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Abstract

This article introduces a new efficient particle method for the numerical simulation of crystalliza-
tion and precipitation at the pore scale of real rock geometries extracted by X-Ray tomography. It is
based on the coupling between superficial velocity models of porous media, Lagrangian description of
chemistry using Transition-State-Theory, involving underlying grids. Its ability to successfully com-
pute dissolution process has been established in the past, and is presently generalized to precipitation
and crystallization by means of adsorption modeling. Numerical simulations of mineral CO2 trapping
are provided, showing evidence of clogging/non-clogging regimes, and one of the main results is the
introduction of a new non-dimensional number needed for this characterization.

Keywords: Digital Rock Physics (DRP), Crystallization, Mineral trapping, CO2 storage, Precipitation,
Clogging, Lagrangian methods, Superficial velocity, Pore-scale modeling.

1 Introduction

Studying reactive flows in porous media is essential to manage the geochemical effects arising from
CO2 capture and storage in natural underground reservoirs. While long-term predictions are commonly
modeled at the field scale [Class et al., 2009], pore-scale approaches meanwhile provide insights into
local geochemical interactions between the injected CO2 and the aquifer structure [Payton et al., 2022].
Through mathematical homogenization of the sub-micrometer porous medium and appropriate modeling,
one can simulate the reactive processes that occur at the pore scale and predict their impact on the
macro-scale properties, as developed in Allaire et al. [2010], Allaire and Hutridurga [2012]. Geochemical
processes are critical components for understanding the mineral trapping mechanisms and local evolving
interfaces within the porous environment. In this sense, investigating the impact of such reactive processes
provides insights into reservoir safety submitted to chemical interactions that may compromise the aquifer
structure. Pore-scale modeling of reactive flow hence appears as a complementary mean to field scale
studies wherein homogenization theory bridges the gap between these scales.

In this context, several geochemical mechanisms play a critical role in the CO2 sequestration process
and mainly involve precipitation, crystallization, and dissolution phenomena. On one side, carbonate
precipitation and crystallization ensure efficient capture of the injected CO2 in the form of minerals such
as calcite, aragonite, or dolomite: this is referred to as mineral trapping, which informs about the storage
capacities of the reservoir. These processes significantly impact the flow within the porous media at
the pore scale, leading to restructuring of the flow path and morphological changes that alter, inter alia,
the pore size distribution and the roughness of the interface due to partial or complete clogging of pore
throats. Such alterations at the micro-scale subsequently alter the estimation of the macro-scale properties,
namely the porosity and permeability, and thereby require investigations to ensure wise management of the
underground reservoir structures. On the other side, the reverse chemical process can also occur, resulting
in carbonate mineral dissolution due to an acidification of the aqueous solution. This may compromise not
only the efficiency of the trapping mechanisms, leading to an increase of both porosity and permeability,
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but also the integrity of the reservoir cap rock, and is, therefore, of great interest to prevent acute leakage
issues. In this sense, one needs reliable estimations of the macro-properties changes due to these overall
geochemical processes at the pore scale, to manage their impact on the reservoir scale modeling of
CO2 storage. This can be achieved through, first, efficient DNS of reactive flows at the pore-scale and,
subsequently, by embedding uncertainty concerns on the quantification of the petrophysical properties. In
the present article, we address the first point with a focus on precipitation and crystallization modeling for
CO2 mineral storage into carbonate porous media.

Pore-scale investigation of reactive geochemical systems has garnered interest over the past decades
based on imaging processes and laboratory experiments [Menke et al., 2015, Noiriel and Renard, 2022,
Siena et al., 2021]), numerical simulations [Payton et al., 2022, Soulaine et al., 2018], and a combination
thereof [Molins et al., 2021, Noiriel and Soulaine, 2021]. In this sense, image-based DNS coupling
µCT characterization of a porous sample REV with efficient scientific computing and numerical method
appears as a promising tool to query the impact of reactive processes on real rock geometries. The
current work relies on such a semi-Lagrangian approach, which handles a Lagrangian description of
the chemistry with underlying grid methods for the hydrodynamic, based on the superficial velocity
formalism introduced in the 1980s in Quintard and Whitaker [1988]. The latter makes it possible to
account for the involvement of the porous matrix in the overall flow process through a micro-continuum
description of the medium. In this sense, one considers an intermediate state between the full resolution
of each individual solid grain and the completely averaged continuum representation of the porous media
at Darcy’s scale. This establishes two-scale models that are widely used in hydrodynamics pore-scale
modeling and µCT image-based DNS, as shown in Molins et al. [2021], Panga et al. [2005], Soulaine
et al. [2017]. The present semi-Lagrangian formalism has been successfully employed in the context
of carbonate dissolution at the pore scale [Etancelin et al., 2020] and extensively benchmarked against
state-of-the-art numerical alternatives, as detailed in Molins et al. [2021].

The other contributions of this article lie in the modeling aspects of CO2 mineral trapping under the
form of calcite crystal aggregates at the pore scale. Precipitation kinetics of calcite have been historically
studied since the 1970s from the experimental and theoretical sides in Chou et al. [1989], Lasaga [1981],
Plummer et al. [1978], and this has commonly established Transition State Theory (TST) as an efficient
and straightforward way of predicting mineral reaction rate. Indeed, the deterministic TST is currently
one of the most widely used models in reactive transport codes and DNS, detailed in Molins et al. [2012],
Noiriel et al. [2021, 2016], Steefel et al. [2015]. However, several doubts have risen in the research
community about using such a deterministic approach for predicting crystal growth rates. In particular,
comparison with experimentally determined growth rates has highlighted a wide range of discrepancies,
querying the reliability of the TST model for overall crystallization processes, introduced in Hellevang
et al. [2013], Pham et al. [2011]. Meanwhile, probabilistic approaches, which find their origins in classical
nucleation theory and the probabilistic nature of the precipitation and crystal growth mechanisms, have
been developed in Masoudi et al. [2021], Nooraiepour et al. [2021], Wolthers et al. [2012]. These models
make it possible to incorporate, inter alia, the effects of induction time characterizing the onset of the
nucleation, the ionic affinities of the growing sites, and attachment frequencies of the ionic species
involved in the reaction. Such attachment frequencies are, especially, significant for modeling surface
adsorption and crystal aggregation that largely hinges on the surrounding porous structure in the sense
that kinks or corners, for instance, are experimentally identified as preferential growing sites. However,
such a geometrical dependency of the crystal aggregation is commonly neglected in most models, which
makes it difficult to predict the spatial distribution of the new crystals.

Therefore, we developed a two-step crystallization process wherein nuclei generation relies on a
deterministic TST model before considering the probabilistic mineral aggregation — crystal growth —
into the pore interface. The latter accounts for adsorption frequencies of the precipitate to the growth
sites, which is weighted by a non-uniform probability of attachment rate depending on local mineral
volume fraction. In this sense, we incorporate local geometrical dependency at the pore scale in the overall
crystallization model, which is crucial to ensure reliable prediction of pore clogging. We subsequently use
this model for calcite crystallization into a carbonate porous medium, arising from µCT observations, and
investigate both the impact on the macro-scale properties evolution and the effects of several dominant
regimes on the precipitation and crystal growth patterns. In this sense, we propose a characterization of
the crystallization regime based on three distinct dimensionless numbers, including, for the first time, the
effects of nuclei adsorption — or crystal aggregation — in this regime characterization. We demonstrate
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that the first nucleation process and the crystal aggregation through surface adsorption play a critical role
in the pore-clogging and precipitation patterns.

The present manuscript is structured as follows. The section 2 introduces reactive flow model at
the pore-scale of rocks. First, the Darcy-Brinkman-Stokes model including to the Kozeny-Carman
correlation terms in order to model highly heterogeneous medium at its pore scale, naturally meaningful
for evolving fluid-solid interface defining the pores structure. Second, the transport-reaction-diffusion of
chemical species. In section 3, we detail our particle method for highly heterogeneous diffusion arising
from Archie’s law in the two-scale description of the medium. The application of such models to the
precipitation and the crystallization for the CO2 mineral trapping is described in section 4. It includes the
implementation and its HPC features on hybrid architectures, i.e. coupling CPU and GPU devices, for the
present application, detailed in section 4.4. The related numerical results are discussed in section 5 in
terms of clogging or non-clogging regimes of crystallization.

2 Models in reactive microfluidics

The present section focuses on the modeling of reactive hydrodynamics in the context of CO2 mineral
storage and presents the mathematical model used to simulate reactive processes at the pore scale. We first
introduce the so-called Darcy-Brinkman-Stokes formulation for microfluidic flows based on superficial
velocity formalism. We subsequently incorporate transport-reaction-diffusion equations modeling the
geochemical interactions between the different species involved. Finally, we present an alternative
formulation in velocity-vorticity for the hydrodynamics equation, which ensures the fluid incompressibility
condition.

2.1 Darcy-Brinkman-Stokes: a superficial velocity formalism at the pore scale

We introduce a spatial domain Ω ⊂ Rn, n = 1, 2, 3 which corresponds to the porous medium described
at its pore scale. This sample description involves a pure fluid region ΩF , also called void-space and
assumed to be a smooth connected open set, and a surrounding solid matrix ΩS itself considered as a
porous region. This region is seen as complementing the full domain Ω, which in practice represents
the computational box of the numerical simulations such that ΩF = Ω∖ ΩS , and the internal fluid/solid
interface is denoted Σ. We denote the computational domain boundary by ∂Ω and use ΓF = ∂Ω∩ΩF and

Figure 1: Upscaling from the pore-scale. Schematic representation of a reservoir or material scale structure, on the
left, with its inherent averaged macro-properties ϕ and κ0 computed on a representative elementary volume (REV).
Local micro-continuum description of the pore-scale heterogeneity in this REV, on the right, along with its intrinsic
micro-scale properties. These properties are the local micro porosity field ε and the micro-scale permeability Kε,
based on the Kozeny-Carman relationship developed in equation (2).

3



ΓS = ∂Ω ∩ ΩS to refer to the fluid and solid parts of the computational domain boundary, respectively,
such that ∂Ω = ΓF ∪ ΓS (see Figure 2.1 for instance).

The boundary conditions at the inlet and outlet faces, typically for a cubic computational domain
Ω =]0, l[3 but not exclusively, either impose a prescribed flow rate u on the velocity or satisfy periodic
boundary conditions for a prescribed driving force f . The boundary conditions on the other lateral faces
are systematically periodic since rock samples are commonly constrained in an impermeable solid casing
when µCT experiments are conducted. In this sense, it ensures a consistent numerical representation of
the sample compared to the experiments. This also guarantees C∞ regularity on the boundary even if the
domain exhibit corners, since the problem can be formalized by considering the equivalence relationship
with the quotient space Ω ≡ Q/G where Q = R2×]0, l[ and G = lZ2 × {0} (e.g. see Sanchez et al.
[2019] for detailed configurations of acceptable domains).

