
HAL Id: hal-04692440
https://hal.science/hal-04692440

Submitted on 9 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Mix-Max: A Content-Aware Operator for Real-Time
Texture Transitions

Romain Fournier, Basile Sauvage

To cite this version:
Romain Fournier, Basile Sauvage. Mix-Max: A Content-Aware Operator for Real-Time Texture
Transitions. Computer Graphics Forum, 2024, in press, �10.1111/cgf.15193�. �hal-04692440�

https://hal.science/hal-04692440
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


DOI: 10.1111/cgf.15193 COMPUTER GRAPHICS forum
Volume 0 (2024), number 0, e15193

Mix-Max: A Content-Aware Operator for Real-Time
Texture Transitions

Romain Fournier and Basile Sauvage

ICube UMR 7357, University of Strasbourg, CNRS, Strasbourg, France
{fournierr, sauvage}@unistra.fr

Abstract
Mixing textures is a basic and ubiquitous operation in data-driven algorithms for real-time texture generation and rendering.
It is usually performed either by linear blending, or by cutting. We propose a new mixing operator which encompasses and
extends both, creating more complex transitions that adapt to the texture’s contents. Our mixing operator takes as input two or
more textures along with two or more priority maps, which encode how the texture patterns should interact. The resulting mixed
texture is defined pixel-wise by selecting the maximum of both priorities. We show that it integrates smoothly into two widespread
applications: transition between two different textures, and texture synthesis that mixes pieces of the same texture. We provide
constant-time and parallel evaluation of the resulting mix over square footprints of MIP-maps, making our operator suitable for
real-time rendering. We also develop a micro-priority model, inspired by micro-geometry models in rendering, which represents
sub-pixel priorities by a statistical distribution, and which allows for tuning between sharp cuts and smooth blend.

Keywords: mixing operator, filtering, image and video processing, antialiasing, real-time rendering, texture synthesis

CCS Concepts: • Computing methodologies → Texturing; Rendering; Antialiasing; Graphics processors

1. Introduction

In the field of computer graphics, textures enable the rendering of
visually appealing and realistic environments. Mapping properties
such as colours or normals on a surface enriches and refines its ap-
pearance. As materials are often not monolithic and exhibit spa-
tial variations, transition between different materials are needed, as
demonstrated in Figure 1. This paper investigates the local mix be-
tween multiple textures to allow for rich and realistic transitions.

In the context of real-time texturing, this problem is solved by ei-
ther of two techniques. The cut technique superimposes the textures
and optimizes globally for a sharp cut. It is efficient for structured
materials like leaves or pebbles, but it may produce visible seams.
On the other hand, the blending technique computes a progressive
interpolation as a weighted average of the textures (Figure 2, mid-
dle). It produces nice fuzzy transitions for translucent materials like
sand or dust scattered over a surface, but it is prone to ghosting arte-
facts for opaque materials. We argue that these two behaviours ac-
tually emerge from the same phenomenon, but looked at different
scales: Looking closely, the elementary patterns (e.g. leaves or sand
grains) overlap each others and the cut is sharp; looking from afar,

a single pixel covers many elements from both textures and appears
as an average. With this in mind, we build a mixing operator that is
based on texture overlapping, and behaves coherently at all scales.

Another application of mixing operators is example-based texture
synthesis. A family of real-time algorithms called ‘tiling and blend-
ing’ takes as input a small texture example, and generates a large re-
sembling output by assembling pieces of the input. To assemble the
pieces, called tiles, it is needed to transition between twice the same
material. In this use case, a new challenge is to produce a station-
ary mix, i.e. which has the same statistical properties everywhere.
Otherwise tiles’ boundaries create a grid artefacts (Figure 4).

Aiming for these two applications (transition and synthesis) in
real-time, a mixing operator must have three properties. (i) It must
be content-dependent, i.e. the way the two textures are mixed must
depend on the intensity values of the mixed pixels. The absence of
this property accounts for most of the ghosting artefacts of ‘con-
tent blind’ techniques such as linear blending. (ii) It must come
along with a constant-time algorithm for low-pass filtering. This
is required to maintain high frame-rate while avoiding minification
artefacts when zooming out. (iii) It must preserve the stationarity in

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

1 of 11

http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcgf.15193&domain=pdf&date_stamp=2024-09-05


2 of 11 R. Fournier and B. Sauvage / Mix-Max: A Content-Aware Operator for Real-Time Texture Transitions

Figure 1: Our texture mixing operator creates complex content-dependent transitions between textures. It easily replaces linear blending in
real-time algorithms for transition, generation and rendering. Resolution of the mixed texture: 10240 × 2048.

order to be used in texture synthesis algorithms. At the very least,
the mean of the mix must equal the mean of the mixed textures.

Our first contribution (Section 3) is a mixing operator that meets
the three above properties. It relies on priority maps which corre-
late to the texture’s content (see greyscale Figure 2, top row). We

Figure 2: Comparison between a linear interpolation (middle) and
our mix-max operator (bottom); the greyscale bands represent the
weightw1. The top row shows the two input pairs (texture Ti, priority
Si).

call it Mix-Max operator because it selects at every texel the texture
with maximum priority. It implements the intuition of textures that
overlap in a complex and intertwined manner (Figure 2, bottom).
We provide a filtering technique (Section 5) which approximates a
MIP-map of the mix. We adapt our mixing operator to stationary
texture synthesis (Section 4) and prove the invariance in space, not
only of the mean but also of the whole distribution of intensities.
We generalize our operator to more than two textures (Section 7),
which makes it versatile.

