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Abstract: Computational fluid dynamics (CFD) simulation provides valuable information on blood
flow from the vascular geometry. However, it requires extracting accurate models of
arteries from low-resolution medical images, which remains challenging. Centerline-
based representation is widely used to model large vascular networks with small
vessels, as it enables manual editing and encodes the topological information. In this
work, we propose an automatic method to generate a hexahedral mesh suitable for
CFD directly from centerlines. The proposed method is an improvement of the state-of-
the-art in terms of robustness, mesh quality and reproducibility.
   Both the modeling and meshing tasks are addressed. A new vessel model based on
penalized splines is proposed to overcome the limitations inherent to the centerline
representation, such as noise and sparsity. Bifurcations are reconstructed using a
physiologically accurate parametric model that we extended to planar n-furcations.
Finally, a volume mesh with structured, hexahedral and flow-oriented cells is produced
from the proposed vascular network model.
   The proposed method offers a better robustness and mesh quality than the state-of-
the-art methods. As it combines both modeling and meshing techniques, it can be
applied to edit the geometry and topology of vascular models effortlessly to study the
impact on hemodynamics. We demonstrate the efficiency of our method by entirely
meshing a dataset of 60 cerebral vascular networks. 92% of the vessels and 83% of
the bifurcations were meshed without defects needing manual intervention, despite the
challenging aspect of the input data. The source code will be released publicly.
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A B S T R A C T

Computational fluid dynamics (CFD) simulation provides valuable information on

blood flow from the vascular geometry. However, it requires extracting accurate models

of arteries from low-resolution medical images, which remains challenging. Centerline-

based representation is widely used to model large vascular networks with small vessels,

as it enables manual editing and encodes the topological information. In this work, we

propose an automatic method to generate a hexahedral mesh suitable for CFD directly

from centerlines. The proposed method is an improvement of the state-of-the-art in

terms of robustness, mesh quality and reproducibility.

Both the modeling and meshing tasks are addressed. A new vessel model based

on penalized splines is proposed to overcome the limitations inherent to the centerline

representation, such as noise and sparsity. Bifurcations are reconstructed using a physi-

ologically accurate parametric model that we extended to planar n-furcations. Finally, a

volume mesh with structured, hexahedral and flow-oriented cells is produced from the

proposed vascular network model.

The proposed method offers a better robustness and mesh quality than the state-of-

the-art methods. As it combines both modeling and meshing techniques, it can be

applied to edit the geometry and topology of vascular models effortlessly to study the

impact on hemodynamics. We demonstrate the efficiency of our method by entirely

meshing a dataset of 60 cerebral vascular networks. 92% of the vessels and 83% of

the bifurcations were meshed without defects needing manual intervention, despite the

challenging aspect of the input data. The source code will be released publicly.

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

Vascular diseases, such as stroke, can cause severe disabil-

ity or death (Ramos-Lima et al., 2018). The relationship be-

tween the topology and geometry of the vascular network and

∗Corresponding author: Carole Frindel

e-mail: carole.frindel@creatis.insa-lyon.fr (Carole Frindel)

the onset and the outcome of the pathology is increasingly in-

vestigated in the literature. Computational fluid dynamics is

a key tool for this type of study, as it provides information

on the hemodynamics from the vessel geometry (Saqr et al.,

2020; Sugiyama et al., 2016). Numerical simulation requires

a smooth, anatomically accurate model of the arterial wall to

give reliable results. In the finite element method, the shape of

the cells inside the volume also affects the simulations. Due

to their ability to mesh automatically complex shapes, tetrahe-
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dral cells are widely used. However, unstructured tetrahedral

cells lead to higher computational cost and less accurate results

than flow-oriented, structured hexahedral cells, as demonstrated

by Vinchurkar and Longest (2008), De Santis et al. (2010) and

Ghaffari et al. (2017). Two main approaches used to address

the meshing of vascular networks are segmentation-based and

centerline-based methods.

The segmentation of magnetic resonance angiography

(MRA) images is a non-invasive way to access patient-specific

vasculature. A lot of effort was put in order to develop efficient

vessel-enhancing filters (Jerman et al., 2015; Merveille et al.,

2017) and to improve the segmentation methods. In particular,

the rise of deep learning-based segmentation methods resulted

in significant progress in vascular segmentation (Tetteh et al.,

2020; Livne et al., 2019). However, the accuracy of the seg-

mentation does not guarantee the accuracy of the mesh it entails

(e.g vessels merging due to the image resolution, disconnected

vessels, bumps), nor its usability for numerical simulation. Be-

sides, the vascular network is generally meshed with tetrahedral

elements and hexahedral remeshing is not straightforward.

Following the tubularity assumption, vessels can be reduced

to a centerline-radius description. Segmentation-based and

centerline-based models complement each other, centerline ex-

traction being used as a pre-processing or post-processing of

segmentation. Many methods to extract vessel skeletons from

binary or raw images were proposed in the literature (Zhang

et al., 2021; He et al., 2020). As opposed to image seg-

mentation, centerline-based representation advantageously in-

corporates the network topology and enables manual extrac-

tion and editing. This simplified representation is more suit-

able for the construction of big databases of large vascular net-

works (Wright et al., 2013) or the creation of ideal models.

It also offers more editing flexibility than segmentation-based

meshes. As it encodes the vessel topology and orientation, it

has a high potential for the creation of meshes with high-quality,

flow-oriented cells. Nevertheless, the representation of vessels

by centerlines lowers the geometrical information content; de-

pending on the extraction method, only a limited number of

data points are used and noise can be introduced in the dataset.

It causes inaccuracy in the shape of the vessels and the posi-

tion and geometry of bifurcations. These limitations make it

difficult to reconstruct a smooth and physiologically accurate

surface model that matches the requirements of numerical sim-

ulation.

1.1. Contributions

In this work, we propose a method that overcomes the limi-

tations of centerlines to generate a high-quality mesh ready for

CFD. Our main contributions to the current state-of-the-art are:

• We introduced an original vessel model and its approxi-

mation algorithm based on penalized splines, which en-

able to model both the spatial coordinates and the radius

in a single function and offer good robustness to noise and

low-sampling.

• The vessel model is combined with a physiological para-

metric model of bifurcation proposed by Zakaria et al.

(2008) to form a parametric model of the entire vascular

network. A method to extract the parameters of the bi-

furcation model directly from centerlines is proposed, and

the model was generalized to planar n-furcations. If the

bifurcation model itself is not new, the use of this type of

physiologic bifurcation model, as opposed to geometric bi-

furcation models, to reconstruct a realistic vascular shape

has not been investigated in previous studies.

• A parametric method to create a structured hexahedral vol-

ume mesh with flow-oriented cells from vessel and bi-

furcation models is proposed. It includes relaxation and

smoothing steps to improve the quality of the cells without

deforming the model shape. This meshing method gives

more control over the distribution and density of the cells

than the commonly used tetrahedral meshing.

• The model and the mesh are both stored in a single graph

structure which enables to easily and inexpensively edit

the topology and geometry of the vascular networks.

The proposed framework is fast, fully automatic, and pro-

duces high-quality meshes, therefore opening the way to nu-

merical simulation in large networks. It was evaluated qual-

itatively and quantitatively against other explicit and implicit

centerline-based meshing methods, as well as segmentation-

based meshing methods. Finally, several practical applications

are presented, including the meshing of a large database of 60

large cerebral networks, pathology modeling and hexahedral

remeshing.

2. Related work

2.1. Segmentation-based meshing

Segmentation of medical images is the most common method

to obtain patient-specific meshes for CFD. In recent years, deep

learning-based models have led to significant advances in vas-

cular segmentation. More specifically, convolutional neural net-

works (CNNs) have achieved very good performances (Jiang

et al., 2018; Tetteh et al., 2020). The popular U-net architec-

ture (Ronneberger et al., 2015) has been successfully applied to

the segmentation of intracranial vessels in Quon et al. (2020)

and Livne et al. (2019). Hilbert et al. (2020) proposed an ex-

tended U-net architecture using context aggregation and deep

supervision for brain vessel segmentation. Besides, the atten-

tion mechanisms have been used to help the network to bet-

ter learn global dependencies and increase the receptive field in

Mou et al. (2021), Ni et al. (2020) and Li et al. (2021).

For medical applications such as CFD, more than the seg-

mentation itself, the smoothness and the topological accuracy

of the mesh it entails are critical. However, in the literature,

there was very little focus on the conversion of the segmented

volumes to mesh. Recently, Wickramasinghe et al. (2020) and

Kong et al. (2021) introduced novel neural network architec-

tures to go directly from a 3D volume to a 3D surfaces. De-

spite those recent advances, the meshing largely relies on al-

gorithms such as the Marching Cubes to produce a surface

mesh with tetrahedral elements, followed by a smoothing step
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(Watanabe et al., 2018; Misaki et al., 2021). However, This

type of segmentation-based meshes commonly suffers from

topological inaccuracies (e.g. merging or disconnected ves-

sels, bulges, missing vessels) and requires a burdensome man-

ual post-processing (Glaßer et al., 2015), as we demonstrated

in Section 6.2. Such problems are not correctly captured by

the image-based metrics (e.g DICE score) used to evaluate the

segmentation methods. To overcome those challenges, the cen-

terline representation of vascular networks has recently gained

interest.

Some recent segmentation approaches propose to integrate

the vessel centerline information to build more topology-

oriented metrics. (Keshwani et al., 2020) proposed to segment

the vascular network from its skeleton by learning a connectiv-

ity metric between center-voxels. Besides, (Shit et al., 2021)

introduced a novel topology-preserving loss for the training of

neural networks, which relies on the centerlines of the predicted

segmentations. The information provided by the centerlines al-

lowed the neural network to improve the topology correctness

of the segmentations. In this context, we believe that the use of

centerlines in the meshing process can offer many advantages

for CFD applications.

2.2. Centerline-based meshing

In this part, we review the methods used to recreate an ac-

curate vascular surface from centerline information. The main

issues to overcome in this task arise from the defects commonly

observed in the vascular centerline extracted from medical im-

ages; local discontinuities causing a lack of information - espe-

cially at the bifurcation parts - and noise due to the voxeliza-

tion. In this context, the smoothness of the vessel surface and

the accurate reconstruction of the bifurcation part are impor-

tant locks. The reconstruction methods can be divided into ex-

plicit methods, where a tetrahedral mesh of the surface is pro-

duced, and implicit methods where the surface is represented

by implicit functions. Implicit methods employs radial basis

functions (Hong et al., 2018), implicit extrusion surfaces (Hong

et al., 2020) or local implicit modeling (Kerrien et al., 2017) to

reconstruct vascular networks from medical images, or center-

lines only for Abdellah et al. (2020). If they stand out by their

ability to reconstruct complex branching topology, they do not

allow as much control on the final mesh as explicit methods

(e.g. hexahedral meshing) which makes them less suited for

CFD using the finite element method.

In explicit methods, the vessel surface is obtained by sweep-

ing along the centerlines. The quality of the reconstruction de-

pends on the way centerline points are approximated, usually

with Bezier or spline functions. Details of the approximation

methods, in particular, the accuracy of the tangent estimation

and the robustness to noise were not given in previous stud-

ies. Various bifurcation models were proposed. In the work

of Kociński et al. (2016) and Ghaffari et al. (2015), the three

branches of the bifurcation are modeled separately and joined

at the bifurcation center. The junction is then blended to re-

store the continuity, by a subdivision scheme for Kociński et al.

(2016) and Bezier segments for Ghaffari et al. (2015). This ge-

ometric model is particularly suited for hexahedral meshing, as

the junction can be used as branch decomposition. However, it

depends on the accuracy of the position of the bifurcation cen-

ter and the tangent of the branches, which is hard to estimate

correctly from centerlines.

Besides, Han et al. (2015) and Guo et al. (2013) modeled bi-

furcations using three tubes connecting the inlet and outlet sec-

tions. A half of each section of the tube is meshed by sweeping

and the hole left in the middle is filled afterward. Their method

guarantees the smoothness of the model but results in unnatural-

looking bifurcations. Finally, Zakaria et al. (2008) proposed a

physiologic model where the bifurcations are represented by

two merged tubes. It was validated with regards to both the ac-

curacy of the anatomy and the CFD simulations. It does not

rely on the geometrical center of the bifurcation, but on a set of

physiological parameters (apex, apical sections, inlet and out-

let sections), and shows more anatomical realism. In Zakaria

et al. (2008), the authors extracted the model parameters from a

surface mesh, they did not suggest a way to extract them from

centerlines.

2.3. Hexahedral meshing

For applications such as CFD with the finite element method,

the inside 3D surface mesh reconstructed - with segmentation-

based or centerline-based methods - must be discretized. The

shape of the cells in the discretized volume mesh influence the

cost and the stability of the numerical simulation. More specif-

ically, hexahedral structured meshes were showed to reduce the

cost and increase the convergence and stability of the numerical

simulation results, compared to the commonly used tetrahedral

meshes (Vinchurkar and Longest, 2008; Ghaffari et al., 2017;

De Santis et al., 2010). Hexahedral meshing has been investi-

gated over the past years as it offers many advantages. It better

captures the underlying topology of the object with a lower cell

density, and bridges the gap between representation and physi-

cal simulation, as it simplifies the boundary layer creation and

domain discretization, and provides a basis for NURBS model-

ing (Zhang et al., 2007). Hexahedral meshing is however lim-

ited by a far more complex generation process than standard

tetrahedral meshes. In the application to the arterial networks,

the main challenge is the treatment of bifurcations. In the lit-

erature, this task was addressed by a two-step pipeline; the bi-

furcations are first decomposed into three branches, then the

hexahedral mesh is generated using the decomposition.

A variety of methods were proposed to obtain a robust branch

decomposition. De Santis et al. introduced semi-automatic

methods, ranging from the manual selection of the most rele-

vant slices of the input surface mesh (De Santis et al. (2010)),

user-defined bifurcation coordinate system (De Santis et al.,

2011a), to the generation and adjustment of a block-structure

representation of the network (De Santis et al., 2011b). Au-

tomatic methods are based on Voronoi diagram (Antiga et al.,

2002), resolution of the Laplace’s equation (Verma et al., 2005),

random-walk algorithm (Xiong et al., 2013) or branching tem-

plates (Zhang et al., 2007) or parametric models (Ghaffari et al.,

2017). The hexahedral meshing can then be created from the

decomposition through various techniques ; Copper scheme in

the work of Antiga et al. (2002), template grid sweeping for



4 Méghane Decroocq et al. /Medical Image Analysis (2022)

Verma et al. (2005), Zhang et al. (2007) and Ghaffari et al.

(2017), Bezier spline modeling followed by an iso-parametric

transformation of a template mesh (De Santis et al., 2011a),

projection and refinement of block-structures (De Santis et al.,

2011b), Laplacian-based harmonic functions combined with

Catmull-Clark subdivision (Xiong et al., 2013).

There are limitations to the application of the described

methods to our purpose. First, they often rely on manual in-

tervention, which is limiting when applied to large datasets

of complex vascular networks. The automatic methods pro-

posed involve complex algorithms, and only De Santis et al.

(2011a) provided their code through the user-friendly inter-

face PyFormex, which enables to generate hexahedral meshes

semi-automatically from a single bifurcation vascular geome-

try. Moreover, only Ghaffari et al. (2017) use centerlines as

input, and they are low-noise centerlines extracted from a sur-

face mesh using VMTK. The other methods require a tetrahe-

dral surface mesh as input for the branch decomposition and

the meshing steps. They can not be applied directly from re-

alistic centerlines extracted from medical images (both sparse

and noisy).

In this work, our purpose is to meet the challenges arising

from this state-of-the-art with a framework integrating a model-

ing and meshing step. The shortcomings of segmentation-based

meshing are addressed by developing a method based on cen-

terlines, which integrates topologic information and geometric

a priori. The realism of the surface reconstructed from the cen-

terlines is improved compared to other state-of-the-art methods

by two main contributions: a centerline approximation method

which enables to control the trade-off between smoothness and

proximity to the input data points, and a physiological bifur-

cation model offering more realism than the geometrical bifur-

cation model commonly used. Finally, an original meshing al-

gorithm is proposed to create obtain high-quality hexahedral

meshes suitable for CFD simulations, as opposed to the largely

used tetrahedral meshes.

3. Input data

The input vessel centerlines we consider are composed of

a set of data points with three spatial coordinates (x,y,z), ra-

dius value (r), and the connectivity between points. Data points

might have several successors (e.g bifurcations). A point with n

successors is a n-furcation. The centerlines are stored using the

swc format or VMTK format of Izzo et al. (2018). In this work,

we use centerlines from two publicly available datasets. The

Aneurisk database (Aneurisk-Team, 2012) provides 3D mod-

els of the main arteries of the circle of Willis for patients with

an aneurism. High-resolution centerlines were extracted from

the surface meshes using VMTK software. The BraVa database

(Wright et al., 2013) gathers the centerlines of the whole cere-

bral network for 60 patients. To create this dataset, the data

points were manually placed by medical doctors on medical

images using the ImageJ plugin Neurite Tracer (Longair et al.,

2011) and the radius was automatically computed. As a result,

the data points have a lower spatial resolution and are prone to

errors and noise.

4. Modeling

4.1. Vessels

In this part, we focus on the modeling of vessels from center-

line data; the case of bifurcations is addressed in the next sec-

tion. Different models of centerlines were proposed in the liter-

ature, based on the approximation of data points by Bezier seg-

ments (Ghaffari et al., 2017), regression splines (Kociński et al.,

2016), free knot regression splines or local polynomial smooth-

ing (Sangalli et al., 2009b). Only Sangalli et al. (2009b) gives

the detail of the implementation of the approximation method

and provides a thorough study of the accuracy of their model

regarding the spatial coordinates and the derivatives. The accu-

racy of both the first and second derivatives is crucial because

the vessel curvature impacts the hemodynamics (Sangalli et al.,

2009a). Moreover, meshing techniques are often based on the

normals of the centerline (Kociński et al., 2016; Ghaffari et al.,

2017). It is important to note that the proposed approximation

methods (Sangalli et al., 2009b; Kociński et al., 2016; Ghaf-

fari et al., 2017) focus on the spatial coordinates of the center-

lines, excluding the radius. In this work, we propose a para-

metric model of vessels based on approximation by penalized

splines. Our approximation method enables combining spatial

coordinates and radius in a single function with physiologically

accurate values and derivatives and is robust to noise and low

sampling of the input data.

4.1.1. Penalized splines

We want to approximate a set of m points {D0,D1...,Dm−1}

with 4 coordinates (x, y, z, r), using a spline function s defined

as

s(u) =

n−1
∑

i=0

Ni,p(u)Pi, (1)

for u ∈ [0, 1], where Ni,p is the ith basis spline function of

order p and {P0, P1...Pn − 1} the n control points of the spline.

The shape of the basis splines functions and therefore the part

of the spline controlled by a given control point is given by a

set of knots.

The main challenge in the approximation of noisy data is to

find the optimal balance between the proximity of the curve to

data points and the smoothness of the curve (i.e. the accuracy

of the derivatives). There are two main approaches to control

the smoothness of a spline function. The first is to change the

number of control points: a low number of control points will

result in a smoother curve. In this case, the position of the knots

can be optimized like in Sangalli et al. (2009b). In the other

approach, a relatively large number of control points and a uni-

form knot vector are used and the smoothness is constrained by

a penalty on the second derivatives Craven and Wahba (1978);

Eilers and Marx (1996). For reasons further detailed in the next

paragraphs, the second approach was judged more suitable for

our task. The vessels are modeled with penalized splines, as in-

troduced by Eilers and Marx (1996). For penalized splines, the

optimization of the control points is based on a cost function

with two terms. The first term takes into account the close-

ness to the data point and the second term the smoothness of
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the approximation spline. The parameter λ controls the balance

between both closeness and smoothness. The cost function is

defined as

f (P0, ..., Pn−1) =

m
∑

k=0

|Dk − s(tk)|2 + λ

n
∑

j=2

(P j − 2P j−1 + P j−2)2, (2)

where t is a time parametrization vector that associates each

data point to a position on the spline.

4.1.2. Approximation strategy

Centerline data provides both the spatial coordinate (x, y, z)

and radius r, two variables of different scales that might show

different noise levels. For this reason, they must be approxi-

mated separately. The choice of penalized splines allows us to

dissociate λ values for the position and the radius in a two-step

approximation algorithm. With this approach, the spatial and

radius coordinates can be modeled by a single spline.

For the approximation, we use a uniform knot vector and

a parametrization obtained by the chord-length method. The

number of control points is set so that the non-penalized ap-

proximation curve (i.e produced by solving equation 2 with

λ = 0) has a root mean square distance from the original data

lower than a given value, which is set in this work to 10−1 for

spatial coordinates and 10−3 for the radius.

We first solve the linear system arising from equation 2 for

the spatial coordinates (x,y,z) of the centerline data points. The

system can be written as

P(x,y,z) = (NT N + λs∆)−1NT D(x,y,z), (3)

where N is the matrix of representation of the basis spline

functions and ∆ is the matrix representation of the difference

operator which appears in the second term of the cost func-

tion 2. The optimal value for λs is obtained by minimizing the

Akaike criterion AIC2. A comparison study with other selec-

tion criteria for λ, such as the Bayesian information criterion or

cross-validation, detailed in section 6, led to the choice of AIC.

Then, the linear system is solved for the data (t, r) where t is the

time parametrization of each data point and r their radius value:

P(t,r) = (NT N + λr∆)−1NT D(t,r). (4)

The value of λr is also selected by minimizing AIC on the

time/radius data. The spatial coordinates and radius of the

optimized control points are then concatenated to form the 4-

coordinates control points of the final spline. Figure 1 illus-

trates this two-part approximation scheme. The proposed ap-

proximation method is compared with other conventional ap-

proximation methods regarding the robustness to noise and low

sampling of the data points in section 6.1.

4.2. Bifurcations

In this part, we focus on modeling the bifurcations from cen-

terline data.
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Fig. 1. Approximation of a noisy centerline with the proposed method. (a)

and (b) show respectively the approximation of the spatial coordinates and

the radius. Figure (c) shows the input centerline data in 3-dimensions as

red dots with radius represented by black circles. In (d), the surface de-

fined by the approximating spline-based model is represented.

4.2.1. Zakaria’s model

Zakaria et al. (2008) proposed a parametric model for non-

planar bifurcations. Their model was validated regarding

both the anatomy and numerical simulation of blood flow and

showed a good agreement with real cerebral bifurcations. It re-

quires only a few physiological parameters and is well suited

for the reconstruction of bifurcations from sparse data. In this

model, bifurcations are created by merging two tubes that rep-

resent the daughter vessels. The tubes are defined by a shared

inlet cross-section C0, separate apical cross-sections AC1, AC2

and outlet sections C1 and C2. The apical cross-sections AC1,2

are located at the apex point AP of the bifurcation, where both

tubes merge. The outlet sections C1,2 are cut one diameter away

from the apex. In total, five cross-sections and their normals are

required to build the model. A cross-section C is considered

circular and is represented by the three spatial coordinates of

its center Pc, a radius rc and a normal ~nc. The centerline of

each tube is defined by a centerline spl1,2. The first segment

of the centerline connects the inlet section C0 to the apical sec-

tion, and the second connects the apical section to the outlet

sections. The tangent of the centerline segments matches the

normal of the joined cross-sections. The radius along the seg-

ments evolves linearly between rC0
, rAC1,2

and rAC1,2
, rC1,2

. The

bifurcation model is illustrated in Figure 2. The unphysiologi-

cal sharp angle produced between tubes at the apex is rounded

by a segment of constant radius of curvature R.

4.2.2. Parameter estimation

We introduce an algorithm to estimate the parameters of the

bifurcations directly from the input centerline data. The inlet

data points (in light blue in Figure 3 (a)) are merged with each

of the outlet data points (resp. in deep blue and green in Figure

3 (a)) to form two input centerlines going through the bifurca-
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Fig. 2. Five cross-sections bifurcation model introduced by Zakaria et al.

(2008).

tion, as shown in Figure 3 (b). The two vessels based on these

centerlines are modeled independently by splines using the ap-

proximation strategy presented in section 4.1. The apex AP of

the bifurcation is set as the point where the surface of the two

vessel models first intersect (red dot on the Figure 3 (c)). AP

is then projected on the model splines spl1 and spl2. The tan-

gent and position of the obtained projection points then define

the normal and the center of the apical cross-sections AC1 and

AC2. The outlet sections C1 (resp. C2) are computed in the

same way from the evaluation of the spline where the length

from the apex projection point is twice the radius of the apical

section.

(a) (b) (c)

Fig. 3. Pipeline of the bifurcation parameter estimation. (a) shows the in-

let and outlet data points, (b) the independent vessel models and (c) the

parameter extraction and resulting bifurcation.

4.2.3. Tangent continuity

The full vascular network model is created by assembling

the vessels and bifurcations. In order to preserve the continuity

of the different parts of the network, the end tangents of the

extremities of the vessel models must match the normal of the

inlet and outlet cross-sections of the bifurcation models. For

this, we introduce an additional constraint on the end-point and

tangent in the resolution of the approximation equations 3 and 4

used to model the vessels. A least-square spline approximation

with arbitrary end derivatives was proposed by Piegl and Tiller

(2000). We extend this approach to penalized splines and we

propose a weaker constraint that fixes the end tangent while the

derivative is free. We consider a spline s as defined by Equation

1, and because we work with clamped curves, s(0) = P0 and

s(1) = Pn−1. Moreover, s′(0) (respectively s′(1)) is in the same

direction as vector P1 - P0 (respectively Pn−2 - Pn−1). If we

note S 0 and S n−1 the fixed end-points and T0 and Tn−1 the fixed

end tangents, the following new conditions are applied to the

system 3:







































P0 = S 0

Pn−1 = S n−1

P1 = P0 + αT0

Pn−1 = Pn−2 + βTn−1,

(5)

where α and β, the end tangent magnitude, are additional pa-

rameters to optimize. Those constraints guarantee the G1 con-

tinuity of the final network model.

5. Structured hexahedral meshing

5.1. Bifurcations

5.1.1. Decomposition

For further meshing, a decomposition scheme is needed to

split the bifurcation into three geometrical branches; one inlet

branch and two outlet branches. The Figure 4 (b) gives an ex-

ample of branch splitting using three separation planes. Antiga

et al. Antiga and Steinman (2004) proposed a bifurcation de-

composition scheme based on Voronoi diagram of the surface

mesh. The decomposition they propose is robust to variations

in input geometry and has been successfully used for hexahe-

dral meshing (Antiga and Steinman, 2004). However, it was not

originally designed to obtain high-quality meshes but to offer a

robust mapping of bifurcations. Moreover, it requires a surface

mesh to be computed and its transposition to centerline data is

not straightforward. In this work, we introduced a decompo-

sition scheme that relies on the spline and bifurcation models

described above.

Three separation planes are defined by a set of five points; the

apex point AP, which is already a parameter of the model, two

center points CT0 and CT1 and two separation points S P1 and

S P2. As illustrated in Figure 4 (a), we first define the geometric

center of the bifurcation X, as the barycenter of AP, pm1
and

pm2
, where pm1,2

are the projection of the key points m1,2 located

at the intersection of one centerline with the surface of the other

vessel. The separation points S P1,2 are obtained by projecting

X on the surface in the opposite direction from AP.

(a) (b)

Fig. 4. Geometric decomposition of the bifurcation model. In (b), the end

cross-sections are represented in red and the separations planes in black.

Finally, the position of center points CT0 and CT1 is obtained

by projecting X on the surface of the vessels. The direction of
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projection is the normal to the plane defined by the three points

AP, S P1 and S P2. The separation points AP, S P1 and S P2 are

finally connected to the center points CT0, CT1 by arcs, which

delineate a geometrical frontier between the branches of the bi-

furcation (see Figure 4 (b)), providing the desired branch de-

composition. This decomposition enables to handle large radius

differences between the daughter vessels. The barycenter X is

naturally closer to the vessel with the smallest radius, which

relaxes the angles between the separation planes and improves

the quality of the resulting mesh.

5.1.2. Surface meshing

In this step, we create the mesh grid connecting the end cross-

sections to the separation planes with a set of successive sec-

tions, as illustrated in Figure 6. Each section of the mesh has a

number N of nodes where N can be any multiple of 4. Fig-

ure 5 illustrates the process for constructing them. We first

compute the N nodes of the end sections C0, C1 and C2. A

normalized reference vector ~re fC which minimizes the rotation

with the separation points S P1,2 is defined for each end cross-

section C. The nodes of the end sections are placed on the out-

line of the cross-section, with evenly spaced angles starting by
~re fC and rotated counterclockwise. The nodes of the separa-

tion planes are positioned with equally sampled angles along

the arcs which join the separation point AP, S P1 and S P2 to

both center points CT0 and CT1.

Fig. 5. Computation of the nodes (black dots) of the end cross-sections and

the separation planes for N = 8 and splines tspl1,2,3.

Once the nodes of the end section and the separation half-

sections are computed, they are connected to form a surface

mesh. The nodes of C0 are connected to the nodes of the half-

sections defined by S P1 and S P2, and the nodes of C1,2 are

connected respectively to the nodes of the half-sections S P1,2

and AP.

We first define an initialization of the 3D trajectory that con-

nects two nodes, as shown in the left column of Figure 6. This

initialization is an approximation that is used to control the

topology and geometry of the final mesh grid, but it does not

necessarily lie on the exact surface of the bifurcation at this

point. The initial trajectories are evenly sampled with n nodes,

where n determines the number of cross-sections to compute

along a given branch. This number is proportional to the radius

of the end section of the branch, by a coefficient d which can be

adjusted to obtain the intended density of faces in the mesh.

The nodes are then projected radially to the surface of the

two vessels, as illustrated in the right column of Figure 6. The

direction of the projection is important to maintain the quality

of the faces of the initial grid after projection. Ideally, the nodes

of the initial trajectory must be displaced only radially from the

center of the branch vessel. However, the shape splines spl1 and

spl2 do not constitute a good approximation of the centerline of

the branches joining the geometric center of the bifurcation. For

this reason, we create another set of splines tspl1,2,3 connecting

the center of each end section to the center X of the bifurcation,

represented in blue in Figure 5. The nodes are projected to the

surface of the bifurcation model according to the normal of this

new set of splines.

Initialization Projection

Linear

Normal 

preservation

Fig. 6. Initial surface mesh and mesh after projection for the two types of

initialization considered. The red squares emphasize the impact of the two

types of initialization on the final mesh.

The properties of the resulting mesh depend on the initial tra-

jectory approximation. Figure 6 illustrates the meshes obtained

after projection considering two types of initialization. The first

row shows the simple case where the nodes of the end sections

are linearly connected to the nodes of the separation geometry.