From the µCT images, we can also characterize the static pore-space structure, corresponding to the
sample’s initial state before any geochemical interactions. In this sense, we denote by ε = εf = 1− εs
the micro-porosity field defined on Ω, given εf and εs respectively the volume fractions of void and solid
according to usual notations from Soulaine et al. [2017]. This defines a micro continuum description
of the porous medium such that ε = 1 in the pure fluid region ΩF and takes a small value in the
surrounding matrix ΩS . In fact, the local micro-porosity ε is assumed to have a strictly positive lower
bound ε(x, t) ⩾ ε0 > 0 for all (x, t) in the spatiotemporal domain Ω× [0, Tf ] for a final real-time Tf > 0
in the reactive process. This lower bound ε0 characterizes the residual porosity of the porous matrix,
potentially unresolved due to X-ray µCT imaging limitations (as discussed in Perez et al. [2022], see also
Figure 2.1). In practice, we assume throughout this work ε0 = 5%.

Such a two-scale description of the local heterogeneities in the carbonate rocks is appropriate to
simulate the pore-scale physics and establish the governing flow and transport equations in each distinct
region. Indeed, although the hydrodynamic of a viscous flow in a pure fluid region is commonly quantified
through the Navier-Stokes equation, we can formulate the problem on the whole domain Ω based on the
two-scale micro continuum description of the medium. We, therefore, consider the model on the superficial
velocity u introduced and derived rigorously by Quintard and Whitaker in the late 80s [Quintard and
Whitaker, 1988] and commonly used until nowadays [Lasseux et al., 1996, Molins et al., 2021, Soulaine
et al., 2017, Wood et al., 2007]:

ε−1∂ρu

∂t
+ ε−1div(ε−1ρu⊗ u)− ε−1div(2µD(u)) + µ∗K−1

ε u = f −∇p (1)

along with the divergence-free condition div u := ∇ · u = 0. It is noticeable that this incompressibility
condition should be changed when considering evolving porous structures to account for density variations,
especially in the context of fast dissolution or nucleation [Soulaine et al., 2018]. Indeed, this only depicts
that crystal nucleation within a liquid volume, for instance, drastically increases the density and induces
divergence effects in its neighborhood. Nevertheless, the divergence-free condition can be assumed to
remain if the characteristic time of fluid/solid interface changes is way larger than the hydrodynamics
time scale [Soulaine et al., 2017], which is the case for our study. In equation (1), the notation D(u) refers
the shear-rate tensor D(u) = (∇u+∇uT )/2, µ is the dynamic viscosity, p is the volumic pressure, f the
volumic driving force and ρ the fluid density. The related viscosity µ∗ usually coincides with the fluid
viscosity µ but may be different in order to account for viscous deviations.

The quantities ρ, µ, µ∗ and f are assumed to be constant. The quantities ε, ρ, µ and p are scalar fields;
u, its rotational ω = ∇× u, f and ∇p are vector fields, while D(u) and Kε are matrices.

The permeability Kε refers to the micro-scale permeability and depends on the local micro-porosity
field ε. In fact, the permeability of the micro-porous domain is modeled by the empirical Kozeny-Carman
relationship [Carman, 1937, Carrier, 2003, Kozeny, 1927]:

K−1
ε = κ−1

b

(1− ε)2

ε3
(2)

where κb is the bulk permeability, which can be taken as a coarse estimation of the reference macro-scale
permeability κ0. For instance, Soulaine et al. [2017] estimated that four orders of magnitude below the
permeability are required for κb to ensure adherent boundary conditions at the pore interface. In this article,
we consider both Kε, κb and κ0 as scalars, meaning we restrict ourselves to the isotropic case although
this formalism can be extended to anisotropic porous media. The superficial velocity formulation (1)
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defines a two-scale model that can be solved on the overall domain Ω — using, for instance, penalization
principles — and retrieves the usual Navier-Stokes equation in the pure fluid region ΩF (since K−1

ε = 0
for ε = 1). Depending on the flow regime hypothesis, one can also encounter simplified versions of
equation (1) wherein some terms can be neglected. In the context of pore-scale simulations, in particular,
the inertial effects become negligible compared to viscous forces due to low Reynolds number, denoted
Re. The latter is a characteristic dimensionless number defined as:

Re = ρuL/µ, (3)

where u and L are respectively the characteristic velocity and length of the sample. The characteristic
length L can be related to average pore throat diameters and, therefore, we typically fall within the
assumption Re ≪ 1 throughout this manuscript.

At low Reynolds numbers and for highly viscous Darcian flows, equation (1) hence reduces to the
following DBS model:

−div(2µD(u)) + µκ−1
b

(1− ε)2

ε2
u = ε(f −∇p), in Ω (4)

where µ∗ = µ for sake of readability. In the present work, we consider this DBS equation (4), which is
adequate in the flow regime hypothesis of low Reynolds number representative in pore-scale modeling.
The DBS equation based on the superficial velocity is an efficient formalism to model the hydrodynamic
in multi-scale porous media, and account for heterogeneous porosity levels.

2.2 Reactive flow model: general formulation

The DBS flow model (4) needs to be complemented by transport-reaction-diffusion equations of the
different species involved in the geochemical processes. These equations are derived from the mass
balance of the chemical species [Soulaine et al., 2017], and can be written under the form:

∂εC̃k

∂t
+ div(uC̃k)− div

(
αk(ε)ε∇C̃k

)
= ṁk/Mk, (5)

where C̃k = ρfωf,k/Mk is a concentration per unit of fluid with Mk the molar mass and ṁk the rate
of mass transfer for the kth species. We follow here the notations introduced by Quintard and Whitaker
in Quintard and Whitaker [1988], and afterward used by Soulaine et al. [2017], where ρf is the fluid
density and ωf,k is the mass fraction of the kth component averaged on the fluid phase. The term αk(ε) is
a space-variable effective diffusion coefficient and accounts for a reduced diffusion in the surrounding
porous matrix due to the tortuosity effect, which is usually quantified using Archie’s law [Archie, 1942]:

αk(ε) = Dm,kε
η. (6)

In this empirical relationship, η refers to the tortuosity index and Dm,k to the molecular diffusion of the
considered species [Wakao and Smith, 1962]. We finally introduce Ck = εC̃k, so that the equation (5) is
written:

∂Ck

∂t
+ div(ε−1uCk)− div

(
Dm,kε

1+η∇(ε−1Ck)
)
= Rk(C), (7)

which is no more than a superficial modeling of the chemistry, that is to say Ck is the amount of moles per
unit of volume while C̃k is the amount of moles per unit of fluid volume. The notation Rk(C) refers to a
function (without differential operators) that models the rate contribution of the chemical reactions for the
kth component, where we denote by C ∈ RNs the vector of the concentrations Ck of all the Ns chemical
species. We distinguish Nm mobile species, and Ni immobile species such that Ns = Nm +Ni. The kth

rate contribution Rk(C) is, practically, the balance of kinetics of all reactions involving the kth species.
The sign of individual reaction rates lies in the nature of the species k considered, either positive for a
chemical product or negative for a reactant.

The model (7) is the formalism that we retain for the aqueous species in the liquid phase. In particular,
this model highlights a superficial gradient operator denoted ∇ε := ε∇ε−1 involved in the heterogeneous
diffusion arising from the Archie’s law. One should notice that the superficial gradient can become
highly sensitive at the mineral boundary, mainly due to jumps in the porosity levels on either side of
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the interface, and thus will require special considerations to adequately manage evolving medium under
reactive processes.

Concerning the solid phase of concentration C(s) (e.g. the kth component in vector C), which we
assume contains only one chemical species of molar volume υ (Ni = 1), it is not subject to transport or
diffusion, so that

∂C(s)

∂t
= Rk(C). (8)

This solid concentration is subsequently linked to the micro-porosity ε by the relation C(s) = (1− ε)/υ,
so one gets

∂ε

∂t
= −υRk(C). (9)

In the case of a typical reaction involving a unique solid X(s) of molar volume υ, and two aqueous
species Y and Z in the liquid phase, with their respective positive stoechiometric coefficients χi and
following, for instance, the general chemical reaction:

χ1X(s) + χ2Y −−⇀↽−− χ3 Z, (10)

we define the vector of concentrations C := (C1, C2, C3)
T =

(
[X(s)], [Y], [Z]

)T ∈ R3. Since there is
only one reaction, one gets a unique kinetic balance written as Ri(C) = ±χiR(C), with R(C) the
kinetic rate. By default, we assume a positive sign for the solid species, so that one follows the convention
R(C) < 0 for the forward reaction corresponding to the solid X(s) dissolution, while R(C) > 0 for
the reverse reaction, e.g. precipitation and crystallization processes. The sign for the aqueous species
subsequently depends on its interaction with the solid X(s): we get a positive sign for species Y, which
is either consumed or produced in the same way as the solid, and a negative sign for species Z, which
behaves oppositely. The reaction rate R(C) can involve many concentrations, specific areas, chemical
activities, equilibrium constants, etc. (see Sect. 4 thereafter for practical examples and further details).

Along with its boundary and initial conditions, the model for reaction (10) defines a set of partial
differential equations modeling reactive flows at the pore scale:

−div(2µD(u)) + µκ−1
b

(1− ε)2

ε2
u = ε(f −∇p), in Ω×]0, Tf [

∂C1

∂t
= χ1R(C), in Ω×]0, Tf [

∂C2

∂t
+ div(ε−1uC2)− div

(
Dm,2ε

1+η∇(ε−1C2)
)
= χ2R(C), in Ω×]0, Tf [

∂C3

∂t
+ div(ε−1uC3)− div

(
Dm,3ε

1+η∇(ε−1C3)
)
= −χ3R(C), in Ω×]0, Tf [

ε = 1− υC1, in Ω×]0, Tf [

+ adequate boundary and initial conditions, along with div u = 0

(11)

which is strongly coupled, since u and C depend on each other by means of the micro-porosity changes ε
during the chemical process. It is also possible to straightforwardly substitute C1 with ε in this system
(11). Finally, one can notice that the reactive system (11) is valid on the whole domain Ω, whether
the local state is fluid or not. In the pure fluid region, this system indeed converges toward a Stokes
hydrodynamic model coupled with a standard transport-diffusion equation. Mathematical modeling of
reactive hydrodynamics at the pore-scale can be expressed under the general form of the PDE system
(11) coupling DBS with transport-diffusion-reaction equations. It is noticeable that the micro-porosity ε
remains in the range [ε0, 1] which provides a well-posed Darcy-Brinkman-Stokes equation for the flow
due to the expressions of Kozeny-Carman term and reaction formula.