Our second contribution (Section 6) is a statistical representa-
tion of micro-priority at the sub-pixel scale. The idea is similar to
the micro-facet theory for rendering, which represents the micro-
geometry by a statistical distribution. Within each texel, we repre-
sent variations of the priority maps by a Gaussian distribution char-
acterized by a ‘base variance’. It introduces point-wise blending be-
tween texels, and allows for a continuous tuning between sharp and
fuzzy transitions. This micro-scale is coherent with the macro-scale,
and the filtering formulas combine naturally.

We discuss additional results in Section 8 and show the flexibil-
ity of the model. We also demonstrate its ease of integration in the
graphics pipeline and provide a parallel GPU implementation and
we finally sketch out avenues for future research.

Figure 3: Investigation of different priority maps (bottom) to model
various transitions phenomena (top).

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15193 by C

ochrane France, W
iley O

nline L
ibrary on [08/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



R. Fournier and B. Sauvage / Mix-Max: A Content-Aware Operator for Real-Time Texture Transitions 3 of 11

Figure 4: Stationary texture synthesis using dual tiling and blend-
ing [LSD23]. (a) All tiles have the same priority map, a bright grid
artefact appears. (b) Every second tile has an opposite priority map,
the artefact disappears.

2. Related Work

Composite images or textures. Refers to a specific type of spa-
tial variations: The texture is composed of several sub-textures that
partition the texture plane. The most current generation technique
consists in synthesizing the sub-textures separately and comput-
ing transitions at the boundaries. The transition problem has al-
ready been well addressed [PD84, ZFCVG05, DSB*12, WDK*16,
HVCB21] but remains a challenge in the context of real-time gen-
eration [LSA*16, GSDC17]. For real-time, the most popular tran-
sition method remains linear blending, as it is easy to compute in
parallel and to filter. However, as it is content blind, it is prone to
ghosting artefacts.

Content-dependent mixing has been proposed by Hardy and Mc
Roberts [HMR06] in the context of texture transitions for terrains, in
order to reduce ghosting artefacts. Our ‘priority maps’ are inspired
from their ‘blend maps’ but our mixing formula is different. We
overcome two limitations of their work: a biased filtering (Section 5)
and a lack of stationarity (Section 4).

Texture interpolation. Is a problem close to but different from
transition. It consists in defining a homogeneous appearance be-
tween two textures: two grasses with different tints, or pebbles with
different sizes. Xia et al. [XFPA14] propose interpolation for un-
structured Gaussian textures. Structured patterns are more difficult
to handle. Different techniques rely on optimization of patches or
of texture coordinates [RSK10, DSB*12, PBK13], or on neural net-
works [VDKCC20, HVCB21], which are not designed for real-time
applications. These approaches can be used to compute transitions,

but they produce progressivemorphs of the local patterns [RLW*09,
VDKCC20], which is different from our goal of intertwining and
overlapping of two materials.

Example-based texture synthesis. Refers to a family of algo-
rithms that take as input a (small) texture example, and produce
as output a larger and similar texture. Among the many tech-
niques [WLKT09], we are concerned by those that re-arrange and
assemble pieces of the input.

Linear blending of small pieces of texture has been used for
data-driven texture synthesis [KEBK05, KNL*15] and texture in-
terpolation [DSB*12] using global optimizations, which are of-
fline techniques. Parallel optimization has been used to synthesize
non-homogeneous textures [PBK13], reaching interactive compu-
tation times for medium size textures. In comparison, our technique
reaches real-time for very-high resolution textures, because it is
fully parallel and the filtering is constant-time. In our results, we
show real-time rendering of a landscape with millimetre-scale tex-
turing.

Computing optimal cuts between large pieces of textures is an
other approach [EF01, KSE*03], which has been used success-
fully to pre-compute tiles [CSHD03] and for offline synthesis.
It is possible to reach real-time synthesis by pre-computing the
cuts [VSLD13, KCD15, LSLD19], but the cuts are more visible.
In comparison, our approach computes much more complex tran-
sitions (we are not limited to a single cut), is compliant with local
blending (see, for example, Figure 9) and is real-time.

Closer to our real-time interests are the tiling and blending tech-
niques [HN18, DH19, LSD23], which assemble regular tiles, copied
in the texture example at a random position. Neighbouring tiles
overlap and are blended together. It has been first designed for Gaus-
sian textures, which is a pretty narrow range of unstructured tex-
tures. An additional histogram correction improves the method for
non Gaussian textures, but ghosting artefacts appear because the
blending does not depend on the texture’s content. Burley reduced
ghosting by narrowing the blending zone [BS19], but a boundary
between tiles become visible. This motivated Mikkelsen [Mik22]
to propose a content-aware mixing operator, and to bypass the his-
togram correction. He uses the luminance as a priority criterion for
blending, but the synthesis is not stationary anymore, as we show
in Section 4, and the filtering becomes biased. Similarly, Schuster
et al. [STSK20] use the height map as a priority criterion. This ap-
proach is also subject to stationarity problems and filtering bias.

Our method is inspired by these works [HMR06, STSK20,
Mik22]. However, by clearly separating the priority criterion and
the mixing formula, our approach is more versatile, it preserves the
stationarity, and unbiased filtering is possible.

3. Mix-Max Operator

3.1. Notations

Let T be a texture

T : u =
[
u
v

]
�→ t (1)

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15193 by C

ochrane France, W
iley O

nline L
ibrary on [08/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 11 R. Fournier and B. Sauvage / Mix-Max: A Content-Aware Operator for Real-Time Texture Transitions

that associates a value t to every position u. The value t may be for
instance an intensity, a colour or a normal.