In the second row, connection trajectories are computed so that

the normal of the end sections is preserved in the output surface

mesh. Both approximations allow to preserve the topology of

the grid and the quality of the faces after projection. The initial

trajectories with normal preservation are closer to the actual sur-

face of the bifurcation, there is less displacement of the nodes

during projection. Moreover, the preservation of the normal

of the end sections enables to include the bifurcation mesh in

larger arterial networks; the connecting curves can be smoothly

extended to downstream vessels. In the rest of this work, we

use the normal preserving initialization.

5.1.3. Relaxation

The projection step of the meshing method results in an un-

even sampling of the nodes along the trajectories and can lead

to faces with heterogeneous size or important skewness. More-
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over, a rupture of continuity is observed when the curves cross

the separation between two branches. Those unwanted features

are corrected by relaxation of the nodes of the surface mesh.

Mesh smoothing methods are an easy way to reduce the skew-

ness of faces but it triggers important deformations of the gen-

eral shape of the model. To avoid deformations, Vidal et al.

(2015) proposed to combine smoothing with a back projection

on the surface. Following this approach, an iteration of Lapla-

cian smooth (relaxation factor of 0.8) is first applied to the bi-

furcation mesh, then the nodes are projected back to the original

surface. To prevent cross-sections from intersecting, the projec-

tion is made in the direction of the line connecting the center of

the cross-section to the node to project. This process can be re-

peated until the relaxation is satisfying. Figure 7 displays a bi-

furcation mesh after 1 and 5 relaxation iterations. The faces are

colored according to their geometric quality, measured by the

scaled Jacobian. We observe that while the shape of the model

is preserved, the quality of the faces near the separation plan

is improved, and the trajectories smoothly cross the separation

plans. Based on the average quality of the faces, we estimate

that 5 relaxation iterations are sufficient.

Initial mesh 1 iteration 5 iterations

scaled jacobian

Fig. 7. Original bifurcation mesh and mesh after 1 and 5 relaxation itera-

tions. The scaled Jacobian is used to measure the quality of the cells be-

tween −1 (poor quality) and 1 (high quality).

5.1.4. Apex smoothing

The last step of the bifurcation meshing is the smoothing of

the apical region. The model presents an unwanted sharp angle

where the two vessels merge. The curvature in the apex regions

impacts the pressure and velocity fields obtained by numeri-

cal simulation, as shown by Haljasmaa et al. (2001). Conven-

tional mesh smoothing methods (e.g Laplacian, Taubin smooth-

ing) are fast and can produce smooth meshes with high-quality

faces. However, as they are global methods, they struggle to

generate important local deformations. Zakaria et al. (2008)

proposed to smooth the apex region by projecting the nodes

on a sphere of a given radius, rolling on the surface. This

method is accurate, but it is computationally expensive and

might not preserve the quality of the cells in the case of hexahe-

dral meshes. Taking advantage of the topology of the proposed

surface mesh, we reduced this complex 3-dimensional problem

to a 2-dimensional problem.

Figure 8 illustrates the proposed smoothing method. The 3D

polylines connecting two nodes of the end sections of the bifur-

cation are extracted (e.g, the curve in red on Figure 8). They

are then projected on the 2D plane defined by the normal of

the mesh at the separation point and the normal of the separa-

2D plan projection

3D referential 

curve projection 

Fig. 8. Illustration of the apex smoothing pipeline.

tion plane (resp. green and blue arrows on Figure 8). A circle

whose radius corresponds to the desired apex radius of curva-

ture is rolled along the 2D curves. The position of the circle

where it is in contact with a further part of the curve is math-

ematically computed. The points located under the circle are

moved to the outline while preserving their original sampling.

Finally, the new coordinates of the points are projected back on

the original 3D referential to form the output surface mesh.

distance (mm)

original surface radius 0.5 mm radius 0.7 mm

Fig. 9. Apex smoothing with different radius of curvature values. The col-

ormap encodes the local distance to the original mesh, on the left.

The described smoothing method enables to control the di-

rection of projection and the sampling of the projected nodes.

Therefore, the quality of the faces is preserved. As shown in

Figure 9, the smoothing is very local and does not affect the

shape of the vessels outside of the apical region.

5.1.5. Planar n-furcations

If the cerebral arterial network is composed of a majority of

bifurcations, multifurcations may also be present (e.g trifurca-

tions are frequently found on the basilar artery). To address this

requirement, we generalized the model of Zakaria et al. (2008)

to planar n-furcations. The generalized n-furcation model is

built with n − 1 splines, 2n + 1 cross-sections and n − 1 apex

points, as illustrated for the case n = 3 in Figure 10 (a). We

adapted the decomposition scheme presented in section 5.1 to

compute n + 1 separation plans, as in Figure 10 (b). Figure 10

(c) shows an example of planar trifurcation mesh obtained with

this generalization.

5.2. Vessels

For the vessels, we adapted the meshing method proposed

by Ghaffari et al. (2017) to the parametric model proposed in
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Fig. 10. (a) and (b) respectively illustrates the parametric model and the

branch decomposition scheme for a trifurcation. (c) shows an example of

trifurcation mesh.

section 4.1 in order to obtain surface and volume meshes.

5.2.1. Surface meshing

To mesh the surface of a vessel, the spline model is evaluated

at a set of time values equally sampled in the [0, 1] interval.

Those values are used to set the center position and radius of

the cross-sections along the vessel (i.e the longitudinal resolu-

tion of the mesh). The density of cross-sections (number of

sections per mm) is proportional to the mean radius of the ves-

sel, with a proportional coefficient d which is set by the user.

From each center position, N nodes are radially projected on

the model surface to form a circular cross-section. The pro-

jection vector is swept along the centerline and avoids twisting

between the sections. The successive sections are connected to

form the mesh faces. In the case of vessels connecting one bi-

furcation to another, an extra rotation is smoothly applied to the

cross-sections along the vessels so that the last vessel section is

aligned with the first section of the next bifurcation.

5.2.2. Volume meshing

The volume of the vessel is meshed following the method of

Ghaffari et al. (2017). From each cross-section of the surface

mesh, a structured O-grid pattern is created. It has 3 different

areas, including the boundary layers, intermediary layers and

central block. The relative size α, β, γ of the areas, the number

Nα of boundary layers and the number Nβ of intermediary layers

can be adjusted. The separation planes of the n-furcations are

handled by combining n + 1 halves grids. The successive O-

grid patterns are connected to form the hexahedral cells of the

volume mesh, as shown in Figure 11.

Fig. 11. Illustration of the O-grid pattern and volume meshing method.

6. Results

In this section, we evaluate both the modeling and the mesh-

ing methods proposed. The robustness and accuracy of the

proposed vessel modeling method are assessed in a compara-

tive study performed on a synthetic dataset of distorted center-

lines. Then, our meshing pipeline is compared quantitatively

and qualitatively with two concurrent state-of-the-art methods:

deep learning-based segmentation and implicit meshing. Fi-

nally, we provide additional performance indicators in terms of

cell quality and computational time.

6.1. Vessel model evaluation

In this part, we evaluate the robustness of the approximation

method presented in section 5.2 to noise and low sampling of

the data points.

6.1.1. Validation dataset

For this evaluation, we built a dataset of ground truth ves-

sel models. Four surface meshes of cerebral arteries from the

Aneurisk database were selected. For each mesh, a single ves-

sel starting from the inlet of the network and ending at an outlet

was selected so that it does not include pathologies but goes

through bifurcations, where we generally observe high curva-

ture and big radius change. The selected vessel centerlines were

extracted with a good resolution and low noise using the VMTK

software. The obtained high-quality centerline data points were

then approximated by a 4-coordinate spline s that constitutes

the ground truth. The control points were manually added and

the accuracy of the fitting of the spatial coordinates, radius and

first derivatives were checked visually until the approximation

was judged satisfying. Ground truth vessels and their creation

process are illustrated in supplementary material, section 1.1.

To evaluate the robustness of our approach, those ground

truth data were distorted to mimic defects commonly observed

in realistic centerline data; low sampling and noise. Spatial

noise and radius noise were applied separately, as they might

differ in level. To generate spatial noise, the data points were

displaced from their original position. The magnitude of dis-

placement is randomly picked from a zero-centered Gaussian

distribution with standard deviation σspatial. In order not to af-

fect the radius values, the direction of the displacement is nor-

mal to the ground truth spline s. Random radius noise is gen-

erated randomly from a zero-centered Gaussian distribution of

standard deviation σradius and added to the ground truth radius.

In both cases, the applied standard deviation value is propor-

tional to the point radius, as indicated in Table 1, in order to

keep similar levels of noise between big and small vessels. Fi-

nally, low sampling is obtained by removing data points along

the centerline to reach target point densities.

Table 1. Parameters used for the distortion of the ground truth centerlines

density (mm−1) 2 4 10 16 20

σradius(mm) 0.01r 0.05r 0.1r 0.3r 0.5r

σspatial(mm) 0.01r 0.05r 0.1r 0.3r 0.5r
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For each density value in Table 1, ten combinations of noise

parameters are used, spatial and radius noise being added sep-

arately. Radius noise is applied to the ground truth data with

parameters σradius as given in Table 1 while the spatial noise is

set to 0. Then spatial noise is applied with parameters σspatial

as given in Table 1 while the radius noise is null. Each noise

combination is repeated three times to account for the stochas-

tic effect; we get 30 data per density value, thus 150 in total.

This is done for the four vessels of the ground truth dataset,

bringing the number of data in the distorted dataset to 600.

6.1.2. Approximation methods

To demonstrate the robustness and the accuracy of the ap-

proximation strategy used to reconstruct the surface of the ves-

sels presented in Section 4.1, we compared it to other explicit

centerline-based meshing methods of the literature (Kociński

et al., 2016; Ghaffari et al., 2017). Those methods also rely

on splines or Bezier curves to approximate the centerline data

points and reconstruct the vessel surface. As most of the authors

did not provide the details of the fitting method employed, we

implemented four commonly used spline-based approximations

methods with incremental complexity in order to emphasize the

contributions of the proposed method.

• Global Non-Penalized (GNP) : In this basic approach, the

control points are optimized without smoothness penalty

in the cost function (Equation 2 with λ = 0). The number

of control points is set to match the RMSE threshold given

in section 4.1, paragraph 2. We call it global because the

spatial and radius dimensions are not addressed separately.

• Global Non-Penalized with Akaike criterion (GNP-

AIC) : Optimizing the number of control points to obtain

the desired spline smoothness is a common approxima-

tion method in the literature. In this approach, the optimal

number of control points minimizes the Akaike informa-

tion criterion (Akaike (1973)) AIC1 :

AIC1 = m × log(S S E) + 8(n + p). (6)

where m is the number of data points, p is the degree of

the spline, n is the number of control points and SSE is

the sum squared error from the data points, including their

four coordinates.

• Global Penalized with Akaike criterion (GP-AIC) : This

approach corresponds to the original approximation by

penalized splines described in Eilers and Marx (1996).

It uses the same global approach as in GNP, but with a

smoothing penalty defined with a parameter λ , 0 as in

Equation 2.

• Spatial coordinates and Radius Penalized with Akaike

criterion (SRP-AIC) : The approximation strategy that we

propose in this work penalizes spatial and radius dimen-

sions separately. The comparison of our strategy with GP-

AIC allows us to evaluate the contribution of treating the

spatial and radius coordinates individually.

In methods GP-AIC and SRP-AIC, the criterion used to opti-

mize the λ values is another formulation of the Akaike informa-

tion criterion (AIC2), adapted to penalized splines, as proposed

by Eilers and Marx (1996):

AIC2 = m × log(S S E/m) + 2tr, (7)

where tr is the trace of the matrix H = N(N tN + λ∆)−1N t.

Unlike AIC1, it is not employed to choose an optimal number

of control points but to select the optimal value for the smooth-

ing parameter λ. This criterion was compared to other crite-

ria of the literature; the corrected Akaike information criterion

of Hurvich et al. (1998), the Schwarz’s Bayesian criterion of

Schwarz (1978), the cross-validation criterion and generalized

cross-validation criterion of Craven and Wahba (1978). Ac-

cording to this study, given in supplementary material (section

1.3), the Akaike criterion yielded the best results on our data.

6.1.3. Quality metrics

A total of six quality metrics were selected to evaluate the ap-

proximation strategies presented in the previous paragraph. To

build an accurate measure of distance between the ground truth

spline s and the approximation spline ŝ, we project one curve

on the other. As illustrated in Figure 12, two matched sets of

time parameters are built. The spline s is equally sampled with

a time vector t, then projected on ŝ according to the minimum

distance to form the matched time vector T .

Fig. 12. Matching time parameters by minimum distance projection from

s onto ŝ

Once the projection is performed, the matched values can

be compared. We use the root mean squared error (RMSE) as

a measure of the closeness of the approximation spline to the

ground truth spline. The spatial coordinates and the radius val-

ues are treated separately in the evaluation. We note RMSEradius

(respectively RMSEspatial) the root mean squared error of the

radius (respectively the spatial coordinates). To have a robust

comparison between the curves, the projection is computed in

both ways (from s to ŝ and from ŝ to s) and the final RMSE

value is the average of the RMSE yielded by both projections.

The accuracy of the first derivatives of the model is evaluated

by the metrics RMSEderspatial and RMSEderradius. As curvature

is commonly considered in hemodynamic studies, the model

performance concerning the centerline curvature is also mea-

sured, by the metric RMSEcurv. Finally, the length of the ves-

sel affects the delay of blood arrival between the inlet and the

outlet of the vascular tree in numerical simulations. Therefore,

the difference Ldiff of length between the ground truth and the

approximated centerline was considered.



Méghane Decroocq et al. /Medical Image Analysis (2022) 11

6.1.4. Results

As the spatial and radius distortions are not comparable in

nature and magnitude, the evaluation results are presented in

two different tables. Table 2 (respectively Table 3) shows the

mean values of the six quality criteria for the four methods after

radius noise (respectively spatial noise) addition. As expected,

the non-penalized model (GNP) is sensible to the added noise

and performs poorly for all radius-related metrics. In Figure

13, the radius estimation error is clearly visible on the vessel

produced by this method. In the same way, the spatial-related

metrics are impacted when spatial noise is added (Table 3). In

addition, a tendency to overfit the data is observed in Table 2,

causing a surprisingly high spatial error. The overfitting and

noise problems are partially solved by optimizing the number

of control points with the method GNP-AIC. However, this ap-

proach still yields a poor approximation of the derivatives : as

the number of control points is lower, the space between data

points might not be correctly interpolated, which particularly

impacts the curvature values.

ground truth GNP GP-AIC SRP-AIC

Fig. 13. Mesh resulting from the approximation of distorted data (density =

1mm−1, σradius = 0.1) by three of the methods compared in section 6.1.

The penalized approximations GP-AIC and SRP-AIC en-

abled to drastically improve the estimation of the derivatives

and curvature. Finally, the advantage of SRP-AIC over GP-AIC

is demonstrated both in the result tables 2 and 3 and in Figure

13. The global smoothing penalty used in GP-AIC forces a

trade-off between the radius and spatial accuracy. In Figure 13,

the radius of the vessel produced by GP-AIP is very similar to

the ground truth vessel, but in return, the trajectory of the cen-

terline was too smoothed. On the other hand, both the radius

and trajectory of the vessel produced with SRP-AIC are closer

to the ground truth. As a conclusion, the proposed approxima-

tion method shows good robustness to the defects of the input

data while enabling to simultaneously and accurately model the

vessel centerline and radius. More results are provided in sup-

plementary material, section 1.2.

6.2. Comparison with state-of-the-art methods

In this section, meshes obtained with our method are visually

and quantitatively compared to meshes produced by state-of-

the-art deep learning-based segmentation methods (Tetteh et al.,

2020; Livne et al., 2019), as well as a recent implicit centerline-

based meshing method (Abdellah et al., 2020).

Table 2. Overall evaluation of the approximation methods : mean values of

the quality criteria for all the centerlines distorted by radius noise addition.

The cells in gray correspond to the lowest error for each metric.

GNP GNP-AIC GP-AIC SRP-AIC

RMSEspatial 8.462 0.034 0.053 0.029

RMSEradius 17.523 0.095 0.042 0.043

RMSEderspatial 0.218 0.118 0.042 0.009

RMSEderradius 0.391 0.214 0.032 0.032

RMSEcurv 1919.428 190.531 0.060 0.035

Ldiff 718.906 0.057 0.207 0.004

Table 3. Overall evaluation of the approximation methods : mean values

of the quality criteria for all the centerlines distorted by spatial noise addi-

tion. The cells in gray corresponds to the lowest error for each metric.

GNP GNP-AIC GP-AIC SRP-AIC

RMSEspatial 0.511 0.152 0.099 0.096

RMSEradius 0.008 0.009 0.018 0.007

RMSEderspatial 0.314 0.343 0.075 0.076

RMSEderradius 0.015 0.019 0.021 0.013

RMSEcurv 1.524 2.362 0.085 0.091

Ldiff 50.180 15.071 0.252 0.207

6.2.1. Comparison pipeline

Centerlines can be extracted either from the grayscale image

directly or from a segmented image. In this way, centerline-

based meshing can be used either as a substitute or a comple-

ment to segmentation. In our comparison study, we investigated

both approaches, as illustrated in Figure 14. In what follows,

the centerlines manually extracted by experts from MRA im-

ages of the BraVa database (Wright et al., 2013) are considered

as reference ”expert centerlines”.

For the first part of our comparison pipeline (in blue in Fig-

ure 14), the MRA images are segmented by state-of-the-art seg-

mentation methods (Tetteh et al., 2020; Livne et al., 2019).

A surface mesh is produced from the segmented images by

the marching cube algorithm and smoothed using a Taubin fil-

ter. The very small components of this mesh are removed to

keep only the largest connected parts. A set of centerlines,

which we call ”segmentation-based centerlines”, are extracted

from the segmentation. In Section 6.2.3, they are quantita-

tively compared to the expert centerlines to evaluate their ac-

curacy, and thus the topological and geometrical correctness of

the segmentation-based mesh.

For the second part of our comparison pipeline (in red in Fig-

ure 14), both the expert centerlines and the segmentation-based

centerlines are used as input for the centerline-based mesh-

ing methods. To improve their quality and to match the input

requirements of our meshing method, the segmentation-based

centerlines underwent some automatic post-processing before

meshing ; the small ending segments are cut out, the cycles are

removed by computing a maximum spanning tree of the net-

work, and the edges connecting the data points are re-oriented

in the flow direction.

Two centerline-based methods are used to create meshes

from those post-processed centerlines and the expert center-

line; our explicit meshing method and the method of Abdellah
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Fig. 14. Pipeline used to compare segmentation-based meshing and

centerline-based meshing.

et al. (2020), which is based on implicit structures and for which

we used the Blender plug-in provided by the authors, in meta-

balls reconstruction mode. In Section 6.2.4, those centerline-

based meshes are visually compared to the segmentation-based

meshes produced by deep learning methods Tetteh et al. (2020);

Livne et al. (2019).

6.2.2. Datasets and segmentation models training

Two databases of whole-brain MRA images for healthy

patients are used for this evaluation: The BraVa database

gives access to 62 expert centerlines and 50 MRA, and

the TubeTK database Bullitt et al. (2005) is composed of

34 MRA and the 34 in-house expert segmentations associ-

ated. These databases were chosen because they include

the same type of images while offering complementary in-

formation (resp. expert centerlines and expert segmentation).

For the vessels segmentation, two state-of-the-art methods

were implemented, both based on neural networks: Deep-

VesselNet Tetteh et al. (2020) and U-net Livne et al. (2019).

The DeepVesselNet architecture provided by the author was

used (https://github.com/giesekow/deepvesselnet), and the U-

net neural network was re-implemented. Both models were

trained on the expert segmentations of the TubeTK database.

27 images were included in the training set and 7 in the test set.

The loss function used during training was a combination of

dice loss and cross-entropy loss. The stochastic gradient de-

scent algorithm was used for the optimization, with a learning

rate of 0.01 for U-net and 0.001 for DeepVesselNet. The batch

size was set to 5 for U-net and 10 for DeepVesselNet due to

memory constraints. These hyperparameters were set empiri-

cally by testing a large selection of values for each hyperparam-

eter. The U-net was trained for 200 epochs and DeepVesselNet

for 300 epochs.

For this comparison study, we considered the segmentations

produced for the 7 images of the test set of TubeTK and the

50 MRA of the BraVa database - segmented with the models

trained on TubeTK -. Table 4 summarizes the data type and

the number of patients of the different datasets created for this

comparison study.

Table 4. Description of the different datasets used in our comparison study.

The name of the original database (BraVa or TubeTK), the method used,

the nature of the data and the number of patients are given.

Database Method Data nPatients

BraVa DeepVesselNet Segmentation 50

BraVa Expert Centerlines 62

BraVa Unet Segmentation 50

TubeTK DeepVesselNet Segmentation 7

TubeTK Expert Segmentation 34

TubeTK Unet Segmentation 7

6.2.3. Quantitative evaluation

In this section, we present the results of the quantitative eval-

uation of the segmentation-based centerlines compared to the

expert centerlines according to the 9 topologic and geometric

features described hereafter. nBulges corresponds to the num-

ber of bulges in the geometry. It is obtained by counting the

number of ending segments smaller than the vessel diameter.

nBranch is the number of branches in the entire network. nCC

is the number of connected components and nBranchMaxCC is

the size of the largest connected component, evaluated by its

number of branches. This metric highlights the disconnected

vessels and small isolated parts in the mesh. nCycle is the num-

ber of cycles of the network. The only cycle in the cerebral

vascular system is the circle of Willis, so the number of cycles

should be either 1 - complete circle of Willis - or 0 - incomplete

circle of Willis -. Finally, the branching topology of the network

is analyzed via the number of bifurcations nBif, the number of

trifurcations or more nTrif+ and the minimum (resp. maximum)

furcation degree minDeg (resp. maxDeg), i.e the number of in

and out branches (bifurcations = 3). These metrics are reported

in Table 5 for the different datasets considered.

We observe in Table 5 that the expert centerlines (in gray)

does not have any small ending segments (nBulges = 0). The

network forms a single connected component, they are no iso-

lated vessels and no cycles. Besides, the branchings are mainly

bifurcations, as expected in the cerebral vascular system where

trifurcations are rare. The expert centerlines show no branching

with a degree superior to 4 (= trifurcations).

On the other side, segmentation-based meshes present a lot of

bulges (> 12) and cycles (> 26), mainly because closed vessels

are merged in the resulting mesh. The number of trifurcation

and higher degree branching is high (> 15), and furcations with

up to 6 branches were observed. These metrics bring in light

some inaccuracies in the topology of the meshes produced by

segmentation, which will affect the mesh geometry and there-

fore the CFD simulation results. It is interesting to see that

such problems - disconnected or merged vessels, bulges - are

observed even in the meshes based on the ground truth segmen-

tation made by medical doctors (see ”TubeTK expert” row in

Table 5). They are not only caused by the segmentation method

but also by the nature of the meshing process itself, as it relies

on the segmentation of low-resolution images. Moreover, no

distinction can be made between veins and arteries in the seg-

mentation process, which might cause peculiar topology in the

network. To run numerical simulations in such segmentation-

based meshes, important post-processing is required to isolate
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Table 5. Topologic and geometric features of the segmentation-based meshes for the different datasets. For each dataset, the median value between all

patients is given.

Database Method nBulges nBranch nCC nBranchMaxCC nCycle nBif nTrif+ minDeg maxDeg

BraVa DeepVesselNet 43 369 451 59 26 76 15 0 5

BraVa Expert 0 205 1 205 0 102 1 1 4

BraVa Unet 38 504 380 200 44 136 30 0 6

TubeTK DeepVesselNet 52 552 557 212 46 140 28 0 6

TubeTK Expert 12 551 26 508 98 230 48 0 6

TubeTK Unet 34 626 300 446 85 215 46 0 6

the arterial system and reconnect or separate vessels. The topo-

logical problems highlighted here are illustrated by enhanced

visualizations of the meshes (Figures 15 and 16) in the next

section.

6.2.4. Visual evaluation

In this part, the results from our method are visually com-

pared against centerline-based meshes produced by the method

of Abdellah et al. (2020) and the segmentation-based meshes

produced by the method of Tetteh et al. (2020) and Livne et al.

(2019). A BraVa patient was selected for this visual evalua-

tion to have access to the expert centerlines associated. We

selected a segmentation made with Unet as it provided better

results than DeepVesselNet on this database. Figure 15 shows

the whole brain meshes obtained by different methods, and Fig-

ure 16 shows enhanced visualization of some relevant parts. As

shown in Figure 15 (a), the deep learning segmentation algo-

rithm demonstrates a good ability to segment a large part of the

vascular network, including small segments. However, the al-

gorithm does not guarantee the connectivity of the network, and

some post-processing filtering is needed to remove the small

isolated parts (Fig. 15 (b)). The centerline-based methods (im-

ages (d) and (e)) were able to produce meshes with a topology

similar to the segmentation-based mesh from the centerlines au-

tomatically extracted from it. We can see in this figure that the

mesh produced by our method is smoother and more geometri-

cally and physiologically accurate than the other meshes for the

same network. The geometric quality of the meshes obtained

by different methods will be further discussed below. As il-

lustrated in the image (f), the manually extracted expert center-

line allowed to reconstruct a larger arterial network with smaller

vessels than the centerlines based on the segmentation results.

Note that, overall, the radius of the expert centerlines is smaller,

due to the extraction method Longair et al. (2011).

In View 1 of Figure 16, we observe that our method,

which relies on the vessel tubularity assumption, efficiently

cleaned the vascular network from the bulges observed in the

segmentation-based mesh. The radius and trajectory smooth-

ing allows for reconstructing the disconnected parts in a very

natural way. View 2 highlights the merging vessels and cycles

observed in segmentation-based meshes. Our automatic post-

treatment of the centerlines allowed to remove unwanted cycles

in the network. The implicit method VessMorphoVis Abdellah

et al. (2020) offer good flexibility to mesh complex geometry

such as pathology or complex branching patterns, however, the

surface of the vessels looks bumpy and irregular. Moreover, as

shown in both views of the Figure 16, this method appears to

be sensitive to noise on the centerline geometry and radius. As

it is robust to noise and data sparsity, our method improves the

smoothness and the realism of the vascular geometry.

Overall, those results demonstrate the ability of our algo-

rithm to produce high-quality meshes not only from manu-

ally extracted centerlines but also to integrate fully-automated

pipelines.

6.3. Mesh quality

In CFD, the accuracy and stability of the simulation is af-

fected by the quality of the mesh. To evaluate this quality, we

computed the scaled Jacobian of the cells in the meshes gen-

erated with the proposed method. The scaled Jacobian ranges

from -1 (worst quality) and 1 (best quality). Negative values

indicate invalid cells. The volume meshes for 60 patients from

the BraVa database were generated (see section 7.3 for details),

with the following parameters; N = 24, d = 0.2, α = 0.2,

β = 0.3 , γ = 0.5, Nα = 10, Nβ = 10. The cells of the bifurca-

tions and vessels are evaluated separately. Failed bifurcations

and vessels (see section 7.3) were excluded from the study. The

histograms of scaled Jacobian for the 60 patients are given in

Figure 17, together with an example branch.

As shown in the image (a) of Figure 17, the bifurcations are

the most challenging structures to mesh. The lower quality cells

are mainly localized in the bifurcation separation planes. Nev-

ertheless, we achieved a very good overall quality for bifurca-

tion cells, with 71% of the cells with a scaled Jacobian value

higher than 0.9. The vessel cells have even better quality, with

95.7% of the cells having a scaled Jacobian higher than 0.9.

In terms of mesh quality, our method improves the state of the

art. Indeed, only 49% of the cells have a scaled Jacobian above

0.9 on average on the distributions given for three large cere-

bral networks in Ghaffari et al. (2017). This proportion goes

up to 62% of the cells of the abdominal aortic artery geome-

try meshed by the method of Xiong et al. (2013). Finally, in

De Santis et al. (2011b), between 65% and 82% - depending

on the case and the cell density - of the cells of the aortic arch

meshed have a scaled Jacobian value between 0.8 and 1. Quan-

titatively, our method gives better results, especially given that

the histograms for the other methods were computed on all the

cells, both bifurcations and vessels. However, we bear in mind

that the study of De Santis et al. (2011b) and Xiong et al. (2013)

focuses on arterial geometries that differ from our study.

6.4. Computation time

The computational time of the modeling and meshing steps

for five patients of the BraVa database was computed. The re-
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(a) segmentation-based mesh (b) segmentation-based mesh (c) extracted centerlines

(d) centerline-based mesh 

VessMorphoVis

(e) centerline-based mesh 

after filtering and smoothing

(f) expert centerline-based mesh 

Our method Our method

Fig. 15. Meshes produced with segmentation-based and centerline-based methods for a patient of the BraVa database. From left to right and top to bottom:

original mesh created from the segmentation with Unet, the same mesh after filtering of the smallest components and smoothing; centerlines extracted

from the mesh after post-processing; mesh produced by VessMorphoVis from these centerlines; mesh produced by our method from these centerlines;

mesh produced by our method from manually extracted expert centerlines.

sults for three of them are given in Table 6. The average time for

modeling a large cerebral vascular network is about 16 minutes.

The time for the volume meshing step is given in Table 6 for dif-

ferent cell densities. The average meshing time goes from 24.6

minutes for a coarse mesh to 49.7 minutes for a fine mesh. We

want to stress that this study was performed on large networks,

with a high number of bifurcations (around 100) and vessels

(around 200). The meshing time increases with the number of

bifurcations and vessels, while the modeling time is affected by

the number of data points.

Besides, a large part of the meshing time corresponds to the

computation of the surface nodes; on average 17.4 minutes for

a coarse mesh and 34.8 minutes for a fine mesh. The volume

mesh is generated directly from the nodes of the surface mesh

without recomputing them. Finally, meshing can be run in par-

allel, by splitting the network into parts to be meshed on differ-

ent CPUs. Using 12 CPUs, we were able to reduce the meshing

computational times given in Table 6 by a factor of 5.

7. Applications

Several applications of our framework are proposed in this

section.

7.1. Deformation

The proposed model is based on the assumption that ves-

sel cross-sections are circular, which is limiting when dealing

with pathological vessels. A way to address this limitation is

to deform the cross-sections to match a target surface as a post-

processing. If the user input data is a surface mesh, we propose

the following alternative use of our meshing framework:
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VessMorphoVisOur methodSegmentation

view 1

view 2

Fig. 16. Enhanced visualization of the segmentation-based mesh, the centerline-based mesh obtained with our method and the centerline-based mesh

obtained with VessMorphoVis. The red squares highlight the parts where the meshes show important differences.