This can be extended naturally to systems of reactions involving as many aqueous species in the liquid
phase as needed, and involving potentially several solid — in this case the porosity is a linear combination
of solid species. Most of the configurations studied in this article involve solid calcite — or calcium
carbonate — whose concentration is denoted CCaCO3(s) or [CaCO3], and whose molar volume is given
by υ = 36.93× 10−3 L.mol−1.
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2.3 A velocity-vorticity formulation

Two distinct approaches are successfully used in the literature to solve numerically the DBS equation (4),
namely the velocity-pressure or velocity-vorticity formulations [Hume and Poncet, 2021, Lamichhane,
2013, Molins et al., 2021, Philippe Angot, 2018]. The latter, inherited from vortex methods [Chatelain
et al., 2008, Cottet et al., 2000, El Ossmani and Poncet, 2010, Hejlesen et al., 2015] introduces the vorticity
field ω which is intrinsically related to the fluid velocity u through the relation:

ω = ∇× u. (12)

Several advantages arise when considering the velocity-vorticity formulation that regards the PDE
unknowns (u, ω) and can be interpreted as describing the local spinning motions generated by the flow
constraints. First of all, one can benefit from the velocity projection on divergence-free fields, and thereby
analytically ensures the incompressibility condition div u = 0. Secondly, this formalism can be effectively
coupled with splitting strategies that sequentially separate the resolution of distinct physical phenomena,
such as convection and diffusion. Finally, this also makes it possible to eliminate the pressure unknown
from the momentum equation by applying the curl operator on the DBS equation, which reads as follows:

−µ∆ω + µκ−1
b ∇×

(
(1− ε)2

ε2
u

)
= ∇ε× (f −∇p) (13)

given the assumption ∇× f = 0. Developing the curl of the Kozeny-Carman term, one gets the following
expression:

∇×
(
(1− ε)2

ε2
u

)
=

(1− ε)2

ε2
ω + 2(ε− 1)ε−3∇ε× u (14)

which, in practice, exhibits terms that become dominant compared to ∇ε× (f −∇p). In this sense, the
right-hand side in the vorticity formulation of the DBS equation (13) is usually neglected [Etancelin et al.,
2020, Molins et al., 2021].

Equation (13) is then supplemented with an equation that retrieves the velocity field from the related
vorticity, and results in the relation:

−∆u = ∇× ω (15)

based on the incompressibility condition. In practice, the previous Poisson equation (15) is not straightfor-
wardly considered, and one relies on an alternative using a stream function ψ : Ω ⊂ R3 → R3 (a vector
potential) solution of: {

−∆ψ = ω, in Ω
+ boundary conditions such that divψ = 0 on ∂Ω.

(16)

The condition divψ = 0 on ∂Ω is essential to ensure the overall incompressibility condition of the
stream function on Ω and thereby identify u = ∇ × ψ. This requires satisfying appropriate boundary
conditions, namely the following combination of homogeneous Dirichlet/Neumann conditions for a
computational cubic domain Ω =]xmin, xmax[× ]ymin, ymax[× ]zmin, zmax[:

x = xmin or x = xmax : ψy = ψz =
∂ψx

∂n
= 0,

y = ymin or y = ymax : ψx = ψz =
∂ψy

∂n
= 0,

z = zmin or z = zmax : ψx = ψy =
∂ψz

∂n
= 0.

(17)

Such boundary conditions ensure (∇× ψ) · n = 0, divψ = 0 and ψ × n = 0 at the same time, where
n is the normal field at the interface, and consequently lead to a zero average velocity field lifted by a
prescribed flow rate u oriented in the flow direction. Indeed, given u = u+∇× ψ, one gets:

< u >Ω=
1

|Ω|

∫
Ω
udv = u+

1

|Ω|

∫
∂Ω
ψ × n ds = u, (18)

which replaces the setting of the driving force f by a prescribed flow rate, managed through the lifted
vector u.
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Finally, using the stream function ψ analytically ensures the divergence-free condition on the velocity
as div u = div (∇ × ψ) = 0. Overall, the velocity-vorticity formulation (13) of the DBS equation is
subsequently coupled with the transport-reaction-diffusion PDE system developed in Sect. 2.2 to model
reactive hydrodynamics at the pore-scale.

3 Method: hybrid grid-particle scheme (semi-Lagrangian)

The present work relies on a semi-Lagrangian numerical method, mixing Eulerian and Lagrangian
formalism, to tackle dynamically evolving porous media due to reactive micrometric processes. Such a
semi-Lagrangian approach has been successfully used for simulations of calcite dissolution at the pore
scale in Etancelin et al. [2020] and extensively benchmarked against state-of-the-art numerical alternatives
in Molins et al. [2021].

A Lagrangian formalism consists of describing the flow motion through the observation along
time of a large number of fluid particles, with their attached intrinsic properties and spatially varying
positions [Brenier and Cottet, 1995, Cottet and Mas-Gallic, 1990]. Each particle is then tracked throughout
the evolving mechanism (transport, diffusion, ...) to measure variations in the main properties (velocity,
concentration, ...). On the contrary, from the Eulerian point of view, the previous property changes are
characterized on a predetermined spatial grid along the dynamical process. This section is dedicated
to presenting this hybrid formalism, which is subsequently improved to account for the heterogeneous
diffusion of the chemical reactants through the porous matrix.

The particle formulation is especially well-suited for transport-dominant phenomena as it avoids
the explicit discretization of convective terms and alleviates the consideration of their related stability
constraints — namely the CFL conditions which constrains the time step for a given spatial discretization.
The lack of regularity in the particle distributions throughout the dynamic process is, however, a recurring
problem of Lagrangian methods. Indeed, as the particle positions move according to the flow field
gradients, accumulation or scarcity issues in the particle distribution commonly occur. This, thereby,
requires periodic remeshing steps to avoid this problem and not to lose information: namely, one proceeds
two successive interpolations from the disorganized particle structure to a regular grid and subsequently
from the grid to the new particle distribution [Chatelain et al., 2008, Cottet and Koumoutsakos, 2000,
Magni and Cottet, 2012].

This is particularly suitable for hybrid approaches, wherein dedicated solvers can be straightforwardly
implemented in the Eulerian context before performing the remeshing step. This also allows a repre-
sentation of the quantities of interest on the grid, which can be coupled with domain decomposition or
mesh adaptation methods. Hybrid grid-particle formalism has, thereby, garnered considerable interest in
addressing multiple complex phenomena in CFD and geosciences [Beaugendre et al., 2012, Chatelain
et al., 2007, Chatelin and Poncet, 2013, Cottet, 1990]. Besides, incorporating high-order and compact
support interpolation kernels makes it possible to reduce the overall computational complexity of the
remeshing steps while keeping accurate predictions of the numerical solution. The choice of the inter-
polation kernels is, however, important to ensure a robust numerical method and guarantee properties
such as mass conservation and sign-preservation of the interpolated quantities [Magni and Cottet, 2012].
Improvements of the interpolation kernels, especially for applications to dissolution processes at the pore
scale, have been investigated by Etancelin et al. [2020]. Such improvements focused on sign preservation
and accurate high-order interpolation through a correction step of the potential over-diffusive effects
resulting from the remeshing step. This provides a well-established hybrid grid-particle framework that
can robustly address pore-scale reactive flows.

In the present work, we aim to benefit from the main advantages of both approaches to model reactive
hydrodynamics at the pore scale. We will, thereby, use a Lagrangian description for the chemical equations
— including the heterogeneous diffusion operator and reactant transport — with an underlying regular grid
for solving the DBS equation in its velocity-vorticity formulation. To do so, we describe in this sections
this original numerical scheme, by detailing its components and how they are linked together:

• Subsection 3.1 describes the Lagrangian formalism of reaction-diffusion-transport equations and
its resulting dynamical system (the particle formalism): it requires a veolocity field to transport
particles and the computation of a heterogeneous diffusion,

• Subsection 3.2 shows how this velocity, solution to the Darcy-Brinkman-Stokes, can be computed
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by an operator-splitting strategy using the algorithm 1/ Brinkman penalization 2/ Diffusion using
improved PSE 3/ Projection on divergence-free fields,

• Subsection 3.3 details the computational method for the required heterogeneous diffusion (that is to
say space and time variable diffusion, including the space mapping based on the porosity field),
and shows how its original formalism from Degond and Mas-Gallic [1989] is improved to become
intrinsically second order.

3.1 Reactive dynamical system with particles

In this section, we present the Lagrangian formulation dedicated to the resolution of the reactive dynamical
system (11) detailed in Sect. 2.2, and more specifically to the transport-reaction-diffusion equation (7).

We define a set of Np fluid particles covering the computational domain Ω and characterize as
triplets (Ci, xi, vi)i=1..Np of species concentrations Ci,k (k = 1..Nm indexing the Nm chemical species),
positions xi ∈ Ω and volumes vi, where i refers to the particle index. This mathematically introduces the
particle description, denoted Ch, of the concentration fields as follows:

Ch(t) =

Np∑
i=1

Ci(t) vi(t) δxi(t) (19)

which only depends on time t, and where δ refers to the Dirac function. The Lagrangian formulation of
equation (7) can then be written using the particle description (19):

dCi,k

dt
= Rk(Ci(t)) +

[
div(αk(ε)∇εCk)

]
xi(t)

∀k = 1..Nm

dxi
dt

=
[
ε−1u

]
xi(t)

dvi
dt

= 0

(20)

given the incompressibility condition div u = 0 and the notations introduced in Sect. 2.2. This results in a
dynamical system over the particles whose positions are controlled by the field ε−1u, and volumes remain
constant under divergence-free conditions. The main advantage of such a Lagrangian formulation (20) is
that the transport term div(ε−1uCk) vanishes along with its stability condition and, thereby, the method
presents the ability to use arbitrary large time steps. This is, especially, of great interest when the CFL
condition on the transport term induces a stronger constraint on the time step compared to the diffusion
stability condition.

The velocity field u in (20) arises from the solution of the DBS equation which is solved on an
underlying Cartesian grid and coupled with the Lagrangian formulation of the chemical PDE system.
Regarding such a strong coupling between these equations, one needs to interpolate on the grid the particle
description of the solid chemical species — namely Ch

CaCO3(s)
— which is related to the micro-porosity

field ε and consequently involved in the DBS model. Similarly, the velocity field subsequently needs
to be interpolated on the particles to solve the Lagrangian set of chemical equations. This requires a
convolution with high-order remeshing kernels with compact supports [Etancelin et al., 2020, Magni and
Cottet, 2012]). The dynamical system (20) is finally integrated using standard numerical methods for
ODE, such as explicit Runge-Kutta, while the diffusion term div(αk(ε)∇εCk) is approximated through
the PSE method, detailed in Sect. 3.3.

In the present work, we incorporate in the semi-Lagrangian workflow the consideration of robustly
estimating Archie’s law term through such a particle-based PSE method. In this sense, we make it possible
to fully address the superficial gradient ∇ε approximation with heterogeneous diffusion throughout the
porous matrix.

3.2 Splitting operator strategy

The semi-Lagrangian formalism introduced in the previous Sect. 3.1 intrinsically relies on splitting
strategies. Time-splitting methods, also known as fractional time-step algorithms, arise in many fields
of computational science related to physics-based models and have been developed by Chorin [1973]
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in the context of vortex methods for the Navier-Stokes equation. Such methods have been widely
investigated afterward to separate the resolution of distinct physical phenomena and render more efficient
algorithms [Beale and Majda, 1981, Cottet and Koumoutsakos, 2000, El Ossmani and Poncet, 2010,
Faragó, 2008]. Indeed, one of the main advantages of splitting strategies is one can use different approaches
for the distinct parts of the overall model, namely either a Lagrangian or Eulerian formulation. This also
straightforwardly extends to the choice of the numerical solver available for each component, allowing
the use of the most efficient, accurate, and robust schemes independently.