A priority map

S : u �→ s ∈ [−1; 1] (2)

associates to every position u a scalar value s, which will encode to
what extent the texel has priority in a mixing process.

The problem of transitioning between two textures T1 and T2 is
stated as follows. We are given two interpolation fields v1(u) and
v2(u) with values in [0; 1] and v1 + v2 = 1. We aim to define a tex-
ture T which equals T1 where v1 = 1, equals T2 where v2 = 1, and
has an in-between appearance for other (v1, v2) pairs. It is illustrated
Figure 2 with trivial linear functions v1 and v2.

3.2. Mixing

We define the resulting texture

T (u) = w1(u)T1(u) + w2(u)T2(u) (3)

by a linear combination, weighted by two fields w1 and w2. The
very common blending fits this formula with wi = vi. This operator
is ‘blind’ in the sense that it is independent of the texture content.
The result is shown in Figure 2 middle: the impression of uniform
transparency is not realistic for textures that represent opaque ma-
terials.

We propose new weighting fields, which are content-aware, and
which represent overlapping. We define

w1(u) =
{
1 if S1(u) + v1(u) > S2(u) + v2(u)

0 else

w2(u) = 1 − w1(u)

(4)

where S1 and S2 are priority maps correlated to T1 and T2 (see
Figure 2, top). The weights are binary, so that Equation (3) boils
down to choosing between T1(u) and T2(u), the texel with the max-
imum Si + vi value. This is why it appears as overlapping, not as
transparency. As shown in Figure 2 bottom, this leads to a richer
and more natural transition, provided that the priority maps are de-
fined wisely. The intuition of Equation (4) is that, for each position
u, the interpolation values v1 and v2 represent target probabilities
of getting T1 or T2, whereas in the blind blending, it represents the
proportions of T1 and T2. The priority maps S1 and S2 bias the prob-
abilities, making it possible to adapt to the texture’s content.Without
loss of generality, we consider S1 and S2 to be centred on 0, so that
the mixing is globally not biased towards one of the exemplars.

3.3. Priority maps

By associating coherent priorities with the texture patterns, it is pos-
sible to overlap two textures while preserving the visual elements.
For example, in Figure 1, the pebbles are delineated, and the sand
infiltrates between bricks and under the grass. This enables the rep-
resentation of layering arising from phenomena such as growth,
weathering or scattering.

Today’s popular PBRmaterials come with a multitude of maps to
represent various properties of a material. The height map is a good
candidate for defining the priority because it captures geometry: the
higher the more probable to overlap (Figure 3a). The normal map
can be used to model direction-dependent phenomena, like snow
on upward-pointing surfaces (Figure 3b). The priorities can also be
set by the user, so as to tune the transition: for instance, we emu-
lated rust streaks (Figure 3c) or rust patches (Figure 3d) by using
anisotropic (respectively, isotropic) noises as priority maps.

4. Texture Synthesis

In the previous section, we presented the Mix-Max operator for a
transition between two different textures. We now investigate the
case where T1 and T2 come from the same texture. This is useful for
real-time texture synthesis by tiling and blending [HN18, LSD23].
In these algorithms, the texture space is covered by overlapping tiles.
The content of the tiles is sampled on-demand at rendering, ran-
domly drawn from an example texture, and at every position u, two
(or more) overlapping tiles are mixed.

The challenge in this context is to enforce stationarity: the gen-
erated texture T is regarded as a stochastic field, and T = T (u) is
regarded as a random variable. It is mandatory for the field to be
stationary, i.e. for the probability density function of T to be inde-
pendent of the position u, otherwise the tiling creates a grid artefact
(see Figure 4, top). For simplicity, we explain for a scalar texture, i.e.
t is a scalar intensity denoted as t. We denote the random variables
T1 = T1(u) and T2 = T2(u). We have to enforce that the cumulative
distribution functions (CDF)

Proba(T ≤ t ) = Proba(T1 ≤ t ) = Proba(T2 ≤ t ). (5)

are equal and do not depend on u. This is true for T1 and T2 be-
cause the tiles T1 and T2 are randomly sampled in a stationary ex-
ample [LSD23]. However, because of the operator (4) and the cor-
relation between Si and Ti, the first equality is not true in general:
intensities correlated to high priorities are over-represented in the
synthesis. We demonstrate, in the supplemental document, that this
can be solved by setting S2 equal to the opposite of S1 (instead of
equal to S1). The intuition is that this makes the conditional distri-
bution of priorities symmetric with respect to 0. In practice, we do
not modify the priority map itself, but replace the condition in the
operator (4) by S1(u) + v1(u) > −S2(u) + v2(u).

Figure 4 shows the result of the dual tiling and blending [LSD23]
using our mix-max operator. The grid artefact disappears and the
stationarity is enforced. More precisely, the figure shows that the
mean is stationary. Equation (5) states that the stochastic field is
first-order stationary, i.e. the whole distribution of intensities is in-
variant in space. To validate this experimentally, we adopt the same
strategy as Lutz et al. [LSD21]. They observe cyclic statistics by
computing histograms of polyphase components, which estimate
pointwise intensity distributions. In our case, the statistics are not
cyclic, but they depend on the interpolation value v1, so we com-
pute histograms h(T |v1) for fixed v1. We achieve this by computing
a transition with a linear ramp v1 from 0 to 1; this is done many
times for the same example but different random seeds; for each v1,
we compute an histogram h(T |v1) by collecting the intensities T
from all realizations. Figure 5 shows the results for the brick wall

