivalent to have K/K+

unramified and m inert in K. By Theorem 1.2 and Lemma 1.9, we get that b = 1− 2q. Hence
f(t) = t4 + (1− 2q)t2 + q2. If q is even, then f(t) ≡ t2(t+1)2 mod 2. The Kummer-Dedekind
Theorem [24, Thm. 8.2] implies that Z[π] has 2 distinct maximal ideals above 2. Hence the
same holds for R. This cannot be the case since L = R ∩ mO is the unique maximal ideal of
R above 2. Hence, q is odd. This means that (g) holds. We now show that (g)⇒(f). Then
f(t) ≡ (t2 + t+1)2 mod 2. The Kummer–Dedekind Theorem [24, Thm. 8.2] implies that Z[π]
has a unique maximal ideal above 2 with residue field of order 4. This implies that L also has
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residue field of order 4. Since lR ⊆ L and R/lR has also 4 elements, we must have lR = L,
that is, (f) holds. We deduce also that (c)⇒(a) and (d)⇒(b) for f(t) ∈ P irr

Wres ordinary.
Assume now that C is non-ordinary. If q is even then f(t) ≡ t4 mod 2. This means that

R has a unique maximal ideal above 2, which must be L = (2, π, q/π) ⊂ R, since R/L ≃ F2.
Since R/lR has 4 elements, we obtain that lR is not a maximal ideal of R. If q is odd then
f(t) ≡ (t2 + t + 1)2. By the Kummer–Dedekind Theorem [24, Thm. 8.2], the order Z[π] has
a unique maximal ideal above 2 which is regular and with residue field F4. It follows that the
same hold for R. Hence lR is maximal. This shows (g) ⇐⇒ (f) and completes the proof of
Part (iii). □

Remark 5.8. In the case when f(t) ∈ P irr
Wres, we completely characterise when the equivalent

conditions (a),(b) and (f) hold in terms of the coefficients of f(t) in (g). It is easy to obtain
a characterisation in terms of the coefficients of f(t) = t4 + at3 + bt2 + aqt + q2 also when
f(t) ∈ P irr

npp. Indeed, if we write ∆f+ = a2 − 4(b − 2q) = c2d for integers c and d with d
squarefree, then it is well known that (e) holds if and only if d ≡ 5 mod 8. Moreover, if q is
even (or equivalently a is odd) then f+(t) ≡ t2+ t+1 mod 2 is irreducible, which implies that
2 is inert in K+. Similarly, if a is even and a + b ̸≡ 1 mod 4 then f+(t) ≡ (t + 1)2 and the
remainder of the division of f+(t) by t + 1 is not divisible by 4. Hence, 2 ramifies in K+ by
the Kummer–Dedekind Theorem [24, Thm. 8.2].

6. Computing isomorphism classes admitting a polarisation of degree 4

In [18], it is described how to compute the isomorphism classes of abelian varieties over Fq
belonging to an ordinary isogeny class C determined by an irreducible Weil polynomial f(t).
We summarise here the results that are relevant for us; see [18, Cor. 4.4, Thm. 5.4].

Let K = Q[t]/(f(t)) = Q[π] where π denotes the class of t in K and set R = Z[π, q/π].
There is an equivalence between the category of abelian varieties in C (with Fq-morphisms) and
the category of fractional R-ideals in K (with R-linear morphisms). Hence, every overorder
S of R occurs as the endomorphism ring of an abelian variety in C. Moreover, the functor
inducing the equivalence is compatible with duality and allows to describe polarizations as
R-linear morphisms. For example, if End(A) = S then End(A∨) = S. In [18, Sec. 6], we use
the equivalence to produce an algorithm to compute the abelian varieties in C together with
their polarizations (of a fixed degree) up to polarized isomorphism. We will use this algorithm
in the next examples.

Remark 6.1. An analogous description of polarisations exists also for simple almost-ordinary
abelian varieties over any finite field Fq of odd characteristic; see [21]. This result does not ap-
ply to our case since none of the polynomials in P irr

npp⊔P irr
Wres is almost-ordinary by Lemma 1.9.

A similar description also exists for abelian varieties over prime fields whose Weil polynomial
does not have repeated complex roots, but only for polarisations of degree 1; see [6].

