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On Non-uniqueness of Phase Retrieval in Multidimensions
by Roman G. Novikov and Tianli Xu

Abstract: We give a large class of examples of non-uniqueness for the phase retrieval problem in multidimensions.
Our examples include the case of functions with strongly disconnected compact support.
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1. Introduction
The phase retrieval problem consists in finding a function 𝑣 ∶ ℝ𝑑 → ℂ from the magnitude |𝑣̂| of its Fourier

transform
𝑣̂(𝑝) = 𝐹𝑣(𝑝) = 1

(2𝜋)𝑑 ∫ℝ𝑑
𝑒𝑖𝑝𝑥𝑣(𝑥)𝑑𝑥, 𝑝 ∈ ℝ𝑑 . (1)

This problem naturally arises in quantum mechanics, optics, and related areas such as electron tomography and
X-ray imaging; see, for example, [1] - [10] and references therein.

In general, many different functions have the same Fourier modulus. These different solutions can be obtained by
multiplying |𝑣̂| by measurable complex-valued functions with modulus one and taking the inverse Fourier transform;
see, for example, [3].

When 𝑣 is compactly supported, the degree of ambiguity is reduced. In particular, for 𝑑 = 1, all solutions with
compact support could be obtained from any one of them by flipping (conjugating) non-real zeros of its Fourier trans-
form extended by analyticity to the complex plane; see [10], [4].

When 𝑣 is a sum of functions with sufficiently disconnected compact supports, the degree of ambiguity is further
reduced. In particular, for 𝑑 = 1, this ambiguity is completely described in [3]. Roughly speaking, in this case, the
phase retrieval problem almost always has essentially a unique solution.

In addition, it is also mentioned in the literature that for functions with compact support, the degree of non-
uniqueness of phase retrieval is further reduced in dimension 𝑑 ≥ 2, in general, and for the case of sufficiently discon-
nected support in particular; see [3].

Moreover, the recent important work [7] suggests an efficient numerical phase retrieval algorithm for functions
with sufficiently disconnected compact support. This algorithm works very well numerically (at least, for 𝑑 = 2) and
possible non-trivial non-uniqueness is not even discussed in [7].

Recall that the non-uniqueness in phase retrieval for compactly supported 𝑣 with possible additional assumptions
is non-trivial (and of interest) if it does not reduce to the functions 𝑣𝛼,𝑦 and 𝑣̃𝛼,𝑦 associated to 𝑣, where

𝑣𝛼,𝑦(𝑥) = 𝑒𝑖𝛼𝑣(𝑥 − 𝑦) and 𝑣̃𝛼,𝑦(𝑥) = 𝑒𝑖𝛼𝑣(−𝑥 + 𝑦), 𝛼 ∈ ℝ, 𝑦 ∈ ℝ𝑑 , (2)

where bar denotes the complex conjugation; see, for example, [2].
Nevertheless, in the present article, we construct a large class of non-trivial examples of non-uniqueness for phase

retrieval in multidimensions. Then we also give, in particular, interesting non-trivial examples of non-uniqueness in
phase retrieval for functions with strongly disconnected compact support in multidimensions. These results are given
as Theorems 1 and 2 in Section 2.

Thus, in order to have complete uniqueness in phase retrieval for functions 𝑣 even with strongly disconnected com-
pact support, and even modulo associated functions in dimension 𝑑 ≥ 2, additional a priori information is necessary. In
connection with natural theoretical and numerical results in this direction, see, for example, [1], [5], [8] and references
therein.

A preliminary version of this article corresponds to the preprint [9].
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2. The main results
First, we construct a large class of non-trivial examples of non-uniqueness for phase retrieval in dimension 𝑑 ≥ 2.
Let 𝑓𝑗 , 𝑔𝑗 ∈ 𝐿2(ℝ), 𝑠𝑢𝑝𝑝 𝑓𝑗 , 𝑠𝑢𝑝𝑝 𝑔𝑗 ⊆ [−𝜖, 𝜖], 𝜖 > 0, |𝑓𝑗|2 = |𝑔̂𝑗|2 ≢ 0 on ℝ, 𝑗 = 1,⋯ , 𝑁 , where ̂ stands for

the one-dimensional Fourier transform.
Here, 𝑓𝑗 and 𝑔𝑗 are constructed as follows, using results of [10] on non-uniqueness in phase retrieval in dimension

𝑑 = 1.
Let

𝐼𝑗 denotes the set of non-real zeros of 𝑓𝑗 , where each zero is repeated according to its multiplicity. (3)