Table 6. Computational time required to model and mesh large vascular

networks from the BraVa dataset.

id
furcation

(#)

vessel

(#)

data point

(#)

modeling

time (min)

cells

(#)

meshing

time (min)

P1 96 194 2816 11.3

1389k

1853k

2316k

2779k

20.4

25.7

31.2

38.4

P2 101 203 3531 18.3

1916k

2555k

3193k

3832k

27.5

38.2

49.1

67.5

P3 107 216 3474 16.8

1737k

2316k

2895k

3474k

26.3

36.1

44.2

55.9

1. Extract the centerline from the surface mesh (using VMTK

software for example),

2. Create a tubular mesh from the centerline using the pro-

posed method,

3. Deform the tubular mesh to match the original surface.

Figure 18 illustrates an example of this pipeline to mesh ar-

teries with aneurysms. In the deformation step, the nodes are

individually projected onto the surface of the target mesh. To

prevent the sections from intersecting, the nodes are projected

radially from the section center.

As shown in Figure 18, saccular aneurysms are initially mod-

eled as bifurcating vessels and then deformed. Because the

shape of the volume mesh pattern depends on the position of

the section nodes (cf Section 4.1), the deformation of the sur-

face mesh is smoothly conveyed to the cells inside the mesh, as

illustrated by Figure 19.

This pipeline is not limited to pathological vessels. It can be

extended to remesh any vessel surface mesh with hexahedral

cells.

7.2. Topology and geometry editing

The relationship between the vascular tree topology and ge-

ometry (e.g the different configuration of the circle of Willis,

vessel angle) and the hemodynamics have been studied exten-

sively in the literature, using ideal or patient-specific models

(Cornelissen et al., 2018; Alnæs et al., 2007). In this context,

the proposed meshing framework finds applications in creating

and editing vascular models. Because only a few data points are

required for the meshing, the bifurcation angles, the radius or

the trajectory of a vessel can be modified effortlessly. Figure 20

provides examples of such modifications. Topological and ge-

ometrical information is linked within our parametric vascular

tree representation: this facilitates the identification and modi-

fication of the data points of a branch of interest. Moreover, the

bifurcations are based on a parametric model whose parameters

(cross-sections, apex smoothing) can be adjusted. This model

guarantees the physiological realism of the bifurcations even

when artificial data points are used (e.g modeling vessels as

straight lines). Thanks to the modeling of bifurcation as merg-

ing vessels, the removal of a bifurcation branch does not modify

the trajectory of the other branch through the bifurcation part, as

illustrated on the right of Figure 20. Branches and arterial ter-

ritories inexpensively with a local re-computation of the model

and mesh parts.

7.3. Large cerebral arterial network meshing

To demonstrate further the robustness and fully automatic na-

ture of our method, we applied it to 60 patients of the BraVa

dataset. The meshes produced for 8 of the patients are given

in Figure 21. This dataset is considered challenging for sev-

eral reasons. As the centerlines were extracted manually by

medical doctors, they are noisy and have a low sampling. The

superimposition of the centerline data points on the magnetic

resonance angiography image in Figure 22 shows the high level

of noise encountered in the input data, both in the radius es-

timation and the spatial positions. Besides, by computing the
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Fig. 17. Distribution of the scaled Jacobian values of the mesh cells. The

histogram (b) represents the quality of bifurcations cells and the histogram

(c) the quality of vessel’s cells. The image (a) illustrates the location of high

and low-quality cells within a mesh.

ratio of the number of data points on the total length of the con-

necting polyline, we estimated the average point density in the

database to be 0.45 mm−1, which is very low.

We evaluate the percentage of successfully meshed vessels

and bifurcations separately, as the meshing method is different.

The vessels or bifurcations with at least one cell with a negative

scaled Jacobian score are considered failed. With this strict def-

inition, a total of 83% of the bifurcations and 92% of the vessels

were successfully meshed.

The main reason for the failure of the vessel mesh is a too

high curvature - mainly in the arteries with high tortuosity such

as the internal carotid arteries - caused by a sharp angle in the

input centerline. The main causes of failure for the bifurcations

were very low bifurcation angles and misplacement of bifur-

cation points in the input data. This last case is illustrated in

image (b) of Figure 22. We can see that the bifurcation point

in the centerline data was positioned too far downstream in the

main vessel, causing one of the daughter vessels to go backward

from the direction of the flow with a sharp angle. As we use an

fusiform aneurysm

saccular aneurysm

Fig. 18. Structured hexahedral meshing of cerebral arteries with a fusiform

or saccular aneurysm by deformation. On the left, the tubular mesh, ob-

tained by our framework, is superimposed on the target surface. On the

right, the mesh after projection is shown.

Fig. 19. Cross-section pattern before and after deformation. The corre-

sponding slice of the target surface mesh is represented in grey.

 original angle edititing radius edititing

a

r

a

r

branch removal

Fig. 20. Editing of a model of the basilar artery using our framework. The

bifurcation angle and the radius of the original vertebral artery are mod-

ified, and one of the vertebral arteries is removed. The centerline points

and radius used to produce the meshes are represented on the top left for

each case in which they were modified.

oriented bifurcation model, it failed to correctly represent the

geometry. The image (a) of Figure 22, on the other hand, illus-

trates a successful reconstruction of the trajectory of the vessel.

Although the input centerline was very imprecise both in the

radius estimation and point positions, we were able to produce

a smooth model, closest to the vessel geometry as given by the

medical image. Moreover, as shown in the insert of Figure 22
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Fig. 21. Top view of 8 meshes among the 60 generated from the patients of the BraVa database. The bifurcations where the meshing algorithm has failed

(i.e at least one of the cells has a negative Jacobian) are represented in red. The cross-sections of the vessels with cells of negative Jacobian values are also

represented in red.

(a), even challenging topologies (e.g short connecting segment

between bifurcations) can be successfully meshed with hexahe-

dral elements. An image of all the meshes of the database, with

failure areas highlighted, is given in supplementary materials,

section 1.3.

8. Conclusion

In this article, we addressed the problem of the reconstruction

and meshing of large vascular networks from noisy, sparse cen-

terlines. The proposed method is robust to noise, accurate and

automatic. It opens to way to CFD simulations in large vascular

networks manually or semi-automatically extracted by medical

doctors, with minimal manual intervention. An original approx-

imation method unifying the spatial and radius information in a

single function is proposed to model the vessels. The use of a

bifurcation model based on physiological parameters is associ-

ated with a new hexahedral meshing and smoothing techniques

to produce bifurcations with a realistic shape and high-quality

cells in a reasonable time. Our method finds application in the

automatic meshing of large databases of vascular centerlines

and hexahedral remeshing of non-tubular or pathologic vessels.

It is well suited for the creation of realistic ideal vascular net-

work models and the study of the impact of topological (branch

removal) and geometrical (branch angle) on blood flow.

We acknowledge some limitations to this work. The pipeline

was originally developed for cerebral vascular networks, and

non-planar n-furcations (n > 3) that are common in other ves-

sels (e.g aorta, lung vessels) were not addressed yet, which

might limit its use. In addition, the robustness of the model-

ing and meshing method could be further improved as it failed

in some cases. For this, we would like to integrate more phys-

iological constraints on the bifurcation and vessel models such

as a maximum curvature or maximum vessel angle. Besides,

we want to emphasize that our objective with this work was not

to improve the performance of the segmentation or centerline

extraction algorithms but to acknowledge the limitations of the

realistic data and generate meshes as close as possible to the

real anatomy from flawed centerlines and existing databases.

Hence, the accuracy of the reconstruction depends on the ac-

curacy of the input centerlines and some manual post-treatment

may still be required before simulation. In this way, our frame-

work offers more editing flexibility than other meshing meth-

ods. To take advantage of this flexibility, we developed a vas-

cular network editing software, with a user-friendly interface.

This interface integrates the modeling and meshing methods

described in this article as well as other editing functionalities

such as centerline editing, branch removal or angle modifica-

tion. It opens vascular modeling and hexahedral meshing to

medical doctors and non-expert users.
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visualization and analysis of morphological skeletons of brain vasculature

networks with vessmorphovis. Bioinformatics 36, i534–i541.

Akaike, H., 1973. Information theory and an extension of the maximum like-

lihood principle. Proceedings of the Second International Symposium on

Information Theory , 267–281.

Alnæs, M.S., Isaksen, J., Mardal, K.A., Romner, B., Morgan, M.K., Ingebrigt-

sen, T., 2007. Computation of hemodynamics in the circle of willis. Stroke

38, 2500–2505.

Aneurisk-Team, 2012. AneuriskWeb project website,

http://ecm2.mathcs.emory.edu/aneuriskweb. Web Site. URL:

http://ecm2.mathcs.emory.edu/aneuriskweb.

Antiga, L., Ene-Iordache, B., Caverni, L., Cornalba, G.P., Remuzzi, A., 2002.

Geometric reconstruction for computational mesh generation of arterial bi-

furcations from ct angiography. Computerized Medical Imaging and Graph-

ics 26, 227–235.

Antiga, L., Steinman, D.A., 2004. Robust and objective decomposition and

mapping of bifurcating vessels. IEEE transactions on medical imaging 23,

704–713.

Bullitt, E., Zeng, D., Gerig, G., Aylward, S., Joshi, S., Smith, J.K., Lin, W.,

Ewend, M.G., 2005. Vessel tortuosity and brain tumor malignancy: a

blinded study1. Academic radiology 12, 1232–1240.

Cornelissen, B., Schneiders, J., Sprengers, M., van den Berg, R., Van Ooij,

P., Nederveen, A., Van Bavel, E., Vandertop, W., Slump, C., Marquering,

H., et al., 2018. Aneurysmal parent artery–specific inflow conditions for

complete and incomplete circle of willis configurations. American journal

of neuroradiology 39, 910–915.

Craven, P., Wahba, G., 1978. Smoothing noisy data with spline functions. Nu-

merische mathematik 31, 377–403.

De Santis, G., De Beule, M., Segers, P., Verdonck, P., Verhegghe, B., 2011a.

Patient-specific computational haemodynamics: generation of structured

and conformal hexahedral meshes from triangulated surfaces of vascular bi-

furcations. Computer methods in biomechanics and biomedical engineering

14, 797–802.

De Santis, G., De Beule, M., Van Canneyt, K., Segers, P., Verdonck, P., Verheg-

ghe, B., 2011b. Full-hexahedral structured meshing for image-based compu-

tational vascular modeling. Medical engineering & physics 33, 1318–1325.

De Santis, G., Mortier, P., De Beule, M., Segers, P., Verdonck, P., Verhegghe,

B., 2010. Patient-specific computational fluid dynamics: structured mesh

generation from coronary angiography. Medical & biological engineering

& computing 48, 371–380.

Eilers, P.H., Marx, B.D., 1996. Flexible smoothing with b-splines and penalties.

Statistical science 11, 89–121.

Ghaffari, M., Hsu, C.Y., Linninger, A.A., 2015. Automatic reconstruction and

generation of structured hexahedral mesh for non-planar bifurcations in vas-

cular networks, in: Computer Aided Chemical Engineering. Elsevier. vol-

ume 37, pp. 635–640.

Ghaffari, M., Tangen, K., Alaraj, A., Du, X., Charbel, F.T., Linninger, A.A.,

2017. Large-scale subject-specific cerebral arterial tree modeling using au-

tomated parametric mesh generation for blood flow simulation. Computers

in biology and medicine 91, 353–365.

Glaßer, S., Berg, P., Neugebauer, M., Preim, B., 2015. Reconstruction of 3d

surface meshes for blood flow simulations of intracranial aneurysms, in:

Proceedings of the Conference of the German Society for Computer and

Robotic Assisted Surgery, pp. 163–168.

Guo, J., Li, S., Chui, Y.P., Qin, J., Heng, P.A., 2013. Mesh quality oriented 3d

geometric vascular modeling based on parallel transport frame. Computers

in biology and medicine 43, 879–888.

Haljasmaa, I., Robertson, A., Galdi, G., 2001. On the effect of apex geome-

try on wall shear stress and pressure in two-dimensional models of arterial

bifurcations. Mathematical Models and Methods in Applied Sciences 11,

499–520.

Han, X., Bibb, R., Harris, R., 2015. Design of bifurcation junctions in artificial

vascular vessels additively manufactured for skin tissue engineering. Journal

of Visual Languages & Computing 28, 238–249.

He, J., Pan, C., Yang, C., Zhang, M., Wang, Y., Zhou, X., Yu, Y., 2020. Learn-

ing hybrid representations for automatic 3d vessel centerline extraction,

in: International Conference on Medical Image Computing and Computer-

Assisted Intervention, Springer. pp. 24–34.

Hilbert, A., Madai, V.I., Akay, E.M., Aydin, O.U., Behland, J., Sobesky, J.,

Galinovic, I., Khalil, A.A., Taha, A.A., Wuerfel, J., et al., 2020. Brave-

net: fully automated arterial brain vessel segmentation in patients with cere-

brovascular disease. Frontiers in artificial intelligence , 78.

Hong, Q., Li, Q., Wang, B., Liu, K., Lin, F., Lin, J., Cheng, X., Zhang, Z.,

Zeng, M., 2018. Accurate geometry modeling of vasculatures using implicit

fitting with 2d radial basis functions. Computer Aided Geometric Design

62, 206–216.

Hong, Q., Li, Q., Wang, B., Tian, J., Xu, F., Liu, K., Cheng, X., 2020.

High-quality vascular modeling and modification with implicit extrusion

surfaces for blood flow computations. Computer Methods and Programs

in Biomedicine 196, 105598.

http://ecm2.mathcs.emory.edu/aneuriskweb


Méghane Decroocq et al. /Medical Image Analysis (2022) 19

Hurvich, C.M., Simonoff, J.S., Tsai, C.L., 1998. Smoothing parameter selection

in nonparametric regression using an improved akaike information criterion.

Journal of the Royal Statistical Society: Series B (Statistical Methodology)

60, 271–293.

Izzo, R., Steinman, D., Manini, S., Antiga, L., 2018. The vascular modeling

toolkit: a python library for the analysis of tubular structures in medical

images. Journal of Open Source Software 3, 745.
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           January 2023

Subject : Second revision of our submission for the Medical Image Analysis journal

Dear Reviewers, Dear Associate Editor, 

Thank you for sharing your time again for this second round of revision of our article. The remarks and 
suggestions on our work were relevant and helpful. We have addressed those comments in a revised version of 
the article. The modifications are highlighted in red. 

We hope that those modifications address your concerns and meet your approval standards for the 
Medical Image Analysis journal.

Sincerely, 

The comments of the reviewers are addressed point by point below.

Associate Editor:

“I have read the comments raised and the revised manuscripts. I would like to thank the authors for 
revising the manuscript and re-submitting it. After reading, as raised, there is a need for more 
clarification about the performance of unstructured tetrahedral cells, the advantages of hexahedral 
meshes over tetrahedral meshes and related experiments, the possible effects of centerline extraction 
methods and post processing methods, and CFD applications. It would be better if the authors could 
further address the concerns.”

Response :  Thank you for those relevant suggestions on our work. We revised the article in light of the 
comments made by the reviewers. The article has been modified as follows : 

1) A new experiment has been conducted to demonstrate the advantages of hexahedral meshes over tetrahedral
meshes. These results are consistent with the conclusion of previous work cited in the paper to justify the choice 
of hexahedral cells over tetrahedral cells in our framework. The results of this experiment were summarized in a 
new Application section (Section 7.4) of the article. The details of the methods and results of this additional 
experiment were judged too long to be added to the main article, and were therefore reported in detail in 
Supplementary materials.

2) As requested by Reviewer 1, a new section (Section 7.4) was added to the article to show a computational 
fluid dynamics application of our framework. In this section, we first summarize the conclusion of the comparison
experiments (further detailed in the Supplementary materials). Then, we propose a new application of our 
framework in which a patient-specific mesh of the middle carotid artery (MCA) and downstream vessel was 
reconstructed by our method, with the addition of a pathology (stenosis). CFD simulations were successfully run 
in the healthy and pathological cases, and the resulting hemodynamic values (blood velocity) were compared. 
With this application, we demonstrated the potential of our meshing method to easily design and conduct blood 
flow studies of cerebrovascular pathologies by CFD.
 
3) The distinction between the different types of meshes (hexahedral, tetrahedral, structured, unstructured) was 
clarified in the Introduction and State-of-the-art sections, and the results of previous hex/tet comparison studies 
were reported more precisely.

4) We addressed the concerns of Reviewer 1 concerning the accuracy of the centerline extraction in the present 
letter by discussing this point in light of the challenging aspect of the reconstruction of complex vascular 
networks with small arteries, the current limitations of segmentation-based methods and the editing flexibility 
offered by our framework. The last point was emphasized by adding a new Section (5.2.3) in the article and 
showing editing examples in our answer to Question 4 and 5 of Reviewer 1.

Response to Reviewers



Reviewer 1:

“I thank the authors made a great effort in addressing my concerns raised in last round of review and 
revising the manuscript. Many of my concerns have been well addressed. But some of them have to be 
further clarified. “

“ 1. The authors stated that, by citing several references, unstructured tetrahedral cells lead to higher 
computational cost and less accurate results than flow-oriented, structured hexahedral cells. This 
statement is still doubtful. First, what are "unstructured tetrahedral cells"? How about "structured 
tetrahedral cells"? Why is its performance worse than flow-oriented, structured hexahedral cells?”

Response:

Structured meshes are defined by an organization in which the neighbor cells can be identified without needing a
connectivity matrix. This is the case with regular grids for instance. This property, which can speed up the 
numerical simulation, can only be achieved with hexahedral cells. By writing “unstructured tetrahedral cells”, we 
wanted to emphasize the fact that in tetrahedral meshing, the cells do not have any particular organization and 
are randomly distributed in the domain. We understand that the term “unstructured tetrahedral cells” was 
misleading as it suggests that “structured tetrahedral cells” are also used. We replaced this term by “tetrahedral 
cells” in the revised version of the article. A short paragraph was also added in the Hexahedral meshing part of 
the State-of-the-art (Section 2.3), to clarify this notion of structured mesh : 

“The commonly used cell shapes include tetrahedral, prismatic and hexahedral cells. Hexahedral meshes can 
be further divided into two categories; the structured meshes, where the neighborhood relationships between the
cells are defined in the mesh structure (e.g. regular grid), and the unstructured mesh. In the case of blood 
vessels, structured and unstructured hexahedral meshing allows for the creation of flow-oriented cells. Studies 
of the literature show that both the shape of the cells (tetrahedral, hexahedral) and the type of mesh (structured 
or unstructured) influence the cost and the stability of the numerical simulation.”

We addressed the second part of the remark concerning the comparison of tetrahedral and hexahedral meshes 
in the answer to the next question.

“2. As mentioned in the introduction, many FE-based CFD models employ tetrahedral meshes. To my 
knowledge, it is probably more widely used than hexahedral meshes. In this case, the advantages of 
hexahedral meshes over tetrahedral meshes, particularly in terms of CFD, should be further analyzed.”

Response:

Tetrahedral meshes are indeed more widely used than hexahedral meshes, mainly because of the 
difficulty of the creation of a hexahedral mesh. Structured hexahedral meshing reduces the computation time, 
and improves the convergence of the results. Less cells are required to reach mesh independence.  The 
advantages of flow-oriented, hexahedral meshes over tetrahedral meshes based on the existing literature were 
further detailed in the State-of-the-art (Section 2.3) of the revised article : 

“Vinchurkar and Longest (2008), De Santis et al. (2010) and Ghaffari et al. (2017) compared the performances 
of hexahedral and tetrahedral/prismatic meshes in different models (airways, coronary tree and cerebral 
arteries) and applications. Those studies demonstrated that hexahedral meshes in general, and more 
specifically structured hexahedral meshes, converge better for the same accuracy of the result. De Santis et al. 
(2010) and Ghaffari et al. (2017) reported that 6 times less cells (resp. 10 times) and 14 times (resp. 27 times) 
less computational time were required. Finally, Vinchurkar and Longest (2008) insisted on the importance of 
having hexahedral flow-oriented cells for near wall measurement (e.g particle deposition, wall shear stress).”

The reason for this difference is thought to be two-fold : 

(1) The cells of hexahedral structured mesh are aligned in the flow direction which reduces the computational 
error due to numerical diffusion. On the other hand, unstructured meshes with randomly oriented cells are 
reported to introduce relevant numerical diffusion in the solution.



(2) As the vessels are tubular, the flow does not show strong variation in the longitudinal direction, but mainly in 
the radial direction. Therefore, the ideal mesh for numerical simulation has a low longitudinal cell density but a 
high radial cell density, This can be achieved easily with hexahedral meshes, but not with tetrahedral meshes. 

The results reported in the literature were confirmed within our framework by designing a set of 
computational fluid dynamic experiments to compare tetrahedral meshes with hexahedral meshes created with 
our method concerning the simulation accuracy, stability, and computational cost. This experiment is further 
detailed in our answer to question 3. Besides, as we mention in the State-of-the-art section (Section 2.3), the 
advantages of hexahedral meshes are not limited to CFD  : “The advantages of hexahedral cells are not limited 
to CFD; this type of mesh simplifies the boundary layer creation, bridges the gap between representation and 
physical simulation, and provides a basis for NURBS modeling (Zhang et al., 2007) and isogeometric analysis”

“3. Is it possible to design a set of experiments to demonstrate the proposed hexahedral meshes can 
achieve "more accurate results with less computational cost" than tetrahedral meshes?“

Response:  A new experiment has been conducted to demonstrate the advantages of hexahedral meshes over 
tetrahedral meshes. For this, we created a dataset of tetrahedral and hexahedral meshes with increasing cell 
density, as shown in the Fig.1 below (Fig.1. was added to the Supplementary materials).

Fig.1. Illustration of the different meshes produced for this study. Tetrahedral and hexahedral meshes of different
densities are represented. The meshes were cut using an oblique plane to reveal the inside cells.

Fig.2. Graph of the sectional maximum velocity as a function of the number of cells in the mesh for both 
tetrahedral meshes and hexahedral meshes. The maximum velocity was averaged on three cross-sections 
along the tube model. The analytical value expected is shown by the black dotted line.



CFD simulations were run in conditions that mimic blood flow in cerebral arteries and tetrahedral and hexahedral
meshes were compared according to different CFD-related criteria; the meshing time, the simulation residuals,  
the simulation time, the number of iterations until convergence, and the number of cells required to reach the 
mesh independence. A simple tubular model was first used to allow the comparison to the analytical velocity 
profile provided by the Poiseuille equation in a pipe.  The experiment results revealed that “the mesh 
independence was reached faster using hexahedral meshes than tetrahedral meshes, for a more accurate 
sectional maximum velocity value. The convergence of the simulation was also improved, as 4 times fewer 
iterations were necessary to obtain convergence of the results with hexahedral meshes. The simulation time 
was reduced on average by a factor 3, which adds to the fact that fewer cells are required to reach accurate 
results with hexahedral meshes, reducing the computational cost even more.”  These results are shown in the 
main article by the graph that we copied below in Fig. 2. More graphs and visual results are provided in 
Supplementary materials, including the Fig.3 below.

Fig. 3. Velocity field and velocity profile for a cross-section of the tube model for coarse and fine tetrahedral (a) 
and hexahedral meshes (b). The analytical velocity profile is plotted alongside the simulation velocity profile. The
meshes labeled "coarse" and "fine" in this were selected so that the number of cells is similar between 
hexahedral and tetrahedral meshes, to facilitate the comparison.



This experiment was then reproduced in a realistic model of middle carotid artery bifurcation, showing similar 
results. These results are consistent with the conclusion of previous work cited in the paper to justify the choice 
of hexahedral cells over tetrahedral cells in our framework. The details of the methods and results of this 
additional experiment were judged relevant, but too long to be added to the main article. Therefore, they were 
summarized in a new section of the Applications (Section 7.4), and the details of the mesh creation as well as 
more results figures are provided in the Supplementary materials (Section 3.2). 

“4.  While you started that the performance of the segmentation models may affect the performance of 
segmentation-based methods, I wonder if the performance of centreline extraction methods affects the 
performance of the proposed methods. How can you guarantee the accuracy of the mesh based on the 
proposed centreline-based model? “

Response: 

Thank you for this very relevant comment. About the first question “I wonder if the performance of 
centreline extraction methods affects the performance of the proposed methods “ Indeed, we acknowledge that 
the performance of centerline extraction method affects the accuracy of the mesh produced by our method, as 
shown in Figure 22. As a matter of fact, we acknowledged this limitation in the previous round of revision, in the 
Conclusion section :  

“Besides, we want to emphasize that our objective with this work was not to improve the performance of the 
segmentation or centerline extraction algorithms but to acknowledge the limitations of the realistic data and 
generate meshes as close as possible to the real anatomy from flawed centerlines and existing databases. 
Hence, the accuracy of the reconstruction depends on the accuracy of the input centerlines and some manual 
post-treatment may still be required before simulation. In this way, our framework offers more editing flexibility 
than other meshing methods. To take advantage of this flexibility, we developed a vascular network editing 
software, with a user-friendly interface. This interface integrates the modeling and meshing methods described 
in this article as well as other editing functionalities such as centerline editing, branch removal or angle 
modification. It opens vascular modeling and hexahedral meshing to medical doctors and non-expert users.”

In conclusion, we acknowledge this limitation, and we designed our method precisely to try to overcome 
the limits of centerline extraction method, either manual or automatic, based on a segmentation or not.  
Moreover, the automatic algorithm proposed was complemented by an editing software published in a separate 
article, which enables to correct manually in 3D the extracted centerlines on the basis of the medical image 
and/or expert knowledge, as shown in Figure 4. This software was presented in an conference proceeding 
article:

M. Decroocq, G. Lavoué, M. Ohta and C. Frindel, "A Software to Visualize, Edit, Model and Mesh Vascular 
Networks," 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society 
(EMBC), Glasgow, Scotland, United Kingdom, 2022, pp. 2208-2214, doi: 10.1109/EMBC48229.2022.9871365.

https://ieeexplore.ieee.org/document/9871365

This article does not include any of the methodological aspects explained in the article that we wish to publish in 
Medical Image Analysis Journal, and focuses only on the software functionalities. 

https://ieeexplore.ieee.org/document/9871365


Fig. 4. Software use case for the manual correction of a vascular network of the BraVa database on the basis of 
the medical image.

Concerning the second question “How can you guarantee the accuracy of the mesh based on the 
proposed centreline-based model?”, there are indeed some clear limitations in the evaluation of the accuracy of 
the reconstructed mesh, as the vessels reconstructed are very small and often hardly visible on the medical 
image. Moreover, we demonstrated in the experiments of Section 6.2  that even the expert segmentations, which
are generally the golden-standard in this type of studies, resulted in geometrical and topological inaccuracies in 
the final reconstructed mesh. However, we would like to put emphasis on two points concerning the accuracy of 
the proposed model :

(1) From a topological point of view, we showed in the experiments of Section 6.2 that the mesh reconstructed 
from centerlines are closer in to the real anatomy than the commonly used segmentation-based methods (no 
cycles, no high order branchings). The topological mistakes can be manually corrected effortlessly with this 
representation type (and the software we developed).

(2) From a geometrical point of view, one of the clear limitations of the proposed model is the tubularity 
assumption. However, an observation of the medical images (MRA) and the segmentation-based meshes led us 
to believe that the accuracy of the non-circular shape of vessel cross sections is not guaranteed either by 
segmentation-based methods. We could report for instance missing vessel parts or bumps in the vessel wall. In 
this type of case, we believe that our model, even though it relies on the tubularity assumption, can produce 
more realistic vessel shapes. Besides, as shown in Figure 16, the trajectory of the vessels in our model matches 



the trajectory of the vessels in segmentation-based meshes, which leads us to think that the centerline-based 
method proposed can provide accurate meshes.

In conclusion, we can not give strong guarantees concerning the accuracy of the mesh reconstructed 
from centerlines. However, given the challenging aspect of the meshing of small cerebral arteries, our method 
enables to reconstruct larger cerebral vascular networks than what is feasible using segmentation. The time-
consuming (and user-dependent) manual correction of segmentation-based meshes is also facilitated, which 
constitute a step towards the reconstruction of the whole brain arterial network. Besides, many applications do 
not require a perfectly accurate patient-specific mesh, but only a realistic surface.  

“5. As mentioned, segmentation-based approaches may result in topologic and geometric inaccuracies 
in the final mesh (bumps, disconnected or merging vessels, cycles). Is it possible to use some post-
processing methods to address these shortcomings? For example, could we employ some interactive 
segmentation techniques to incorporate human interaction to enhance the segmentation accuracy.“

Response:  The main limitation of segmentation based methods lies in the low resolution of medical images. As 
demonstrated in the experiments of Section 6.2, even the expert segmentation resulted in geometrical and 
topological inaccuracies in the final reconstructed mesh. This suggests that the problem is not only related to the
performance of the segmentation method but also to the idea of segmentation-based meshes itself. It is this 
observation which led us to step away from the constraints related to segmentation by basing our method on 
centerlines. As for the post-processing of segmentation results or segmentation-based meshes, some methods 
were already proposed in this way in the literature (e.g. the tools provided in the 3D slicer software).

However, we would like to argue that such an interactive post-processing method still requires to work 
pixel-by-pixel in the case of segmented images or node-by-node in the case of meshing. It remains more 
burdensome and time consuming than the modification of centerlines, which are a lighter representation of 
vascular networks. Time can be a considerable obstacle when we want to reconstruct networks as large and 
complex as the cerebral vascular network. 

Fig. 5. Segmentation-based mesh produced by Unet and centerline-based mesh obtain with our method.

If we take the example proposed in Figure 5, two vessels are merged in the segmentation-based mesh. 
There are two options to correct it; cut the edges of the mesh between both vessels and reconstruct the wall to 
fill the hole created, or modify the segmentation, by removing the pixels in between the vessels, which may also 
alter the shape of both vessels. In the case of centerline-based mesh (on the left), this merging problem might 
also result in errors on the centerlines (as explained in the previous question). On the case shown in Figure 2 
there was an inversion in the trajectory of the vessels in the extracted centerline. Nevertheless, correcting this 
problem is straightforward with our framework. By modifying the connection between two data points of the 
centerline and moving a few other data points, the vessels can be easily separated and the original topology 
recovered. This editing process was made easier by the editing software that we developed to supplement our 
method, as mentioned in the answer to question 4. The editing applications of our framework were emphasized 
in the revised manuscript by some modifications in Section 7.2 “Topology and geometry editing” and by adding a 
new subsection 5.2.3. “Data encoding”. 