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15193 by C

ochrane France, W
iley O

nline L
ibrary on [08/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



R. Fournier and B. Sauvage / Mix-Max: A Content-Aware Operator for Real-Time Texture Transitions 5 of 11

Figure 5: Experimental validation of the first-order stationarity of
the synthesis. For each RGB channel, the histograms h(T |v1) are
plotted vertically: the abscissa is the interpolation value v1; the or-
dinate is the intensity T . Interpretation: we expect h(T |v1) not to de-
pend on v1, i.e. the vertical slices must be equal. v1 is sampled with
512 values from 0 to 1, and each histogram is build from 102, 400
realizations of synthesis on the brick wall example.

example, with v1 in abscissa and T in ordinate. We can observe
on (e) that the vertical slices are identical, i.e. that the histograms
h(T |v1) are identical for all v1, so our model is first-order station-
ary. On the other hand, both linear blending (a) and the technique
of Mikkelsen [Mik22] (b) vary across v1. The variance-preserving
technique of Heitz et al. [HN18] (d) needs special attention. Its re-
sult is stationary, but it operates only on Gaussian fields, so here it
requires an extra histogram correction. This is pretty tough to imple-
ment in the shader and to filter [DH19], which motivates Mikkelsen
to bypass the histogram correction. The method of Schuster et al.
[STSK20] (c) vary across v1 despite a global histogram correction,
because a correlation between the textures and the blending weights
introduces a bias.

We further discuss the results in Section 8 and Figure 14.

5. Real-Time Filtering

In this section, we present a real-time filtering method, which is
required for our technique to be applied in real-time algorithms,
whether for transitions (Section 3) or for synthesis (Section 4).

We rely on usual MIP-maps, as shown in Figure 6. Let P denote
the footprint of a texel in the MIP-map, i.e. a square area with the
side length equal to a power of two. The challenge consists in evalu-
ating, in constant time, the average of T over any of these footprints.

The ground truth. Is the average over the footprint P, given by the
integral

T (P) = 1

area(P)

∫
P

T (u)du. (6)

Figure 6: Filtering over square footprints up to 64 × 64 texels. (a)
Naive filtering (Equation 8). (b) Our estimation (Equation 10). (c)
Ground truth (Equation 6). (d), (e) Absolute and relative error of
our estimator versus the ground truth.

The direct evaluation of this integral (a discrete sum over the u ∈ P)
is impossible in real-time because its complexity grows linearlywith
the number of texels in P.

To overcome this problem, we draw inspiration in previous work
for Gaussian textures [DH19, GSDT22], and approximate

T (P) ≈ w1(P)T1(P) + w2(P)T2(P) (7)

as aweighted sum of Ti(P) which are pre-computedMIP-maps. This
approximation assumes thatwi and Ti are not correlated: though this
is not exact in our case, it is pretty effective, as shown below. The
key now is to derive a formula for wi(P), which can be estimated in
constant time.

A naive filtering. Consists in applying the same formulas

w1(P) =
{
1 if S1(P) + v1(P) > ±S2(P) + v2(P)

0 else

w2(P) = 1 − w1(P)

(8)

directly on the footprints P, using MIP-maps of Si and vi. For meth-
ods resorting to content blind blending, this approximation is often
close to the ground truth [DH19, GSDT22] as the weighting fields
wi are quasi-constant over P and are independent of Ti. Thus we
compare ourselves against this naive filtering, considering it as the
baseline. As can be seen in Figure 6 top, the result is far from the
ground truth. This is due to our binary weights wi(u) which vary
quickly within P, and to the complex relationships with the prior-
ity maps.

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15193 by C

ochrane France, W
iley O

nline L
ibrary on [08/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 11 R. Fournier and B. Sauvage / Mix-Max: A Content-Aware Operator for Real-Time Texture Transitions

Figure 7: Comparison of the weightw1 for filtering, corresponding
to P64×64 in Figure 6. The reference (c) is the actual average of w1

over P. Compared to naive binary weights (a), our constant time
approximation (b) is nuanced, and close to the reference.

Our constant time approximation. Is based on the idea that
w1(P)—and similarly for w2—should equal the average of w1 over
P, which we approximate by the probability

Proba(S1(u) + v1(u) > ±S2(u) + v2(u)|u ∈ P) (9)

that T1 is selected by the mix-max operator within P. To estimate
Equation (9), we assume that the priorities Si have a Gaussian dis-
tribution over P and that the interpolation fields vi are constant over
P. All that remains is to evaluate a probability of the form P(X > Y ).
Downton [Dow73] provides formulas that we apply to estimate the
probability of X = S1 + v1 to exceed Y = S2 + v2, and obtain

w1(P) = 1 − �

(
(S2(P) + v2(P)) − (S1(P) + v1(P))√

σ 2
1 + σ 2

2

)
w2(P) = 1 − w1(P)

(10)

where � is the CDF of the normal standard distribution, and Si(P)
and σ 2

i are, respectively, the mean and variance of Si over P.

In practice to evaluate the variance σ 2
i , we use a method similar

to that of Olano and Baker [OB10] or Grenier et al. [GSDT22]. We
store the priorities Si(u) and the priorities squared S2

i (u) in two tex-
tures. We compute MIP-maps Si(P) and S2

i (P) which store the first
two moments for any footprint P, and use it to compute the variance

σ 2
i = S2

i (P) − Si(P)2. (11)

Figure 7 shows that our non-binary weights (10) are close to the
actual average of binary weights. The result, shown in the second
row Figure 6, is much more faithful to the ground truth than the
naive filtering. In practice, we measure low though not negligible
errors (bottom rows Figure 6). More importantly, the estimation is
stable as the camera moves, thus avoiding flickering artefacts.