The first natural splitting arising in workflow, thereby, lies in the semi-Lagrangian formalism itself,
wherein we do not consider solving the overall PDE system at once. We rather separate the transport-
diffusion-reaction dynamics in its Lagrangian formulation from the pore-scale hydrodynamic resolved on
the underlying Cartesian grid. The hydrodynamic part, composed of the DBS equation in the velocity-
vorticity formulation, is also solved through a time-splitting method. In this sense, we approximate the
solution of (13) by the limit in time of the evolution equation

∂ω

∂t
− µ∆ω + µκ−1

b ∇×
(
(1− ε)2

ε2
u

)
= 0, (21)

together with ω = ∇ × u, using a three-step operator splitting strategy coupled with a fixed-point
algorithm. This means that considering a sequence (um, ωm) of velocity-vorticity we aim to successively
perform, over a time interval [tm, tm+1] with tm = mδt, Brinkman penalization, diffusion, and projection
on divergence-free fields. The latter is achieved through the reconstruction of the velocity field u based on
the stream function ψ (see Sect. 2.3). In practice, these three steps are specifically defined as:

• The Brinkman iteration given by the ordinary differential equation
∂u

∂t
+ µλ(ε)(u+ u) = 0 with

prescribed flow rate u and λ(ε) := κ−1
b (1− ε)2ε−2, whose exact solution after a δt is generated by

Λ(u) := e−µλ(ε)δt(u+ u)− u

• The vorticity diffusion iteration,
∂ω

∂t
− µ∆ω = 0, solved using an implicit Euler scheme given by

the operator
Dω(u) := [I − µδt∆]−1 (∇× u)

• The projection step Π(ζ) = ∇×
(
(−∆−1)ζ

)
which takes as ζ the right-hand side of the Poisson

equation −∆ψ = ζ satisfying the boundary conditions (17), and followed by u = ∇× ψ.

Overall, this leads to the full iteration of the Brinkman-Diffusion-Projection splitting Π ◦ Dω ◦ Λ over a
time step [tm, tm+1], which reads as follows:

um+1 = Π ◦ Dω ◦ Λ(um) (22)

and whose consistency has been theoretically discussed in Hume and Poncet [2021]. One should notice
that this projection step is not a projection by pressure gradient correction as in Chatelin and Poncet
[2013], but an operator that takes the vorticity field ω and retrieves a divergence-free velocity field whose
mean velocity is zero. The final velocity field is subsequently given by

u = u+ lim
m→∞

um (23)

whose average is u and satisfies the Kozeny-Carman relation inside the solid region.
From a numerical perspective, we consider the exact treatment of the Brinkman term, a fourth-order

finite difference scheme for the discrete curl operator, and FFT solvers for the vorticity diffusion and
stream function recovery. Using FFT avoids matrix assembly procedure and, therefore, consists of efficient
solvers in terms of computational time and memory storage requirements. Besides, the complexity of
such algorithm scales as O(Np log(Np)), where Np is recalled to refer to the number of particles. Finally,
a stopping criterion on this fixed point algorithm is also defined based on the relative residual norm on the
velocity, which manages the convergence of the pore-scale hydrodynamics toward a stationary state.

The updated velocity um+1 is subsequently interpolated from the grid to the particles and used for
solving the Lagrangian reactive system, which is split into convective/remeshing and diffusive/reactive
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steps. Regarding the convection, the particle trajectories are pushed to the next step through a directional
advection, given the field ε−1u according to the Lagrangian formulation (20), and are then remeshed
to avoid stagnation issues. The purpose of such a directional splitting is to reduce the dimensionality
of the overall advection problem by considering several one-dimensional equations, and is developed
in Cottet et al. [2014], Magni and Cottet [2012]. The particle remeshing is also addressed using directional
treatment of the multidimensional convolution. This means that within a time step [tm, tm+1], the
joint step of advection/remeshing of the particles is successively performed by alternating the spatial
directions [Etancelin, 2014, Keck, 2019]. This presents the advantage of significantly improving the
computational efficiency of the method and allows the use of high-order remeshing kernels with large
stencils while maintaining a minimal cost compared to multidimensional cases. This is also well-suited
to parallel implementation on GPU architecture. The dimensional splitting is addressed, in practice, by
a second-order Strang formula [Strang, 1968] and coupled with a second-order Runge-Kutta for time
integration. The diffusion/reaction step is finally solved by means of a second-order explicit Runge-Kutta
scheme along with PSE approximation of the heterogeneous diffusion operator. Once the Lagrangian
formulation of the chemistry has been fully updated and remeshed on the underlying grid, one starts
pushing the DBS hydrodynamics to the next sequential step of these temporal iterations.

Such an operator splitting strategy, in the context of a semi-Lagrangian approach, has been applied to
the modeling of dissolution processes on a 2D synthetic calcite core and validated against state-of-the-art
alternatives and experiments in Molins et al. [2021]. This has also been used in Etancelin et al. [2020] on
real porous media structures at the pore scale to investigate the dissolution of 3D carbonate rocks arising
from µCT scans. Nonetheless, these previous works assumed that the superficial gradient ∇ε involved in
the heterogeneous diffusion could be approximated by the gradient operator, and subsequently addressed
this Archie’s law term with standard finite differences schemes. In Sect. 3.3, we intend to alleviate this
assumption and, therefore, improve the semi-Lagrangian method by incorporating in the workflow a PSE
approximation of the heterogeneous diffusion.

3.3 Particle-Strength-Exchange method and Archie’s law approximation

The PSE method consists in the approximation of a diffusion operator div(L∇f)(x) with x ∈ Ω ⊂ Rn

and L a positive symmetric matrix, accounting for heterogeneous diffusion for instance. The main idea is
then to approximate the diffusion by an integral operator, more suitable for particle methods:

Qξ · f(x) =
∫
Ω
σξ(x, y)

(
f(y)− f(x)

)
dy (24)

where the kernel σξ is supposed to be symmetric and satisfies some moment conditions, detailed thereafter.
In the Lagrangian formulation, a particle approximation of the function f , denoted fh, is also introduced
based on the particle triplet (fi, xi, vi), such that:

fh =

Np∑
i=1

fi vi δxi where fi = f(xi) (25)

where xi and vi are respectively the particle positions and volumes, while δxi refers to the Dirac measure
at position xi. With such a Np-particle representation of the function f , a discrete version of the operator
Qξ is obtained by using the particles as quadrature points where h refers to the characteristic distance
between particles. This results in the following quadrature expression, called Particle-Strength-Exchanges:

Qξ · fh(xk) =
∑

xl ∈S(xk)

σξ(xk, xl)
(
fl − fk

)
vl. (26)

where S(xk) := Supp
(
σξ(xk, ·)

)
refers to the set of points in the support of the kernel function σξ.

In appendix A, we detail that we can explicitly compute two constants γ1 and γ2 based on a given
scale ξ and a given function Θ (named stencil generator) such as

σξ(x, y) =
1

ξn+4
Θ

(
y − x

ξ

)
m(x) +m(y)

2
: (x− y)⊗2. (27)
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Figure 2: Mesh convergence analysis of the OpenCL implementation of the PSE method: Error norm ∥Err∥RMS
with respect to the mesh step size h for heterogeneous diffusion operator with a spatially varying diffusion matrix L.
The convergence analysis is performed for mesh resolutions going from 323 to 2563.

with
m = c0 L − c1Tr(L)Id3 + H (28)

where

c0 =
2(γ1 + 2γ2)

γ21 + γ1γ2 − 2γ22
, c1 =

2γ2
γ21 + γ1γ2 − 2γ22

, and Hij =

(
γ21 − γ1γ2 − 6γ22

γ2(γ21 + γ1γ2 + 2γ22)

)
(1− δij)Lij

(29)
where δij is the Kronecker symbol. As the convergence of the original PSE method introduced in Degond
and Mas-Gallic [1989] depends on the scale ξ as O[(h/ξ)2] – which becomes O(1) when ξ is adapted
linearly to h –, the present discrete corrected version developed in Poncet [2006] and Schrader et al.
[2012] is intrinsically second order convergence O(h2).

This computational method of diffusion is used to compute the Archie’s law, involving a tortuosity
index η in the heterogeneous diffusion operator

D(ε, C) := div
(
ε1+η∇(ε−1C)

)
(30)

involved in the PDE system (11). In this case, one gets a particular expression for the diffusion matrix
L = ε1+η I3 with I3 the identity matrix in R3, which finally leads to the discrete renormalization of the
PSE scheme approximating the Archie’s law diffusion operator (30) reads as follows:

Qξ · fh(xk) =
1

ξ7

∑
l∼k

(fl − fk)Θ

(
xl − xk

ξ

)
(c0 − 3c1)

2

(
ε1+η(xk) + ε1+η(xl)

)
|xl − xk|2vl (31)

where | . | is the Euclidean norm in R3 and f• := ε−1(x•)C(x•). The overall formula (31) accounts for
the heterogeneous diffusion and ensures the accurate management of the chemical reactant penetration,
given by its concentration field C, within the porous matrix. Indeed, one of the main advantages of
the PSE scheme is that it includes all the lattice neighborhoods in the computation of the heterogenous
diffusion, unlike crossed FD. Finally, this guarantees the strict conservation of the reactant exchanges
between the fluid portion and the porous matrix.

In order to validate the implementation, we consider the approximation of a diffusion operator
div(L∇f) on a domain Ω ⊂ R3 with a spatially varying diffusion matrix

L(x, y, z) = (1 + cos2(x))I3
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and a function f given by f(x, y, z) = sin(x) sin(y) sin(z). This ensures three-periodic boundary
conditions on the domain Ω =]− π;π[3. Direct computation of the exact solution provides

div(L∇f)(x, y, z) = −3f(x, y, z)− 5 cos2(x)f(x, y, z)

and a mesh convergence analysis is performed, studying the error norm against the mesh step h, for mesh
resolutions going from 323 to 2563. Introducing the discrete error vector Err, defined for each point
Xk ∈ R3 of the grid by

Errk := div(L∇f)(Xk)−Qξ · fh(Xk),

we compute for each mesh resolution the RMS norm ∥Err∥RMS inherited from the functional L2-norm on
Ω. The value of Qξ · fh is defined on every particles by formulae (26) or (63), despite the fact that fh is a
measure function, that is to say a combination of Dirac functions. We retrieve a second-order convergence
curve presented in Figure 2.

4 Application to precipitation and crystallization

CO2 mineral storage in natural underground reservoirs, such as saline aquifers, involves competing
geochemical phenomena occurring at a large variety of scales. Among them, mineral dissolution and
precipitation play crucial roles. On one side, studying the dissolution of native carbonate species, already
present in the aquifers, provides insight into potential leakage issues and queries the reservoir safety. On
the other side, CO2 trapping under the form of carbonate precipitates and crystals informs on the storage
capacities of the reservoir. These geochemical processes also induce changes in the macro-scale properties
of the subsurface material, including permeability and porosity evolutions, that need to be investigated to
ensure sustainable management of the reservoir structures.

In this section, we develop mathematical models for calcite precipitation and crystallization at the
pore scale, with special considerations on the reaction rate expressions arising in the PDE system (11).
Numerical simulations are performed within the HySoP platform [Etancelin et al., 2022] along with PSE
treatment of the heterogeneous diffusion on accelerated GPU devices and address porous sample arising
from X-ray µCT observations. This enables the investigations of macro-scale property changes along the
CO2 mineral trapping on real 3D rock geometries, which is an important component in the overall study
of CO2 storage.