“6. The authors employ the proposed techniques to several applications to demonstrate their 
effectiveness, which is good. As the main objective of this method is to improve the performance of CFD
models. In this case, could we apply the proposed techniques to some CFD applications to demonstrate 
their merits compared with existing meshing methods? ”

Response: As suggested, a new section (Section 7.4) was added to the article to show a computational fluid 
dynamics application of our framework. In this section, we first summarize the conclusion of the comparison 
experiments described in our answer to question 3. This demonstrates the merits of our hexahedral meshing 
method compared to other existing methods. Then, we propose a new application of our framework in which we 
compare a healthy and pathological case in a model of the middle carotid artery (MCA) and downstream 
vessels. The vascular network (with several branches and bifurcations) was reconstructed by our method, in a 
case where the segmentation-based mesh produced by Unet failed to provide a mesh usable for CFD. Flow 
extensions were automatically added to the inlet and outlets, and a 50% stenosis was automatically added to the
MCA using our framework, as shown in Figure 6 below (this Figure is provided in the Supplementary materials).

Fig. 6. a) Segmentation-based mesh produced by Unet for the arterial network of interest, i.e the right middle 
cerebral artery (MCA) territory. (b) Mesh produced for the same arterial territory as (a). This mesh was 
reconstructed with our method from the centerlines of the database BraVa. (c) Mesh after automatically adding 
extensions to the inlet and outlets. (d) Mesh after automatically adding a 50\% stenosis in the MCA. In (c) and 
(d), the hexahedral mesh created in the stenosis region is highlighted.

CFD simulations were successfully run in the healthy and pathological cases, and the resulting hemodynamic 
values (blood velocity) compared in Figure 7 below (see Section 7.4 of the main article). With this application, we
demonstrated the potential of our meshing method to easily design and conduct blood flow studies of 
cerebrovascular pathologies by CFD, for arteries that could not be meshed successfully by segmentation. 
 



Fig.7. CFD simulation results for the mesh without stenosis (a) and with stenosis (b). In both cases, the velocity 
streamlines were rendered and the velocity field is shown by a cut on the stenosis region.

“7. There are still a few typos and grammatic errors and please make more effort in proofreading.“

Response:

Thank you for this remark, there were indeed typos and grammatical errors that we corrected in the final version.

Reviewer 2:

“In the reviewed version, the authors have addressed concerns raised in reviews. A more 
comprehensive literature review is performed. Experiments on one more database are added. Besides, 
deep learning based methods are also considered in the experiments.”

“Please double check these typos:
the 3rd line under figure 5, 'mesh. The nodes of C0 are connected to the nodes of the half-'. 'C0'. 
($C_{0}$); 
the superscript 'm' in the equation (2) seems to be 'm-1'. (You only define points from 0 to m-1); 
In the figure 14, 'quatitative comparison' (quantitative).”

Response: We thank the reviewer for these comments and the time spent reviewing our article. The typos 
mentioned have been corrected as suggested.
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dELyTMaX IRL3757, CNRS, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, 980-8577, Sendai, Japan
eInstitute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
fGraduate School of Biomedical Engineering, Tohoku University, 6-6 Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

A R T I C L E I N F O

Article history:

2000 MSC: 41A05, 41A10, 65D05,
65D17

Keywords: Cerebral arterial network,
Centerlines, Hexahedral mesh, Compu-
tational fluid dynamics

A B S T R A C T

Computational fluid dynamics (CFD) simulation provides valuable information on
blood flow from the vascular geometry. However, it requires to extract accurate models
of arteries from low-resolution medical images, which remains challenging. Centerline-
based representation is widely used to model large vascular networks with small vessels,
as it enables manual editing and encodes the topological information. In this work, we
propose an automatic method to generate a hexahedral mesh suitable for CFD directly
from centerlines. The proposed method is an improvement of the state-of-the-art in
terms of robustness, mesh quality and reproducibility.

Both the modeling and meshing tasks are addressed. A new vessel model based
on penalized splines is proposed to overcome the limitations inherent to the centerline
representation, such as noise and sparsity. Bifurcations are reconstructed using a physi-
ologically accurate parametric model that we extended to planar n-furcations. Finally, a
volume mesh with structured, hexahedral and flow-oriented cells is produced from the
proposed vascular network model.

The proposed method offers a better robustness to the common defects of vascular
centerlines and an increased mesh quality compared to other state-of-the-art methods.
As it combines both modeling and meshing techniques, it can be applied to edit the
vascular models effortlessly to study the impact of vascular geometry and topology on
hemodynamics. We demonstrate the efficiency of our method by entirely meshing a
dataset of 60 cerebral vascular networks. 92% of the vessels and 83% of the bifurca-
tions were meshed without defects needing manual intervention, despite the challenging
aspect of the input data. The source code will be released publicly.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

Cerebrovascular diseases, such as stroke, can cause severe
disability or death (Ramos-Lima et al., 2018). The relationship
between the topology and geometry of the vascular network and

∗Corresponding author: Carole Frindel
e-mail: carole.frindel@creatis.insa-lyon.fr (Carole Frindel)

the onset and the outcome of the pathology is increasingly in-
vestigated in the literature. Computational fluid dynamics is a
key tool for this type of study, as it provides information on
the hemodynamics from the vessel geometry (Saqr et al., 2020;
Sugiyama et al., 2016). The main limitation in the use of CFD
is the creation of the computational mesh. Indeed, numerical
simulation requires a smooth, anatomically realistic mesh of the
arterial wall to provide reliable results. In pathologies like is-
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chemic stroke, the distribution of the vessels in the different vas-
cular territories of the brain impacts the position and evolution
of the lesion (Hodneland et al., 2019). It requires reconstructing
large and complex cerebral arterial networks with small vessels
whose radius is close to the image resolution, which remains
very challenging. Besides, in the finite element method, the
shape of the cells inside the volume also affects the simulations.
In particular, the flow-oriented, structured hexahedral cells were
shown to improve the stability of the simulation while lowering
the computational cost (Vinchurkar and Longest, 2008; De San-
tis et al., 2010; Ghaffari et al., 2017). Those results were con-
firmed in this work by running a CFD experiment whose results
are presented in Section 7. In spite of this, tetrahedral cells
remain widely used due to their ability to automatically mesh
any complex shape. The approaches investigated in the litera-
ture to address the meshing of vascular networks can be divided
into two categories: the segmentation-based and the centerline-
based methods.

The segmentation of magnetic resonance angiography
(MRA) images is a non-invasive way to access patient-specific
vasculature. A lot of effort was put to develop efficient vessel-
enhancing filters (Jerman et al., 2015; Merveille et al., 2017)
and to improve the segmentation methods. In particular, the rise
of deep learning-based segmentation methods resulted in sig-
nificant progress in vascular segmentation (Tetteh et al., 2020;
Livne et al., 2019). However, the accuracy of the segmentation
does not guarantee the accuracy of the mesh it entails (e.g ves-
sels merging due to the image resolution, disconnected vessels,
bumps), nor its usability for numerical simulation. Besides, the
vascular network is generally meshed with tetrahedral elements
and hexahedral remeshing is not straightforward.

Following the tubularity assumption, vessels can be reduced
to a centerline-radius description. Segmentation-based and
centerline-based models complement each other, centerline ex-
traction being used as a pre-processing or post-processing of
segmentation. Many methods to extract vessel skeletons from
binary or raw images were proposed in the literature (Zhang
et al., 2021; He et al., 2020). As opposed to image seg-
mentation, centerline-based representation advantageously in-
corporates the network topology and enables manual extrac-
tion and editing. This simplified representation is more suit-
able for the construction of big databases of large vascular net-
works (Wright et al., 2013) or the creation of ideal models.
It also offers more editing flexibility than segmentation-based
meshes. As it encodes the vessel topology and orientation, it
has a high potential for the creation of meshes with high-quality,
flow-oriented cells. Nevertheless, the representation of vessels
by centerlines lowers the geometrical information content; de-
pending on the extraction method, only a limited number of
data points are used and noise can be introduced in the dataset.
It causes inaccuracy in the shape of the vessels and the position
and geometry of bifurcations. These limitations make it difficult
to reconstruct a smooth and physiologically accurate surface
model that matches the requirements of numerical simulation.
In this article, we propose a method to overcome those limita-
tions and create a high-quality, structured hexahedral mesh for
CFD from centerlines only, opening the way to CFD in large

cerebral arterial networks.

2. Related work

2.1. Segmentation-based meshing

Segmentation of medical images is the most common method
to obtain patient-specific meshes for CFD. In recent years, deep
learning-based models have led to significant advances in vas-
cular segmentation. More specifically, convolutional neural net-
works (CNNs) have achieved very good performances (Jiang
et al., 2018; Tetteh et al., 2020). The popular U-net architec-
ture (Ronneberger et al., 2015) has been successfully applied to
the segmentation of intracranial vessels in Quon et al. (2020)
and Livne et al. (2019). Hilbert et al. (2020) proposed an ex-
tended U-net architecture using context aggregation and deep
supervision for brain vessel segmentation. Besides, the atten-
tion mechanisms have been used to help the network to bet-
ter learn global dependencies and increase the receptive field in
Mou et al. (2021), Ni et al. (2020) and Li et al. (2021).

For medical applications such as CFD, more than the seg-
mentation itself, the smoothness and the topological accuracy
of the mesh it entails are critical. However, in the literature,
there was very little focus on the conversion of the segmented
volumes to mesh. Recently, Wickramasinghe et al. (2020) and
Kong et al. (2021) introduced new neural network architec-
tures to reconstruct 3D meshes directly from 3D image vol-
umes. Despite those recent advances, the meshing largely re-
lies on algorithms such as the marching cubes, followed by a
smoothing step, to produce a surface mesh with tetrahedral el-
ements (Watanabe et al., 2018; Misaki et al., 2021). However,
this type of segmentation-based meshes commonly suffers from
topological inaccuracies (e.g. merging or disconnected ves-
sels, bulges, missing vessels) and requires a burdensome man-
ual post-processing (Glaßer et al., 2015), as we demonstrated
in Section 6.2. Such problems are not correctly captured by
the image-based metrics (e.g DICE score) used to evaluate the
segmentation methods. To overcome those challenges, the cen-
terline representation of vascular networks has recently gained
interest.

Some recent segmentation approaches propose to integrate
the vessel centerline information to build more topology-
oriented metrics. (Keshwani et al., 2020) proposed to segment
the vascular network from its skeleton by learning a connectiv-
ity metric between center-voxels. Besides, (Shit et al., 2021)
introduced a novel topology-preserving loss for the training of
neural networks, which relies on the centerlines of the predicted
segmentation. The information provided by the centerlines al-
lowed the neural network to improve the topology correctness
of the segmentations. In this context, we believe that the use of
centerlines in the meshing process can offer many advantages
for CFD applications.

2.2. Centerline-based meshing

In this part, we review the methods used to recreate an ac-
curate vascular surface from centerline information. The main
issues to overcome in this task arise from the defects commonly
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observed in the vascular centerline extracted from medical im-
ages; local discontinuities causing a lack of information - espe-
cially at the bifurcation parts - and noise due to the voxeliza-
tion. In this context, the smoothness of the vessel surface and
the accurate reconstruction of the bifurcation part are important
locks. The reconstruction methods can be divided into explicit
methods, where a tetrahedral mesh of the surface is produced,
and implicit methods where the surface is represented by im-
plicit functions. Implicit methods employ radial basis functions
(Hong et al., 2018), implicit extrusion surfaces (Hong et al.,
2020) or local implicit modeling (Kerrien et al., 2017) to recon-
struct vascular networks from medical images or from center-
lines (Abdellah et al., 2020). If they stand out by their ability to
reconstruct complex branching topology, they do not allow as
much control on the final mesh as explicit methods (e.g. hex-
ahedral meshing) which makes them less suited for CFD using
the finite element method.

In explicit methods, the vessel surface is obtained by sweep-
ing along the centerlines. The quality of the reconstruction
depends on the way centerline points are approximated, usu-
ally with Bezier or spline functions (Guo et al., 2013; Kociński
et al., 2016; Ghaffari et al., 2017), and might be affected by the
quality of the input centerline. The details of the approximation
methods and the evaluation of the accuracy of the estimation of
coordinates and derivatives were not provided in previous stud-
ies. For the branching part, various bifurcation models were
proposed. In the work of Kociński et al. (2016) and Ghaffari
et al. (2015), the three branches of the bifurcation are modeled
separately and joined at the bifurcation center. The junction is
then blended to restore the continuity, by a subdivision scheme
for Kociński et al. (2016) and Bezier segments for Ghaffari et al.
(2015). This geometric model facilitates the creation of hexa-
hedral meshing. However, the realism of the bifurcation shape
depends on the accuracy of the position of the bifurcation cen-
ter and the tangent of the branches, which is hard to estimate
correctly from centerlines.

Han et al. (2015) and Guo et al. (2013) modeled bifurcations
using three tubes connecting the inlet and outlet sections. Half
of each section of the tube is meshed by sweeping and the hole
left in the middle is filled afterward. Their method guarantees
the smoothness of the model but results in unnatural-looking
bifurcations. Finally, Zakaria et al. (2008) proposed a phys-
iologic model where the bifurcations are represented by two
merged tubes. It was validated with regard to both the accuracy
of the anatomy and the CFD simulations. It does not rely on the
geometrical center of the bifurcation, but on a set of physiolog-
ical parameters (apex, apical sections, inlet and outlet sections),
and shows more anatomical realism. However, the authors ex-
tracted the model parameters from a surface mesh, and they did
not suggest a way to extract them from centerlines.

2.3. Hexahedral meshing
For applications in CFD with the finite element method, the

inside of the surface mesh must be discretized into cells. The
commonly used cell shapes include tetrahedral, prismatic and
hexahedral. Hexahedral meshes can be further divided into two
categories; the structured meshes, where the neighborhood re-
lationships between the cells are defined in the mesh structure

(e.g. regular grid), and the unstructured mesh. In the case of
blood vessels, structured and unstructured hexahedral meshing
also allows for the creation of flow-oriented cells. Studies of
the literature show that both the shape of the cells (tetrahedral,
hexahedral) and the type of mesh (structured or unstructured)
influence the cost and the stability of the numerical simulation.

Vinchurkar and Longest (2008), De Santis et al. (2010) and
Ghaffari et al. (2017) compared the performances of hexahe-
dral and tetrahedral meshes for different models (airways, coro-
nary tree and cerebral arteries) and applications. Those stud-
ies demonstrated that hexahedral meshes in general, and more
specifically structured hexahedral meshes, converge better for
the same accuracy of the result. De Santis et al. (2010) and
Ghaffari et al. (2017) reported that 6 times less cells (resp.
10 times) and 14 times (resp. 27 times) less computational
time were required. Finally, Vinchurkar and Longest (2008)
insisted on the importance of having hexahedral flow-oriented
cells for near-wall measurements (e.g particle deposition, wall
shear stress). The advantages of hexahedral cells are not lim-
ited to CFD; this type of mesh simplifies the boundary layer
creation, bridges the gap between representation and physical
simulation, and provides a basis for NURBS modeling (Zhang
et al., 2007) and isogeometric analysis. Hexahedral meshing,
and more specifically structured hexahedral meshing, is how-
ever limited by a far more complex generation process than
standard tetrahedral meshes (Vinchurkar and Longest, 2008).

In the application to the arterial networks, the main challenge
is the generation of the mesh at the bifurcations part. In the
literature, this task was addressed by a two-step pipeline; the
bifurcations are first decomposed into three branches, then the
hexahedral mesh is generated using the decomposition. A vari-
ety of methods were proposed to obtain a robust branch decom-
position. De Santis et al. introduced semi-automatic methods,
ranging from the manual selection of the most relevant slices
of the input surface mesh (De Santis et al. (2010)), user-defined
bifurcation coordinate system (De Santis et al., 2011a), to the
generation and adjustment of a block-structure representation
of the network (De Santis et al., 2011b). Automatic methods
are based on Voronoi diagram (Antiga et al., 2002), resolution
of the Laplace’s equation (Verma et al., 2005), random-walk
algorithm (Xiong et al., 2013) or branching templates (Zhang
et al., 2007) or parametric models (Ghaffari et al., 2017). The
hexahedral meshing can then be created from the decomposi-
tion through various techniques; Copper scheme in the work
of Antiga et al. (2002), template grid sweeping for Verma
et al. (2005), Zhang et al. (2007) and Ghaffari et al. (2017),
Bezier spline modeling followed by an iso-parametric transfor-
mation of a template mesh (De Santis et al., 2011a), projection
and refinement of block-structures (De Santis et al., 2011b),
Laplacian-based harmonic functions combined with Catmull-
Clark subdivision (Xiong et al., 2013).

There are limitations to the application of the described
methods to our purpose. First, they often rely on manual in-
tervention, which is limiting when applied to large datasets
of complex vascular networks. The automatic methods pro-
posed involve complex algorithms, and only De Santis et al.
(2011a) provided their code through the user-friendly inter-
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face PyFormex, which enables to generate hexahedral meshes
semi-automatically from a single bifurcation vascular geome-
try. Only Ghaffari et al. (2017) used centerlines as input, and
they are low-noise centerlines extracted from a surface mesh
using VMTK. The other methods require a tetrahedral surface
mesh as input for the branch decomposition or the meshing.
They can not be applied directly from realistic centerlines ex-
tracted from medical images.

2.4. Contributions
In this work, our purpose is to meet the challenges arising

from this state-of-the-art with a framework integrating a mod-
eling and a meshing step. The shortcomings of segmentation-
based meshing are addressed by developing a method based
on centerlines. A parametric model is used to overcome the
common defect of centerlines and reconstruct a realistic vessel
surface. Finally, an original meshing algorithm is proposed to
create high-quality hexahedral meshes suitable for CFD simu-
lations, as opposed to the largely used tetrahedral meshes. Our
main contributions in this work are:

• We introduced an original vessel model and its approxima-
tion algorithm based on penalized splines, which enable
to model both the spatial coordinates and the radius in a
single function and offer a good robustness to noise and
low-sampling.

• The vessel model is combined with a physiological para-
metric model of bifurcation proposed by Zakaria et al.
(2008) to form a light parametric model of the entire vas-
cular network. A method to extract the parameters of the
bifurcation model directly from centerlines is proposed,
and the model was generalized to planar n-furcations. If
the bifurcation model itself is not new, the use of this type
of physiologic bifurcation model - as opposed to geomet-
ric bifurcation models - to reconstruct a realistic vascular
shape has not been investigated in previous studies.

• We developed a parametric method to create a structured
hexahedral volume mesh with flow-oriented cells from the
vessel and bifurcation models proposed. It includes relax-
ation and smoothing steps to improve the quality of the
cells without deforming the model shape. This method
gives more control over the distribution and density of the
cells than the commonly used tetrahedral meshing.

• The model and the mesh are stored in a graph structure
which enables to easily and inexpensively edit the topol-
ogy and geometry of the vascular networks.

The proposed framework is fast and automatic. As it is based
on centerlines only, it opens the way to numerical simulation in
large cerebral vascular networks. It was evaluated qualitatively
and quantitatively against other explicit and implicit centerline-
based meshing methods, as well as segmentation-based mesh-
ing methods. Finally, several practical applications are pre-
sented, including the meshing of a large database of 60 large
cerebral networks, pathology modeling, topology and geome-
try editing, and finally a CFD study comparing a healthy and
stenotic middle carotid artery.

3. Input data

The input vessel centerlines we consider are composed of
a set of data points with three spatial coordinates (x,y,z), ra-
dius value (r), and the connectivity between points. Data points
might have several successors (e.g bifurcations). A point with
n successors is called n-furcation. The centerlines are stored
using the swc format or VMTK format of Izzo et al. (2018).
In this work, we used two publicly available datasets. The
Aneurisk database (Aneurisk-Team, 2012) provides 3D models
of the main arteries of the circle of Willis for patients with an
aneurism. High-resolution centerlines were extracted from the
surface meshes using the VMTK software. The BraVa database
(Wright et al., 2013) gathers the centerlines of the whole cere-
bral network for 60 patients. To create this dataset, the data
points were manually placed by medical doctors on medical
images using the ImageJ plugin Neurite Tracer (Longair et al.,
2011) and the radius was automatically computed. As a result,
the data points have a lower spatial resolution and are prone to
errors and noise.

4. Modeling

4.1. Vessels
In this part, we focus on the modeling of vessels from center-

line data; the case of bifurcations is addressed in the next sec-
tion. Different models of centerline were proposed in the liter-
ature, based on the approximation of data points by Bezier seg-
ments (Ghaffari et al., 2017), regression splines (Kociński et al.,
2016), free knot regression splines or local polynomial smooth-
ing (Sangalli et al., 2009b). Only Sangalli et al. (2009b) gives
the detail of the implementation of the approximation method
and provides a thorough study of the accuracy of their model
regarding the spatial coordinates and the derivatives. However,
the accuracy of both the first and second derivatives is cru-
cial, as the vessel curvature impacts the hemodynamics (San-
galli et al., 2009a). Moreover, the meshing techniques are often
based on the normals of the centerline (Kociński et al., 2016;
Ghaffari et al., 2017). It is important to note that the proposed
approximation methods (Sangalli et al., 2009b; Kociński et al.,
2016; Ghaffari et al., 2017) focus on the spatial coordinates of
the centerlines, excluding the radius. In this work, we propose
a parametric model of vessels based on approximation by pe-
nalized splines. Our approximation method enables combining
spatial coordinates and radius in a single function with physio-
logically accurate values and derivatives and is robust to noise
and low sampling of the input data.

4.1.1. Penalized splines
We want to approximate a set of m points {D0,D1...,Dm−1}

with 4 coordinates (x, y, z, r), using a spline function s defined
as

s(u) =
n−1∑
i=0

Ni,p(u)Pi, (1)

for u ∈ [0, 1], where Ni,p is the ith basis spline function of
order p and {P0, P1...Pn − 1} the n control points of the spline.
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The shape of the basis splines functions and therefore the part
of the spline controlled by each control point is given by a set
of knots.

The main challenge in the approximation of noisy data is to
find the optimal balance between the proximity of the curve to
data points and the smoothness of the curve (i.e. the accuracy
of the derivatives). There are two main approaches to control
the smoothness of a spline function. The first is to change the
number of control points: a low number of control points will
result in a smoother curve. In this case, the position of the knots
can be optimized like in Sangalli et al. (2009b). In the other
approach, a relatively large number of control points and a uni-
form knot vector are used and the smoothness is constrained by
a penalty on the second derivatives (Craven and Wahba, 1978;
Eilers and Marx, 1996). For reasons further detailed in the next
paragraphs, the second approach was judged more suitable for
our task. The vessels are modeled with penalized splines, as in-
troduced by Eilers and Marx (1996). For penalized splines, the
optimization of the control points is based on a cost function
with two terms. The first term takes into account the close-
ness to the data point and the second term the smoothness of
the approximation spline. The parameter λ controls the balance
between both closeness and smoothness. The cost function is
defined as

f (P0, ..., Pn−1) =
m−1∑
k=0

|Dk − s(tk)|2 + λ
n∑

j=2

(P j − 2P j−1 + P j−2)2, (2)

where t is a time parametrization vector that associates each
data point to a position on the spline.

4.1.2. Approximation strategy
Centerline data provides both the spatial coordinate (x, y, z)

and radius r, two variables of different scales that might show
different noise levels. For this reason, we propose to approx-
imate them separately. The choice of penalized splines allows
us to dissociate λ values for the position and the radius in a two-
step approximation algorithm. With this approach, the spatial
and radius coordinates can be modeled by a single spline.

For the approximation, we use a uniform knot vector and
a parametrization obtained by the chord-length method. The
number of control points is set so that the non-penalized ap-
proximation curve (i.e produced by solving equation 2 with
λ = 0) has a root mean square distance from the original data
lower than a given value, which is set in this work to 10−1 for
spatial coordinates and 10−3 for the radius.

We first solve the linear system arising from equation 2 for
the spatial coordinates (x,y,z) of the centerline data points. The
system can be written as

P(x,y,z) = (NT N + λs∆)−1NT D(x,y,z), (3)

where N is the matrix of representation of the basis spline
functions and ∆ is the matrix representation of the difference
operator which appears in the second term of the cost func-
tion 2. The optimal value for λs is obtained by minimizing

the Akaike criterion AIC2 detailed in Section 6.1. A com-
parison study with other optimization criteria for the smooth-
ing parameter λ, such as the Bayesian information criterion or
cross-validation, detailed in supplementary materials, led to the
choice of this criterion.

The linear system is then solved for the data (t, r) where t is
the time parametrization of each data point and r their radius
value:

P(t,r) = (NT N + λr∆)−1NT D(t,r). (4)

The value of λr is also selected by minimizing the Akaike
criterion on the time/radius data. The spatial coordinates and
radius of the optimized control points are then concatenated to
form the 4-coordinates control points of the final spline. Figure
1 illustrates this two-part approximation scheme. The proposed
approximation method is compared with other conventional ap-
proximation methods regarding the robustness to noise and low
sampling of the data points in section 6.1.
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Fig. 1. Approximation of a noisy centerline with the proposed method. (a)
and (b) show respectively the approximation of the spatial coordinates and
the radius. Figure (c) shows the input centerline data as red dots with
radius represented by black circles. In (d), the vessel surface defined by
the approximated spline is represented.

4.2. Bifurcations
In this part, we focus on the modeling of bifurcations.

4.2.1. Zakaria’s model
Zakaria et al. (2008) proposed a parametric model for non-

planar bifurcations. Their model was validated regarding
both the anatomy and numerical simulation of blood flow and
showed a good agreement with real cerebral bifurcations. It re-
quires only a few physiological parameters and is well-suited
for the reconstruction of bifurcations from sparse data. In this
model, bifurcations are created by merging two tubes that rep-
resent the daughter vessels. The tubes are defined by a shared
inlet cross-section C0, separate apical cross-sections AC1, AC2
and outlet sections C1 and C2. The apical cross-sections AC1,2
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are located at the apex point AP of the bifurcation, where both
tubes merge. The outlet sections C1,2 are cut one diameter away
from the apex. In total, five cross-sections and their normals
are required to build the model. Each circular cross-section C
is represented by the three spatial coordinates of its center Pc,
the radius rc and the normal vector n⃗c. The centerline of each
tube is defined by a spline function spl1,2. The first segment of
the centerline connects the inlet section C0 to the apical section,
and the second connects the apical section to the outlet sections.
The tangent of the centerline segments matches the normal of
the cross-sections that they connect. The radius along the seg-
ments evolves linearly between rC0 , rAC1,2 and rAC1,2 , rC1,2 . The
bifurcation model is illustrated in Figure 2. The unphysiologi-
cal sharp angle produced between tubes at the apex is rounded
by a segment of constant radius of curvature R.

Fig. 2. The five cross-sections bifurcation model introduced by Zakaria
et al. (2008).

4.2.2. Parameter estimation
In order to apply this bifurcation model to our framework,

we introduce an algorithm to estimate the parameters of the bi-
furcations directly from the input centerline data. For all the
bifurcations in the centerline data, the inlet data points (in light
blue in Figure 3 (a)) are concatenated with each of the outlet
data points (resp. in deep blue and green in Figure 3 (a)) to
form two individual vessel centerlines going through the bifur-
cation, as shown in Figure 3 (b). The two vessels based on
these centerlines are modeled independently by splines using
the approximation strategy presented in section 4.1. The apex
AP of the bifurcation is set as the point where the surface of the
two vessel models first intersect (red dot on Figure 3 (c)). AP
is then projected on the model splines spl1 and spl2. The tan-
gent and position of the obtained projection points then define
the normal and the center of the apical cross-sections AC1 and
AC2. The outlet sections C1 and C2 are computed in the same
way from the evaluation of the spline where the length from the
apex projection point is twice the radius of the apical section.

4.2.3. Tangent continuity
The full vascular network model is created by assembling

the vessels and bifurcations models presented in the previous
sections. In order to preserve the continuity of the different parts
of the network, the inlet and outlet tangents of the vessels must

(a) (b) (c)

Fig. 3. Pipeline of the bifurcation parameter estimation. (a) shows the inlet
and outlet data points, (b) the independent vessel models and (c) the pa-
rameter extraction and resulting bifurcation.

match the normal of the inlet and outlet cross-sections of the
bifurcations they connect. For this, we introduce an additional
constraint on the endpoints and tangents in the resolution of the
approximation equations 3 and 4 used to model the vessels. A
least-square spline approximation with arbitrary end derivatives
was proposed by Piegl and Tiller (2000). In this work, to limit
the influence of the end constraints on the approximation of data
points, we propose a weaker constraint that fixes the end tangent
while the derivative is free. We consider a spline s as defined by
Equation 1. Because we work with clamped curves, s(0) = P0
and s(1) = Pn−1. Moreover, s′(0) (respectively s′(1)) is in the
same direction as vector P1 - P0 (respectively Pn−2 - Pn−1). If
we note S 0 and S n−1 the fixed end-points and T0 and Tn−1 the
fixed end tangents, the following new conditions are applied to
the system 3: 

P0 = S 0

Pn−1 = S n−1

P1 = P0 + αT0

Pn−1 = Pn−2 + βTn−1,

(5)

where α and β, the end tangent magnitude, are additional pa-
rameters to optimize. Those constraints guarantee the G1 con-
tinuity of the final network model. The details of the system
resolution are given in the supplementary materials.

5. Structured hexahedral meshing

In this section, we present the meshing algorithm developed
to produce a hexahedral mesh with flow-oriented cells from the
parametric model described in Section 4.

5.1. Bifurcations

5.1.1. Decomposition
The bifurcations are the most challenging parts to mesh with

hexahedral elements. The meshing approach proposed relies on
a decomposition scheme to split the bifurcation into three geo-
metrical branches; one inlet branch and two outlet branches.
This method allows to have the meshing advantages offered
by the geometrical bifurcation models of other methods of the
state-of-the-art, while keeping the anatomical realism of the
physiological bifurcation model used in this work. Figure 4
(b) gives an example of branch splitting using three separation
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planes. Antiga et al. Antiga and Steinman (2004) proposed a bi-
furcation decomposition scheme based on the Voronoi diagram
of a surface mesh. The proposed scheme is robust to variations
in input geometry and has been successfully used for hexahe-
dral meshing (Antiga and Steinman, 2004). However, it was
not originally designed to obtain high-quality meshes but to of-
fer a robust mapping of bifurcations. Moreover, it requires a
surface mesh to be computed and its transposition to centerline
data is not straightforward. Based on this work, we introduced a
decomposition scheme that relies on the spline and bifurcation
models described above.