We now compare, in Figure 8, our technique to the blend maps of
Hardy and Mc Roberts [HMR06] and to Schuster et al. [STSK20].
They faced the same transparency artefacts as we do, and solved the
problem in a similar way than the above naive filtering: they use the
averages Si(P) but neglect the variations within P that we capture
in the σi. Their filtering (Figures 8b and 8c) succeeds in avoiding
transparency artefacts, however it is biased for large footprints and
large transitions. The transitions (bottom row) are too sharp com-
pared to their ground truth (top row), while our technique produces
more faithful mixes.

Figure 8: Comparison between (a) our filtering, (b) the blend
maps [HMR06] and (c) the max-blending [STSK20]. Top row:
ground truths generated by super-sampling. Bottom row: real-time
approximation.

Figure 9: Micro-priority: result T (top row) and weightw1 (bottom
row). Introducing a sub-pixel ‘base variance’λi of the priorities (b—
Equation 12) softens the sharp cuts (a—Equation 4) due to binary
weights.

6. Micro-Priority and Sub-Pixel Blending

In the previous section, we addressedminification artefacts.We now
address magnification artefacts. Because our weights wi are binary,
close-ups exhibit sharp cuts (Figure 9 left) at the boundary between
T1 and T2, which may look unnatural. We fix this by coherently ex-
tending our model to a statistical representation of micro-priority
at sub-pixel scale. Our approach is very similar to the micro-facets
in rendering, which represents the micro-geometry by a probabil-
ity distribution at very fine scales. The values (normal, colour, etc.)
of every single texel emerge from (unknown) sub-pixel variations,
which can be represented in a richer way than only its average value.

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15193 by C

ochrane France, W
iley O

nline L
ibrary on [08/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



R. Fournier and B. Sauvage / Mix-Max: A Content-Aware Operator for Real-Time Texture Transitions 7 of 11

We model sub-pixel variations of the priority as a probability dis-
tribution. We chose a normal distribution: Si(u) is the mean micro-
priority within u, and we add a variance λ2

i . This ‘base variance’ is
similar to the roughness in micro-facets theory. Then Equation (9)
can be applied to a single texel, and Equation (4) becomes

w1(u) = 1 − �

(
(S2(u) + v2(u)) − (S1(u) + v1(u))√

λ2
1 + λ2

2

)
(12)

which combines naturally with Equation (10) into

w1(P) = 1 − �

(
(S2(P) + v2(P)) − (S1(P) + v1(P))√

σ 2
1 + σ 2

2 + λ2
1 + λ2

2

)
. (13)

We observe the coherence of these equations: Equation (12) is a
special case of Equation (13) for a single texel, so σi = 0; Equa-
tion (4) is the limit of Equation (13) as the base variances λi → 0.

The right column in Figure 9 shows the ability of the micro-
priority to soften the sharp cuts, while preserving the complex inter-
twining of the patterns. We observe that it does not act as a uniform
blur: the transition becomes soft at some places and remains sharp
at some other places. This is an interesting property which relies
on the fact that the mix does not depend on a distance to the cut
in space u, but on a distance between (S1 + v1) and (S2 + v2) at
a fixed u. Figure 10 shows how the base variance can be used to
continuously tune the transition from sharp to fuzzy. In our experi-
ments, 0.01 ≤ λi ≤ 0.1 give visually pleasing results on most cases.
One can observe the complementary roles of vi (effect on the width
of transition), Si (effect on the shape of the cuts) and λi (effect on
fuzzyness), though the interactions between these three parameters
are complex.

7. N-Way Mixing

In this section, we generalize the operator to N > 2 textures, which
is useful in practical applications. For example, the original tiling
and blending [HN18] mixes three tiles. One may also want to tran-
sition between several textures as in Figure 11. Lastly, synthesis and
transition can be combined to produce richer appearances, as for ter-
rains in Figure 16.

To generalize our operator to an arbitrary number N of tex-
tures, we want to apply it recursively, like a reduction op-
erator on a list of textures. For example, MixMax(A,B,C) =
MixMax(MixMax(A,B),C) for N = 3 textures. To do so, we need
the operator to have the same inputs and outputs:⎡⎣T (P)μ

ω2

⎤⎦ = MixMax

⎛⎝⎡⎣T1(P)μ1

ω2
1

⎤⎦ ,

⎡⎣T2(P)μ2

ω2
2

⎤⎦⎞⎠ (14)

where μi = Si(P) + vi(P) is the biased priority mean, and ω2
i =

σ 2
i + λ2

i is the priority variance. For two textures, the only output
we needed was T (P), which is defined by Equations (7) and (13).
Let us now define the outputs μ and ω2.

A straightforward approachwould be to linearly interpolateμ and
ω2, i.e. replacing T by μ and ω2 in Equation (7). However, we as-
sumed that wi and Ti were uncorrelated, which is not true for wi and

Figure 10: Micro-priority. The appearance of the transition is
tuned by the base variances λi. Low variances (top) generate sharp
cuts with complex shapes. High variances (bottom) generate fuzzy
transitions, while still being content-dependent.

Figure 11: Transition between three textures.

Si. As a consequence, it would introduce a strong bias, illustrated
Figure 12(a) near the horizon: the colour is dependent on the mixing
order. This is because the mean priority of the first mix is underes-
timated, leading to an over-representation of the third texture.