4.1 The Transition State Theory: from Dissolution to Precipitation Modeling

Dissolution of the injected CO2 in the aqueous phase of deep underground reservoirs will affect the pH of
the formation water through the following series of chemical reactions:

CO2 (g) −−⇀↽−− CO2 (aq) (32a)

H2O+CO2 (aq) −−⇀↽−− H2CO3 (32b)

H2CO3 −−⇀↽−− H+ +HCO3
− (32c)

HCO3
− −−⇀↽−− H+ +CO3

2−. (32d)

Indeed, once the CO2 has dissolved into water and established a first equilibrium under the form of the
weak acid H2CO3, the H2CO3 species dissociates successively to bicarbonate HCO3

– and carbonate
CO3

2 – ions as the pH increases. These chemical reactions are pH-dependent, and the distribution
evolutions of all these carbonate species are displayed in Figure 3 against the pH of the solution. In
alkaline media, the chemical reactions (32c) and (32d) can, therefore, join together to read as follows:

H2CO3 + 2OH− −−⇀↽−− CO3
2− + 2H2O (33)

such that carbonate ions are the main carbonate species present in the solution. Such transformations in
the ionic species composition of the aquifer water will considerably impact the original mineral structure
through chemical rock-water interactions such as carbonate dissolution and precipitation.
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Figure 3: Distribution diagram of aqueous carbonate species against pH solution from Bohn et al.
[1980] and Turk et al. [2015]. Species distributions are represented as a fraction of total dissolved
carbonate. The grey dotted lines highlight the transition pH of the chemical equilibria from equation (32).

Historically, the dissolution and precipitation kinetics of calcite in the context of CO2 injection have
been studied since the 1970s, both from the experimental and theoretical sides. Plummer et al. [1978]
investigated the influence of several parameters on the forward reaction rates of calcite dissolution under
far-from-equilibrium conditions. Among these parameters, one finds the partial pressure of CO2 denoted
PCO2 , the hydrogen ions activities denoted aH+ — directly related to the pH — and the temperature.
Their experimental work was subsequently extended by Chou et al. [1989] using a fluidized bed reactor to
compare the dissolution kinetics mechanisms between various carbonate minerals — involving inter alia
calcite, aragonite, and dolomite — at 25℃. One should notice that these experiments were conducted
under laboratory conditions in terms of pressures and temperatures, in opposition to the current abilities
of in situ experiments to manage realistic reservoir conditions [Andrew et al., 2013, Wigand et al.,
2008]. Nonetheless, these experimental studies have highlighted three kinetic mechanisms occurring
simultaneously in the process of calcite dissolution due to CO2 injection. Such mechanisms are given by
the following chemical reactions:

CaCO3(s) +H+ K1−−⇀↽−− Ca2+ +HCO3
− (34a)

CaCO3(s) +H2CO3
K2−−⇀↽−− Ca2+ + 2HCO3

− (34b)

CaCO3(s)
K3−−−⇀↽−−−
K−3

Ca2+ +CO3
2− (34c)

where the notations Ki, i = 1...3 refer to forward reaction rate constants, depending on the tempera-
ture [Busenberg and Plummer, 1986, Plummer and Busenberg, 1982, Plummer et al., 1978], and K−3 is
the backward reaction rate corresponding to the reverse calcite precipitation process in equation (34c).
They experimentally identified both the forward and backward reaction rates and established the validity
of kinetic models for carbonate dissolution and precipitation in comparison to thermodynamics theoretical
considerations.

Meanwhile, mineral reaction rates were, indeed, theoretically investigated by Lasaga [1981] using
the Transition State Theory (TST), originally formulated by Eyring [1935]. Since then, this formalism
has successfully been extended [Aagaard and Helgeson, 1982, Lasaga, 1984, Steefel and Lasaga, 1994]
and widely accepted in current kinetic geochemical models [Etancelin et al., 2020, Molins et al., 2012,
Steefel et al., 2015]. In this context, the reaction rates are commonly expressed as the product of far-from-
equilibrium terms, involving the activities of the chemical species in solution, with an affinity term written
as a function of the Gibbs free energy change ∆G for close to the equilibrium conditions. Considering
the chemical model of calcite dissolution (34) suggested by Plummer et al. [1978] and Chou et al. [1989]
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and the vector of concentrations C, the reaction rate arising from TST writes:

R(C) = As(K1aH+ +K2aH2CO3 +K3)

(
aCa2+ aCO3

2−

Keq
− 1

)
(35)

where Keq is the equilibrium constant of the reaction, also called the solubility product, As is the reactive
surface area of the mineral — in m−1. The notations a• = γ•C• refer to the dimensionless species
activities with γ• and C•, respectively, their activity coefficients and molar concentrations — whose unit
is mol.m−3. It follows that the micro-porosity changes reads as:

∂ε

∂t
= −υR(C), (36)

given equation (8) from Sect. 2.2 and the relationCCaCO3(s) = (1−ε)/υ. Denoting byQ = aCa2+ aCO3
2−

the ion activity product, one obtains the following relation between Q and the Gibbs energy change [Aa-
gaard and Helgeson, 1982, Lasaga, 1984]:

∆G = RT ln

(
Q

Keq

)
(37)

with T the temperature in Kelvin K, and R the universal gas constant in J.mol−1.K−1. The sign of the
reaction termR(C) in (35) is driven by the sign of ln

(
Q/Keq

)
that is negative for dissolution and positive

for precipitation, which is consistent with the convention from Sect. 2.2.
From now on, we focus on the concern of calcite precipitation and crystallization resulting from CO2

injection based on the series of homogeneous reactions (32) along with the mineral-solute interaction given
by equation (34c). In practice, we enforce a pH greater than 10.33 such that the carbonate ions CO3

2 – are
the predominant species (see Figure 3). This enables the restriction of the overall set of chemical reactions
(32) to merely consider the equation (34c) in the sense that we assume the intermediate reactions as
instantaneous and conservative — without loss of quantity of matter. Such an assumption is acceptable, in
practice, since fluid-mineral reaction rates are usually slower than intra-aqueous reaction rates. Therefore,
the initial concentration of carbonate ions, denoted CCO3

2−(x, t = 0) for (x, t) ∈ Ω× [0, Tf ] following
the notations introduced in Sect. 2, is directly related to the partial pressure of injected CO2 by means of
the Henry law. The latter states, at a constant temperature, the relation between the amount of dissolved
gas in a solute and its partial pressure based on Henry’s law constant denoted KH , which depends on the
gas and temperature, such that for the CO2 at 25℃ one gets:

CCO2(aq) =
PCO2

KH
≃ CCO3

2−(x, t = 0) (38)

where KH = 29.41L.atm.mol−1. Considering such an alkaline medium — with pH > 10.33 — also
results in the treatment of the chemical reaction (34c) as completely irreversible which corresponds to
far-from-equilibrium conditions modelling the calcite precipitation chemical reaction:

Ca2+ +CO3
2− K−3−−−→ CaCO3(p) (39)

where the subscript p here refers to the precipitate form of the calcite product. In this case, the rate
constantsK1 = K2 = 0 in (35) and the affinity term dependent on the Gibbs energy satisfies the condition
ln
(
Q/Keq

)
≫ 0 — corresponding to a supersaturated solution — so that we obtain an overall reaction

rate for the calcite precipitation which reads as:

Rprec(C) = K−3As aCa2+ aCO3
2− (40)

where K−3 = K3/Keq, which theoretically results from the TST law in equation (35) and has been
experimentally validated, inter alia, by Chou et al. [1989].

Therefore, in the following, we rely on the kinetic formulation of the mineral precipitation given by
equation (40), considering the rate laws determined by laboratory experiments [Chou et al., 1989] and
normalized by the reactive surface area of the mineral As [Plummer et al., 1978]. As the geometry evolves,
the micro-porosity ε and the reactive specific area As, associated with the porous structure, also change.
These evolutions are taken into account in the reaction rates management and the hydrodynamic modeling
of the reactive process (see the overall PDE system (11) in Sect. 2.2). The calcite precipitation reaction is
subsequently supplemented with a crystallization model which is elaborated in the next Sect. 4.2.
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Figure 4: Overall reactive diagram of the reversible chemical equation (34c) and two-step calcite
crystallization process. This diagram represents the chemical interactions between the different ionic
species (Ca2+ and CO3

2 – ), the calcium carbonate precipitate CaCO3(p) and mineral crystal CaCO3(s) and
accounts for both dissolution, precipitation crystal growth processes. In the numerical applications (see
Sect. 5), we mainly address the green part of this diagram that highlights the two-step modeling of the
calcite crystallization process.

4.2 Crystal growth modeling: a two-step process

Crystal growth kinetics involves complex mechanisms occurring simultaneously and depending, inter alia,
on the concentration of the constituent ions in the solute, but also on attachment frequencies of the ions or
precipitates to lattice growth sites [Nielsen and Toft, 1984, Wolthers et al., 2012]. Indeed, the growth rate
is first controlled by advection and diffusion of the Ca2+ and CO3

2− ions to the crystal surface coupled
with a surface adsorption process that largely hinges on the crystal lattice shape. For instance, the growth
of crystal aggregates is more likely to occur near kinks or corners [Nielsen and Toft, 1984, Yoreo and
Vekilov, 2003]. Mineral heterogeneity of the pore interface is also an important factor that influences
the crystal growth location and morphology, providing preferential sites [Lioliou et al., 2007]. This first
process is commonly called primary heterogeneous nucleation, for which the crystallization reaction is
catalyzed by the solid surface of the porous medium. In the absence of solid interface, crystal clusters
can also form spontaneously in the solute, which is known as primary homogeneous nucleation and is
closely related to the supersaturation state of the solution in order to initiate the nucleation — namely
satisfying the condition ln

(
Q/Keq

)
≫ 0. Finally, secondary nucleation occurs in the presence of existing

crystals and is more likely to generate large crystal aggregates at the mineral surface. Overall, calcite
crystallization results from a combination of all these previous phenomena.

In this section, we consider a two-step crystallization process wherein calcite precipitates, also
referred to as nuclei and denoted CaCO3(p), are first generated within the solute during the so-called
nucleation stage according to the chemical equation (39). These precipitates are subsequently aggregated
at the mineral surface through adsorption phenomena during the crystal growth step. This sequential
crystallization process is described in Figure 4, where the notation CaCO3(s) stands for the calcite crystal.
In the applications developed in Sect. 5, we consider that the solid matrix of the 3D porous sample has
a similar carbonate nature to the calcite crystal generated, though rock mineral heterogeneities can be
integrated into the numerical framework as prospects. From now on, we refer to precipitation as the
primary homogeneous nucleation and we investigate the surface attachment of the calcite precipitate,
CaCO3(p), based on an autocatalytic process to model calcite crystal growth, referred to as the secondary
surface nucleation in Figure 4. In the reaction scheme from Figure 4, we account for the precipitate
diffusion and advection until the solid boundary where it leads to crystal growth through adsorption
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Figure 5: Probability of attachment rate Pad = C(1− ε∗Wh)ε
m for crystal growth modeling in 1D

different contexts. Synthetic continuous and discrete (at the voxel size) representation of a 1D porous
medium, with a residual micro-porosity in the porous matrix ε0 = 5% for x > 0, for sharp and smooth
interface. The probability values are computed based on equation (42).

phenomena. Besides, we neglect the direct crystallization process induced by the solute diffusion to the
solid matrix and the so-called primary heterogeneous nucleation.