In this decomposition method, three separation planes are de-
fined by a set of five points; the apex point AP, which is already
a parameter of the model, two center points CT0 and CT1 and
two separation points S P1 and S P2. As illustrated in Figure 4
(a), we first define the geometric center of the bifurcation X,
as the barycenter of AP, pm1 and pm2 , where pm1,2 are the pro-
jection of the key points m1,2 located at the intersection of one
centerline with the surface of the other vessel. The separation
points S P1,2 are obtained by projecting X on the surface in the
opposite direction from AP.

(a) (b)

Fig. 4. Geometric decomposition of the bifurcation model. In (b), the end
cross-sections are represented in red, and the separations planes in black.

Finally, the position of center points CT0 and CT1 is obtained
by projecting X on the surface of the vessels. The direction of
projection is normal to the plane defined by the three points
AP, S P1 and S P2. The separation points AP, S P1 and S P2
are finally connected to the center points CT0, CT1 by arcs,
which delineate a geometrical frontier between the branches of
the bifurcation (see Figure 4 (b)), providing the desired branch
decomposition. This decomposition method enables us to han-
dle large radius differences between the daughter vessels, as the
barycenter X is naturally closer to the vessel with the smallest
radius, which relaxes the angles between the separation planes
and improves the quality of the resulting mesh.

5.1.2. Surface meshing
In this step, the surface mesh of the bifurcation is created us-

ing the separation planes defined in the previous section. First,
we create an initial mesh grid that connects the end cross-
sections to the separation planes with a set of successive sec-
tions, as illustrated in Figure 6. Each section of the mesh has a
number N of nodes where N can be any multiple of 4. Figure
5 illustrates the initial mesh creation process. We first compute
the N nodes of the end sections C0, C1 and C2. A normal-
ized reference vector ⃗re fC which minimizes the rotation with

the separation points S P1,2 is defined for each end cross-section
C. The nodes of the end sections are placed on the outline of the
cross-section with evenly spaced angles starting by ⃗re fC and ro-
tated counterclockwise. The nodes of the separation planes are
positioned with equally sampled angles along the arcs connect-
ing the separation point AP, S P1 and S P2 to both center points
CT0 and CT1.

Fig. 5. Computation of the nodes (black dots) of the end cross-sections and
the separation planes for N = 8 and splines tspl1,2,3.

Once the nodes of the end sections and the nodes of the sep-
aration half-sections are computed, they are connected to form
a surface mesh. The nodes of C0 are connected to the nodes
of the half-sections defined by S P1 and S P2, and the nodes of
C1,2 are connected respectively to the nodes of the half-sections
S P1,2 and AP.

We first define an initialization of the 3D trajectory that con-
nects two nodes, as shown in the left column of Figure 6. This
initialization is an approximation that is used to control the
topology and geometry of the final mesh grid, but it does not
necessarily lie on the exact surface of the bifurcation at this
stage. The initial trajectories are evenly sampled with n nodes,
where n determines the number of cross-sections to compute
along a given branch. This number is proportional to the radius
of the end section of the branch, by a coefficient d which can be
adjusted to obtain the intended density of faces in the mesh.

The nodes are then projected radially to the surface of the
two vessels, as illustrated in the right column of Figure 6. The
direction of the projection is important to maintain the quality
of the faces of the initial grid after projection. Ideally, the nodes
of the initial trajectory must be displaced only radially from the
center of the branch vessel. However, the shape splines spl1 and
spl2 do not constitute a good approximation of the centerline of
the three geometric branches. For this reason, we create another
set of splines tspl1,2,3 connecting the center of each end section
to the center X of the bifurcation, represented in blue in Figure
5. The nodes are projected to the surface of the bifurcation
model according to the normal of this new set of splines.

The properties of the resulting mesh depend on the initial tra-
jectory approximation. Figure 6 illustrates the meshes obtained
after projection considering two types of initialization. The first
row shows the simple case where the nodes of the end sections
are linearly connected to the nodes of the separation geome-
try. In the second row, connection trajectories are computed
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Initialization Projection

Linear

Normal 

preservation

Fig. 6. Initial surface mesh and mesh after projection for the two types of
initialization considered. The red squares emphasize the impact of the two
types of initialization on the final mesh.

so that the normal of the end sections is preserved in the out-
put surface mesh. If both approximations allow to preserve the
topology of the grid and the quality of the faces after projection,
the initial trajectories with normal preservation are closer to the
actual surface of the bifurcation, causing less displacement of
the nodes during projection. Moreover, the preservation of the
normal of the end sections facilitates the inclusion of the bifur-
cation mesh in larger arterial networks; the connecting curves
can be smoothly extended to downstream vessels. In the rest of
this work, we use the normal preserving initialization.

5.1.3. Relaxation
The projection step of the bifurcation meshing method results

in an uneven sampling of the nodes along the trajectories that
can produce faces with heterogeneous size or important skew-
ness. Moreover, a rupture of continuity is observed when the
curves cross the separation between two branches. Those un-
wanted features are corrected by the relaxation of the nodes of
the surface mesh. Mesh smoothing methods are an easy way to
reduce the skewness of faces but it triggers important deforma-
tions of the general shape of the model. To avoid deformations,
Vidal et al. (2015) proposed to combine smoothing with a back
projection on the surface. Following this approach, an iteration
of Laplacian smooth (relaxation factor of 0.8) is first applied to
the bifurcation mesh. The nodes are then projected back to the
original surface. To prevent cross-sections from intersecting,
the projection is made in the direction of the vector connecting
the center of the cross-section to the node to project. This pro-
cess can be repeated until the relaxation is satisfying. Figure 7
displays a bifurcation mesh after 1 and 5 relaxation iterations.
The faces are colored according to their geometric quality, mea-
sured by the scaled Jacobian. We observe that while the shape
of the model is preserved, the quality of the faces near the sep-
aration planes is improved, and the grid now smoothly crosses
the separation planes. Based on the average quality of the faces,

we estimated that 5 relaxation iterations give the best results.

Initial mesh 1 iteration 5 iterations

scaled jacobian

Fig. 7. Original bifurcation mesh and mesh after 1 and 5 relaxation itera-
tions. The scaled Jacobian is used to measure the quality of the cells be-
tween −1 (poor quality) and 1 (high quality).

5.1.4. Apex smoothing
The last step of the bifurcation meshing is the smoothing of

the apical region. The model presents an unwanted sharp an-
gle where the two vessels merge. The curvature in the apex
regions impacts the pressure and velocity fields obtained by nu-
merical simulation, as shown by Haljasmaa et al. (2001). The
conventional mesh smoothing methods (e.g Laplacian, Taubin
smoothing) are fast and can produce smooth meshes with high-
quality faces. However, as they are global methods, they strug-
gle to generate important local deformations. Zakaria et al.
(2008) proposed to smooth the apex region by projecting the
nodes on a sphere of a given radius, rolling on the surface.
This method is accurate, but it is computationally expensive
and might not preserve the quality of the cells in the case of
hexahedral meshes. Taking advantage of the topology of our
hexahedral surface mesh, we propose a method to reduce this
complex 3-dimensional problem to a 2-dimensional problem.

2D plan projection

3D referential 

curve projection 

Fig. 8. Illustration of the apex smoothing pipeline.

Figure 8 illustrates the proposed smoothing method. The
curves connecting two nodes of the end sections of the bifur-
cation are extracted from the 3D mesh (e.g, the curve in red in
Figure 8). They are then projected on the 2D plane defined by
the normal of the mesh at the separation point and the normal of
the separation plane (resp. green and blue arrows on Figure 8).
A circle whose radius corresponds to the desired apex radius of
curvature is rolled along those 2D curves. The position of the
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circle where it is in contact with a further part of the curve is
mathematically computed. The points located under the circle
are moved to the outline while preserving their original sam-
pling. Finally, the new coordinates of the points are projected
back on the original 3D referential to form the output surface
mesh.

distance (mm)

original surface radius 0.5 mm radius 0.7 mm

Fig. 9. Apex smoothing with different radius of curvature values. The col-
ormap encodes the local distance to the original mesh, on the left.

The described smoothing method enables to control the di-
rection of projection and the sampling of the projected nodes,
preserving the quality of the faces. As shown in Figure 9, the
smoothing is very local and does not affect the shape of the bi-
furcation outside of the apical region.

5.1.5. Planar n-furcations
If the cerebral arterial network is composed of a majority of

bifurcations, multifurcations may also be present (e.g trifurca-
tions are frequently found on the basilar artery). To address this
requirement, we generalized the model of Zakaria et al. (2008)
to planar n-furcations. The generalized n-furcation model is
built with n − 1 splines, 2n + 1 cross-sections and n − 1 apex
points, as illustrated for the case n = 3 in Figure 10 (a). We
adapted the decomposition scheme presented in section 5.1 to
compute n + 1 separation plans, as in Figure 10 (b). Figure 10
(c) shows an example of planar trifurcation mesh obtained with
this generalization.

Fig. 10. (a) and (b) respectively illustrate the parametric model and the
branch decomposition scheme for a trifurcation. (c) shows an example of
trifurcation mesh.

5.2. Vessels

For the vessels, we adapted the meshing method proposed
by Ghaffari et al. (2017) to the parametric model proposed in
section 4.1 to obtain surface and volume meshes.

5.2.1. Surface meshing
To mesh the surface of a vessel, the spline model is evaluated

at a set of time values equally sampled in the [0, 1] interval.
Those values are used to set the center position and radius of
the cross-sections along the vessel (i.e the longitudinal resolu-
tion of the mesh). The density of cross-sections (number of
cross-sections per mm) is proportional to the mean radius of
the vessel, with a proportional coefficient d which can be set
by the user. From each center position, N nodes are radially
projected on the model surface to form a circular cross-section.
The projection vector is swept along the centerline so that the
twisting between sections is minimized. The successive sec-
tions are finally connected to form the mesh faces. In the case
of vessels connecting one bifurcation to another, an extra rota-
tion is smoothly applied to the cross-sections along the vessels
so that the last vessel section is aligned with the first section of
the next bifurcation.

5.2.2. Volume meshing
The volume of the vessel is meshed following the method

of Ghaffari et al. (2017). From each cross-section of the sur-
face mesh, a structured O-grid pattern is created. This pattern is
composed of three different areas; the boundary layers, the in-
termediary layers, and the central block. The relative size α, β,
γ of the areas, the number Nα of boundary layers and the num-
ber Nβ of intermediary layers can be adjusted. The separation
planes of the n-furcations are handled by combining n+1 halves
grids. The successive O-grid patterns are connected to form the
hexahedral cells of the volume mesh, as shown in Figure 11.

Fig. 11. Illustration of the O-grid pattern and volume meshing method.

5.2.3. Data encoding
In the proposed framework, the results of the modeling and

meshing algorithms are encoded in graph structures. Four
graphs are created, corresponding to the different steps of the
process; data, topology, model, and mesh. The geometric and
topological information (e.g centerline data points, model pa-
rameters, mesh nodes) are stored in the nodes and edges of the
graph. This storage method facilitates data manipulation and
editing as it allows the use of graph theory-based algorithms
such as depth-first search or neighbor identification. The advan-
tages of this data structure are further demonstrated in Section
7.2.



10 Méghane Decroocq et al. /Medical Image Analysis (2023)

6. Results

In this section, we evaluate both the modeling and the mesh-
ing methods proposed. The robustness and accuracy of the
proposed vessel modeling method are assessed in a compara-
tive study performed on a synthetic dataset of distorted center-
lines. Then, our meshing pipeline is compared quantitatively
and qualitatively with two concurrent state-of-the-art methods:
deep learning-based segmentation and implicit meshing. Fi-
nally, we provide additional performance indicators in terms of
cell quality and computational time.

6.1. Vessel model evaluation

In this part, we evaluate the robustness of the approximation
method presented in section 5.2 to noise and low sampling of
the data points.

6.1.1. Validation dataset
For this evaluation, we built a dataset of ground truth ves-

sel models. Four surface meshes of cerebral arteries from the
Aneurisk database were selected. For each mesh, a single ves-
sel starting from the inlet of the network and ending at an outlet
was selected so that it does not include pathologies but goes
through bifurcations, where we generally observe high curva-
ture and big radius change. The selected vessel centerlines were
extracted with a good resolution and low noise using the VMTK
software. The high-quality centerline data points obtained were
then approximated by a 4-coordinates spline s that constitutes
the ground truth. The control points were manually added and
the accuracy of the fitting of the spatial coordinates, radius and
first derivatives was checked visually until the approximation
was judged satisfying. Ground truth vessels and their creation
process are illustrated in supplementary material, section 1.1.

To evaluate the robustness of our approach, the ground truth
centerlines were distorted to mimic defects commonly observed
in realistic centerlines; low sampling and noise. Spatial noise
and radius noise were applied separately, as they might differ in
level. To generate spatial noise, the data points were displaced
from their original position. The magnitude of displacement
is randomly picked from a zero-centered Gaussian distribution
with standard deviation σspatial. The direction of the displace-
ment is normal to the ground truth spline s so that unwanted
radius noise is not created during the operation. Random radius
noise is generated from a zero-centered Gaussian distribution of
standard deviation σradius and added to the ground truth radius.
In both cases, the applied standard deviation value is propor-
tional to the point radius, as indicated in Table 1, in order to
keep similar levels of noise between big and small vessels. Fi-
nally, low sampling is obtained by removing data points along
the centerline to reach a target density.

Table 1. Parameters used for the distortion of the ground truth centerlines
density (mm−1) 2 4 10 16 20
σradius(mm) 0.01r 0.05r 0.1r 0.3r 0.5r
σspatial(mm) 0.01r 0.05r 0.1r 0.3r 0.5r

For each density value in Table 1, ten combinations of noise
parameters are used, spatial and radius noise being added sep-
arately. Radius noise is applied to the ground truth data with
parameters σradius as given in Table 1 while the spatial noise is
set to 0. Then spatial noise is applied with parameters σspatial

as given in Table 1 while the radius noise is null. Each noise
combination is repeated three times to account for the stochas-
tic effect; we get 30 data per density value, thus 150 in total.
This is done for the four vessels of the ground truth dataset,
bringing the number of data in the distorted dataset to 600.

6.1.2. Approximation methods
To demonstrate the robustness and the accuracy of the ap-

proximation strategy used to reconstruct the surface of the ves-
sels presented in Section 4.1, we compared it to other explicit
centerline-based meshing methods of the literature (Kociński
et al., 2016; Ghaffari et al., 2017). Those methods also rely
on splines or Bezier curves to approximate the centerline data
points and reconstruct the vessel surface. As most of the authors
did not provide the details of the fitting method employed, we
implemented four commonly used spline-based approximation
methods with incremental complexity in order to emphasize the
contributions of the proposed method.

• Global Non-Penalized (GNP):In this basic approach, the
control points are optimized without smoothness penalty
in the cost function (Equation 2 with λ = 0). The number
of control points is set to match the RMSE threshold given
in section 4.1. We call it global because the spatial and
radius dimensions are not addressed separately.

• Global Non-Penalized with Akaike criterion (GNP-
AIC):Optimizing the number of control points to obtain
the desired spline smoothness is a common approxima-
tion method in the literature. In this approach, the optimal
number of control points minimizes the Akaike informa-
tion criterion (Akaike (1973)) AIC1:

AIC1 = m × log(S S E) + 8(n + p). (6)

where m is the number of data points, p is the degree of
the spline, n is the number of control points and SSE is
the sum squared error from the data points, including their
four coordinates.

• Global Penalized with Akaike criterion (GP-AIC):This
approach corresponds to the original approximation by
penalized splines described in Eilers and Marx (1996).
It uses the same global approach as in GNP, but with a
smoothing penalty controlled by a parameter λ , 0 as in
Equation 2.

• Spatial coordinates and Radius Penalized with Akaike
criterion (SRP-AIC): It corresponds to the approximation
strategy that we propose in this work. Spatial and radius
dimensions are approximated separately with two smooth-
ing parameters λs and λr. The comparison of our strat-
egy with GP-AIC allows us to evaluate the contribution of
treating the spatial and radius coordinates individually.
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In methods GP-AIC and SRP-AIC, the criterion used to opti-
mize the λ values is another formulation of the Akaike informa-
tion criterion (AIC2), adapted to penalized splines, as proposed
by Eilers and Marx (1996):

AIC2 = m × log(S S E/m) + 2tr, (7)

where tr is the trace of the matrix H = N(N tN + λ∆)−1N t.
Unlike AIC1, it is not employed to choose an optimal number

of control points but to select the optimal value for the smooth-
ing parameter λ. This criterion was compared to other crite-
ria of the literature; the corrected Akaike information criterion
of Hurvich et al. (1998), the Schwarz’s Bayesian criterion of
Schwarz (1978), the cross-validation criterion and generalized
cross-validation criterion of Craven and Wahba (1978). Ac-
cording to this study, given in supplementary material (section
1.3), the Akaike criterion gave the best results on our data.

6.1.3. Quality metrics
A total of six quality metrics were selected to evaluate the ap-

proximation strategies presented in the previous paragraph. To
build an accurate measure of distance between the ground truth
spline s and the approximation spline ŝ, we project one curve
on the other. As illustrated in Figure 12, two matched sets of
time parameters are built. The spline s is equally sampled with
a time vector t, then projected on ŝ according to the minimum
distance to form the matched time vector T .

Fig. 12. Matching time parameters by minimum distance projection from
s onto ŝ

Once the projection is performed, the matched values can
be compared. We use the root mean squared error (RMSE) as
a measure of the closeness of the approximation spline to the
ground truth spline. The spatial coordinates and the radius val-
ues are treated separately in the evaluation. We note RMSEradius
(respectively RMSEspatial) the root mean squared error of the
radius (respectively the spatial coordinates). To have a robust
comparison between the curves, the projection is computed in
both ways (from s to ŝ and from ŝ to s) and the final RMSE
value is the average of the RMSE yielded by both projections.

The accuracy of the first derivatives of the model is evaluated
by the metrics RMSEderspatial and RMSEderradius. As curvature
is commonly considered in hemodynamic studies, the model
performance concerning the centerline curvature is also mea-
sured, by the metric RMSEcurv. Finally, the length of the ves-
sel affects the delay of blood arrival between the inlet and the
outlet of the vascular tree in numerical simulations. Therefore,
the difference Ldiff of length between the ground truth and the
approximated centerline was considered.

6.1.4. Results
As the spatial and radius distortions are not comparable in

nature and magnitude, the evaluation results are presented in
two different tables. Table 2 (respectively Table 3) shows the
mean values of the six quality criteria for the four methods after
radius noise (respectively spatial noise) addition. As expected,
the non-penalized model (GNP) is sensible to the added noise
and performs poorly for all radius-related metrics. In Figure
13, the radius estimation error is clearly visible on the vessel
produced by this method. In the same way, the spatial-related
metrics are impacted when spatial noise is added (Table 3). In
addition, a tendency to overfit the data is observed in Table 2,
causing a very high spatial error. The overfitting and noise prob-
lems are partially solved by optimizing the number of control
points with the method GNP-AIC. However, this approach still
yields a poor approximation of the derivatives:as the number of
control points is lower, the space between data points might not
be correctly interpolated, which particularly impacts the curva-
ture values.

Fig. 13. Mesh resulting from the approximation of distorted data (density =
1mm−1, σradius = 0.1) by three of the methods compared in section 6.1.

The penalized approximations GP-AIC and SRP-AIC en-
abled to drastically improve the estimation of the derivatives
and curvature. Finally, the advantage of SRP-AIC over GP-AIC
is demonstrated both in the result tables 2 and 3 and in Figure
13. The global smoothing penalty used in GP-AIC forces a
trade-off between the radius and spatial accuracy. In Figure 13,
the radius of the vessel produced by GP-AIP is very similar to
the ground truth vessel, but in return, the trajectory of the cen-
terline was too smoothed. On the other hand, both the radius
and trajectory of the vessel produced with SRP-AIC are closer
to the ground truth. In conclusion, the proposed approxima-
tion method shows good robustness to the defects of the input
data while enabling to simultaneously and accurately model the
vessel centerline and radius. More results are provided in sup-
plementary material, section 1.2.

6.2. Comparison with state-of-the-art methods

In this section, meshes obtained with our method are visually
and quantitatively compared to meshes produced by state-of-
the-art deep learning-based segmentation methods (Tetteh et al.,
2020; Livne et al., 2019), as well as a recent implicit centerline-
based meshing method (Abdellah et al., 2020).
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Table 2. Overall evaluation of the approximation methods:mean values of
the quality criteria for all the centerlines distorted by radius noise addition.
The cells in gray correspond to the lowest error for each metric.

GNP GNP-AIC GP-AIC SRP-AIC
RMSEspatial 8.462 0.034 0.053 0.029
RMSEradius 17.523 0.095 0.042 0.043

RMSEderspatial 0.218 0.118 0.042 0.009
RMSEderradius 0.391 0.214 0.032 0.032

RMSEcurv 1919.428 190.531 0.060 0.035
Ldiff 718.906 0.057 0.207 0.004

Table 3. Overall evaluation of the approximation methods:mean values of
the quality criteria for all the centerlines distorted by spatial noise addi-
tion. The cells in gray corresponds to the lowest error for each metric.

GNP GNP-AIC GP-AIC SRP-AIC
RMSEspatial 0.511 0.152 0.099 0.096
RMSEradius 0.008 0.009 0.018 0.007

RMSEderspatial 0.314 0.343 0.075 0.076
RMSEderradius 0.015 0.019 0.021 0.013

RMSEcurv 1.524 2.362 0.085 0.091
Ldiff 50.180 15.071 0.252 0.207

6.2.1. Comparison pipeline
Centerlines can be extracted either from the grayscale image

directly or from a segmented image. In this way, centerline-
based meshing can be used either as a substitute or a comple-
ment to segmentation. In our comparison study, we investigated
both approaches, as illustrated in Figure 14. In what follows,
the centerlines manually extracted by experts from MRA im-
ages of the BraVa database (Wright et al., 2013) are considered
as reference ”expert centerlines”.

For the first part of our comparison pipeline (in blue in Fig-
ure 14), the MRA images are segmented by state-of-the-art seg-
mentation methods (Tetteh et al., 2020; Livne et al., 2019).
A surface mesh is produced from the segmented images by
the marching cube algorithm and smoothed using a Taubin fil-
ter. The very small components of this mesh are removed to
keep only the largest connected parts. A set of centerlines,
which we call ”segmentation-based centerlines”, are extracted
from the segmentation. In Section 6.2.3, they are quantita-
tively compared to the expert centerlines to evaluate their ac-
curacy, and thus the topological and geometrical correctness of
the segmentation-based mesh.

For the second part of our comparison pipeline (in red in Fig-
ure 14), both the expert centerlines and the segmentation-based
centerlines are used as input for the centerline-based mesh-
ing methods. To improve their quality and to match the input
requirements of our meshing method, the segmentation-based
centerlines underwent some automatic post-processing before
meshing; the small ending segments are cut out, the cycles are
removed by computing a maximum spanning tree of the net-
work, and the edges connecting the data points are re-oriented
in the flow direction.

Two centerline-based methods are used to create meshes
from those post-processed centerlines and the expert center-
line; our explicit meshing method and the method of Abdellah
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mesh

mesh
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Fig. 14. Pipeline used to compare segmentation-based meshing and
centerline-based meshing.

et al. (2020), which is based on implicit structures and for which
we used the Blender plug-in provided by the authors, in meta-
balls reconstruction mode. In Section 6.2.4, those centerline-
based meshes are visually compared to the segmentation-based
meshes produced by deep learning methods Tetteh et al. (2020);
Livne et al. (2019).

6.2.2. Datasets and segmentation models training
Two databases of whole-brain MRA images for healthy

patients are used for this evaluation: The BraVa database
gives access to 62 expert centerlines and 50 MRA, and
the TubeTK database Bullitt et al. (2005) is composed of
34 MRA and the 34 in-house expert segmentations associ-
ated. These databases were chosen because they include
the same type of images while offering complementary in-
formation (resp. expert centerlines and expert segmentation).
For the vessels segmentation, two state-of-the-art methods
were implemented, both based on neural networks: Deep-
VesselNet Tetteh et al. (2020) and U-net Livne et al. (2019).
The DeepVesselNet architecture provided by the author was
used (https://github.com/giesekow/deepvesselnet), and the U-
net neural network was re-implemented. Both models were
trained on the expert segmentations of the TubeTK database.
27 images were included in the training set and 7 in the test set.

The loss function used during training was a combination of
dice loss and cross-entropy loss. The stochastic gradient de-
scent algorithm was used for the optimization, with a learning
rate of 0.01 for U-net and 0.001 for DeepVesselNet. The batch
size was set to 5 for U-net and 10 for DeepVesselNet due to
memory constraints. These hyperparameters were set empiri-
cally by testing a large selection of values for each hyperparam-
eter. The U-net was trained for 200 epochs and DeepVesselNet
for 300 epochs.

For this comparison study, we considered the segmentations
produced for the 7 images of the test set of TubeTK and the
50 MRA of the BraVa database - segmented with the models
trained on TubeTK -. Table 4 summarizes the data type and
the number of patients of the different datasets created for this
comparison study.
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Table 4. Description of the different datasets used in our comparison study.
The name of the original database (BraVa or TubeTK), the method used,
the nature of the data and the number of patients are given.

Database Method Data nPatients
BraVa DeepVesselNet Segmentation 50
BraVa Expert Centerlines 62
BraVa Unet Segmentation 50
TubeTK DeepVesselNet Segmentation 7
TubeTK Expert Segmentation 34
TubeTK Unet Segmentation 7

6.2.3. Quantitative evaluation
In this section, we present the results of the quantitative eval-

uation of the segmentation-based centerlines compared to the
expert centerlines according to the 9 topological and geometric
features described hereafter. nBulges corresponds to the num-
ber of bulges in the geometry. It is obtained by counting the
number of ending segments smaller than the vessel diameter.
nBranch is the number of branches in the entire network. nCC
is the number of connected components and nBranchMaxCC is
the size of the largest connected component, evaluated by its
number of branches. This metric highlights the disconnected
vessels and small isolated parts in the mesh. nCycle is the num-
ber of cycles of the network. The only cycle in the cerebral
vascular system is the circle of Willis, so the number of cycles
should be either 1 - complete circle of Willis - or 0 - incomplete
circle of Willis -. Finally, the branching topology of the network
is analyzed via the number of bifurcations nBif, the number of
trifurcations or more nTrif+ and the minimum (resp. maximum)
furcation degree minDeg (resp. maxDeg), i.e the number of in
and out branches (bifurcations = 3). These metrics are reported
in Table 5 for the different datasets considered.

We observe in Table 5 that the expert centerlines (in gray)
do not have any small ending segments (nBulges = 0). The
network forms a single connected component, they are no iso-
lated vessels and no cycles. Besides, the branchings are mainly
bifurcations, as expected in the cerebral vascular system where
trifurcations are rare. The expert centerlines show no branching
with a degree superior to 4 (= trifurcations).

On the other side, segmentation-based meshes present a lot of
bulges (> 12) and cycles (> 26), mainly because closed vessels
are merged in the resulting mesh. The number of trifurcations
and higher degree branching is high (> 15), and furcations with
up to 6 branches were observed. These metrics bring in light
some inaccuracies in the topology of the meshes produced by
segmentation, which will affect the mesh geometry and there-
fore the CFD simulation results. It is interesting to see that
such problems - disconnected or merged vessels, bulges - are
observed even in the meshes based on the ground truth segmen-
tation made by medical doctors (see ”TubeTK expert” row in
Table 5). They are not only caused by the segmentation method
but also by the nature of the meshing process itself, as it relies
on the segmentation of low-resolution images. Moreover, no
distinction can be made between veins and arteries in the seg-
mentation process, which might cause peculiar topology in the
network. To run numerical simulations in such segmentation-
based meshes, important post-processing is required to isolate

the arterial system and reconnect or separate vessels. The topo-
logical problems highlighted here are illustrated by enhanced
visualizations of the meshes (Figures 15 and 16) in the next
section.

6.2.4. Visual evaluation
In this part, the results from our method are visually com-

pared against centerline-based meshes produced by the method
of Abdellah et al. (2020) and the segmentation-based meshes
produced by the method of Tetteh et al. (2020) and Livne et al.
(2019). A BraVa patient was selected for this visual evalua-
tion to have access to the expert centerlines associated. We
selected a segmentation made with Unet as it provided better
results than DeepVesselNet on this database. Figure 15 shows
the whole brain meshes obtained by different methods, and Fig-
ure 16 shows enhanced visualization of some relevant parts. As
shown in Figure 15 (a), the deep learning segmentation algo-
rithm demonstrates a good ability to segment a large part of the
vascular network, including small segments. However, the al-
gorithm does not guarantee the connectivity of the network, and
some post-processing filtering is needed to remove the small
isolated parts (Fig. 15 (b)). The centerline-based methods (im-
ages (d) and (e)) were able to produce meshes with a topology
similar to the segmentation-based mesh from the centerlines au-
tomatically extracted from it. We can see in this figure that the
mesh produced by our method is smoother and more geometri-
cally and physiologically accurate than the other meshes for the
same network. The geometric quality of the meshes obtained by
different methods will be further discussed below. As illustrated
in image (f), the manually extracted expert centerline allowed
to reconstruct a larger arterial network with smaller vessels than
the centerlines based on the segmentation results. Note that,
overall, the radius of the expert centerlines is smaller, due to
the extraction method Longair et al. (2011).

In View 1 of Figure 16, we observe that our method,
which relies on the vessel tubularity assumption, efficiently
cleaned the vascular network from the bulges observed in the
segmentation-based mesh. The radius and trajectory smooth-
ing allows for reconstructing the disconnected parts in a very
natural way. View 2 highlights the merging vessels and cycles
observed in segmentation-based meshes. Our automatic post-
treatment of the centerlines allowed to remove unwanted cycles
in the network. The implicit method VessMorphoVis Abdellah
et al. (2020) offers good flexibility to mesh complex geometry
such as pathology or complex branching patterns, however, the
surface of the vessels looks bumpy and irregular. Moreover, as
shown in both views of Figure 16, this method appears to be
sensitive to noise on the centerline geometry and radius. As it
is robust to noise and data sparsity, our method improves the
smoothness and realism of the vascular geometry.

Overall, those results demonstrate the ability of our algo-
rithm to produce high-quality meshes not only from manu-
ally extracted centerlines but also to integrate fully-automated
pipelines.

6.3. Mesh quality
In CFD, the accuracy and stability of the simulation is af-

fected by the quality of the mesh. To evaluate this quality, we
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Table 5. topological and geometric features of the segmentation-based meshes for the different datasets. For each dataset, the median value between all
patients is given.