To overcome this problem, we leverage our Gaussian approxi-
mation of the distribution of priorities. Our problem boils down to
deriving the PDF of the max of two Gaussian variables Si + vi ∼
N (μi, ω

2
i ). Nadarajah and Kotz [NK08] show that the mean and

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15193 by C

ochrane France, W
iley O

nline L
ibrary on [08/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 11 R. Fournier and B. Sauvage / Mix-Max: A Content-Aware Operator for Real-Time Texture Transitions

Figure 12: Recursive Mix-Max applied to N = 3 textures:
A (Grass), B (Stone) and C (Dirt), with equal interpolation fields
vi = 1

3 . From left to right, we mix in the order ABC, BAC, ACB,
CAB, BCA, CBA. (a) A naive linear interpolation of the priority
mean μ and variance ω2 biases the mean downwards. So the last
texture to be mixed is over-represented (see the green, grey and
brown bias near the horizon). (b) Equations (15) and (16) provide
consistent results.

variance of the max are given by

μ = μ1�

(
μ1 − μ2

ω̃

)
+ μ2�

(
μ2 − μ1

ω̃

)
+ ω̃φ

(
μ1 − μ2

ω̃

)
(15)

and

ω2 = (
ω2
1 + μ2

1

)
�

(
μ1 − μ2

ω̃

)
+ (

ω2
2 + μ2

2

)
�

(
μ2 − μ1

ω̃

)
+ (μ1 + μ2)ω̃φ

(
μ1 − μ2

ω̃

)
− μ2,

(16)

where φ and � are, respectively, the PDF and the CDF of the
standard normal distribution, and ω̃2 = ω2

1 + ω2
2. The third term

in Equation (15) is an upward shift of the mean when taking the
max, which corrects errors previously identified, as illustrated in
Figure 12(b).

Figure 13: Synthesis, high resolution results.

Note that the max has a bell-shaped distribution but it is not a
Gaussian [NK08]. So, when applying the operator recursively, we
may accumulate small errors due to our Gaussian hypothesis. In
practice, we did not observe noticeable errors.

8. Discussion

Implementation details. Our technique is straightforward to im-
plement, and easy to integrate into the graphical pipeline. It con-
sists in Equations (7), (11), (13), (15) and (16). Ti(P), Si(P) and
S2
i (P) are fetched in their respective MIP-maps. vi(P) is approxi-

mated by the value at the centre of P [GSDT22]. λi are set by the
user. The denominators in Equations (13), (15) and (16) are clamped
at a small positive value to avoid divisions by zero; at the same
time, it makes 1 − � tend to a Heaviside step function, which em-
ulates Equation (4) for single texels with no micro-priority. As � is
not packaged in the shader language, we used 1

2 + 1
2 tanh(0.85x) as

an approximation.

We implemented our technique both in WebGL and Vulkan. As a
use case for performance testing, with Vulkan implementation and
an Nvidia RTX3060 GPU, the demo of Figure 16 runs above 60
frames per second at a 5120 × 2880 ultra HD resolution. Each of
the three examples has 20482 texels and five 8-bits channels (three
colours and two priorities), which amounts to 60-MB storage, plus
the MIP-map overhead. No texture compression is considered here.

Results and limitations. Figure 13 shows synthesis results with
different textures. The stationarity is assessed numerically in sup-
plemental document 2. Compared to previous techniques [HN18,
Mik22, STSK20], there is no ghosting artefact and the result is sta-
tionary, as shown Figure 14. A close investigation of this example
shows that our model is pushed to its limits: some patterns are out-
lined, due to the interaction between the priority maps on the border
of the patterns. As a future work, wewould like to investigate the use
of pattern morphing [RLW*09] to reduce misalignment problems.

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15193 by C

ochrane France, W
iley O

nline L
ibrary on [08/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



R. Fournier and B. Sauvage / Mix-Max: A Content-Aware Operator for Real-Time Texture Transitions 9 of 11

Figure 14: Comparison with state of the art mixing formulas. Lin-
ear blending (a) and blending with histogram correction (b) pro-
duce ghosting artefacts. Content-dependent mixes based on lumi-
nance (c) and height (d) are not stationary. Our method (e) has no
ghosting and is stationary. However, misalignment of patterns can
still be visible.

Several additional results of transitions are presented in the
supplemental document 2, along with variations of the micro-
priority and filtering error measurements. Figure 15 shows transi-
tions on PBR textures, rendered in real-time at very high resolu-
tions. Figure 16 combines the synthesis of and the transitions be-
tween three textures. A landscape is covered with grass, stone and
dirt with spatial distribution controlled by the terrain’s topography.

Demos. We provide a number of WebGL demos matching our
figures that we also present in supplemental document 3:

• Synthesis only (Figure 13): https://igg.unistra.fr/people/fournier/
mixmax/synthesis/

• Transitions only on periodic textures (Figure 15): https://igg.
unistra.fr/people/fournier/mixmax/blend_demo/

Figure 15: Transitions, high-resolution results. The textures are re-
peated periodically (no tiling and blending).