In the literature, two distinct approaches are mainly developed when considering precipitation and
crystal growth modeling altogether. The former can be regarded as "deterministic models" relying on the
TST modeling developed in Sect. 4.1. Noiriel et al., for instance, investigated the effects of pore-scale
precipitation on permeability through a combination of X-ray µCT experiments and "deterministic"
modeling [Noiriel et al., 2021, 2016]. They also derived crystal growth rates directly from the µCT
through an imaging comparison between the beginning and end of the precipitation experiment. In this
case, only two µCT scans were performed, and therefore, the process should be understood as distinct
from 4D µCT experiments incorporating time dynamics. Such experimental identification of crystal
growth rates can, however, be prone to intrinsic imaging limitations [Perez et al., 2022] and result in wide
discrepancies in the reaction rate estimations. Nonetheless, their results showed satisfactory agreement
between the experiments and numerical experiments for precipitation processes into fractures [Noiriel
et al., 2021]. Alternative modeling approaches lie in the probabilistic nature of nucleation or crystal
growth and are referred to as "probabilistic models" [Fazeli et al., 2020, Masoudi et al., 2021, Nooraiepour
et al., 2021]. Wolthers et al., for instance, developed a probabilistic approach for calcite crystal growth
based on the nature of the kink sites depending on their ionic affinities and attachment frequencies of
the constituent ions [Wolthers et al., 2012]. Estimations of such adsorption frequency ranges can also
be found in the literature [Christoffersen and Christoffersen, 1990, Nielsen, 1984]. Finally, while it is
commonly established experimentally that crystal growth occurs preferentially at kinks and corners of
the surface lattice, few models incorporate the geometrical dependency of the crystal aggregation in the
reaction rates [von Wolff et al., 2021].

In the present article, we propose a new approach coupling a deterministic model for the precipitation,
which directly depends on the supersaturation ratio following the TST formalism, and a probabilistic
formulation of the crystal growth process. The latter accounts for the adsorption frequencies of the
precipitate to the growth sites with a coefficient, quantifying the physical probability of attachment rate,
denoted Pad, which relies on a locally averaged mineral volume fraction. In this formalism, one obtains
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Figure 6: Impact of the probability of attachment rate Pad for crystal growth modeling. Synthetic
representation of a discrete (at the voxel size) porous medium with smooth interface (t be compared with
Figure 5), with a rock matrix micro-porosity ε0 = 5%. The probability values are computed based on
equation (42) and include the one-neighborhood (e.g. the red square).

the crystal growth reaction rate, which is expressed as:

Rcrys(C) = Kc Pad CCaCO3(p) (41)

with Kc the adsorption frequency (expressed in s−1). This makes it possible to include the geometrical
dependency in the crystal growth reaction rate through the relation

Pad = C(1− ε∗Wh)ε
m, (42)

where Wh(x) = h−dW⊗d(x/h) is the rescaled kernel based on a local averaging kernel W , so that
(1 − ε∗Wh)ε is enhanced in the layer close to the fluid/solid interface and depending on the solid
proportion in the neighborhood (see Figures 5 and 6).

In the case of Kc being a production of crystal volume per unit of volume and time, then the
normalization coefficient C satisfies 1/C = ⟨ (1− ε∗Wh)ε

m ⟩Ω so that Pad is a probability distribution,
and the index m describes the ability to decrease strongly the reaction rate inside the solid in the spirit of
the Archie’s law (in practice m = 2 is suitable). In the case of Kc being the local production of crystal at
the fluid/solid interface, which is the case considered in the present study, then C satisfies

1/C = (1− ε0)/2 (43)

so that Pad is a point-wise probability of capture by the crystal. This is based on the jump between
ε0 and 1 through a sharp interface, with a factor 1/2 (half the integral of the kernel W , which can be
slightly adjusted for concave interface as shown in Poncet [2007]). This convolution-based formulation is
appropriate for a crystallization process and is inspired by the gradient-based technique from Luo et al.
[2012] and Soulaine et al. [2017] that locates the first layer on the solid side and is suitable for dissolution
processes. In practice, the local averaging kernel W can be as simple as W = 1[−1,1]/2 or Gaussian in
a continuous description, or approximated by its discrete formulation W = (δ−1 + δ0 + δ1)/3, or even
with weighting in order to modulate the length of capture with respect to the grid size.

The Figure 5 shows different probability distributions in 1D with a residual micro-porosity in at
ε0 = 5% (in the area x > 0), for sharp and smooth fluid/solid interface, and for the continuous and
discrete formulations described above. The resulting probability values in 2D are represented in Figure 6
for a synthetic example with smooth interface and discrete formulation (to be compared to the 1D version
of Figure 5.d), where the residual micro-porosity in ΩS is estimated to ε0 = 5% as well.
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4.3 Final system of PDEs

Finally, we define the vector of concentrations

C =
(
CCaCO3(s) , CCaCO3(p) , CCO3

2− , CCa2+
)

and consider the reactions rates Rprec(C) and Rcrys(C) respectively given by formula (40) and (41).
Overall, the calcite crystallization modeled as a two-step process of precipitation and crystal growth,
according to the reaction scheme from Figure 4, writes:

−div(2µD(u)) + µκ−1
b

(1− ε)2

ε2
u = ε(f −∇p), in Ω×]0, Tf [

∂CCO3
2−

∂t
+ div

(
F (CCO3

2−)
)
= −Rprec(C), in Ω×]0, Tf [

∂CCa2+

∂t
+ div

(
F (CCa2+)

)
= −Rprec(C), in Ω×]0, Tf [

∂CCaCO3(p)

∂t
+ div

(
F (CCaCO3(p))

)
= Rprec(C)−Rcrys(C), in Ω×]0, Tf [

∂CCaCO3(s)

∂t
= Rcrys(C), in Ω×]0, Tf [

ε = 1− υCCaCO3(s) , in Ω×]0, Tf [

+ adequate boundary and initial conditions, along with div u = 0

(44)

where F (C•) = ε−1uC• − α•(ε)∇εC• is the advective and diffusive flux given the notations from
Sect. 2.2. The reactive hydrodynamic model (44) ensures that part of the precipitate, generated in the
solute through homogeneous nucleation, is transferred to the mineral surface by adsorption. One should
notice that in this model the precipitate CCaCO3(p) is both advected and diffused. Such diffusion enables
to account for the interaction of the precipitates with potential unresolved roughness or features in the
porous matrix ΩS .

In the next section 5, we apply this two-step crystallization model to DNS of CO2 mineral trapping
into a real rock geometry at the pore-scale. We investigate the morphological changes in the porous
matrix structure, the clogging of pore throats, and the evolution of the macro-scale properties, namely the
porosity and permeability.

4.4 High-Performance-Computing aspects

One of the major constraints when dealing with a semi-Lagrangian formulation lies in the ability of
the computational framework to handle an overall hybrid approach in terms of grid-particle formalism,
numerical methods, multi-grid resolutions, and hardware devices. Indeed, Cottet et al. [2009] suggested a
semi-Lagrangian method coupled with hybrid grid resolutions to address a multi-scale transport problem
of a passive scalar. The scalar is discretized on a sub-grid compared to the velocity and vorticity fields
and enables the accurate prediction of the small-scale effects. Finally, considering hybrid computing
methodologies makes it possible to distribute the distinct parts of an overall problem to different types of
hardware architectures. This formalism, therefore, exploits the advantages of each method individually
according to the characteristics of the problem.

Nonetheless, implementing such a hybrid approach requires a highly flexible computational framework
that gathers a wide range of numerical methods and, therefore, benefits from their intrinsic strengths. One
also needs libraries incorporating effective parallel computing tools and able to address, inter alia, hybrid
CPU-GPU programming. In this section, we present the HPC framework considered to address this DNS
of pore-scale reactive flows for CO2 mineral trapping into carbonate rocks.

The library HySoP is a high-performance computing platform [Etancelin et al., 2022], jointly devel-
oped at LMAP (Laboratoire de Mathématiques et de leurs Applications, UMR 5142 CNRS, UPPA), LJK
(Laboratoire Jean Kuntzmann, Alpes-Grenoble University, UMR 5224 CNRS), and M2N (Laboratoire
Modélisation mathématique et numérique, Conservatoire National des Arts et Métiers – CNAM, Paris,
EA 7340 CNRS). The library, originally developed to address flow simulations based on remeshed
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Figure 7: Performances in various hardware configuration and discretization: The considered
hardware is NVIDIA P100 and H100 GPUs and 16-cores Intel Xeon 6130 cpus and 24-cores AMD EPYC
9254. The computational time is splitted according to the algorithm steps, including operator splitting and
data management. Both cases where run with Pe = 4.47 (see section 5 for details).

particle methods on hybrid muti-CPU and multi-GPU architectures, was initiated by the work of Etancelin
[2014] and has been successfully extended to a larger scope of HPC applications including dissolution at
pore-scale [Etancelin et al., 2020].

The entire code is structured around the operator splitting strategy that defines the different operators
involved in a problem (at a high level of abstraction), and afterward, enables the discretization of these
operators, which are solved using the most appropriate numerical method (at a lower level of abstraction).
The overall problem is formally described through an acyclic graph that expresses the operators interactions
in the splitting formulation through data dependencies [Etancelin, 2014, Etancelin et al., 2020, Keck,
2019]. Even if the code is mainly written in Python, the numerical methods are either implemented using
compiled language that enables threads parallelism (using OpenMP on CPU and OpenCL on accelerators)
or taken from external libraries. User interface enables building together both numerical methods provided
with HySoP on cartesian grid and user defined Python functions. In the latter, performances are obtained
provided the usage of interfaces to compiled language (i.e. among others f2py, swig, cython, numba, ...).
A complementary distributed parallelism is naturally available using domain decomposition implemented
with a Message Passing Interface library (MPI).

One of the core features of HySoP is to target hybrid computing using both CPU and GPU. The
latter was made possible by the emergence, in the 2000s, of the so-called GPGPU concept, which
integrates the GPU as a CPU co-processing partner targeting accelerated performances. The choice
of OpenCL was made to cope with portability of the performances as a generic multicore artichecture
programming standard [Stone et al., 2010]. The initial GPU computing feature was latter enhanced with
code generation from templates or symbolic mathematical expressions together with auto-tuning tanks
to micro-benchmarks at run time [Keck, 2019]. Just-in-time compiling is extensively used to achieve
performance portability and lazy specification of kernel parameters which known as challenging problem
widely dependent on the hardware architecture [Dolbeau et al., 2013].

The previous numerical method have been implemented on a hybrid computing strategy. Darcy-
Brinkmann-Stokes equation is solved on CPU architecture using full MPI parallelization technique while
all the reactive and transport part is computed using OpenCL on GPUs.

Overall profiling is represented on Figure 7 for two cases of the next section. Results are showing
that recent hardware is capable of better performances without any changes in the code. We benefit here
from OpenCL code generation and micro-benchamarks on accelerator and usual compiler optimizations
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for CPU part. Significant variation appears in computational time associated to flow steps because
larger Da

crys
II implies more intense geometrical changes and then reorganization of main flowpath, as

described later in section 5. One can notice the quite large proportion of computational time spend in data
management specially for reactive transport part. It corresponds to ghosts layers that handle boundary
conditions and whole data transposition in order to get the first varying index identical to the current
direction of directional splitted advection and remeshing operator. Ghosts layer widths are quite large due
to large CFL numbers handled here. Data management on GPU has been identified as a known bottleneck
of the code and would be investigated in future high performance computing engineering efforts.