Database Method nBulges nBranch nCC nBranchMaxCC nCycle nBif nTrif+ minDeg maxDeg
BraVa DeepVesselNet 43 369 451 59 26 76 15 0 5
BraVa Expert 0 205 1 205 0 102 1 1 4
BraVa Unet 38 504 380 200 44 136 30 0 6
TubeTK DeepVesselNet 52 552 557 212 46 140 28 0 6
TubeTK Expert 12 551 26 508 98 230 48 0 6
TubeTK Unet 34 626 300 446 85 215 46 0 6

Fig. 15. Meshes produced with segmentation-based and centerline-based methods for a patient of the BraVa database. From left to right and top to bottom:
original mesh created from the segmentation with Unet, the same mesh after filtering of the smallest components and smoothing; centerlines extracted
from the mesh after post-processing; mesh produced by VessMorphoVis from these centerlines; mesh produced by our method from these centerlines;
mesh produced by our method from manually extracted expert centerlines.

computed the scaled Jacobian of the cells in the meshes gen-
erated with the proposed method. The scaled Jacobian ranges
from -1 (worst quality) and 1 (best quality). Negative values
indicate invalid cells. The volume meshes for 60 patients from
the BraVa database were generated (see section 7.3 for details),

with the following parameters; N = 24, d = 0.2, α = 0.2,
β = 0.3 , γ = 0.5, Nα = 10, Nβ = 10. The cells of the bifurca-
tions and vessels are evaluated separately. Failed bifurcations
and vessels (see section 7.3) were excluded from the study. The
histograms of scaled Jacobian for the 60 patients are given in
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Fig. 16. Enhanced visualization of the segmentation-based mesh, the centerline-based mesh obtained with our method and the centerline-based mesh
obtained with VessMorphoVis. The red squares highlight the parts where the meshes show important differences.

Figure 17, together with an example branch.
As shown in image (a) of Figure 17, the bifurcations are the

most challenging structures to mesh. The lower quality cells are
mainly localized in the bifurcation separation planes. Never-
theless, we achieved a very good overall quality for bifurcation
cells, with 71% of the cells with a scaled Jacobian value higher
than 0.9. The vessel cells have even better quality, with 95.7%
of the cells having a scaled Jacobian higher than 0.9. In terms
of mesh quality, our method improves the state of the art. In-
deed, only 49% of the cells have a scaled Jacobian above 0.9 on
average on the distributions given for three large cerebral net-
works in Ghaffari et al. (2017). This proportion goes up to 62%
of the cells of the abdominal aortic artery geometry meshed by
the method of Xiong et al. (2013). Finally, in De Santis et al.
(2011b), between 65% and 82% - depending on the case and
the cell density - of the cells of the aortic arch meshed have
a scaled Jacobian value between 0.8 and 1. Quantitatively, our
method gives better results, especially given that the histograms
for the other methods were computed on all the cells, both bi-
furcations and vessels. However, we bear in mind that the study
of De Santis et al. (2011b) and Xiong et al. (2013) focuses on
arterial geometries that differ from our study.

6.4. Computation time

The computational time of the modeling and meshing steps
for five patients of the BraVa database was computed. The re-
sults for three of them are given in Table 6. The average time for
modeling a large cerebral vascular network is about 16 minutes.
The time for the volume meshing step is given in Table 6 for dif-
ferent cell densities. The average meshing time goes from 24.6
minutes for a coarse mesh to 49.7 minutes for a fine mesh. We
want to stress that this study was performed on large networks,
with a high number of bifurcations (around 100) and vessels
(around 200). The meshing time increases with the number of

bifurcations and vessels, while the modeling time is affected by
the number of data points.

Table 6. Computational time required to model and mesh large vascular
networks from the BraVa dataset.

id
furcation

(#)
vessel

(#)
data point

(#)
modeling
time (min)

cells
(#)

meshing
time (min)

P1 96 194 2816 11.3

1389k
1853k
2316k
2779k

20.4
25.7
31.2
38.4

P2 101 203 3531 18.3

1916k
2555k
3193k
3832k

27.5
38.2
49.1
67.5

P3 107 216 3474 16.8

1737k
2316k
2895k
3474k

26.3
36.1
44.2
55.9

Besides, a large part of the meshing time corresponds to the
computation of the surface nodes; on average 17.4 minutes for
a coarse mesh and 34.8 minutes for a fine mesh. The volume
mesh is generated directly from the nodes of the surface mesh
without recomputing them. Finally, meshing can be run in par-
allel, by splitting the network into parts to be meshed on differ-
ent CPUs. Using 12 CPUs, we were able to reduce the meshing
computational times given in Table 6 by a factor of 5.

7. Applications

Several applications of our framework are proposed in this
section.
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Fig. 17. Distribution of the scaled Jacobian values of the mesh cells. His-
togram (b) represents the quality of bifurcation cells and histogram (c) the
quality of the vessel cells. Image (a) illustrates the location of high and low-
quality cells within a mesh.

7.1. Deformation

The proposed model is based on the assumption that ves-
sel cross-sections are circular, which is limiting when dealing
with pathological vessels. A way to address this limitation is
to deform the cross-sections to match a target surface as post-
processing. If the user input data is a surface mesh, we propose
the following alternative use of our meshing framework:

1. Extract the centerline from the surface mesh (using VMTK
software for example),

2. Create a tubular mesh from the centerline using the pro-
posed method,

3. Deform the tubular mesh to match the original surface.

Figure 18 illustrates an example of this pipeline to mesh ar-
teries with aneurysms. In the deformation step, the nodes are
individually projected onto the surface of the target mesh. To
prevent the sections from intersecting, the nodes are projected
radially from the section center.

Fig. 18. Structured hexahedral meshing of cerebral arteries with a fusiform
or saccular aneurysm by deformation. On the left, the tubular mesh, ob-
tained by our framework, is superimposed on the target surface. On the
right, the mesh after projection is shown.

As shown in Figure 18, saccular aneurysms are initially mod-
eled as bifurcating vessels and then deformed. Because the
shape of the volume mesh pattern depends on the position of
the section nodes (cf Section 4.1), the deformation of the sur-
face mesh is smoothly conveyed to the cells inside the mesh, as
illustrated by Figure 19.

Fig. 19. Cross-section pattern before and after deformation. The corre-
sponding slice of the target surface mesh is represented in grey.

This pipeline is not limited to pathological vessels. It can be
extended to remesh any vessel surface mesh with hexahedral
cells.

7.2. Topology and geometry editing

The relationship between the vascular tree topology and ge-
ometry (e.g the different configuration of the circle of Willis,
vessel angle) and the hemodynamics have been studied exten-
sively in the literature, using ideal or patient-specific models
(Cornelissen et al., 2018; Alnæs et al., 2007). In this context,
the proposed meshing framework finds applications in creating
and editing vascular models. Because only a few data points
are required for the meshing, the bifurcation angles, the radius
or the trajectory of a vessel can be modified effortlessly. Figure
20 provides examples of such modifications. The graph-based
storage proposed (Section 5.2) facilitates the identification and
modification of the data points of a branch of interest. Besides,
many parameters of the model (e.g bifurcation cross-sections
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and apex smoothing, vessel smoothing) and mesh (e.g cell lon-
gitudinal and circumferential density, boundary layer) can be
adjusted. As the bifurcations are modeled by two merging ves-
sels, one branch can be removed without affecting the trajec-
tory of the other branch, as illustrated on the right in Figure 20.
Those modifications can be performed inexpensively by a local
re-computation of the model and mesh parts.

Fig. 20. Editing of a model of the basilar artery using our framework. The
bifurcation angle and the radius of the original vertebral artery are mod-
ified, and one of the vertebral arteries is removed. The centerline points
and radius used to produce the meshes are represented on the top left for
each case in which they were modified.

7.3. Large cerebral arterial network meshing
To demonstrate further the applications of our method, we

applied it to 60 patients of the BraVa dataset. The meshes pro-
duced for 4 of the patients are given in Figure 21. This dataset is
considered challenging for several reasons. As the centerlines
were extracted manually by medical doctors, they are noisy and
have a low sampling. The superimposition of the centerline data
points on the magnetic resonance angiography image in Figure
22 shows the high level of noise encountered in the input data,
both in the radius estimation and the spatial positions. Besides,
by computing the ratio of the number of data points on the to-
tal length of the connecting polyline, we estimated the average
point density in the database to be 0.45 mm−1, which is very
low.

We evaluate the percentage of successfully meshed vessels
and bifurcations separately, as the meshing method is different.
The vessels or bifurcations with at least one cell with a negative
scaled Jacobian score are considered failed. With this strict def-
inition, a total of 83% of the bifurcations and 92% of the vessels
were successfully meshed.

The main reason for the failure of the vessel mesh is a too
high curvature - mainly in the arteries with high tortuosity such
as the internal carotid arteries - caused by a sharp angle in the
input centerline. The main causes of failure for the bifurcations
were very low bifurcation angles and misplacement of bifur-
cation points in the input data. This last case is illustrated in
image (b) of Figure 22. We can see that the bifurcation point
in the centerline data was positioned too far downstream in the
main vessel, causing one of the daughter vessels to go backward
from the direction of the flow with a sharp angle. As we use an
oriented bifurcation model, it failed to correctly represent the

geometry. Figure 22 (a), on the other hand, illustrates a suc-
cessful reconstruction of the trajectory of the vessel. Although
the input centerline was very imprecise both in the radius esti-
mation and point positions, we were able to produce a smooth
model, closest to the vessel geometry as given by the medical
image. Moreover, as shown in the insert of Figure 22 (a), even
challenging topologies (e.g short connecting segments between
bifurcations) can be successfully meshed with hexahedral ele-
ments. An image of all the meshes of the database, with failure
areas highlighted, is given in supplementary materials, section
1.3.

(b) failure case

(a) success case

flow 
direction

direction
flow 

Fig. 22. Example of success and failure of our method for one patient of the
BraVa database. The whole-brain mesh is represented in the middle with
a focus on two parts of the network. For each focus, the original centerline
data points are represented by red dots (center) and black circles (radius).
The mesh obtained is superimposed on the data points, with a highlight on
the relevant parts. On the right image, the original centerline data points
are overlayed on the original MRA image.

7.4. CFD simulation
In this section, we demonstrate the applicability of the mesh-

ing method proposed for CFD simulations. Firstly, we com-
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Fig. 21. Top view of 4 meshes among the 60 generated from the patients of the BraVa database. The bifurcations where the meshing algorithm has failed
(i.e at least one of the cells has a negative Jacobian) are represented in red. The cross-sections of the vessels with cells of negative Jacobian values are also
represented in red.

pare the hexahedral meshes produced by our method to the
commonly used tetrahedral meshes in terms of computational
cost, convergence, and accuracy of the results. This compar-
ison was conducted in a straight tube model, as this experi-
mental setting allows a comparison to the analytical form of
the sectional velocity profile given by the Poiseuille equation.
The tube diameter was set to mimic a middle cerebral carotid
artery (D = 2.5mm), and the tube length to guarantee that the
flow is fully developed (L = 200mm). Five tetrahedral vol-
ume meshes of increasing cell density -from coarse to fine-
were created by the software TetGen® (Hang, 2015), a state-
of-the-art tetrahedral meshing software often used to produce
the volume mesh in blood flow studies (Taebi et al., 2020; Shad
et al., 2021). In the same way, five hexahedral volume meshes
of increasing cell density were created by our method. For the
CFD simulations, the fluid properties were selected to mimic
blood, with a density ρ = 1053kg.m−3, and a dynamic viscosity
µ = 0.0035kg.m−1.s−1. The flow was assumed laminar -justified
by a Reynold number of 150.4-. The inlet boundary condition
was set to a fixed velocity U = 0.2m.s−1, and the outlet bound-
ary condition to zero pressure. The residuals value for conver-
gence was fixed to 10−6. The CFD simulations were run using
ANSYS Fluent (ANSYS Inc., USA).

As shown in Figure 23, the mesh independence was reached
faster using hexahedral meshes than tetrahedral meshes, for a
more accurate sectional maximum velocity value. The conver-
gence of the simulation was also improved, as 4 times fewer
iterations were necessary to obtain convergence of the results
with hexahedral meshes. The simulation time was reduced on
average by a factor 3, which adds to the fact that fewer cells
are required to reach accurate results with hexahedral meshes
(as shown in Figure 23), reducing the computational cost even
more. These results are consistent with the conclusions given
in the works of Vinchurkar and Longest (2008), De Santis et al.
(2010), and Ghaffari et al. (2017), demonstrating the advantages
of hexahedral meshes over tetrahedral meshes for CFD simula-
tions. More details on the methods and results can be found in
Supplementary materials, Section 3.2.1. This experiment was
reproduced in a realistic bifurcation case, giving similar results,
reported in Section 3.2.2 of the supplementary materials.

Fig. 23. Graph of the sectional maximum velocity as a function of the
number of cells in the mesh for both tetrahedral meshes and hexahedral
meshes. The maximum velocity was averaged on three cross-sections along
the tube model. The analytical value expected is shown by the black dotted
line.

Secondly, we applied our method to reconstruct a patient-
specific mesh of the middle carotid artery (MCA) and down-
stream vessel in a case where the segmentation failed to pro-
duce a valid mesh. Using our framework, fluid extensions were
automatically added to the inlet and outlet of the mesh and a
stenosis with a user-defined shape was automatically added to
the MCA. The stenosis was designed to induce a reduction of
50% of the vessel diameter. Images of the meshes are provided
in Supplementary materials, Section 3.3.

Simple boundary conditions were used for this applica-
tion case, as our goal is not to provide an analysis of this
case study but simply to demonstrate the applicability of our
method for the study of cerebrovascular pathologies by CFD.
Blood is considered a Newtonian fluid (ρ = 1053kg.m−3, µ =
0.0035kg.m−1.s−1), and the flow is assumed steady and laminar.
The inlet boundary condition is set to a velocity of 0.2m.s−1

(Blackshear et al., 1980), and the outlet is set to zero pressure.
The simulation converged with a residual value of 10−6 in 50
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Fig. 24. CFD simulation results for the mesh without stenosis (a) and with stenosis (b). In both cases, the velocity streamlines were rendered and the velocity
field is shown by a cut on the stenosis region.

iterations (resp. 78 iterations) and 4 minutes (resp. 6 minutes)
for the healthy case and the pathological case respectively. The
velocity streamlines and the velocity fields computed by CFD
for the healthy and pathologic cases are presented in Figure 24.
With this experiment, we showed the potential of our mesh-
ing method to easily design and conduct blood flow studies by
CFD. The editing flexibility of our framework allows to study
the effect of hemodynamic pathologies or topological changes
compared to a reference geometry like in Figure 24. The ad-
vantages of our framework are not limited to the modeling and
meshing steps, as it also facilitates the analysis of the results
(e.g extraction of cross sections, extraction of velocity values
along the centerline).

8. Conclusion

In this article, we addressed the problem of the reconstruction
and meshing of large vascular networks from noisy, sparse cen-
terlines. The proposed method is robust to noise, accurate and
automatic. It opens to way to CFD simulations in large vascular
networks manually or semi-automatically extracted by medical
doctors, with minimal manual intervention. An original approx-
imation method unifying the spatial and radius information in
a single function is proposed to model the vessels. The use of
a bifurcation model based on physiological parameters is asso-
ciated with new hexahedral meshing and smoothing techniques
to produce bifurcations with a realistic shape and high-quality
cells in a reasonable time. Our method finds application in the
automatic meshing of large databases of vascular centerlines
and hexahedral remeshing of non-tubular or pathologic vessels.
It is well suited for the creation of realistic ideal vascular net-
work models and the study of the impact of topological (branch
removal) and geometrical (branch angle) on blood flow.

We acknowledge some limitations to this work. The pipeline
was originally developed for cerebral vascular networks, and
non-planar n-furcations (n > 3) that are common in other ves-
sels (e.g aorta, lung vessels) were not addressed yet, which
limits its use to cerebral vasculature. In addition, the robust-
ness of the modeling and meshing method could be further im-
proved as it failed in some cases. For this, we would like to
integrate more physiological constraints on the bifurcation and
vessel models such as a maximum curvature or maximum ves-
sel angle. Besides, we want to emphasize that our objective
with this work was not to improve the performance of the seg-
mentation or centerline extraction algorithms but to acknowl-
edge the limitations of the realistic data and generate meshes
as close as possible to the real anatomy from flawed centerlines
and existing databases. Hence, the accuracy of the reconstruc-
tion depends on the accuracy of the input centerlines and some
manual post-treatment may still be required before simulation.
In this way, our framework offers more editing flexibility than
other meshing methods. To take advantage of this flexibility,
we developed a vascular network editing software, with a user-
friendly interface. This interface integrates the modeling and
meshing methods described in this article as well as other edit-
ing functionalities such as centerline editing, branch removal or
angle modification. It opens vascular modeling and hexahedral
meshing to medical doctors and non-expert users.
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multiscale vesselness filter, in: Medical Imaging 2015: Image Processing,
International Society for Optics and Photonics. p. 94132A.

Jiang, Z., Zhang, H., Wang, Y., Ko, S.B., 2018. Retinal blood vessel segmenta-
tion using fully convolutional network with transfer learning. Computerized
Medical Imaging and Graphics 68, 1–15.

Kerrien, E., Yureidini, A., Dequidt, J., Duriez, C., Anxionnat, R., Cotin, S.,
2017. Blood vessel modeling for interactive simulation of interventional
neuroradiology procedures. Medical image analysis 35, 685–698.

Keshwani, D., Kitamura, Y., Ihara, S., Iizuka, S., Simo-Serra, E., 2020. Top-
net: Topology preserving metric learning for vessel tree reconstruction and
labelling, in: International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer. pp. 14–23.
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A B S T R A C T

Computational fluid dynamics (CFD) simulation provides valuable information on
blood flow from the vascular geometry. However, it requires to extract accurate models
of arteries from low-resolution medical images, which remains challenging. Centerline-
based representation is widely used to model large vascular networks with small vessels,
as it enables manual editing and encodes the topological information. In this work, we
propose an automatic method to generate a hexahedral mesh suitable for CFD directly
from centerlines. The proposed method is an improvement of the state-of-the-art in
terms of robustness, mesh quality and reproducibility.

Both the modeling and meshing tasks are addressed. A new vessel model based
on penalized splines is proposed to overcome the limitations inherent to the centerline
representation, such as noise and sparsity. Bifurcations are reconstructed using a physi-
ologically accurate parametric model that we extended to planar n-furcations. Finally, a
volume mesh with structured, hexahedral and flow-oriented cells is produced from the
proposed vascular network model.

The proposed method offers a better robustness to the common defects of vascular
centerlines and an increased mesh quality compared to other state-of-the-art methods.
As it combines both modeling and meshing techniques, it can be applied to edit the
vascular models effortlessly to study the impact of vascular geometry and topology on
hemodynamics. We demonstrate the efficiency of our method by entirely meshing a
dataset of 60 cerebral vascular networks. 92% of the vessels and 83% of the bifurca-
tions were meshed without defects needing manual intervention, despite the challenging
aspect of the input data. The source code will be released publicly.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

Cerebrovascular diseases, such as stroke, can cause severe
disability or death (Ramos-Lima et al., 2018). The relationship
between the topology and geometry of the vascular network and
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the onset and the outcome of the pathology is increasingly in-
vestigated in the literature. Computational fluid dynamics is a
key tool for this type of study, as it provides information on
the hemodynamics from the vessel geometry (Saqr et al., 2020;
Sugiyama et al., 2016). The main limitation in the use of CFD
is the creation of the computational mesh. Indeed, numerical
simulation requires a smooth, anatomically realistic mesh of the
arterial wall to provide reliable results. In pathologies like is-
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chemic stroke, the distribution of the vessels in the different vas-
cular territories of the brain impacts the position and evolution
of the lesion (Hodneland et al., 2019). It requires reconstructing
large and complex cerebral arterial networks with small vessels
whose radius is close to the image resolution, which remains
very challenging. Besides, in the finite element method, the
shape of the cells inside the volume also affects the simulations.
In particular, the flow-oriented, structured hexahedral cells were
shown to improve the stability of the simulation while lowering
the computational cost (Vinchurkar and Longest, 2008; De San-
tis et al., 2010; Ghaffari et al., 2017). Those results were con-
firmed in this work by running a CFD experiment whose results
are presented in Section 7. In spite of this, tetrahedral cells
remain widely used due to their ability to automatically mesh
any complex shape. The approaches investigated in the litera-
ture to address the meshing of vascular networks can be divided
into two categories: the segmentation-based and the centerline-
based methods.

The segmentation of magnetic resonance angiography
(MRA) images is a non-invasive way to access patient-specific
vasculature. A lot of effort was put to develop efficient vessel-
enhancing filters (Jerman et al., 2015; Merveille et al., 2017)
and to improve the segmentation methods. In particular, the rise
of deep learning-based segmentation methods resulted in sig-
nificant progress in vascular segmentation (Tetteh et al., 2020;
Livne et al., 2019). However, the accuracy of the segmentation
does not guarantee the accuracy of the mesh it entails (e.g ves-
sels merging due to the image resolution, disconnected vessels,
bumps), nor its usability for numerical simulation. Besides, the
vascular network is generally meshed with tetrahedral elements
and hexahedral remeshing is not straightforward.

Following the tubularity assumption, vessels can be reduced
to a centerline-radius description. Segmentation-based and
centerline-based models complement each other, centerline ex-
traction being used as a pre-processing or post-processing of
segmentation. Many methods to extract vessel skeletons from
binary or raw images were proposed in the literature (Zhang
et al., 2021; He et al., 2020). As opposed to image seg-
mentation, centerline-based representation advantageously in-
corporates the network topology and enables manual extrac-
tion and editing. This simplified representation is more suit-
able for the construction of big databases of large vascular net-
works (Wright et al., 2013) or the creation of ideal models.
It also offers more editing flexibility than segmentation-based
meshes. As it encodes the vessel topology and orientation, it
has a high potential for the creation of meshes with high-quality,
flow-oriented cells. Nevertheless, the representation of vessels
by centerlines lowers the geometrical information content; de-
pending on the extraction method, only a limited number of
data points are used and noise can be introduced in the dataset.
It causes inaccuracy in the shape of the vessels and the position
and geometry of bifurcations. These limitations make it difficult
to reconstruct a smooth and physiologically accurate surface
model that matches the requirements of numerical simulation.
In this article, we propose a method to overcome those limita-
tions and create a high-quality, structured hexahedral mesh for
CFD from centerlines only, opening the way to CFD in large

cerebral arterial networks.

2. Related work

2.1. Segmentation-based meshing

Segmentation of medical images is the most common method
to obtain patient-specific meshes for CFD. In recent years, deep
learning-based models have led to significant advances in vas-
cular segmentation. More specifically, convolutional neural net-
works (CNNs) have achieved very good performances (Jiang
et al., 2018; Tetteh et al., 2020). The popular U-net architec-
ture (Ronneberger et al., 2015) has been successfully applied to
the segmentation of intracranial vessels in Quon et al. (2020)
and Livne et al. (2019). Hilbert et al. (2020) proposed an ex-
tended U-net architecture using context aggregation and deep
supervision for brain vessel segmentation. Besides, the atten-
tion mechanisms have been used to help the network to bet-
ter learn global dependencies and increase the receptive field in
Mou et al. (2021), Ni et al. (2020) and Li et al. (2021).

For medical applications such as CFD, more than the seg-
mentation itself, the smoothness and the topological accuracy
of the mesh it entails are critical. However, in the literature,
there was very little focus on the conversion of the segmented
volumes to mesh. Recently, Wickramasinghe et al. (2020) and
Kong et al. (2021) introduced new neural network architec-
tures to reconstruct 3D meshes directly from 3D image vol-
umes. Despite those recent advances, the meshing largely re-
lies on algorithms such as the marching cubes, followed by a
smoothing step, to produce a surface mesh with tetrahedral el-
ements (Watanabe et al., 2018; Misaki et al., 2021). However,
this type of segmentation-based meshes commonly suffers from
topological inaccuracies (e.g. merging or disconnected ves-
sels, bulges, missing vessels) and requires a burdensome man-
ual post-processing (Glaßer et al., 2015), as we demonstrated
in Section 6.2. Such problems are not correctly captured by
the image-based metrics (e.g DICE score) used to evaluate the
segmentation methods. To overcome those challenges, the cen-
terline representation of vascular networks has recently gained
interest.

Some recent segmentation approaches propose to integrate
the vessel centerline information to build more topology-
oriented metrics. (Keshwani et al., 2020) proposed to segment
the vascular network from its skeleton by learning a connectiv-
ity metric between center-voxels. Besides, (Shit et al., 2021)
introduced a novel topology-preserving loss for the training of
neural networks, which relies on the centerlines of the predicted
segmentation. The information provided by the centerlines al-
lowed the neural network to improve the topology correctness
of the segmentations. In this context, we believe that the use of
centerlines in the meshing process can offer many advantages
for CFD applications.

2.2. Centerline-based meshing

In this part, we review the methods used to recreate an ac-
curate vascular surface from centerline information. The main
issues to overcome in this task arise from the defects commonly
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observed in the vascular centerline extracted from medical im-
ages; local discontinuities causing a lack of information - espe-
cially at the bifurcation parts - and noise due to the voxeliza-
tion. In this context, the smoothness of the vessel surface and
the accurate reconstruction of the bifurcation part are important
locks. The reconstruction methods can be divided into explicit
methods, where a tetrahedral mesh of the surface is produced,
and implicit methods where the surface is represented by im-
plicit functions. Implicit methods employ radial basis functions
(Hong et al., 2018), implicit extrusion surfaces (Hong et al.,
2020) or local implicit modeling (Kerrien et al., 2017) to recon-
struct vascular networks from medical images or from center-
lines (Abdellah et al., 2020). If they stand out by their ability to
reconstruct complex branching topology, they do not allow as
much control on the final mesh as explicit methods (e.g. hex-
ahedral meshing) which makes them less suited for CFD using
the finite element method.

In explicit methods, the vessel surface is obtained by sweep-
ing along the centerlines. The quality of the reconstruction
depends on the way centerline points are approximated, usu-
ally with Bezier or spline functions (Guo et al., 2013; Kociński
et al., 2016; Ghaffari et al., 2017), and might be affected by the
quality of the input centerline. The details of the approximation
methods and the evaluation of the accuracy of the estimation of
coordinates and derivatives were not provided in previous stud-
ies. For the branching part, various bifurcation models were
proposed. In the work of Kociński et al. (2016) and Ghaffari
et al. (2015), the three branches of the bifurcation are modeled
separately and joined at the bifurcation center. The junction is
then blended to restore the continuity, by a subdivision scheme
for Kociński et al. (2016) and Bezier segments for Ghaffari et al.
(2015). This geometric model facilitates the creation of hexa-
hedral meshing. However, the realism of the bifurcation shape
depends on the accuracy of the position of the bifurcation cen-
ter and the tangent of the branches, which is hard to estimate
correctly from centerlines.

Han et al. (2015) and Guo et al. (2013) modeled bifurcations
using three tubes connecting the inlet and outlet sections. Half
of each section of the tube is meshed by sweeping and the hole
left in the middle is filled afterward. Their method guarantees
the smoothness of the model but results in unnatural-looking
bifurcations. Finally, Zakaria et al. (2008) proposed a phys-
iologic model where the bifurcations are represented by two
merged tubes. It was validated with regard to both the accuracy
of the anatomy and the CFD simulations. It does not rely on the
geometrical center of the bifurcation, but on a set of physiolog-
ical parameters (apex, apical sections, inlet and outlet sections),
and shows more anatomical realism. However, the authors ex-
tracted the model parameters from a surface mesh, and they did
not suggest a way to extract them from centerlines.

2.3. Hexahedral meshing
For applications in CFD with the finite element method, the

inside of the surface mesh must be discretized into cells. The
commonly used cell shapes include tetrahedral, prismatic and
hexahedral. Hexahedral meshes can be further divided into two
categories; the structured meshes, where the neighborhood re-
lationships between the cells are defined in the mesh structure

(e.g. regular grid), and the unstructured mesh. In the case of
blood vessels, structured and unstructured hexahedral meshing
also allows for the creation of flow-oriented cells. Studies of
the literature show that both the shape of the cells (tetrahedral,
hexahedral) and the type of mesh (structured or unstructured)
influence the cost and the stability of the numerical simulation.

Vinchurkar and Longest (2008), De Santis et al. (2010) and
Ghaffari et al. (2017) compared the performances of hexahe-
dral and tetrahedral meshes for different models (airways, coro-
nary tree and cerebral arteries) and applications. Those stud-
ies demonstrated that hexahedral meshes in general, and more
specifically structured hexahedral meshes, converge better for
the same accuracy of the result. De Santis et al. (2010) and
Ghaffari et al. (2017) reported that 6 times less cells (resp.
10 times) and 14 times (resp. 27 times) less computational
time were required. Finally, Vinchurkar and Longest (2008)
insisted on the importance of having hexahedral flow-oriented
cells for near-wall measurements (e.g particle deposition, wall
shear stress). The advantages of hexahedral cells are not lim-
ited to CFD; this type of mesh simplifies the boundary layer
creation, bridges the gap between representation and physical
simulation, and provides a basis for NURBS modeling (Zhang
et al., 2007) and isogeometric analysis. Hexahedral meshing,
and more specifically structured hexahedral meshing, is how-
ever limited by a far more complex generation process than
standard tetrahedral meshes (Vinchurkar and Longest, 2008).

In the application to the arterial networks, the main challenge
is the generation of the mesh at the bifurcations part. In the
literature, this task was addressed by a two-step pipeline; the
bifurcations are first decomposed into three branches, then the
hexahedral mesh is generated using the decomposition. A vari-
ety of methods were proposed to obtain a robust branch decom-
position. De Santis et al. introduced semi-automatic methods,
ranging from the manual selection of the most relevant slices
of the input surface mesh (De Santis et al. (2010)), user-defined
bifurcation coordinate system (De Santis et al., 2011a), to the
generation and adjustment of a block-structure representation
of the network (De Santis et al., 2011b). Automatic methods
are based on Voronoi diagram (Antiga et al., 2002), resolution
of the Laplace’s equation (Verma et al., 2005), random-walk
algorithm (Xiong et al., 2013) or branching templates (Zhang
et al., 2007) or parametric models (Ghaffari et al., 2017). The
hexahedral meshing can then be created from the decomposi-
tion through various techniques; Copper scheme in the work
of Antiga et al. (2002), template grid sweeping for Verma
et al. (2005), Zhang et al. (2007) and Ghaffari et al. (2017),
Bezier spline modeling followed by an iso-parametric transfor-
mation of a template mesh (De Santis et al., 2011a), projection
and refinement of block-structures (De Santis et al., 2011b),
Laplacian-based harmonic functions combined with Catmull-
Clark subdivision (Xiong et al., 2013).