As in [10], we assume that

𝑔̂𝑗(𝑧) = exp(𝑖𝛼𝑗 + 𝑖𝛽𝑗𝑧)
∏

𝜁∈𝐼 ′𝑗

1 − 𝑧∕𝜁
1 − 𝑧∕𝜁

𝑓𝑗(𝑧), 𝑧 ∈ ℂ, 𝑗 = 1,⋯ , 𝑁, (4)

where 𝛼𝑗 , 𝛽𝑗 are two real constants and

𝐼 ′𝑗 ⊂ 𝐼𝑗 , 𝐼
′
𝑗 ≠ ∅, 𝐼 ′𝑗 ≠ 𝐼𝑗 , 𝐼

′
𝑗 ∩ 𝐼

′
𝑗 = ∅, 𝐼 ′𝑗 ≠ 𝐼𝑗 ⧵ 𝐼𝑗 , (5)

where bar denotes the complex conjugation. Note that 𝛼𝑗 in (4) are arbitrary, whereas |𝛽𝑗| are sufficiently small
(maybe just zeros), so that 𝑠𝑢𝑝𝑝 𝑔𝑗 ⊆ [−𝜖, 𝜖].

For simplicity, we assume that 𝐼 ′𝑗 are finite.
Next, we define 𝑓 , 𝑔 as

𝑓 = 𝐹−1𝑓, 𝑓 (𝑝) =
𝑁
∏

𝑗=1
𝑓𝑗(𝜔𝑗 ⋅ 𝑝), 𝑝 ∈ ℝ𝑑 , (6)

𝑔 = 𝐹−1𝑔̂, 𝑔̂(𝑝) =
𝑁
∏

𝑗=1
𝑔̂𝑗(𝜔𝑗 ⋅ 𝑝), 𝑝 ∈ ℝ𝑑 , (7)

where 𝑓𝑗 , 𝑔𝑗 are as in formulas (3) - (5), 𝜔𝑗 ∈ 𝕊𝑑−1, and 𝜔𝑗 ≠ ±𝜔𝑘 if 𝑗 ≠ 𝑘.
Let

𝐵𝑟 = {𝑥 ∈ ℝ𝑑 ∶ |𝑥| ≤ 𝑟}, 𝑟 > 0. (8)

Theorem 1: Let 𝑓 , 𝑔 be defined by (6), (7). Then:
(i) 𝑠𝑢𝑝𝑝 𝑓 , 𝑠𝑢𝑝𝑝 𝑔 ⊆ 𝐵𝑟, where 𝑟 = 𝑁𝜖,
(ii) |𝑓 |2 = |𝑔̂|2 ≢ 0 on ℝ𝑑 ,
(iii) 𝑓 ≠ 𝑔 in the sense of distributions on ℝ𝑑 , moreover, 𝑓 and 𝑔 are not associated functions in the sense of

formulas (2),
(iv) in addition, if 𝑁 ≥ 𝑑 and there are 𝑑 linearly independent 𝜔𝑗 in (6), (7), then 𝑓 , 𝑔 ∈ 𝐿2(𝐵𝑟).

Theorem 1 is of interest for 𝑑 ≥ 2, whereas it reduces to known results for 𝑑 = 1.
Theorem 1 is proved in Section 3, using, in particular, some complex analysis in ℂ𝑑 .
Next, we give non-trivial examples of non-uniqueness in phase retrieval for functions with strongly disconnected

compact support in multidimensions.
We consider complex-valued functions 𝑣 on ℝ𝑑 of the form

𝑣 =
𝑛
∑

𝑘=1
𝑣𝑘, 𝑠𝑢𝑝𝑝 𝑣𝑘 ⊂ 𝐷𝑘, 𝑣𝑘 ≢ 0, (9)

where
𝐷𝑘 are open convex bounded domains in ℝ𝑑 , dist(𝐷𝑖, 𝐷𝑗) ≥ 𝑟 > 0 for 𝑖 ≠ 𝑗. (10)