Example 6.2. Consider the isogeny class of abelian surfaces over F2 with label 2.2.a_ab
determined by the Weil polynomial f(t) = t4 − t2 + 4. According to the LMFDB, the class
contains a Jacobian. Moreover, one computes that the order Z[π, 4/π] has 3 overorders S1, S2
and O, where O is the maximal order of the number field K = Q[t]/(f(t)). One observe that
S2 = S1. Hence, each abelian surface A with endomorphism ring S1 cannot be isomorphic
to its dual, which has endomorphism ring S2. In particular, such an A does not admit a
principally polarisation. Hence, such an A does not contain a curve of arithmetic genus 2, as
explained in Remark 1.3, even if it is isogenous to a Jacobian.

http://www.lmfdb.org/Variety/Abelian/Fq/2/2/a_ab
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Example 6.3. In Theorem 5.7, we see that, in the isogeny class C associated to an ordinary
Weil polynomial in P irr

npp ⊔ P irr
Wres, there is an abelian variety A admitting a polarisation of

degree 4 if and only if there is an abelian variety A′ in C with maximal endomorphism ring
admitting a polarisation of degree 4. This is not the case in general. For example, in the
isogeny class with label 2.13.a_al determined by t4 − 11t2 + 132 there are abelian varieties
admitting a polarisation of degree 4 but none of them has maximal endomorphism ring.

Example 6.4. Using the aforementioned algorithm, we count the number of polarisations of
degree 4, for every isogeny class in P irr

npp ⊔P irr
Wres for a fixed range of q. For the full output, see

https://raw.githubusercontent.com/stmar89/Genus3Data/main/table_output.txt. We
remark that in the maximal endomorphism ring case, the ratio of isomorphism classes of
abelian surfaces admitting a polarisation of degree 4 is always 0 or a power of 1/2.

7. Genus 3 curves lying on abelian surfaces

In this final section, we switch our attention from abelian surfaces to curves, and gather
information on genus 3 curves lying on abelian surface with Weil polynomials in P irr

npp⊔P irr
Wres⊔

{(t2− 2)2, (t2− 3)2}, that is, which is simple and not isogenous to a Jacobian, or equivalently,
not containing curves of geometric genus 0,1 or 2. We fix an abelian surface A defined over
Fq in such an isogeny class, and we suppose that there is an absolutely irreducible projective
smooth genus 3 curve C defined over Fq that lies on A. The following lemma characterises
the Jacobian of C.

Lemma 7.1. Let q be the power of an odd prime. Let C be a genus 3 curve lying on an abelian
surface A defined over Fq. Then C is the double cover of an elliptic curve E and the Jacobian
Jac(C) of C is isogenous to E ×A.

Proof. By [5, Prop. 1.8], as C lies on A, it is bielliptic, that is, it is the double cover of an elliptic
curve E. In particular, we know that the Jacobian of C is isogenous to Jac(E)× P ≃ E × P ,
P being the Prym variety associated with the double cover. Hence, since by [5, Sec. 1.4] we
know that P and A are isogenous, we deduce Jac(C) ∼ E ×A. □

We recall that absolutely irreducible genus 3 curves are either hyperelliptic curves or plane
quartics. The next lemma shows that hyperelliptic genus 3 curves cannot lie on our abelian
surfaces, at least if we work over finite fields of odd characteristic.

Lemma 7.2. Let q be the power of an odd prime. Let C be a genus 3 curve lying on an abelian
surface A defined over Fq which is simple and not isogenous to a Jacobian. Then C is not
hyperelliptic.

Proof. Suppose by contradiction that C is hyperelliptic. We mainly follow the reasoning in
the introduction of [22]. By Lemma 7.1, C is also bielliptic. Then, it is of the form y2 =
x8 + ax6 + bx4 + cx2 +1 = f(x2), with a, b, c ∈ Fq. Here f is a polynomial of degree 4. In this
case, the double cover is given by the involution (x, y) 7→ (−x, y) and the elliptic curve is given
by y2 = f(x). Furthermore, quotienting C by the hyperelliptic involution (x, y) 7→ (−x,−y)
gives the genus 2 curve F : y2 = x · f(x). Finally, we have Jac(C) ∼ E × Jac(F ), hence
Jac(F ) ∼ A by Lemma 7.1. The Jacobian of F can be simple or split in the product of two
elliptic curves. In both cases, this leads to a contradiction. □

Hence, we are left with the case in which C is a bielliptic plane quartic. In this case, using
results from [22], we get the following result.

http://www.lmfdb.org/Variety/Abelian/Fq/2/13/a_al
https://raw.githubusercontent.com/stmar89/Genus3Data/main/table_output.txt
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Proposition 7.3. Let q be the power of an odd prime. Let C be an absolutely irreducible
smooth genus 3 curve lying on an abelian surface defined over Fq respecting one of the equivalent
conditions of Theorem 1.2. Then, C is a plane quartic of the form y4−h(x, z)y2+r(x, z) = 0,
where h and r are homogenous polynomials of degree 2 and 4, respectively, and one of the
followings holds:

(1) the polynomial r(x, z) cannot be decomposed (over Fq) as the product of two polynomials
f, g of degree 2. In particular, the polynomial r is either irreducible or it has only one
root in Fq;

(2) we have r(x, z) = f(x, z) · g(x, z) with deg f = deg g = 2, and the polynomial h(x, z)
is a linear combination of f and g.