There are limitations to the application of the described
methods to our purpose. First, they often rely on manual in-
tervention, which is limiting when applied to large datasets
of complex vascular networks. The automatic methods pro-
posed involve complex algorithms, and only De Santis et al.
(2011a) provided their code through the user-friendly inter-
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face PyFormex, which enables to generate hexahedral meshes
semi-automatically from a single bifurcation vascular geome-
try. Only Ghaffari et al. (2017) used centerlines as input, and
they are low-noise centerlines extracted from a surface mesh
using VMTK. The other methods require a tetrahedral surface
mesh as input for the branch decomposition or the meshing.
They can not be applied directly from realistic centerlines ex-
tracted from medical images.

2.4. Contributions
In this work, our purpose is to meet the challenges arising

from this state-of-the-art with a framework integrating a mod-
eling and a meshing step. The shortcomings of segmentation-
based meshing are addressed by developing a method based
on centerlines. A parametric model is used to overcome the
common defect of centerlines and reconstruct a realistic vessel
surface. Finally, an original meshing algorithm is proposed to
create high-quality hexahedral meshes suitable for CFD simu-
lations, as opposed to the largely used tetrahedral meshes. Our
main contributions in this work are:

• We introduced an original vessel model and its approxima-
tion algorithm based on penalized splines, which enable
to model both the spatial coordinates and the radius in a
single function and offer a good robustness to noise and
low-sampling.

• The vessel model is combined with a physiological para-
metric model of bifurcation proposed by Zakaria et al.
(2008) to form a light parametric model of the entire vas-
cular network. A method to extract the parameters of the
bifurcation model directly from centerlines is proposed,
and the model was generalized to planar n-furcations. If
the bifurcation model itself is not new, the use of this type
of physiologic bifurcation model - as opposed to geomet-
ric bifurcation models - to reconstruct a realistic vascular
shape has not been investigated in previous studies.

• We developed a parametric method to create a structured
hexahedral volume mesh with flow-oriented cells from the
vessel and bifurcation models proposed. It includes relax-
ation and smoothing steps to improve the quality of the
cells without deforming the model shape. This method
gives more control over the distribution and density of the
cells than the commonly used tetrahedral meshing.

• The model and the mesh are stored in a graph structure
which enables to easily and inexpensively edit the topol-
ogy and geometry of the vascular networks.

The proposed framework is fast and automatic. As it is based
on centerlines only, it opens the way to numerical simulation in
large cerebral vascular networks. It was evaluated qualitatively
and quantitatively against other explicit and implicit centerline-
based meshing methods, as well as segmentation-based mesh-
ing methods. Finally, several practical applications are pre-
sented, including the meshing of a large database of 60 large
cerebral networks, pathology modeling, topology and geome-
try editing, and finally a CFD study comparing a healthy and
stenotic middle carotid artery.

3. Input data

The input vessel centerlines we consider are composed of
a set of data points with three spatial coordinates (x,y,z), ra-
dius value (r), and the connectivity between points. Data points
might have several successors (e.g bifurcations). A point with
n successors is called n-furcation. The centerlines are stored
using the swc format or VMTK format of Izzo et al. (2018).
In this work, we used two publicly available datasets. The
Aneurisk database (Aneurisk-Team, 2012) provides 3D models
of the main arteries of the circle of Willis for patients with an
aneurism. High-resolution centerlines were extracted from the
surface meshes using the VMTK software. The BraVa database
(Wright et al., 2013) gathers the centerlines of the whole cere-
bral network for 60 patients. To create this dataset, the data
points were manually placed by medical doctors on medical
images using the ImageJ plugin Neurite Tracer (Longair et al.,
2011) and the radius was automatically computed. As a result,
the data points have a lower spatial resolution and are prone to
errors and noise.

4. Modeling

4.1. Vessels
In this part, we focus on the modeling of vessels from center-

line data; the case of bifurcations is addressed in the next sec-
tion. Different models of centerline were proposed in the liter-
ature, based on the approximation of data points by Bezier seg-
ments (Ghaffari et al., 2017), regression splines (Kociński et al.,
2016), free knot regression splines or local polynomial smooth-
ing (Sangalli et al., 2009b). Only Sangalli et al. (2009b) gives
the detail of the implementation of the approximation method
and provides a thorough study of the accuracy of their model
regarding the spatial coordinates and the derivatives. However,
the accuracy of both the first and second derivatives is cru-
cial, as the vessel curvature impacts the hemodynamics (San-
galli et al., 2009a). Moreover, the meshing techniques are often
based on the normals of the centerline (Kociński et al., 2016;
Ghaffari et al., 2017). It is important to note that the proposed
approximation methods (Sangalli et al., 2009b; Kociński et al.,
2016; Ghaffari et al., 2017) focus on the spatial coordinates of
the centerlines, excluding the radius. In this work, we propose
a parametric model of vessels based on approximation by pe-
nalized splines. Our approximation method enables combining
spatial coordinates and radius in a single function with physio-
logically accurate values and derivatives and is robust to noise
and low sampling of the input data.

4.1.1. Penalized splines
We want to approximate a set of m points {D0,D1...,Dm−1}

with 4 coordinates (x, y, z, r), using a spline function s defined
as

s(u) =
n−1∑
i=0

Ni,p(u)Pi, (1)

for u ∈ [0, 1], where Ni,p is the ith basis spline function of
order p and {P0, P1...Pn − 1} the n control points of the spline.
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The shape of the basis splines functions and therefore the part
of the spline controlled by each control point is given by a set
of knots.

The main challenge in the approximation of noisy data is to
find the optimal balance between the proximity of the curve to
data points and the smoothness of the curve (i.e. the accuracy
of the derivatives). There are two main approaches to control
the smoothness of a spline function. The first is to change the
number of control points: a low number of control points will
result in a smoother curve. In this case, the position of the knots
can be optimized like in Sangalli et al. (2009b). In the other
approach, a relatively large number of control points and a uni-
form knot vector are used and the smoothness is constrained by
a penalty on the second derivatives (Craven and Wahba, 1978;
Eilers and Marx, 1996). For reasons further detailed in the next
paragraphs, the second approach was judged more suitable for
our task. The vessels are modeled with penalized splines, as in-
troduced by Eilers and Marx (1996). For penalized splines, the
optimization of the control points is based on a cost function
with two terms. The first term takes into account the close-
ness to the data point and the second term the smoothness of
the approximation spline. The parameter λ controls the balance
between both closeness and smoothness. The cost function is
defined as

f (P0, ..., Pn−1) =
m−1∑
k=0

|Dk − s(tk)|2 + λ
n∑

j=2

(P j − 2P j−1 + P j−2)2, (2)

where t is a time parametrization vector that associates each
data point to a position on the spline.

4.1.2. Approximation strategy
Centerline data provides both the spatial coordinate (x, y, z)

and radius r, two variables of different scales that might show
different noise levels. For this reason, we propose to approx-
imate them separately. The choice of penalized splines allows
us to dissociate λ values for the position and the radius in a two-
step approximation algorithm. With this approach, the spatial
and radius coordinates can be modeled by a single spline.

For the approximation, we use a uniform knot vector and
a parametrization obtained by the chord-length method. The
number of control points is set so that the non-penalized ap-
proximation curve (i.e produced by solving equation 2 with
λ = 0) has a root mean square distance from the original data
lower than a given value, which is set in this work to 10−1 for
spatial coordinates and 10−3 for the radius.

We first solve the linear system arising from equation 2 for
the spatial coordinates (x,y,z) of the centerline data points. The
system can be written as

P(x,y,z) = (NT N + λs∆)−1NT D(x,y,z), (3)

where N is the matrix of representation of the basis spline
functions and ∆ is the matrix representation of the difference
operator which appears in the second term of the cost func-
tion 2. The optimal value for λs is obtained by minimizing

the Akaike criterion AIC2 detailed in Section 6.1. A com-
parison study with other optimization criteria for the smooth-
ing parameter λ, such as the Bayesian information criterion or
cross-validation, detailed in supplementary materials, led to the
choice of this criterion.

The linear system is then solved for the data (t, r) where t is
the time parametrization of each data point and r their radius
value:

P(t,r) = (NT N + λr∆)−1NT D(t,r). (4)

The value of λr is also selected by minimizing the Akaike
criterion on the time/radius data. The spatial coordinates and
radius of the optimized control points are then concatenated to
form the 4-coordinates control points of the final spline. Figure
1 illustrates this two-part approximation scheme. The proposed
approximation method is compared with other conventional ap-
proximation methods regarding the robustness to noise and low
sampling of the data points in section 6.1.
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Fig. 1. Approximation of a noisy centerline with the proposed method. (a)
and (b) show respectively the approximation of the spatial coordinates and
the radius. Figure (c) shows the input centerline data as red dots with
radius represented by black circles. In (d), the vessel surface defined by
the approximated spline is represented.

4.2. Bifurcations
In this part, we focus on the modeling of bifurcations.

4.2.1. Zakaria’s model
Zakaria et al. (2008) proposed a parametric model for non-

planar bifurcations. Their model was validated regarding
both the anatomy and numerical simulation of blood flow and
showed a good agreement with real cerebral bifurcations. It re-
quires only a few physiological parameters and is well-suited
for the reconstruction of bifurcations from sparse data. In this
model, bifurcations are created by merging two tubes that rep-
resent the daughter vessels. The tubes are defined by a shared
inlet cross-section C0, separate apical cross-sections AC1, AC2
and outlet sections C1 and C2. The apical cross-sections AC1,2
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are located at the apex point AP of the bifurcation, where both
tubes merge. The outlet sections C1,2 are cut one diameter away
from the apex. In total, five cross-sections and their normals
are required to build the model. Each circular cross-section C
is represented by the three spatial coordinates of its center Pc,
the radius rc and the normal vector n⃗c. The centerline of each
tube is defined by a spline function spl1,2. The first segment of
the centerline connects the inlet section C0 to the apical section,
and the second connects the apical section to the outlet sections.
The tangent of the centerline segments matches the normal of
the cross-sections that they connect. The radius along the seg-
ments evolves linearly between rC0 , rAC1,2 and rAC1,2 , rC1,2 . The
bifurcation model is illustrated in Figure 2. The unphysiologi-
cal sharp angle produced between tubes at the apex is rounded
by a segment of constant radius of curvature R.

Fig. 2. The five cross-sections bifurcation model introduced by Zakaria
et al. (2008).

4.2.2. Parameter estimation
In order to apply this bifurcation model to our framework,

we introduce an algorithm to estimate the parameters of the bi-
furcations directly from the input centerline data. For all the
bifurcations in the centerline data, the inlet data points (in light
blue in Figure 3 (a)) are concatenated with each of the outlet
data points (resp. in deep blue and green in Figure 3 (a)) to
form two individual vessel centerlines going through the bifur-
cation, as shown in Figure 3 (b). The two vessels based on
these centerlines are modeled independently by splines using
the approximation strategy presented in section 4.1. The apex
AP of the bifurcation is set as the point where the surface of the
two vessel models first intersect (red dot on Figure 3 (c)). AP
is then projected on the model splines spl1 and spl2. The tan-
gent and position of the obtained projection points then define
the normal and the center of the apical cross-sections AC1 and
AC2. The outlet sections C1 and C2 are computed in the same
way from the evaluation of the spline where the length from the
apex projection point is twice the radius of the apical section.

4.2.3. Tangent continuity
The full vascular network model is created by assembling

the vessels and bifurcations models presented in the previous
sections. In order to preserve the continuity of the different parts
of the network, the inlet and outlet tangents of the vessels must

(a) (b) (c)

Fig. 3. Pipeline of the bifurcation parameter estimation. (a) shows the inlet
and outlet data points, (b) the independent vessel models and (c) the pa-
rameter extraction and resulting bifurcation.

match the normal of the inlet and outlet cross-sections of the
bifurcations they connect. For this, we introduce an additional
constraint on the endpoints and tangents in the resolution of the
approximation equations 3 and 4 used to model the vessels. A
least-square spline approximation with arbitrary end derivatives
was proposed by Piegl and Tiller (2000). In this work, to limit
the influence of the end constraints on the approximation of data
points, we propose a weaker constraint that fixes the end tangent
while the derivative is free. We consider a spline s as defined by
Equation 1. Because we work with clamped curves, s(0) = P0
and s(1) = Pn−1. Moreover, s′(0) (respectively s′(1)) is in the
same direction as vector P1 - P0 (respectively Pn−2 - Pn−1). If
we note S 0 and S n−1 the fixed end-points and T0 and Tn−1 the
fixed end tangents, the following new conditions are applied to
the system 3: 

P0 = S 0

Pn−1 = S n−1

P1 = P0 + αT0

Pn−1 = Pn−2 + βTn−1,

(5)

where α and β, the end tangent magnitude, are additional pa-
rameters to optimize. Those constraints guarantee the G1 con-
tinuity of the final network model. The details of the system
resolution are given in the supplementary materials.

5. Structured hexahedral meshing

In this section, we present the meshing algorithm developed
to produce a hexahedral mesh with flow-oriented cells from the
parametric model described in Section 4.

5.1. Bifurcations

5.1.1. Decomposition
The bifurcations are the most challenging parts to mesh with

hexahedral elements. The meshing approach proposed relies on
a decomposition scheme to split the bifurcation into three geo-
metrical branches; one inlet branch and two outlet branches.
This method allows to have the meshing advantages offered
by the geometrical bifurcation models of other methods of the
state-of-the-art, while keeping the anatomical realism of the
physiological bifurcation model used in this work. Figure 4
(b) gives an example of branch splitting using three separation
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planes. Antiga et al. Antiga and Steinman (2004) proposed a bi-
furcation decomposition scheme based on the Voronoi diagram
of a surface mesh. The proposed scheme is robust to variations
in input geometry and has been successfully used for hexahe-
dral meshing (Antiga and Steinman, 2004). However, it was
not originally designed to obtain high-quality meshes but to of-
fer a robust mapping of bifurcations. Moreover, it requires a
surface mesh to be computed and its transposition to centerline
data is not straightforward. Based on this work, we introduced a
decomposition scheme that relies on the spline and bifurcation
models described above.

In this decomposition method, three separation planes are de-
fined by a set of five points; the apex point AP, which is already
a parameter of the model, two center points CT0 and CT1 and
two separation points S P1 and S P2. As illustrated in Figure 4
(a), we first define the geometric center of the bifurcation X,
as the barycenter of AP, pm1 and pm2 , where pm1,2 are the pro-
jection of the key points m1,2 located at the intersection of one
centerline with the surface of the other vessel. The separation
points S P1,2 are obtained by projecting X on the surface in the
opposite direction from AP.

(a) (b)

Fig. 4. Geometric decomposition of the bifurcation model. In (b), the end
cross-sections are represented in red, and the separations planes in black.

Finally, the position of center points CT0 and CT1 is obtained
by projecting X on the surface of the vessels. The direction of
projection is normal to the plane defined by the three points
AP, S P1 and S P2. The separation points AP, S P1 and S P2
are finally connected to the center points CT0, CT1 by arcs,
which delineate a geometrical frontier between the branches of
the bifurcation (see Figure 4 (b)), providing the desired branch
decomposition. This decomposition method enables us to han-
dle large radius differences between the daughter vessels, as the
barycenter X is naturally closer to the vessel with the smallest
radius, which relaxes the angles between the separation planes
and improves the quality of the resulting mesh.

5.1.2. Surface meshing
In this step, the surface mesh of the bifurcation is created us-

ing the separation planes defined in the previous section. First,
we create an initial mesh grid that connects the end cross-
sections to the separation planes with a set of successive sec-
tions, as illustrated in Figure 6. Each section of the mesh has a
number N of nodes where N can be any multiple of 4. Figure
5 illustrates the initial mesh creation process. We first compute
the N nodes of the end sections C0, C1 and C2. A normal-
ized reference vector ⃗re fC which minimizes the rotation with

the separation points S P1,2 is defined for each end cross-section
C. The nodes of the end sections are placed on the outline of the
cross-section with evenly spaced angles starting by ⃗re fC and ro-
tated counterclockwise. The nodes of the separation planes are
positioned with equally sampled angles along the arcs connect-
ing the separation point AP, S P1 and S P2 to both center points
CT0 and CT1.

Fig. 5. Computation of the nodes (black dots) of the end cross-sections and
the separation planes for N = 8 and splines tspl1,2,3.

Once the nodes of the end sections and the nodes of the sep-
aration half-sections are computed, they are connected to form
a surface mesh. The nodes of C0 are connected to the nodes
of the half-sections defined by S P1 and S P2, and the nodes of
C1,2 are connected respectively to the nodes of the half-sections
S P1,2 and AP.

We first define an initialization of the 3D trajectory that con-
nects two nodes, as shown in the left column of Figure 6. This
initialization is an approximation that is used to control the
topology and geometry of the final mesh grid, but it does not
necessarily lie on the exact surface of the bifurcation at this
stage. The initial trajectories are evenly sampled with n nodes,
where n determines the number of cross-sections to compute
along a given branch. This number is proportional to the radius
of the end section of the branch, by a coefficient d which can be
adjusted to obtain the intended density of faces in the mesh.

The nodes are then projected radially to the surface of the
two vessels, as illustrated in the right column of Figure 6. The
direction of the projection is important to maintain the quality
of the faces of the initial grid after projection. Ideally, the nodes
of the initial trajectory must be displaced only radially from the
center of the branch vessel. However, the shape splines spl1 and
spl2 do not constitute a good approximation of the centerline of
the three geometric branches. For this reason, we create another
set of splines tspl1,2,3 connecting the center of each end section
to the center X of the bifurcation, represented in blue in Figure
5. The nodes are projected to the surface of the bifurcation
model according to the normal of this new set of splines.

The properties of the resulting mesh depend on the initial tra-
jectory approximation. Figure 6 illustrates the meshes obtained
after projection considering two types of initialization. The first
row shows the simple case where the nodes of the end sections
are linearly connected to the nodes of the separation geome-
try. In the second row, connection trajectories are computed
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Initialization Projection

Linear

Normal 

preservation

Fig. 6. Initial surface mesh and mesh after projection for the two types of
initialization considered. The red squares emphasize the impact of the two
types of initialization on the final mesh.

so that the normal of the end sections is preserved in the out-
put surface mesh. If both approximations allow to preserve the
topology of the grid and the quality of the faces after projection,
the initial trajectories with normal preservation are closer to the
actual surface of the bifurcation, causing less displacement of
the nodes during projection. Moreover, the preservation of the
normal of the end sections facilitates the inclusion of the bifur-
cation mesh in larger arterial networks; the connecting curves
can be smoothly extended to downstream vessels. In the rest of
this work, we use the normal preserving initialization.

5.1.3. Relaxation
The projection step of the bifurcation meshing method results

in an uneven sampling of the nodes along the trajectories that
can produce faces with heterogeneous size or important skew-
ness. Moreover, a rupture of continuity is observed when the
curves cross the separation between two branches. Those un-
wanted features are corrected by the relaxation of the nodes of
the surface mesh. Mesh smoothing methods are an easy way to
reduce the skewness of faces but it triggers important deforma-
tions of the general shape of the model. To avoid deformations,
Vidal et al. (2015) proposed to combine smoothing with a back
projection on the surface. Following this approach, an iteration
of Laplacian smooth (relaxation factor of 0.8) is first applied to
the bifurcation mesh. The nodes are then projected back to the
original surface. To prevent cross-sections from intersecting,
the projection is made in the direction of the vector connecting
the center of the cross-section to the node to project. This pro-
cess can be repeated until the relaxation is satisfying. Figure 7
displays a bifurcation mesh after 1 and 5 relaxation iterations.
The faces are colored according to their geometric quality, mea-
sured by the scaled Jacobian. We observe that while the shape
of the model is preserved, the quality of the faces near the sep-
aration planes is improved, and the grid now smoothly crosses
the separation planes. Based on the average quality of the faces,

we estimated that 5 relaxation iterations give the best results.

Initial mesh 1 iteration 5 iterations

scaled jacobian

Fig. 7. Original bifurcation mesh and mesh after 1 and 5 relaxation itera-
tions. The scaled Jacobian is used to measure the quality of the cells be-
tween −1 (poor quality) and 1 (high quality).

5.1.4. Apex smoothing
The last step of the bifurcation meshing is the smoothing of

the apical region. The model presents an unwanted sharp an-
gle where the two vessels merge. The curvature in the apex
regions impacts the pressure and velocity fields obtained by nu-
merical simulation, as shown by Haljasmaa et al. (2001). The
conventional mesh smoothing methods (e.g Laplacian, Taubin
smoothing) are fast and can produce smooth meshes with high-
quality faces. However, as they are global methods, they strug-
gle to generate important local deformations. Zakaria et al.
(2008) proposed to smooth the apex region by projecting the
nodes on a sphere of a given radius, rolling on the surface.
This method is accurate, but it is computationally expensive
and might not preserve the quality of the cells in the case of
hexahedral meshes. Taking advantage of the topology of our
hexahedral surface mesh, we propose a method to reduce this
complex 3-dimensional problem to a 2-dimensional problem.

2D plan projection

3D referential 

curve projection 

Fig. 8. Illustration of the apex smoothing pipeline.

Figure 8 illustrates the proposed smoothing method. The
curves connecting two nodes of the end sections of the bifur-
cation are extracted from the 3D mesh (e.g, the curve in red in
Figure 8). They are then projected on the 2D plane defined by
the normal of the mesh at the separation point and the normal of
the separation plane (resp. green and blue arrows on Figure 8).
A circle whose radius corresponds to the desired apex radius of
curvature is rolled along those 2D curves. The position of the
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circle where it is in contact with a further part of the curve is
mathematically computed. The points located under the circle
are moved to the outline while preserving their original sam-
pling. Finally, the new coordinates of the points are projected
back on the original 3D referential to form the output surface
mesh.

distance (mm)

original surface radius 0.5 mm radius 0.7 mm

Fig. 9. Apex smoothing with different radius of curvature values. The col-
ormap encodes the local distance to the original mesh, on the left.

The described smoothing method enables to control the di-
rection of projection and the sampling of the projected nodes,
preserving the quality of the faces. As shown in Figure 9, the
smoothing is very local and does not affect the shape of the bi-
furcation outside of the apical region.

5.1.5. Planar n-furcations
If the cerebral arterial network is composed of a majority of

bifurcations, multifurcations may also be present (e.g trifurca-
tions are frequently found on the basilar artery). To address this
requirement, we generalized the model of Zakaria et al. (2008)
to planar n-furcations. The generalized n-furcation model is
built with n − 1 splines, 2n + 1 cross-sections and n − 1 apex
points, as illustrated for the case n = 3 in Figure 10 (a). We
adapted the decomposition scheme presented in section 5.1 to
compute n + 1 separation plans, as in Figure 10 (b). Figure 10
(c) shows an example of planar trifurcation mesh obtained with
this generalization.

Fig. 10. (a) and (b) respectively illustrate the parametric model and the
branch decomposition scheme for a trifurcation. (c) shows an example of
trifurcation mesh.

5.2. Vessels

For the vessels, we adapted the meshing method proposed
by Ghaffari et al. (2017) to the parametric model proposed in
section 4.1 to obtain surface and volume meshes.

5.2.1. Surface meshing
To mesh the surface of a vessel, the spline model is evaluated

at a set of time values equally sampled in the [0, 1] interval.
Those values are used to set the center position and radius of
the cross-sections along the vessel (i.e the longitudinal resolu-
tion of the mesh). The density of cross-sections (number of
cross-sections per mm) is proportional to the mean radius of
the vessel, with a proportional coefficient d which can be set
by the user. From each center position, N nodes are radially
projected on the model surface to form a circular cross-section.
The projection vector is swept along the centerline so that the
twisting between sections is minimized. The successive sec-
tions are finally connected to form the mesh faces. In the case
of vessels connecting one bifurcation to another, an extra rota-
tion is smoothly applied to the cross-sections along the vessels
so that the last vessel section is aligned with the first section of
the next bifurcation.

5.2.2. Volume meshing
The volume of the vessel is meshed following the method

of Ghaffari et al. (2017). From each cross-section of the sur-
face mesh, a structured O-grid pattern is created. This pattern is
composed of three different areas; the boundary layers, the in-
termediary layers, and the central block. The relative size α, β,
γ of the areas, the number Nα of boundary layers and the num-
ber Nβ of intermediary layers can be adjusted. The separation
planes of the n-furcations are handled by combining n+1 halves
grids. The successive O-grid patterns are connected to form the
hexahedral cells of the volume mesh, as shown in Figure 11.

Fig. 11. Illustration of the O-grid pattern and volume meshing method.

5.2.3. Data encoding
In the proposed framework, the results of the modeling and

meshing algorithms are encoded in graph structures. Four
graphs are created, corresponding to the different steps of the
process; data, topology, model, and mesh. The geometric and
topological information (e.g centerline data points, model pa-
rameters, mesh nodes) are stored in the nodes and edges of the
graph. This storage method facilitates data manipulation and
editing as it allows the use of graph theory-based algorithms
such as depth-first search or neighbor identification. The advan-
tages of this data structure are further demonstrated in Section
7.2.
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6. Results

In this section, we evaluate both the modeling and the mesh-
ing methods proposed. The robustness and accuracy of the
proposed vessel modeling method are assessed in a compara-
tive study performed on a synthetic dataset of distorted center-
lines. Then, our meshing pipeline is compared quantitatively
and qualitatively with two concurrent state-of-the-art methods:
deep learning-based segmentation and implicit meshing. Fi-
nally, we provide additional performance indicators in terms of
cell quality and computational time.

6.1. Vessel model evaluation

In this part, we evaluate the robustness of the approximation
method presented in section 5.2 to noise and low sampling of
the data points.

6.1.1. Validation dataset
For this evaluation, we built a dataset of ground truth ves-

sel models. Four surface meshes of cerebral arteries from the
Aneurisk database were selected. For each mesh, a single ves-
sel starting from the inlet of the network and ending at an outlet
was selected so that it does not include pathologies but goes
through bifurcations, where we generally observe high curva-
ture and big radius change. The selected vessel centerlines were
extracted with a good resolution and low noise using the VMTK
software. The high-quality centerline data points obtained were
then approximated by a 4-coordinates spline s that constitutes
the ground truth. The control points were manually added and
the accuracy of the fitting of the spatial coordinates, radius and
first derivatives was checked visually until the approximation
was judged satisfying. Ground truth vessels and their creation
process are illustrated in supplementary material, section 1.1.

To evaluate the robustness of our approach, the ground truth
centerlines were distorted to mimic defects commonly observed
in realistic centerlines; low sampling and noise. Spatial noise
and radius noise were applied separately, as they might differ in
level. To generate spatial noise, the data points were displaced
from their original position. The magnitude of displacement
is randomly picked from a zero-centered Gaussian distribution
with standard deviation σspatial. The direction of the displace-
ment is normal to the ground truth spline s so that unwanted
radius noise is not created during the operation. Random radius
noise is generated from a zero-centered Gaussian distribution of
standard deviation σradius and added to the ground truth radius.
In both cases, the applied standard deviation value is propor-
tional to the point radius, as indicated in Table 1, in order to
keep similar levels of noise between big and small vessels. Fi-
nally, low sampling is obtained by removing data points along
the centerline to reach a target density.

Table 1. Parameters used for the distortion of the ground truth centerlines
density (mm−1) 2 4 10 16 20
σradius(mm) 0.01r 0.05r 0.1r 0.3r 0.5r
σspatial(mm) 0.01r 0.05r 0.1r 0.3r 0.5r

For each density value in Table 1, ten combinations of noise
parameters are used, spatial and radius noise being added sep-
arately. Radius noise is applied to the ground truth data with
parameters σradius as given in Table 1 while the spatial noise is
set to 0. Then spatial noise is applied with parameters σspatial

as given in Table 1 while the radius noise is null. Each noise
combination is repeated three times to account for the stochas-
tic effect; we get 30 data per density value, thus 150 in total.
This is done for the four vessels of the ground truth dataset,
bringing the number of data in the distorted dataset to 600.

6.1.2. Approximation methods
To demonstrate the robustness and the accuracy of the ap-

proximation strategy used to reconstruct the surface of the ves-
sels presented in Section 4.1, we compared it to other explicit
centerline-based meshing methods of the literature (Kociński
et al., 2016; Ghaffari et al., 2017). Those methods also rely
on splines or Bezier curves to approximate the centerline data
points and reconstruct the vessel surface. As most of the authors
did not provide the details of the fitting method employed, we
implemented four commonly used spline-based approximation
methods with incremental complexity in order to emphasize the
contributions of the proposed method.

• Global Non-Penalized (GNP):In this basic approach, the
control points are optimized without smoothness penalty
in the cost function (Equation 2 with λ = 0). The number
of control points is set to match the RMSE threshold given
in section 4.1. We call it global because the spatial and
radius dimensions are not addressed separately.

• Global Non-Penalized with Akaike criterion (GNP-
AIC):Optimizing the number of control points to obtain
the desired spline smoothness is a common approxima-
tion method in the literature. In this approach, the optimal
number of control points minimizes the Akaike informa-
tion criterion (Akaike (1973)) AIC1:

AIC1 = m × log(S S E) + 8(n + p). (6)

where m is the number of data points, p is the degree of
the spline, n is the number of control points and SSE is
the sum squared error from the data points, including their
four coordinates.

• Global Penalized with Akaike criterion (GP-AIC):This
approach corresponds to the original approximation by
penalized splines described in Eilers and Marx (1996).
It uses the same global approach as in GNP, but with a
smoothing penalty controlled by a parameter λ , 0 as in
Equation 2.

• Spatial coordinates and Radius Penalized with Akaike
criterion (SRP-AIC): It corresponds to the approximation
strategy that we propose in this work. Spatial and radius
dimensions are approximated separately with two smooth-
ing parameters λs and λr. The comparison of our strat-
egy with GP-AIC allows us to evaluate the contribution of
treating the spatial and radius coordinates individually.
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In methods GP-AIC and SRP-AIC, the criterion used to opti-
mize the λ values is another formulation of the Akaike informa-
tion criterion (AIC2), adapted to penalized splines, as proposed
by Eilers and Marx (1996):

AIC2 = m × log(S S E/m) + 2tr, (7)

where tr is the trace of the matrix H = N(N tN + λ∆)−1N t.
Unlike AIC1, it is not employed to choose an optimal number

of control points but to select the optimal value for the smooth-
ing parameter λ. This criterion was compared to other crite-
ria of the literature; the corrected Akaike information criterion
of Hurvich et al. (1998), the Schwarz’s Bayesian criterion of
Schwarz (1978), the cross-validation criterion and generalized
cross-validation criterion of Craven and Wahba (1978). Ac-
cording to this study, given in supplementary material (section
1.3), the Akaike criterion gave the best results on our data.