Here, dist(,) denotes the distance between sets  and  in ℝ𝑑 .
Let

𝑁𝜖(𝑈 ) = {𝑥 ∈ ℝ𝑑 ∶ dist(𝑥, 𝑈 ) < 𝜖}, 𝜖 > 0, 𝑈 ⊂ ℝ𝑑 ; (11)
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𝑢1 ∗ 𝑢2(𝑥) = ∫ℝ𝑑
𝑢1(𝑥 − 𝑦)𝑢2(𝑦)𝑑𝑦, 𝑥 ∈ ℝ𝑑 , (12)

where 𝑢1, 𝑢2 are test functions on ℝ𝑑 .
Theorem 2: Let 𝑓 , 𝑔 be two complex-valued functions onℝ𝑑 such that 𝑠𝑢𝑝𝑝 𝑓 , 𝑠𝑢𝑝𝑝 𝑔 ⊆ 𝐵𝛿 , |𝑓 |2 = |𝑔̂|2 ≢ 0 on ℝ𝑑 ,

but 𝑓 and 𝑔 are not associated functions in the sense of formulas (2). Let 𝑣 be as in (9), (10), where 𝑟 > 2𝛿. Let
𝑣𝑓 = 𝑓 ∗ 𝑣, 𝑣𝑔 = 𝑔 ∗ 𝑣. Then:

(i) 𝑣𝑓 , 𝑣𝑔 are of the form (9), (10) with 𝑁𝛿(𝐷𝑘) in place of 𝐷𝑘 and 𝑟𝛿 = 𝑟 − 2𝛿 in place of 𝑟;
(ii) |𝑣̂𝑓 |2 = |𝑣̂𝑔|2 ≢ 0 on ℝ𝑑 ,
(iii) 𝑣𝑓 ≠ 𝑣𝑔 , moreover, 𝑣𝑓 and 𝑣𝑔 are not associated functions in the sense of formulas (2).

Theorem 2 is proved in Section 4.
Note that Theorem 1 gives a large class of possible functions 𝑓 , 𝑔 for Theorem 2.
In particular, one can consider Theorem 2 assuming that 𝑓 , 𝑔 ∈ 𝐿2(𝐵𝛿), 𝑣𝑘 ∈ 𝐿2(𝐷𝑘).
In addition, Theorem 2 is of interest even when all 𝑣𝑘 in (9) are Dirac delta functions, i.e.,

𝑣𝑘(𝑥) = 𝐶𝑘𝛿(𝑥 − 𝑦𝑘), 𝑦𝑘 ∈ 𝐷𝑘, 𝐶𝑘 ∈ ℂ, 𝑘 = 1,⋯ , 𝑛. (13)

Theorem 2, for 𝑛 ≥ 2, gives an interesting class of non-trivial examples of non-uniqueness in phase retrieval for
functions with strongly disconnected compact support in multidimensions, taking also into account Theorem 1.

Theorem 2 is of some interest even when 𝑛 = 1 in (9).
The non-uniqueness in phase retrieval for functions with strongly disconnected support given by Theorems 1 and

2 is already of interest when 𝑁 = 1 in (6), (7) and 𝑣𝑘 ∈ 𝐿2(𝐷𝑘).

3. Proof of Theorem 1
Recall that

𝐹−1(𝜙1𝜙2) = (2𝜋)−𝑑𝐹−1𝜙1 ∗ 𝐹−1𝜙2, (14)

(2𝜋)𝑑𝐹 (𝑢1 ∗ 𝑢2) = 𝐹𝑢1𝐹𝑢2, (15)

where 𝐹 is defined by (1), 𝜙1, 𝜙2, 𝑢1, 𝑢2 are test functions on ℝ𝑑 , and ∗ denotes the convolution defined by (12).
Recall also that if 𝑠𝑢𝑝𝑝 𝑢1 ⊆ 1, 𝑠𝑢𝑝𝑝 𝑢2 ⊆ 2, where 1, 2 are closed bounded sets in ℝ𝑑 , then

𝑠𝑢𝑝𝑝 𝑢1 ∗ 𝑢2 ⊆ 1 +2, (16)

where
1 +2 = {𝑥 + 𝑦 ∶ 𝑥 ∈ 1, 𝑦 ∈ 2}. (17)

In addition,
𝐵𝑟1 (𝑎1) + 𝐵𝑟2 (𝑎2) = 𝐵𝑟1+𝑟2 (𝑎1 + 𝑎2), (18)

where
𝐵𝑟(𝑎) = {𝑥 ∈ ℝ𝑑 ∶ |𝑥 − 𝑎| ≤ 𝑟}, 𝑎 ∈ ℝ𝑑 , 𝑟 > 0. (19)