• Synthesis and transitions combined on a terrain (Figure 16): https:
//igg.unistra.fr/people/fournier/mixmax/terrain/

• Richer light effects with a point light that follows the mouse cur-
sor: https://igg.unistra.fr/people/fournier/mixmax/light_demo/

Future work. The design of the priority maps would deserve fur-
ther investigation. We used maps packaged with PBR textures,
such as heights, normals or luminance. However the final result de-
pends on the interaction between two priority maps, which is hard
to predict, so specific design could be beneficial. In particular, it
might be possible to design maps that do not require the inversion

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15193 by C

ochrane France, W
iley O

nline L
ibrary on [08/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://igg.unistra.fr/people/fournier/mixmax/synthesis/
https://igg.unistra.fr/people/fournier/mixmax/synthesis/
https://igg.unistra.fr/people/fournier/mixmax/blend_demo/
https://igg.unistra.fr/people/fournier/mixmax/blend_demo/
https://igg.unistra.fr/people/fournier/mixmax/terrain/
https://igg.unistra.fr/people/fournier/mixmax/terrain/
https://igg.unistra.fr/people/fournier/mixmax/light_demo/


10 of 11 R. Fournier and B. Sauvage / Mix-Max: A Content-Aware Operator for Real-Time Texture Transitions

Figure 16: Three textures (grass, rock and dirt) are synthesized and
applied on a terrain. Realistic transitions are produced from mil-
limetre to kilometre scale, and rendered in real-time at ultra-high
resolution. The interpolation fields vi are generated automatically
(rocks on steep slopes, dirt where water flows) to control spatial
variations at a large scale. Each of the three textures is synthesized
by blending three tiles [HN18], resulting in up to a nine-way blend-
ing.

of Section 4, which would reduce the remaining contour artefacts
(Figure 14, bottom).

Our micro-priority model (Section 6) represents sub-pixel varia-
tions.We defined constant λi to introduce blending and transparency
effects. Making λi vary across the texture could introducemore vari-
ety in the transitions, for instance by combining opaque and translu-
cent materials. We also would like to explore further the behaviour
of complex PBR material, and the combination of our model with
micro-facets theory.

9. Conclusions

In this work, we introduced an operator for mixing textures, based
on the intuition of intertwining and overlapping materials. Priority
maps are correlated to the textures, and the max of priorities guides
the mix. When applied to texture transitions, it produces complex
transitions that well preserve sharp micro patterns. When applied to
texture synthesis by tiling and blending, it generates stationary tex-
tures and locally preserve the histogram of the example. We provide
constant-time filtering formulas that allow for very-high resolution
rendering in real-time. We also extend our technique to sub-pixel
variations, by introducing a statistical micro-priority representation,
which unifies the model from micro-scale to macro-scale.

A first avenue for future work deals with the design of the priority
maps and their usage by artists. A second avenue deals with the
combination with physically based material models and rendering.

Acknowledgements

We would like to thank Thery Sylvain for his help in implementing
the method.

Conflicts of Interest

The authors declare that the research was conducted in the absence
of any commercial or financial relationship that could be construed
as a potential conflict of interest.

References

[BS19] Burley B., Studios W. D. A.: On histogram-preserving
blending for randomized texture tiling. Journal of Computer
Graphics Techniques 8, 4 (2019), 31–53.

[CSHD03] CohenM. F., Shade J., Hiller S., Deussen O.: Wang
tiles for image and texture generation. ACM Transactions on
Graphics 22, 3 (July 2003), 287–294. doi: https://doi.org/10.
1145/882262.882265.

[DH19] Deliot T., Heitz E.: Procedural stochastic textures by
tiling and blending. In GPU Zen 2: Advanced Rendering Tech-
niques. Black Cat Publishing Inc., Encinitas, CA (2019).

[Dow73] Downton F.: The estimation of pr (y < x) in the normal
case. Technometrics 15, 3 (1973), 551–558.

[DSB*12] Darabi S., Shechtman E., Barnes C., Goldman D.
B., Sen P.: Image melding: Combining inconsistent images us-
ing patch-based synthesis. ACM Transactions on Graphics 31, 4
(July 2012), 82:1–82:10. doi: https://doi.org/10.1145/2185520.
2185578.

[EF01] Efros A. A., Freeman W. T.: Image quilting for texture
synthesis and transfer. In Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques (2001),
pp. 341–346.

[GSDC17] Guingo G., Sauvage B., Dischler J.-M., Cani M.-P.:
Bi-layer textures: Amodel for synthesis and deformation of com-
posite textures. Computer Graphics Forum 36, 4 (2017), 111–
122. doi: https://doi.org/10.1111/cgf.13229.

[GSDT22] Grenier C., Sauvage B., Dischler J.-M., Thery
S.: Color-mapped noise vector fields for generating procedural
micro-patterns. Computer Graphics Forum 41 (2022), 477–487.

[HMR06] Hardy A., Mc Roberts D. A. K.: Blend maps: En-
hanced terrain texturing. In Proceedings of the 2006 Annual Re-
search Conference of the South African Institute of Computer Sci-
entists and Information Technologists on IT Research in Devel-
oping Countries (2006), pp. 61–70.

[HN18] Heitz E., Neyret F.: High-performance by-example noise
using a histogram-preserving blending operator. In Proceedings
of the ACM on Computer Graphics and Interactive Techniques 1,
2 (2018), 1–25.

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15193 by C

ochrane France, W
iley O

nline L
ibrary on [08/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1145/882262.882265
https://doi.org/10.1145/882262.882265
https://doi.org/10.1145/2185520.2185578
https://doi.org/10.1145/2185520.2185578
https://doi.org/10.1111/cgf.13229


R. Fournier and B. Sauvage / Mix-Max: A Content-Aware Operator for Real-Time Texture Transitions 11 of 11

[HVCB21] Heitz E., Vanhoey K., Chambon T., Belcour L.: A
sliced Wasserstein loss for neural texture synthesis. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) (June 2021), pp. 9412–9420.

[KCD15] Kolář M., Chalmers A., Debattista K.: Repeatable
texture sampling with interchangeable patches. The Visual Com-
puter (2015), 1–10. doi: https://doi.org/10.1007/s00371-015-
1161-4.