5 Results and discussion on clogging/non-clogging effects

The present section focuses on the effects of calcite crystallization on changes in the pore geometry,
macro-properties, and flow at the pore scale in the context of CO2 mineral trapping. We consider a
pore-scale geometry obtained by microtomography measurements from Sheppard and Prodanovic [2015]
and freely available on the Digital Rocks data portal, which includes inter alia µCT datasets of limestone,
glass bead pack, and Castlegate sandstone. The numerical simulations are performed on the Castlegate
geometry at a resolution of 1283 with a voxel size of 5.6µm, which represents a numerical sub-sample
of about L = 0.7168mm. We assume, as previously introduced in Sect. 4.2, that the porous matrix is of
identical mineral nature as the crystal generated along the reactive process and, thereby, consider that
the sub-sample is composed of calcite. While including mineral heterogeneities as perspectives, we here
hypothesize the homogeneity of the mineral structure within the sample. Finally, the specific area is
numerically estimated for this sample to get, at the initial state, As = 8300m−1, and is afterward updated
along the reactive process.

Numerical simulations are performed under atmospheric conditions in terms of pressure and tem-
perature and rely on the experimental identification of the reaction rate constants, arising from the
literature [Chou et al., 1989]. We consider isothermal conditions with a temperature of T = 25℃
and an injection of CO2 with a partial pressure of PCO2 = 3.15 × 10−2 bar = 2.96 × 10−2 atm —
which is about 100 times greater than the partial pressure of CO2 in the atmosphere. Given Henry’s
law constant for the CO2 at 25℃, and under the assumption of a highly alkaline medium — with
pH > 10.33 — we estimate from equation (38) that the initial concentration of carbonate ions is given by
CCO3

2−(x, t = 0) = 1× 10−3mol.L−1.
The calcium initial concentration is subsequently determined based on the equilibrium constant

Keq = 10−8.48 [Chou et al., 1989, Plummer and Busenberg, 1982] to ensure a far-from-equilibrium
precipitation regime given by the supersaturation condition Q ≫ Keq. In this sense, we assume that
the medium pore space is initially filled with a saturated solution wherein the initial concentration of
calcium ions is CCa2+(x, t = 0) = 1× 10−1mol.L−1. Therefore, in our case, the saturation in calcium
ions Ca2+ initially present in the domain is not a limiting factor of the precipitation reaction, and we
consider a continuous calcium injection that maintains the supersaturation constraint. Actually, in order to
maintain this supersaturation, we will assume that the concentration in Ca2+ remains constant at its initial
value. Comparable initial conditions and assumptions have been employed in investigating dissolution
experiments by Maes et al. [2022], wherein the sample core was initially flooded with a brine solution
that had previously reached equilibrium with supercritical CO2.

Regarding the reaction rate constant for the precipitation, we rely on the experimental identification
from Chou et al. [1989] such that:

K−3 =
K3

Keq
=

6.6e− 7

10−8.48
= 199mol.m−2.s−1 (45)

while adsorption frequenciesKc commonly encountered in the literature range from 1× 103 to 1× 108 s−1 [Christof-
fersen and Christoffersen, 1990, Nielsen, 1984, von Wolff et al., 2021, Wolthers et al., 2012]. In practice,
we set for the numerical simulations Kc = 1× 103 s−1, the molecular diffusion Dm = 1× 10−9m2.s−1

for all the species and the prescribed flow rate u = 1e− 3m.s−1.
Investigating the different precipitation patterns and regimes relies on the definition of well-established

characteristic dimensionless numbers, namely the Peclet and (second or catalytic) Damköhler numbers
respectively denoted Pe and DaII [Noiriel et al., 2021, Soulaine et al., 2017, Steefel and Lasaga, 1990].
However, in the context of the joint precipitation and crystal growth modeling, we define two distinct
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Damköhler numbers characterizing each process and respectively denoted Da
prec
II and Da

crys
II . These

dimensionless numbers are subsequently defined as:

Pe =
uL

Dm
, Da

prec
II =

K−3γCO3
2−AsL

2

Dm
and Da

crys
II =

KcL
2

Dm
(46)

where u and L are respectively the characteristic velocity and length of the sample, and the activity
coefficient of the carbonate ions is γCO3

2− = 1 × 10−3m3.mol−1. The characteristic length L can be
related to pore size [Steefel and Lasaga, 1990], though it is commonly set as L =

√
κ0 provided an

experimental or numerical estimation of κ0 [Soulaine et al., 2017]. The latter alternative is applied here,
with an estimation of κ0 = 2× 10−11m2 for the porous sample considered.

Therefore, the first crystallization regime we investigate is characterized by the following dimen-
sionless numbers Pe = 4.47, Da

prec
II = 33.034 and Da

crys
II = 20. Precipitation and crystallization of

calcite lead to a significant decrease in the macro-scale permeability and porosity, resulting from flow path
disruptions at the micro-scale through partial or complete clogging of pore throats. This can also affect the
roughness of the mineral interface and the pore-size distribution of the sample and, thereby, contribute to
influencing the sample hydrodynamics properties. In particular, we observe these effects at the pore scale
in Figure 8 along the reactive process and for several physical times t going from 2h45 to Tf = 6h56.
On the right side of Figure 8, we depict partial views of the porous sample’s morphology, illustrating
the changes in pore structure over the reaction time, along with the micro-porosity field ε within the
porous matrix ΩS . On the left side, we represent along a slice in the main flow direction (taken at
z = −0.0168mm), the local variations on the micro-porosity with respect to the initial state — before the
reaction process — given by ε(t)−ε(0). Initially, we notice that higher micro-porosity variations are more
likely localized at the mineral interfaces but also near thin pore throats. These variations subsequently
lead to pore-clogging and reorganization of the main flow pathway (see Figure 8c). In Figure 9b, we
investigate the effects of such micro-scale changes on the evolution of the petrophysical properties at the
macro-scale, namely the porosity ϕ and permeability κ0 (upscaled quantities from figure 2.1). The results
are consistent with the expected decrease along the CO2 mineral trapping process but also highlight sharp
permeability drops, which characterize the pore-clogging phenomena. Finally, in order to identify more
clearly the crystallization pattern in this particular regime, we display in Figure 9a an isosurface of the
micro-porosity variation between the final and initial times. This illustrates that micro-scale variations
occur preferentially in a compact and non-uniform manner in the first inlet part of the domain while
following the individual ramifications in the pore structure.

We subsequently investigate the impact of different dominant regimes on the overall two-step crystal-
lization process. To do so, we consider both transport dominant cases with Pe = 4.47 > 1 and diffusion
dominant cases with Pe = 0.447 < 1, coupled with two different crystal growth regimes characterized
by Da

crys
II = 2 and Da

crys
II = 20. One should notice that the effect of precipitation Damköhler Da

prec
II

changes are not analyzed since this number, characterizing the first homogeneous nucleation regime, is a
limiting factor of the crystallization process from Figure 4. In this sense, we assume in all the previous
cases that Da

crys
II < Da

prec
II which guarantees a supersaturation state suitable to the development of crystal

aggregates on the mineral surface.
To the best of our knowledge, considering that the crystallization regime can be driven by three distinct

dimensionless numbers is one of the contributions of the present article. Indeed, most of the regime
diagrams presented in the literature mainly characterize precipitation patterns according to the Pe and
Da

prec
II dimensionless numbers, which implies neglecting the effects of nuclei adsorption at the mineral

surface in the different regime configurations [Tartakovsky et al., 2007, Yang et al., 2021]. However, our
results indicate that both homogeneous calcite nucleation (the precipitation step in Figure 4) and growth
stages are important in the development of precipitation and crystallization patterns. In particular, we
establish that the crystal growth Damköhler number Da

crys
II has a non-negligible impact on precipitation

pattern and porosity variations along the reactive process, regardless of the other dimensionless numbers
Pe and Da

prec
II commonly investigated. Indeed, Figures 10b and 10d highlight two distinct crystallization

regimes at similar Pe and Da
prec
II , but with a ten times smaller adsorption frequencyKc in Figure 10b which

impact the Da
crys
II . Figure 10b shows that, for a small adsorption frequency Kc, the calcite precipitate

is uniformly generated and advected along the main flow path direction (due to the transport dominant
regime with Pe > 1) while the micro-porosity changes are minimal. This illustrates that the main flow
path is maintained since few calcite nuclei aggregate to the mineral surface. By increasing the adsorption
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Figure 8: Time evolution of the sample geometry and micro-porosity at the pore scale, illustrating
pore-clogging effects. Slice at z = −0.0168 of the porosity variations ε(t)− ε(0) in the fluid region of
the pore space for various times t, on the left. Partial view of the pore space structure as an isosurface of
ε(t) for several times t, on the right.
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Figure 9: Evolution of the sample properties along the reactive process: a) Micro-porosity evolution
represented by an isosurface of the porosity variation ε(Tf )− ε(0) at half of its maximum value. Results
after nearly 7h of precipitation and crystal growth, illustrating a non-uniform compact regime following the
natural ramification of the sample. b) Evolution of the macro-scale properties, porosity ϕ and permeability
κ0, along the two-step crystallization process from Figure 4.

frequency in Figure 10d, the precipitate formation concentrates on the inlet of the domain and is less
subject to advection, while the micro-porosity changes become significant. On one side, this highlights
pore-clogging that prevents further transport of the calcite nuclei. On the other side, we also notice a
backward increase in calcite precipitates that accumulate behind the clogging after some time. The same
analysis holds for Figure 10a and 10c, except we consider a diffusion dominant regime with Pe < 1,
which means that the precipitate transport is reduced so that the nuclei formation and micro-porosity
changes are even more constrained to the inlet boundary of the domain. The results presented in Figure 8
and 9 correspond to the crystallization regime identified by Pe > 1 and Da

crys
II = 20 in Figure 10d. In this

sense, this confirms that the permeability drops observed in Figure 9b are characteristics of pore-clogging
effects.

6 Concluding remarks

This article focused on developing an efficient DNS framework to address reactive flows at the pore scale
in the context of CO2 mineral storage. Indeed, the injected CO2 will interact with the aquifer structure
and eventually lead to mineral trapping in the form of calcite precipitates and crystals. These processes
are interesting to study at the pore scale to ensure a comprehensive analysis of the local rock-fluid
interactions and evolving pore structures. This can subsequently translate into meaningful estimations of
the macro-scale properties changes and measure the impact of the geochemical processes on the natural
underground reservoirs. In particular, precipitation and crystallization lead to a significant reduction in the
macro-scale permeability and porosity, which result from partial or complete pore clogging and thus from
a reorganization of the flow path at the micro-scale.