Item (i) follows from formulas (14), (16), (18) with 𝑎1 = 𝑎2 = 0.
Item (ii) follows from definitions (6), (7) and the property that |𝑓𝑗|2 = |𝑔̂𝑗|2 ≢ 0 on ℝ, 𝑗 = 1,⋯ , 𝑁 .
The proof of item (iv) is as follows.
Without restriction of generality, we can assume that 𝜔1,⋯𝜔𝑑 are linearly independent.
Let

𝜙(𝑝) =
𝑑
∏

𝑗=1
𝑓𝑗(𝜔𝑗 ⋅ 𝑝), 𝜓(𝑝) =

𝑑
∏

𝑗=1
𝑔̂𝑗(𝜔𝑗 ⋅ 𝑝), 𝑝 ∈ ℝ𝑑 . (20)

Then using that 𝑓𝑗 , 𝑔𝑗 ∈ 𝐿2(ℝ) and using the change of variables 𝑝̃𝑗 = 𝜔𝑗 ⋅ 𝑝, 𝑗 = 1,⋯ , 𝑑, we get

𝜙, 𝜓 ∈ 𝐿2(ℝ𝑑). (21)

We also have that

𝑓𝑗(𝜔𝑗 ⋅ 𝑝), 𝑔̂𝑗(𝜔𝑗 ⋅ 𝑝) are analytic and bounded on ℝ𝑑 , 𝑗 = 1,⋯ , 𝑁, (22)
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since 𝑓𝑗 , 𝑔𝑗 ∈ 𝐿2(ℝ) and 𝑠𝑢𝑝𝑝 𝑓𝑗 , 𝑠𝑢𝑝𝑝 𝑔𝑗 ⊆ [−𝜖, 𝜖].
Definitions of 𝑓 , 𝑔̂ in (6), (7) and formulas (20) - (22) imply that 𝑓, 𝑔̂ ∈ 𝐿2(ℝ𝑑). Thus, item (iv) is proved.
To prove item (iii), we first rewrite formulas (2) in the Fourier domain:

𝑣̂𝛼,𝑦(𝑝) = 𝑣̂(𝑝) exp(𝑖𝛼 + 𝑖𝑦𝑝), 𝑝 ∈ ℝ𝑑 , (23)

̂̃𝑣𝛼,𝑦(𝑝) = 𝑣̂(𝑝) exp(𝑖𝛼 + 𝑖𝑦𝑝), 𝑝 ∈ ℝ𝑑 . (24)

We suppose that

𝐼 ′𝑗 = {𝜁𝑗,𝑘 : 𝑘 = 1,⋯ , 𝑁𝑗}, (25)

where 𝑁𝑗 is the cardinality of 𝐼 ′𝑗 .
From (4), (6), (7), we have that

𝑔̂(𝑝) = 𝑓 (𝑝) exp

[

𝑖
𝑁
∑

𝑗=1
𝛼𝑗 + 𝑖

𝑁
∑

𝑗=1
𝛽𝑗(𝜔𝑗 ⋅ 𝑝)

] 𝑁
∏

𝑗=1

𝑁𝑗
∏

𝑘=1

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁𝑗,𝑘
1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁𝑗,𝑘

, 𝑝 ∈ ℂ𝑑 . (26)

We define the following complex hyperplanes in ℂ𝑑 :

𝑍𝑗,𝑘 = {𝑝 ∈ ℂ𝑑 ∶ 𝜔𝑗 ⋅ 𝑝 = 𝜁𝑗,𝑘}, 𝜁𝑗,𝑘 ∈ 𝐼 ′𝑗 , (27)

𝑍𝑗,𝑘 = {𝑝 ∈ ℂ𝑑 ∶ 𝜔𝑗 ⋅ 𝑝 = 𝜁𝑗,𝑘}, 𝜁𝑗,𝑘 ∈ 𝐼 ′𝑗 . (28)

Thus, we have that
dimℂ𝑍𝑗,𝑘 = dimℂ𝑍𝑗,𝑘 = 𝑑 − 1, 𝑗 = 1,⋯ , 𝑁, 𝑘 = 1,⋯ , 𝑁𝑗 . (29)

In addition, using our assumption in (5) that 𝐼 ′𝑗 ∩ 𝐼
′
𝑗 = ∅, we get

𝑍𝑗,𝑘 ∩𝑍𝑗,𝑘′ = ∅, 𝑗 = 1,⋯ , 𝑁, 𝑘, 𝑘′ = 1,⋯ , 𝑁𝑗 . (30)