Proof. By Lemma 7.2 we know that C cannot be hyperelliptic, and by hypothesis C is the
double cover of an elliptic curve E. Then, we can assume that the involution giving the
double cover is (x : y : z) 7→ (x : −y : z), and therefore that C can be written in the form
y4−h(x, z)y2+r(x, z) = 0, where h is a homogenous degree 2 polynomial, and r is homogenous
of degree 4. Let us suppose that the polynomial r has two quadratic factor f and g and that
the polynomial h(x, z) is not a linear combination of f and g. Then, by [22, Thm. 1.1] we can
explicitly construct a genus 2 curve F such that Jac(C) ∼ Jac(F ) × E. Then, the curve C
cannot lie on A, since otherwise A would be isogenous to Jac(F ) by Lemma 7.1. Finally, one
of the two conditions in the proposition must hold. □

Finally, we present bounds on the number of rational points that a genus 3 curve lying on
an abelian surface with Weil polynomial in P irr

npp ⊔ P irr
Wres ⊔ {(t2 − 2)2, (t2 − 3)2} can have. To

start with, we recall and extend a result from [9] on the number of rational points on curves
over abelian surfaces.

Proposition 7.4. Let A be an abelian surface defined over Fq with trace −a. Let C be an
absolutely irreducible curve defined over Fq, of arithmetic genus pa, lying on A. Then

| #C(Fq)− (q + 1 + a) |≤ |pa − 2|⌊2√q⌋.

Proof. The upper bound on #C(Fq) is [9, Thm. 4]. The proof can be adapted to obtain also
the lower bound on #C(Fq). In what follows, we borrow the notation from the proof of [9,
Thm. 4].

If pa = 1, then we know that the curve C is elliptic, of trace say −e. Write a = e+ x2 for
some integer −⌊2√q⌋ ≤ x2 ≤ ⌊2√q⌋. Hence,

#C(Fq) = q + 1 + e = q + 1 + a− x2 ≥ q + 1 + a− ⌊2√q⌋.

Suppose now pa ≥ 2. By [3, Prop. 2.3], we know that #C(Fq) −#C̃(Fq) ≥ g − pa, where
C̃ is the normalisation of C and g is its genus. Following the reasoning in the proof of [9,
Thm. 4, Eq. (5)], there exist real numbers x3, . . . , xg such that

#C̃(Fq) = q + 1 + a+

g∑
i=3

xi and
g∑
i=3

xi ≥ −(g − 2)⌊2√q⌋.
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Using that g − pa ≤ 0, we get the following series of inequalities:

#C(Fq) ≥ q + 1 + a+

g∑
i=3

xi + g − pa

≥ q + 1 + a− (g − 2)⌊2√q⌋+ g − pa

≥ q + 1 + a− (g − 2)⌊2√q⌋+ (g − pa)⌊2
√
q⌋

= q + 1 + a− (pa − 2)⌊2√q⌋,

and the statement follows. □

Note that in [9, Thm. 4] the author needs the hypothesis a ≥ −q, which is however only
used to prove the result for curves which are irreducible but not absolutely irreducible. For
such curves, the number of rational points cannot exceed pa − 1, but we cannot prove a lower
bound different from the trivial one.

From Proposition 7.4, we deduce the following facts. First, recall that a Weil restriction has
always zero trace. Thus, if C is an absolutely irreducible curve of arithmetic genus 3 lying on
a Weil restriction, then

(4) q + 1− ⌊2√q⌋ ≤ #C(Fq) ≤ q + 1 + ⌊2√q⌋.

Indeed, in this case, C has the same number of rational points of the elliptic curve of which it
is the double cover.

Secondly, we know that the trace of an abelian surface which does not admit a principal
polarisation respects a2 = q − b. Then, if C is an absolutely irreducible curve of arithmetic
genus 3 on such a surface, we have

q + 1−
√
q − b− ⌊2√q⌋ ≤ #C(Fq) ≤ q + 1 +

√
q − b+ ⌊2√q⌋.

A sloppy estimation, using that |b| ≤ 2q and hence
√
q − b ≤

√
3q ≤ 2

√
q, gives us

(5) q + 1− 2⌊2√q⌋ ≤ #C(Fq) ≤ q + 1 + 2⌊2√q⌋.

In particular, we see that an absolutely irreducible curve of genus 3 lying on a simple abelian
surface not isogenous to the Jacobian of a genus 2 curve has not many rational points and it
is far from reaching the Serre–Weil bound which states |#C(Fq)− (q + 1)| ≤ 3⌊2√q⌋.
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