From a conceptual perspective, we developed a new crystallization model that efficiently combines a
classical deterministic TST approach of the nucleation process with a probabilistic view of the crystal
aggregation to the pore surface. This enables us to account for spatial and geometrical dependency in
the crystal growth modeling through a probabilistic attachment rate depending on local mineral volume
fraction. In this sense, we integrate the modeling of preferential growing sites that largely hinge on the
surrounding pore arrangement. To the best of our knowledge, such considerations are here accounted for
the first time to model crystallization processes in complex 3D geometries at the pore scale. Investigating
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Figure 10: Impact of the different crystallization regimes, with respect to the dimensionless numbers
Pe and Dacrys

II . Slice integrals of the precipitates and macro-porosity — computed over 2D YZ directional
slices — plotted with respect to the main flow path direction coordinates x (in millimeters mm) and where
each curve represents a distinct time in the reactive process.
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probabilistic attachment rates based on the surrounding pore structure also ensures reliable prediction of
pore-clogging at the pore scale. Finally, we demonstrate that the proper characterization of crystallization
regimes both depends on the nucleation process and crystal aggregation. Indeed, we exhibit that the
two commonly considered dimensionless numbers, Pe and Da

prec
II , are not sufficient to explain clogging

effects and precipitation patterns. A novelty of the present manuscript is, therefore, that the crystallization
regimes are characterized by three dimensionless numbers that include the effects of nuclei adsorption to
the pore surface.

This reactive hydrodynamic model that consistently couples a Lagrangian formulation for the reaction
equations with a grid-based approach for the flow using the DBS equation with the superficial velocity
formalism. This semi-Lagrangian method is addressed through a splitting operator strategy coupled with
high-order remeshing steps for grid-particle interpolations. This original numerical method introduced to
solve this coupled model has been efficiently incorporated into the hybrid numerical framework HySoP and
results in a CPU-GPU implementation of the method. It includes a robust estimation of the heterogeneous
diffusion operator arising from Archie’s law term in the reactive system.

At the same time, this article also demonstrated strong implications in the overall reactive system
of several parameters that can be subject to a wide range of discrepancies. In particular, morphological
features and kinetic parameters, such as the micro-porosity ε, specific area As, rate constants Ki, and
adsorption frequencies Kc, have a significant impact on the reaction rates and the dynamical patterns.

Experimental determination of these parameters can range over several orders of magnitude and
result in highly different regimes that drastically affect the estimation of the macro-scale properties: the
adsorption frequencies Kc commonly found in the literature can range from 1× 103 to 1× 108 s−1 as
shown in Christoffersen and Christoffersen [1990], Nielsen [1984], von Wolff et al. [2021], Wolthers et al.
[2012]. Our present method has been shown to compute accurately the phenomena of crystallization and
precipitation in different regimes, and will be used intensively in future works for inverse problems in
order to get a robust and accurate estimation of such adsorption frequencies from experiments imaging.

A Original and discretization corrected particle strength exchange (DC-
PSE) methods

This section concerns the theoretical aspects of the PSE method that finds its essence in estimating
diffusion in a Lagrangian context with meshless and scattered particle structures. Since the original article
from Degond and Mas-Gallic [1989], the PSE approach has appeared as an efficient numerical method for
solving convection-diffusion problems with particles [Schrader et al., 2012] and has been successfully
used in vortex methods [Cottet et al., 2000].

Several reviews have also extended its application to the Eulerian context, with structured grids,
but also to hybrid grid-particles formalism while enhancing the accuracy of the original method by
replacing continuous integration with discrete one, such as in Bergdorf et al. [2005], Poncet [2006],
Schrader et al. [2010]. These novel PSE approaches, therefore, enable us to efficiently evaluate the
heterogeneous diffusion operator arising from Archie’s law in a Semi-Lagragian context. In the following,
we briefly review the general principles of this original method along with an overview of its successive
improvements using discretization corrections.

A.1 Classical PSE formulation

The PSE scheme is then completely determined once the kernel σξ is defined and exhibits its relation with
the diffusion matrix L. The original approach from Degond and Mas-Gallic [1989] suggests the following
kernel choice

σξ(x, y) =
1

ξ2

n∑
i,j=1

Mij(x, y)ψ
ξ
ij(y − x), (47)

where

ψξ
ij(x) =

1

ξn
ψij

(
x

ξ

)
is a matrix cutoff function with ψij symmetric and even, and M = (Mij(x, y)) a symmetric matrix to
be determined. These hypotheses are of great interest as they guarantee the conservation property of the
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operator Qξ based on symmetric exchanges. We then introduce the matrix m(x) := M(x, x) and the
moments of the cutoff functions ψij given by:

Zα
ij =

∫
ψij(x)x

αdx, (48)

for any i, j and multi-index α. It has been proved by Degond and Mas-Gallic that if some moment condi-
tions are satisfied, namely the hypotheses (i) and (ii), we obtain the following convergence result [Degond
and Mas-Gallic, 1989]:

Property 1 We assume that there exists an integer r ≥ 2 such that :
(i) Zα

ij = 0 for 1 ⩽ |α| ⩽ r + 1 and |α| ≠ 2

(ii) for any integer k,l in [1, n], we have
n∑

i,j=1

mij(x)Z
ek+el
ij = 2Lkl(x).

In addition of the previous hypotheses on matrices M, m and ψ, we assume the following regularities
M ∈ W r+1,∞(Rn × Rn), m ∈ W r+1,∞(Rn) and (1 + |x|r+2)ψ(x) ∈ L1(Rn). There exists a positive
constant C = C(M, ψ) such that for any function f ∈W r+2,∞(Rn)

∥div(L∇f)−Qξ · f∥0,∞ ⩽ Cξr ∥f∥r+2,∞. (49)

Several matrix cutoff functions have been investigated in Degond and Mas-Gallic [1989] but we
mainly focus on the most suitable for practical use, which reads as:

ψij = xixjΘ(x) (50)

with Θ a smooth spherically symmetric function with fast decreasing, also called the stencil generator.
Finally, one needs to define the second moments’ matrix of Θ, denoted A = (akl), and given by

akl =

∫
x2kx

2
lΘ(x)dx, k, l ∈ [1, n]. (51)

In this case, one gets the existence of a matrix m(x) such that the hypotheses (i) and (ii) of Property 1
are satisfied if and only if A is an invertible symmetric matrix and, for any k,l k ̸= l, we have ak,l ̸= 0.
The matrix m(x) is then defined by (see Lemma 1 in Degond and Mas-Gallic [1989]):

mkl(x) = a−1
kl Lkl(x), for k, l ∈ [1, n], k ̸= l (52)

n∑
i=1

akimii(x) = 2Lkk(x), for k ∈ [1, n] (53)

which is a fundamental result of the original PSE article. In 3D applications, for instance, one can compute
the matrix A coefficients using spherical coordinates to obtain akk = 3γ and akl = γ, if k ̸= l, with γ
expressed by:

γ =
4π

15

∫ ∞

0
Θ̃(r)r6dr (54)

where the spherically symmetric function Θ is written Θ(x) = Θ̃(|x|). Solving the problem given by
equations (52) and (53) then explicitly provides

mkl = γ−1Lkl, if k ̸= l, and mkk = γ−1Lkk −
γ−1

5
Tr(L), (55)

which also writes

m = γ−1L− γ−1

5
Tr(L)Id3. (56)

When the conditions (52) and (53) are satisfied and in the case of a kernel defined with a spherical-
symmetric function Θ such as in (50), the method provides at least second order approximation of the
diffusion operator (see Property 1) which is suitable for any particle distribution in a Lagrangian context.
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One should notice that in practice the method is limited to second-order convergence for positive kernel
σξ [Cortez, 1997, Degond and Mas-Gallic, 1989].

Finally, to make the approximation operational, it remains to define the relation between M, m, L,
and Θ. A usual approach is to consider the matrix M(x, y) = (m(x) +m(y))/2

and for ψ given by (50), one gets the following kernel formula:

σξ(x, y) =
1

ξn+4
Θ

(
y − x

ξ

)
M(x, y) : (x− y)⊗2. (57)

This entirely specifies the numerical scheme by combining the equations (26), (57), and (56). This original
formalism is based on continuous integration of the second moments of Θ through the equation (54) and
is second order consistent in the sense O[(h/ξ)2].

A.2 Discrete renormalized PSE scheme and application to Archie’s law

Alternatives relaxing this constraint on convergence result in replacing the continuous moment integration
with discrete moment conditions, which is referred to as discretization correction of the PSE scheme.
The latter has been successfully developed for several state-of-the-art applications including mesh-free
scenarios with arbitrary particle distributions, uniform Cartesian grids, and also in hybrid formulations
involving both an underlying grid along with the particles, detailed in Bergdorf et al. [2005], Bourantas
et al. [2016], Schrader et al. [2010], Zwick et al. [2023].

The consistency of the original PSE scheme can be improved to O(h2) by using discrete integration
when particles are distributed over a uniform grid [Poncet, 2006]. The main idea is to replace (51) by the
matrix of discrete second-order moments, which subsequently leads to a distinct evaluation of the matrix
m. One introduces the following coefficients using discrete integration:

γ1 =
∑
x∈J

x4kΘ(x)h3, k ∈ [1, 3] (58)

γ2 =
∑
x∈J

x2kx
2
lΘ(x)h3, k, l ∈ [1, 3] (59)

for J ⊂ hZ3 a three-dimensional lattice, including at least one neighborhood of the current mesh point.
One then gets similar equations as (52) and (53) with respect to the coefficients γ1 and γ2, resulting in the
characterization of m. We introduce the matrix H = Hij given by

Hij =

(
γ21 − γ1γ2 − 6γ22

γ2(γ21 + γ1γ2 + 2γ22)

)
(1− δij)Lij (60)

where δij is the Kronecker symbol, such that the matrix H is zero when L is diagonal or when γ1 = 3γ2.
We thus obtain a discrete renormalization of the matrix m which reads as follows:

m = c0 L − c1Tr(L)Id3 + H (61)

where

c0 =
2(γ1 + 2γ2)

γ21 + γ1γ2 − 2γ22
and c1 =

2γ2
γ21 + γ1γ2 − 2γ22

, (62)

and replaces the equation (56) in the original PSE version. Finally, this formulation with discrete
integration is completely defined through the formula (57). This also leads to a better accuracy since this
scheme is consistent in h2 whereas the classical PSE method has a convergence in the sense that the error
is of order (h/ξ)2.

While the discrete renormalization of PSE method can be assimilated to a FD stencil on a uniform
Cartesian grid and satisfies the same order of accuracy as standard FD schemes, one can query the
motivation for using this seemingly complex approach. First of all, behind appearances, this method is
easy to implement and not computationally expensive in the context of uniformly distributed grids. In 3D
applications, for instance, one can summarize the PSE discrete formulation as follows

Qξ · fh(xk) =
1

ξ7

∑
l∼k

(fl − fk)Θ

(
xl − xk

ξ

) 3∑
i,j=1

Mij(xk, xl)(xl − xk)i(xl − xk)j

 vl (63)
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with the spherically symmetric function Θ(x) = 1/(1 + |x|p) where | . | is the Euclidean norm in R3. The
formula (63) basically involves all the contributions of the mesh points of index l in the ξ-neighborhood
of the current mesh point xk, representing namely 26 neighbors in 3D for ξ = h compared to merely 6
neighbors with standard crossed FD scheme. In practice, ξ is taken equal to h or 2h, and the numerical
results presented in this article are given with p = 10.
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