Moreover, due to the condition that 𝜔𝑗 ≠ ±𝜔𝑘 if 𝑗 ≠ 𝑘, we get

dimℂ

(

𝑍𝑗,𝑘 ∩𝑍𝑗′,𝑘′
)

= 𝑑 − 2, 𝑗 ≠ 𝑗′, 𝑘 = 1,⋯ , 𝑁𝑗 , 𝑘
′ = 1,⋯ , 𝑁𝑗′ . (31)

Therefore,

𝑍𝑗,𝑘 ⊈
𝑁
⋃

𝑗′=1

𝑁𝑗′
⋃

𝑘′=1
𝑍𝑗′,𝑘′ , 𝑗 = 1,⋯ , 𝑁, 𝑘 = 1,⋯ , 𝑁𝑗 . (32)

It then follows from (32) that

𝑁
∏

𝑗=1

𝑁𝑗
∏

𝑘=1

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁𝑗,𝑘
1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁𝑗,𝑘

≢ exp(𝑖𝛼̃ + 𝑖𝑦̃𝑝), 𝑝 ∈ ℂ𝑑 , ∀𝛼̃ ∈ ℝ, ∀𝑦̃ ∈ ℝ𝑑 , (33)

since the poles of the left-hand side in (33) on 𝑍𝑗,𝑘 are not compensated by zeros in the numerator.
Formulas (26), (33) imply that 𝑓 , 𝑔 are not associated functions in the sense of formula (23).
To prove that 𝑓 , 𝑔 are not associated in the sense of formula (24), we proceed as follows. We rewrite (26) as

𝑔̂(𝑝) = 𝑓 (𝑝) exp

[

𝑖
𝑁
∑

𝑗=1
𝛼𝑗 + 𝑖

𝑁
∑

𝑗=1
𝛽𝑗(𝜔𝑗 ⋅ 𝑝)

]

(

𝑓 (𝑝)∕𝑓 (𝑝)
)

𝑁
∏

𝑗=1

𝑁𝑗
∏

𝑘=1

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁𝑗,𝑘
1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁𝑗,𝑘

, 𝑝 ∈ ℝ𝑑 . (34)

According to Hadamard’s factorization theorem, we have

𝑓𝑗(𝑧) = exp(𝛾𝑗 + 𝜂𝑗𝑧)𝑅𝑗(𝑧)
∏

𝜁∈𝐼𝑗

(1 − 𝑧∕𝜁 ) exp(𝑧∕𝜁 ), 𝑧 ∈ ℂ, (35)
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where 𝛾𝑗 and 𝜂𝑗 are two complex constants, 𝑅𝑗(𝑧) corresponds to the product with respect to the real zeros of 𝑓𝑗
and is real-valued on ℝ; see [10] and references therein.

We get, using formulas (6), (35), that

𝑓 (𝑝) = 𝑓 (𝑝) exp

[

𝑖
𝑁
∑

𝑗=1
𝜇𝑗 + 𝑖

𝑁
∑

𝑗=1
𝜏𝑗(𝜔𝑗 ⋅ 𝑝)

] 𝑁
∏

𝑗=1

∏

𝜁∈𝐼𝑗

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁
, 𝑝 ∈ ℝ𝑑 , (36)

𝜇𝑗 = 2 Im 𝛾𝑗 , 𝜏𝑗 = 2
⎛

⎜

⎜

⎝

Im 𝜂𝑗 −
∑

𝜁∈𝐼𝑗

Im 𝜁
|𝜁 |2

⎞

⎟

⎟

⎠

, (37)

where Im denotes the imaginary part and | ⋅ | denotes the magnitude.
We then get, using formulas (34) and (36), that

𝑔̂(𝑝) = 𝑓 (𝑝)ℎ(𝑝) exp

[

𝑖
𝑁
∑

𝑗=1
(𝛼𝑗 + 𝜇𝑗) + 𝑖

𝑁
∑

𝑗=1
(𝛽𝑗 + 𝜏𝑗)(𝜔𝑗 ⋅ 𝑝)

]

, 𝑝 ∈ ℝ𝑑 , (38)

ℎ(𝑝) =
𝑁
∏

𝑗=1

⎛

⎜

⎜

⎝

∏

𝜁∈𝐼𝑗

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁

∏

𝜁∈𝐼 ′𝑗

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁
1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁

⎞

⎟

⎟

⎠

, 𝑝 ∈ ℝ𝑑 . (39)

Note that
∏

𝜁∈𝐼𝑗

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁
=

∏

𝜁∈𝐼𝑗⧵𝐼𝑗

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁
. (40)