6.1.3. Quality metrics
A total of six quality metrics were selected to evaluate the ap-

proximation strategies presented in the previous paragraph. To
build an accurate measure of distance between the ground truth
spline s and the approximation spline ŝ, we project one curve
on the other. As illustrated in Figure 12, two matched sets of
time parameters are built. The spline s is equally sampled with
a time vector t, then projected on ŝ according to the minimum
distance to form the matched time vector T .

Fig. 12. Matching time parameters by minimum distance projection from
s onto ŝ

Once the projection is performed, the matched values can
be compared. We use the root mean squared error (RMSE) as
a measure of the closeness of the approximation spline to the
ground truth spline. The spatial coordinates and the radius val-
ues are treated separately in the evaluation. We note RMSEradius
(respectively RMSEspatial) the root mean squared error of the
radius (respectively the spatial coordinates). To have a robust
comparison between the curves, the projection is computed in
both ways (from s to ŝ and from ŝ to s) and the final RMSE
value is the average of the RMSE yielded by both projections.

The accuracy of the first derivatives of the model is evaluated
by the metrics RMSEderspatial and RMSEderradius. As curvature
is commonly considered in hemodynamic studies, the model
performance concerning the centerline curvature is also mea-
sured, by the metric RMSEcurv. Finally, the length of the ves-
sel affects the delay of blood arrival between the inlet and the
outlet of the vascular tree in numerical simulations. Therefore,
the difference Ldiff of length between the ground truth and the
approximated centerline was considered.

6.1.4. Results
As the spatial and radius distortions are not comparable in

nature and magnitude, the evaluation results are presented in
two different tables. Table 2 (respectively Table 3) shows the
mean values of the six quality criteria for the four methods after
radius noise (respectively spatial noise) addition. As expected,
the non-penalized model (GNP) is sensible to the added noise
and performs poorly for all radius-related metrics. In Figure
13, the radius estimation error is clearly visible on the vessel
produced by this method. In the same way, the spatial-related
metrics are impacted when spatial noise is added (Table 3). In
addition, a tendency to overfit the data is observed in Table 2,
causing a very high spatial error. The overfitting and noise prob-
lems are partially solved by optimizing the number of control
points with the method GNP-AIC. However, this approach still
yields a poor approximation of the derivatives:as the number of
control points is lower, the space between data points might not
be correctly interpolated, which particularly impacts the curva-
ture values.

Fig. 13. Mesh resulting from the approximation of distorted data (density =
1mm−1, σradius = 0.1) by three of the methods compared in section 6.1.

The penalized approximations GP-AIC and SRP-AIC en-
abled to drastically improve the estimation of the derivatives
and curvature. Finally, the advantage of SRP-AIC over GP-AIC
is demonstrated both in the result tables 2 and 3 and in Figure
13. The global smoothing penalty used in GP-AIC forces a
trade-off between the radius and spatial accuracy. In Figure 13,
the radius of the vessel produced by GP-AIP is very similar to
the ground truth vessel, but in return, the trajectory of the cen-
terline was too smoothed. On the other hand, both the radius
and trajectory of the vessel produced with SRP-AIC are closer
to the ground truth. In conclusion, the proposed approxima-
tion method shows good robustness to the defects of the input
data while enabling to simultaneously and accurately model the
vessel centerline and radius. More results are provided in sup-
plementary material, section 1.2.

6.2. Comparison with state-of-the-art methods

In this section, meshes obtained with our method are visually
and quantitatively compared to meshes produced by state-of-
the-art deep learning-based segmentation methods (Tetteh et al.,
2020; Livne et al., 2019), as well as a recent implicit centerline-
based meshing method (Abdellah et al., 2020).
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Table 2. Overall evaluation of the approximation methods:mean values of
the quality criteria for all the centerlines distorted by radius noise addition.
The cells in gray correspond to the lowest error for each metric.

GNP GNP-AIC GP-AIC SRP-AIC
RMSEspatial 8.462 0.034 0.053 0.029
RMSEradius 17.523 0.095 0.042 0.043

RMSEderspatial 0.218 0.118 0.042 0.009
RMSEderradius 0.391 0.214 0.032 0.032

RMSEcurv 1919.428 190.531 0.060 0.035
Ldiff 718.906 0.057 0.207 0.004

Table 3. Overall evaluation of the approximation methods:mean values of
the quality criteria for all the centerlines distorted by spatial noise addi-
tion. The cells in gray corresponds to the lowest error for each metric.

GNP GNP-AIC GP-AIC SRP-AIC
RMSEspatial 0.511 0.152 0.099 0.096
RMSEradius 0.008 0.009 0.018 0.007

RMSEderspatial 0.314 0.343 0.075 0.076
RMSEderradius 0.015 0.019 0.021 0.013

RMSEcurv 1.524 2.362 0.085 0.091
Ldiff 50.180 15.071 0.252 0.207

6.2.1. Comparison pipeline
Centerlines can be extracted either from the grayscale image

directly or from a segmented image. In this way, centerline-
based meshing can be used either as a substitute or a comple-
ment to segmentation. In our comparison study, we investigated
both approaches, as illustrated in Figure 14. In what follows,
the centerlines manually extracted by experts from MRA im-
ages of the BraVa database (Wright et al., 2013) are considered
as reference ”expert centerlines”.

For the first part of our comparison pipeline (in blue in Fig-
ure 14), the MRA images are segmented by state-of-the-art seg-
mentation methods (Tetteh et al., 2020; Livne et al., 2019).
A surface mesh is produced from the segmented images by
the marching cube algorithm and smoothed using a Taubin fil-
ter. The very small components of this mesh are removed to
keep only the largest connected parts. A set of centerlines,
which we call ”segmentation-based centerlines”, are extracted
from the segmentation. In Section 6.2.3, they are quantita-
tively compared to the expert centerlines to evaluate their ac-
curacy, and thus the topological and geometrical correctness of
the segmentation-based mesh.

For the second part of our comparison pipeline (in red in Fig-
ure 14), both the expert centerlines and the segmentation-based
centerlines are used as input for the centerline-based mesh-
ing methods. To improve their quality and to match the input
requirements of our meshing method, the segmentation-based
centerlines underwent some automatic post-processing before
meshing; the small ending segments are cut out, the cycles are
removed by computing a maximum spanning tree of the net-
work, and the edges connecting the data points are re-oriented
in the flow direction.

Two centerline-based methods are used to create meshes
from those post-processed centerlines and the expert center-
line; our explicit meshing method and the method of Abdellah
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Fig. 14. Pipeline used to compare segmentation-based meshing and
centerline-based meshing.

et al. (2020), which is based on implicit structures and for which
we used the Blender plug-in provided by the authors, in meta-
balls reconstruction mode. In Section 6.2.4, those centerline-
based meshes are visually compared to the segmentation-based
meshes produced by deep learning methods Tetteh et al. (2020);
Livne et al. (2019).

6.2.2. Datasets and segmentation models training
Two databases of whole-brain MRA images for healthy

patients are used for this evaluation: The BraVa database
gives access to 62 expert centerlines and 50 MRA, and
the TubeTK database Bullitt et al. (2005) is composed of
34 MRA and the 34 in-house expert segmentations associ-
ated. These databases were chosen because they include
the same type of images while offering complementary in-
formation (resp. expert centerlines and expert segmentation).
For the vessels segmentation, two state-of-the-art methods
were implemented, both based on neural networks: Deep-
VesselNet Tetteh et al. (2020) and U-net Livne et al. (2019).
The DeepVesselNet architecture provided by the author was
used (https://github.com/giesekow/deepvesselnet), and the U-
net neural network was re-implemented. Both models were
trained on the expert segmentations of the TubeTK database.
27 images were included in the training set and 7 in the test set.

The loss function used during training was a combination of
dice loss and cross-entropy loss. The stochastic gradient de-
scent algorithm was used for the optimization, with a learning
rate of 0.01 for U-net and 0.001 for DeepVesselNet. The batch
size was set to 5 for U-net and 10 for DeepVesselNet due to
memory constraints. These hyperparameters were set empiri-
cally by testing a large selection of values for each hyperparam-
eter. The U-net was trained for 200 epochs and DeepVesselNet
for 300 epochs.

For this comparison study, we considered the segmentations
produced for the 7 images of the test set of TubeTK and the
50 MRA of the BraVa database - segmented with the models
trained on TubeTK -. Table 4 summarizes the data type and
the number of patients of the different datasets created for this
comparison study.
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Table 4. Description of the different datasets used in our comparison study.
The name of the original database (BraVa or TubeTK), the method used,
the nature of the data and the number of patients are given.

Database Method Data nPatients
BraVa DeepVesselNet Segmentation 50
BraVa Expert Centerlines 62
BraVa Unet Segmentation 50
TubeTK DeepVesselNet Segmentation 7
TubeTK Expert Segmentation 34
TubeTK Unet Segmentation 7

6.2.3. Quantitative evaluation
In this section, we present the results of the quantitative eval-

uation of the segmentation-based centerlines compared to the
expert centerlines according to the 9 topological and geometric
features described hereafter. nBulges corresponds to the num-
ber of bulges in the geometry. It is obtained by counting the
number of ending segments smaller than the vessel diameter.
nBranch is the number of branches in the entire network. nCC
is the number of connected components and nBranchMaxCC is
the size of the largest connected component, evaluated by its
number of branches. This metric highlights the disconnected
vessels and small isolated parts in the mesh. nCycle is the num-
ber of cycles of the network. The only cycle in the cerebral
vascular system is the circle of Willis, so the number of cycles
should be either 1 - complete circle of Willis - or 0 - incomplete
circle of Willis -. Finally, the branching topology of the network
is analyzed via the number of bifurcations nBif, the number of
trifurcations or more nTrif+ and the minimum (resp. maximum)
furcation degree minDeg (resp. maxDeg), i.e the number of in
and out branches (bifurcations = 3). These metrics are reported
in Table 5 for the different datasets considered.

We observe in Table 5 that the expert centerlines (in gray)
do not have any small ending segments (nBulges = 0). The
network forms a single connected component, they are no iso-
lated vessels and no cycles. Besides, the branchings are mainly
bifurcations, as expected in the cerebral vascular system where
trifurcations are rare. The expert centerlines show no branching
with a degree superior to 4 (= trifurcations).

On the other side, segmentation-based meshes present a lot of
bulges (> 12) and cycles (> 26), mainly because closed vessels
are merged in the resulting mesh. The number of trifurcations
and higher degree branching is high (> 15), and furcations with
up to 6 branches were observed. These metrics bring in light
some inaccuracies in the topology of the meshes produced by
segmentation, which will affect the mesh geometry and there-
fore the CFD simulation results. It is interesting to see that
such problems - disconnected or merged vessels, bulges - are
observed even in the meshes based on the ground truth segmen-
tation made by medical doctors (see ”TubeTK expert” row in
Table 5). They are not only caused by the segmentation method
but also by the nature of the meshing process itself, as it relies
on the segmentation of low-resolution images. Moreover, no
distinction can be made between veins and arteries in the seg-
mentation process, which might cause peculiar topology in the
network. To run numerical simulations in such segmentation-
based meshes, important post-processing is required to isolate

the arterial system and reconnect or separate vessels. The topo-
logical problems highlighted here are illustrated by enhanced
visualizations of the meshes (Figures 15 and 16) in the next
section.

6.2.4. Visual evaluation
In this part, the results from our method are visually com-

pared against centerline-based meshes produced by the method
of Abdellah et al. (2020) and the segmentation-based meshes
produced by the method of Tetteh et al. (2020) and Livne et al.
(2019). A BraVa patient was selected for this visual evalua-
tion to have access to the expert centerlines associated. We
selected a segmentation made with Unet as it provided better
results than DeepVesselNet on this database. Figure 15 shows
the whole brain meshes obtained by different methods, and Fig-
ure 16 shows enhanced visualization of some relevant parts. As
shown in Figure 15 (a), the deep learning segmentation algo-
rithm demonstrates a good ability to segment a large part of the
vascular network, including small segments. However, the al-
gorithm does not guarantee the connectivity of the network, and
some post-processing filtering is needed to remove the small
isolated parts (Fig. 15 (b)). The centerline-based methods (im-
ages (d) and (e)) were able to produce meshes with a topology
similar to the segmentation-based mesh from the centerlines au-
tomatically extracted from it. We can see in this figure that the
mesh produced by our method is smoother and more geometri-
cally and physiologically accurate than the other meshes for the
same network. The geometric quality of the meshes obtained by
different methods will be further discussed below. As illustrated
in image (f), the manually extracted expert centerline allowed
to reconstruct a larger arterial network with smaller vessels than
the centerlines based on the segmentation results. Note that,
overall, the radius of the expert centerlines is smaller, due to
the extraction method Longair et al. (2011).

In View 1 of Figure 16, we observe that our method,
which relies on the vessel tubularity assumption, efficiently
cleaned the vascular network from the bulges observed in the
segmentation-based mesh. The radius and trajectory smooth-
ing allows for reconstructing the disconnected parts in a very
natural way. View 2 highlights the merging vessels and cycles
observed in segmentation-based meshes. Our automatic post-
treatment of the centerlines allowed to remove unwanted cycles
in the network. The implicit method VessMorphoVis Abdellah
et al. (2020) offers good flexibility to mesh complex geometry
such as pathology or complex branching patterns, however, the
surface of the vessels looks bumpy and irregular. Moreover, as
shown in both views of Figure 16, this method appears to be
sensitive to noise on the centerline geometry and radius. As it
is robust to noise and data sparsity, our method improves the
smoothness and realism of the vascular geometry.

Overall, those results demonstrate the ability of our algo-
rithm to produce high-quality meshes not only from manu-
ally extracted centerlines but also to integrate fully-automated
pipelines.

6.3. Mesh quality
In CFD, the accuracy and stability of the simulation is af-

fected by the quality of the mesh. To evaluate this quality, we
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Table 5. topological and geometric features of the segmentation-based meshes for the different datasets. For each dataset, the median value between all
patients is given.

Database Method nBulges nBranch nCC nBranchMaxCC nCycle nBif nTrif+ minDeg maxDeg
BraVa DeepVesselNet 43 369 451 59 26 76 15 0 5
BraVa Expert 0 205 1 205 0 102 1 1 4
BraVa Unet 38 504 380 200 44 136 30 0 6
TubeTK DeepVesselNet 52 552 557 212 46 140 28 0 6
TubeTK Expert 12 551 26 508 98 230 48 0 6
TubeTK Unet 34 626 300 446 85 215 46 0 6

Fig. 15. Meshes produced with segmentation-based and centerline-based methods for a patient of the BraVa database. From left to right and top to bottom:
original mesh created from the segmentation with Unet, the same mesh after filtering of the smallest components and smoothing; centerlines extracted
from the mesh after post-processing; mesh produced by VessMorphoVis from these centerlines; mesh produced by our method from these centerlines;
mesh produced by our method from manually extracted expert centerlines.

computed the scaled Jacobian of the cells in the meshes gen-
erated with the proposed method. The scaled Jacobian ranges
from -1 (worst quality) and 1 (best quality). Negative values
indicate invalid cells. The volume meshes for 60 patients from
the BraVa database were generated (see section 7.3 for details),

with the following parameters; N = 24, d = 0.2, α = 0.2,
β = 0.3 , γ = 0.5, Nα = 10, Nβ = 10. The cells of the bifurca-
tions and vessels are evaluated separately. Failed bifurcations
and vessels (see section 7.3) were excluded from the study. The
histograms of scaled Jacobian for the 60 patients are given in
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Fig. 16. Enhanced visualization of the segmentation-based mesh, the centerline-based mesh obtained with our method and the centerline-based mesh
obtained with VessMorphoVis. The red squares highlight the parts where the meshes show important differences.

Figure 17, together with an example branch.
As shown in image (a) of Figure 17, the bifurcations are the

most challenging structures to mesh. The lower quality cells are
mainly localized in the bifurcation separation planes. Never-
theless, we achieved a very good overall quality for bifurcation
cells, with 71% of the cells with a scaled Jacobian value higher
than 0.9. The vessel cells have even better quality, with 95.7%
of the cells having a scaled Jacobian higher than 0.9. In terms
of mesh quality, our method improves the state of the art. In-
deed, only 49% of the cells have a scaled Jacobian above 0.9 on
average on the distributions given for three large cerebral net-
works in Ghaffari et al. (2017). This proportion goes up to 62%
of the cells of the abdominal aortic artery geometry meshed by
the method of Xiong et al. (2013). Finally, in De Santis et al.
(2011b), between 65% and 82% - depending on the case and
the cell density - of the cells of the aortic arch meshed have
a scaled Jacobian value between 0.8 and 1. Quantitatively, our
method gives better results, especially given that the histograms
for the other methods were computed on all the cells, both bi-
furcations and vessels. However, we bear in mind that the study
of De Santis et al. (2011b) and Xiong et al. (2013) focuses on
arterial geometries that differ from our study.

6.4. Computation time

The computational time of the modeling and meshing steps
for five patients of the BraVa database was computed. The re-
sults for three of them are given in Table 6. The average time for
modeling a large cerebral vascular network is about 16 minutes.
The time for the volume meshing step is given in Table 6 for dif-
ferent cell densities. The average meshing time goes from 24.6
minutes for a coarse mesh to 49.7 minutes for a fine mesh. We
want to stress that this study was performed on large networks,
with a high number of bifurcations (around 100) and vessels
(around 200). The meshing time increases with the number of

bifurcations and vessels, while the modeling time is affected by
the number of data points.

Table 6. Computational time required to model and mesh large vascular
networks from the BraVa dataset.

id
furcation

(#)
vessel

(#)
data point

(#)
modeling
time (min)

cells
(#)

meshing
time (min)

P1 96 194 2816 11.3

1389k
1853k
2316k
2779k

20.4
25.7
31.2
38.4

P2 101 203 3531 18.3

1916k
2555k
3193k
3832k

27.5
38.2
49.1
67.5

P3 107 216 3474 16.8

1737k
2316k
2895k
3474k

26.3
36.1
44.2
55.9

Besides, a large part of the meshing time corresponds to the
computation of the surface nodes; on average 17.4 minutes for
a coarse mesh and 34.8 minutes for a fine mesh. The volume
mesh is generated directly from the nodes of the surface mesh
without recomputing them. Finally, meshing can be run in par-
allel, by splitting the network into parts to be meshed on differ-
ent CPUs. Using 12 CPUs, we were able to reduce the meshing
computational times given in Table 6 by a factor of 5.

7. Applications

Several applications of our framework are proposed in this
section.
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Fig. 17. Distribution of the scaled Jacobian values of the mesh cells. His-
togram (b) represents the quality of bifurcation cells and histogram (c) the
quality of the vessel cells. Image (a) illustrates the location of high and low-
quality cells within a mesh.

7.1. Deformation

The proposed model is based on the assumption that ves-
sel cross-sections are circular, which is limiting when dealing
with pathological vessels. A way to address this limitation is
to deform the cross-sections to match a target surface as post-
processing. If the user input data is a surface mesh, we propose
the following alternative use of our meshing framework:

1. Extract the centerline from the surface mesh (using VMTK
software for example),

2. Create a tubular mesh from the centerline using the pro-
posed method,

3. Deform the tubular mesh to match the original surface.

Figure 18 illustrates an example of this pipeline to mesh ar-
teries with aneurysms. In the deformation step, the nodes are
individually projected onto the surface of the target mesh. To
prevent the sections from intersecting, the nodes are projected
radially from the section center.

Fig. 18. Structured hexahedral meshing of cerebral arteries with a fusiform
or saccular aneurysm by deformation. On the left, the tubular mesh, ob-
tained by our framework, is superimposed on the target surface. On the
right, the mesh after projection is shown.

As shown in Figure 18, saccular aneurysms are initially mod-
eled as bifurcating vessels and then deformed. Because the
shape of the volume mesh pattern depends on the position of
the section nodes (cf Section 4.1), the deformation of the sur-
face mesh is smoothly conveyed to the cells inside the mesh, as
illustrated by Figure 19.

Fig. 19. Cross-section pattern before and after deformation. The corre-
sponding slice of the target surface mesh is represented in grey.

This pipeline is not limited to pathological vessels. It can be
extended to remesh any vessel surface mesh with hexahedral
cells.

7.2. Topology and geometry editing

The relationship between the vascular tree topology and ge-
ometry (e.g the different configuration of the circle of Willis,
vessel angle) and the hemodynamics have been studied exten-
sively in the literature, using ideal or patient-specific models
(Cornelissen et al., 2018; Alnæs et al., 2007). In this context,
the proposed meshing framework finds applications in creating
and editing vascular models. Because only a few data points
are required for the meshing, the bifurcation angles, the radius
or the trajectory of a vessel can be modified effortlessly. Figure
20 provides examples of such modifications. The graph-based
storage proposed (Section 5.2) facilitates the identification and
modification of the data points of a branch of interest. Besides,
many parameters of the model (e.g bifurcation cross-sections
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and apex smoothing, vessel smoothing) and mesh (e.g cell lon-
gitudinal and circumferential density, boundary layer) can be
adjusted. As the bifurcations are modeled by two merging ves-
sels, one branch can be removed without affecting the trajec-
tory of the other branch, as illustrated on the right in Figure 20.
Those modifications can be performed inexpensively by a local
re-computation of the model and mesh parts.

Fig. 20. Editing of a model of the basilar artery using our framework. The
bifurcation angle and the radius of the original vertebral artery are mod-
ified, and one of the vertebral arteries is removed. The centerline points
and radius used to produce the meshes are represented on the top left for
each case in which they were modified.

7.3. Large cerebral arterial network meshing
To demonstrate further the applications of our method, we

applied it to 60 patients of the BraVa dataset. The meshes pro-
duced for 4 of the patients are given in Figure 21. This dataset is
considered challenging for several reasons. As the centerlines
were extracted manually by medical doctors, they are noisy and
have a low sampling. The superimposition of the centerline data
points on the magnetic resonance angiography image in Figure
22 shows the high level of noise encountered in the input data,
both in the radius estimation and the spatial positions. Besides,
by computing the ratio of the number of data points on the to-
tal length of the connecting polyline, we estimated the average
point density in the database to be 0.45 mm−1, which is very
low.

We evaluate the percentage of successfully meshed vessels
and bifurcations separately, as the meshing method is different.
The vessels or bifurcations with at least one cell with a negative
scaled Jacobian score are considered failed. With this strict def-
inition, a total of 83% of the bifurcations and 92% of the vessels
were successfully meshed.

The main reason for the failure of the vessel mesh is a too
high curvature - mainly in the arteries with high tortuosity such
as the internal carotid arteries - caused by a sharp angle in the
input centerline. The main causes of failure for the bifurcations
were very low bifurcation angles and misplacement of bifur-
cation points in the input data. This last case is illustrated in
image (b) of Figure 22. We can see that the bifurcation point
in the centerline data was positioned too far downstream in the
main vessel, causing one of the daughter vessels to go backward
from the direction of the flow with a sharp angle. As we use an
oriented bifurcation model, it failed to correctly represent the

geometry. Figure 22 (a), on the other hand, illustrates a suc-
cessful reconstruction of the trajectory of the vessel. Although
the input centerline was very imprecise both in the radius esti-
mation and point positions, we were able to produce a smooth
model, closest to the vessel geometry as given by the medical
image. Moreover, as shown in the insert of Figure 22 (a), even
challenging topologies (e.g short connecting segments between
bifurcations) can be successfully meshed with hexahedral ele-
ments. An image of all the meshes of the database, with failure
areas highlighted, is given in supplementary materials, section
1.3.

(b) failure case

(a) success case

flow 
direction

direction
flow 

Fig. 22. Example of success and failure of our method for one patient of the
BraVa database. The whole-brain mesh is represented in the middle with
a focus on two parts of the network. For each focus, the original centerline
data points are represented by red dots (center) and black circles (radius).
The mesh obtained is superimposed on the data points, with a highlight on
the relevant parts. On the right image, the original centerline data points
are overlayed on the original MRA image.

7.4. CFD simulation
In this section, we demonstrate the applicability of the mesh-

ing method proposed for CFD simulations. Firstly, we com-
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Fig. 21. Top view of 4 meshes among the 60 generated from the patients of the BraVa database. The bifurcations where the meshing algorithm has failed
(i.e at least one of the cells has a negative Jacobian) are represented in red. The cross-sections of the vessels with cells of negative Jacobian values are also
represented in red.

pare the hexahedral meshes produced by our method to the
commonly used tetrahedral meshes in terms of computational
cost, convergence, and accuracy of the results. This compar-
ison was conducted in a straight tube model, as this experi-
mental setting allows a comparison to the analytical form of
the sectional velocity profile given by the Poiseuille equation.
The tube diameter was set to mimic a middle cerebral carotid
artery (D = 2.5mm), and the tube length to guarantee that the
flow is fully developed (L = 200mm). Five tetrahedral vol-
ume meshes of increasing cell density -from coarse to fine-
were created by the software TetGen® (Hang, 2015), a state-
of-the-art tetrahedral meshing software often used to produce
the volume mesh in blood flow studies (Taebi et al., 2020; Shad
et al., 2021). In the same way, five hexahedral volume meshes
of increasing cell density were created by our method. For the
CFD simulations, the fluid properties were selected to mimic
blood, with a density ρ = 1053kg.m−3, and a dynamic viscosity
µ = 0.0035kg.m−1.s−1. The flow was assumed laminar -justified
by a Reynold number of 150.4-. The inlet boundary condition
was set to a fixed velocity U = 0.2m.s−1, and the outlet bound-
ary condition to zero pressure. The residuals value for conver-
gence was fixed to 10−6. The CFD simulations were run using
ANSYS Fluent (ANSYS Inc., USA).

As shown in Figure 23, the mesh independence was reached
faster using hexahedral meshes than tetrahedral meshes, for a
more accurate sectional maximum velocity value. The conver-
gence of the simulation was also improved, as 4 times fewer
iterations were necessary to obtain convergence of the results
with hexahedral meshes. The simulation time was reduced on
average by a factor 3, which adds to the fact that fewer cells
are required to reach accurate results with hexahedral meshes
(as shown in Figure 23), reducing the computational cost even
more. These results are consistent with the conclusions given
in the works of Vinchurkar and Longest (2008), De Santis et al.
(2010), and Ghaffari et al. (2017), demonstrating the advantages
of hexahedral meshes over tetrahedral meshes for CFD simula-
tions. More details on the methods and results can be found in
Supplementary materials, Section 3.2.1. This experiment was
reproduced in a realistic bifurcation case, giving similar results,
reported in Section 3.2.2 of the supplementary materials.

Fig. 23. Graph of the sectional maximum velocity as a function of the
number of cells in the mesh for both tetrahedral meshes and hexahedral
meshes. The maximum velocity was averaged on three cross-sections along
the tube model. The analytical value expected is shown by the black dotted
line.

Secondly, we applied our method to reconstruct a patient-
specific mesh of the middle carotid artery (MCA) and down-
stream vessel in a case where the segmentation failed to pro-
duce a valid mesh. Using our framework, fluid extensions were
automatically added to the inlet and outlet of the mesh and a
stenosis with a user-defined shape was automatically added to
the MCA. The stenosis was designed to induce a reduction of
50% of the vessel diameter. Images of the meshes are provided
in Supplementary materials, Section 3.3.

Simple boundary conditions were used for this applica-
tion case, as our goal is not to provide an analysis of this
case study but simply to demonstrate the applicability of our
method for the study of cerebrovascular pathologies by CFD.
Blood is considered a Newtonian fluid (ρ = 1053kg.m−3, µ =
0.0035kg.m−1.s−1), and the flow is assumed steady and laminar.
The inlet boundary condition is set to a velocity of 0.2m.s−1

(Blackshear et al., 1980), and the outlet is set to zero pressure.
The simulation converged with a residual value of 10−6 in 50
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Fig. 24. CFD simulation results for the mesh without stenosis (a) and with stenosis (b). In both cases, the velocity streamlines were rendered and the velocity
field is shown by a cut on the stenosis region.

iterations (resp. 78 iterations) and 4 minutes (resp. 6 minutes)
for the healthy case and the pathological case respectively. The
velocity streamlines and the velocity fields computed by CFD
for the healthy and pathologic cases are presented in Figure 24.
With this experiment, we showed the potential of our mesh-
ing method to easily design and conduct blood flow studies by
CFD. The editing flexibility of our framework allows to study
the effect of hemodynamic pathologies or topological changes
compared to a reference geometry like in Figure 24. The ad-
vantages of our framework are not limited to the modeling and
meshing steps, as it also facilitates the analysis of the results
(e.g extraction of cross sections, extraction of velocity values
along the centerline).

8. Conclusion

In this article, we addressed the problem of the reconstruction
and meshing of large vascular networks from noisy, sparse cen-
terlines. The proposed method is robust to noise, accurate and
automatic. It opens to way to CFD simulations in large vascular
networks manually or semi-automatically extracted by medical
doctors, with minimal manual intervention. An original approx-
imation method unifying the spatial and radius information in
a single function is proposed to model the vessels. The use of
a bifurcation model based on physiological parameters is asso-
ciated with new hexahedral meshing and smoothing techniques
to produce bifurcations with a realistic shape and high-quality
cells in a reasonable time. Our method finds application in the
automatic meshing of large databases of vascular centerlines
and hexahedral remeshing of non-tubular or pathologic vessels.
It is well suited for the creation of realistic ideal vascular net-
work models and the study of the impact of topological (branch
removal) and geometrical (branch angle) on blood flow.

We acknowledge some limitations to this work. The pipeline
was originally developed for cerebral vascular networks, and
non-planar n-furcations (n > 3) that are common in other ves-
sels (e.g aorta, lung vessels) were not addressed yet, which
limits its use to cerebral vasculature. In addition, the robust-
ness of the modeling and meshing method could be further im-
proved as it failed in some cases. For this, we would like to
integrate more physiological constraints on the bifurcation and
vessel models such as a maximum curvature or maximum ves-
sel angle. Besides, we want to emphasize that our objective
with this work was not to improve the performance of the seg-
mentation or centerline extraction algorithms but to acknowl-
edge the limitations of the realistic data and generate meshes
as close as possible to the real anatomy from flawed centerlines
and existing databases. Hence, the accuracy of the reconstruc-
tion depends on the accuracy of the input centerlines and some
manual post-treatment may still be required before simulation.
In this way, our framework offers more editing flexibility than
other meshing methods. To take advantage of this flexibility,
we developed a vascular network editing software, with a user-
friendly interface. This interface integrates the modeling and
meshing methods described in this article as well as other edit-
ing functionalities such as centerline editing, branch removal or
angle modification. It opens vascular modeling and hexahedral
meshing to medical doctors and non-expert users.
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