We then get from (39) and (40) that

ℎ(𝑝) =
𝑁
∏

𝑗=1

⎛

⎜

⎜

⎝

∏

𝜁∈𝐼𝑗⧵𝐼𝑗

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁

∏

𝜁∈𝐼 ′𝑗

1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁
1 − (𝜔𝑗 ⋅ 𝑝)∕𝜁

⎞

⎟

⎟

⎠

, 𝑝 ∈ ℝ𝑑 . (41)

Using the assumptions 𝐼 ′𝑗 ≠ 𝐼𝑗 , 𝐼 ′𝑗 ∩ 𝐼
′
𝑗 = ∅, 𝐼 ′𝑗 ≠ 𝐼𝑗 ⧵ 𝐼𝑗 in (5), in a similar way as for formula (33), we have that

ℎ(𝑝) ≢ exp(𝑖𝛼̃ + 𝑖𝑦̃𝑝), 𝑝 ∈ ℂ𝑑 , ∀𝛼̃ ∈ ℝ, ∀𝑦̃ ∈ ℝ𝑑 . (42)

More precisely: if 𝜁 = 𝜁𝑗,𝑘 ∈ 𝐼 ′𝑗 but 𝜁 ∉ 𝐼𝑗 ⧵ 𝐼𝑗 , then the pole of ℎ on 𝑍𝑗,𝑘 is not compensated by zeros in the
numerator; if 𝜁 = 𝜁𝑗,𝑘 ∈ 𝐼𝑗 ⧵ 𝐼𝑗 but 𝜁 ∉ 𝐼 ′𝑗 , then the pole of ℎ on 𝑍𝑗,𝑘 is not compensated by zeros in the numerator.

It follows from (38), (41) and (42) that 𝑓 and 𝑔 are not associated functions in the sense of formula (24).
This completes the proof of Theorem 1.

4. Proof of Theorem 2
Note that

𝑣𝑓 = 𝑓 ∗ 𝑣 =
𝑛
∑

𝑘=1
𝑓 ∗ 𝑣𝑘, 𝑣𝑔 = 𝑔 ∗ 𝑣 =

𝑛
∑

𝑘=1
𝑔 ∗ 𝑣𝑘. (43)

Due to formula (15), we have also that

𝑣̂𝑓 = (2𝜋)−𝑑𝑓𝑣̂, 𝑣̂𝑔 = (2𝜋)−𝑑 𝑔̂𝑣̂. (44)

Recall also that
mes

(

{𝑝 ∈ ℝ𝑑 ∶ 𝑢̂(𝑝) = 0}
)

= 0, (45)

where 𝑢̂ is the Fourier transform of a non-zero compactly supported function 𝑢 onℝ𝑑 , andmes denotes the Lebesgue
measure in ℝ𝑑 .

Item (ii) follows from (44), (45) and the assumptions that 𝑓 , 𝑔, 𝑣 are compactly supported, |𝑓 |2 = |𝑔̂|2 ≢ 0 on ℝ𝑑
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and 𝑣 ≢ 0 on ℝ𝑑 .
Item (iii) follows from (23), (24), (44), (45) and the assumptions that 𝑓 , 𝑔, 𝑣 are compactly supported, 𝑓 , 𝑔̂ are not

associated functions in the sense of formulas (2) and 𝑣 ≢ 0 on ℝ𝑑 .
The properties that 𝑠𝑢𝑝𝑝 𝑓 , 𝑠𝑢𝑝𝑝 𝑔 ⊆ 𝐵𝛿 , 𝑠𝑢𝑝𝑝 𝑣𝑘 ⊂ 𝐷𝑘 and formula (16) imply that

𝑠𝑢𝑝𝑝 𝑓 ∗ 𝑣𝑘 ⊂ 𝑁𝛿(𝐷𝑘), 𝑠𝑢𝑝𝑝 𝑔 ∗ 𝑣𝑘 ⊂ 𝑁𝛿(𝐷𝑘). (46)

In addition, since dist(𝐷𝑖, 𝐷𝑗) ≥ 𝑟 > 2𝛿, 𝑖 ≠ 𝑗, we have that

dist(𝑁𝛿(𝐷𝑖), 𝑁𝛿(𝐷𝑗)) ≥ 𝑟𝛿 , 𝑖 ≠ 𝑗. (47)

Item (i) follows from formulas (43), (46) and (47).
This completes the proof of Theorem 2.
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