[KEBK05] Kwatra V., Essa I., Bobick A., Kwatra N.: Tex-
ture optimization for example-based synthesis. ACM Transac-
tions on Graphics 24, 3 (July 2005), 795–802. doi: https://doi.
org/10.1145/1073204.1073263.

[KNL*15] Kaspar A., Neubert B., Lischinski D., Pauly M.,
Kopf J.: Self tuning texture optimization. Computer Graphics
Forum 34, 2 (2015), 349–359. doi: https://doi.org/10.1111/cgf.
12565.

[KSE*03] Kwatra V., Schödl A., Essa I., Turk G., Bobick A.:
Graphcut textures: Image and video synthesis using graph cuts.
ACM Transactions on Graphics (TOG) 22, 3 (2003), 277–286.

[LSA*16] LockermanY., Sauvage B., Allègre R., Dischler J.-
M., Dorsey J., Rushmeier H.: Multi-scale label-map extraction
for texture synthesis. ACM Transactions on Graphics 35, 4 (July
2016), 140:1–140:12. (Proceedings of Siggraph’16). doi: https:
//doi.org/10.1145/2897824.2925964.

[LSD21] Lutz N., Sauvage B., Dischler J.-M.: Cyclostationary
Gaussian noise: Theory and synthesis. Computer Graphics Fo-
rum (Proceedings Eurographics) 40, 2 (2021), 239–250.

[LSD23] Lutz N., Sauvage B., Dischler J.-M.: Preserving the
autocovariance of texture tilings using importance sampling.
Computer Graphics Forum (Proceedings Eurographics) 42, 2
(May 2023), 347–358. doi: https://doi.org/10.1111/cgf.14766.

[LSLD19] Lutz N., Sauvage B., Larue F., Dischler J.-M.:
Anisotropic filtering for on-the-fly patch-based texturing. In Eu-
rographics 2019, Short Papers (May 2019), Eurographics Asso-
ciation.

[Mik22] Mikkelsen M. S.: Practical real-time hex-tiling. Journal
of Computer Graphics Techniques 11, 2 (2022), 77–94.

[NK08] Nadarajah S., Kotz S.: Exact distribution of themax/min
of two Gaussian random variables. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 16, 2 (2008), 210–212.

[OB10] Olano M., Baker D.: Lean mapping. In Proceedings of
the 2010 ACM SIGGRAPH Symposium on Interactive 3DGraph-
ics and Games (2010), pp. 181–188.

[PBK13] Park H., Byun H., Kim C.: Multi-exemplar inhomoge-
neous texture synthesis. Computers & Graphics 37, 1-2 (2013),
54–64.

[PD84] Porter T., Duff T.: Compositing digital images. In Pro-
ceedings of the 11th Annual Conference on Computer Graphics
and Interactive Techniques (1984), pp. 253–259.

[RLW*09] Ray N., Lévy B., Wang H., Turk G., Vallet
B.: Material space texturing. Computer Graphics Forum 28,
6 (2009), 1659–1669. doi: https://doi.org/10.1111/j.1467-8659.
2009.01423.x.

[RSK10] Ruiters R., Schnabel R., Klein R.: Patch-based texture
interpolation. Computer Graphics Forum 29, 4 (2010), 1421–
1429. doi: https://doi.org/10.1111/j.1467-8659.2010.01739.x.

[STSK20] Schuster K., Trettner P., Schmitz P., Kobbelt L.:
A three-level approach to texture mapping and synthesis on 3D
surfaces. Proceedings of the ACM on Computer Graphics and
Interactive Techniques 3, 2 (2020), 1–19.

[VDKCC20] Vacher J., Davila A., Kohn A., Coen-Cagli R.:
Texture interpolation for probing visual perception. Advances
in Neural Information Processing Systems 33 (2020), 22146–
22157.

[VSLD13] Vanhoey K., Sauvage B., Larue F., Dischler J.-
M.: On-the-fly multi-scale infinite texturing from example. ACM
Transactions on Graphics 32, 6 (Nov. 2013), 208:1–208:10.
(Proceedings of Siggraph Asia’13). doi: https://doi.org/10.1145/
2508363.2508383.

[WDK*16] WuF., DongW., KongY.,MeiX., YanD.-M., Zhang
X., Paul J.-C.: Feature-aware natural texture synthesis. The Vi-
sual Computer 32 (2016), 43–55. doi: https://doi.org/10.1007/
s00371-014-1054-y.

[WLKT09] Wei L.-Y., Lefebvre S., Kwatra V., Turk G.: State of
the art in example-based texture synthesis. InEurographics 2009,
State of the Art Report, EG-STAR (2009), Eurographics Associ-
ation, pp. 93–117.

[XFPA14] Xia G.-S., Ferradans S., Peyré G., Aujol J.-F.: Syn-
thesizing and mixing stationary gaussian texture models. SIAM
Journal on Imaging Sciences 7, 1 (2014), 476–508. doi: https:
//doi.org/10.1137/130918010.

[ZFCVG05] Zalesny A., Ferrari V., Caenen G., Van Gool
L.: Composite texture synthesis. International Journal of Com-
puter Vision 62, 1-2 (Apr. 2005), 161–176. doi: https://doi.org/
10.1007/s11263-005-4640-7.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Supporting Information

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15193 by C

ochrane France, W
iley O

nline L
ibrary on [08/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/s00371-015-1161-4
https://doi.org/10.1007/s00371-015-1161-4
https://doi.org/10.1145/1073204.1073263
https://doi.org/10.1145/1073204.1073263
https://doi.org/10.1111/cgf.12565
https://doi.org/10.1111/cgf.12565
https://doi.org/10.1145/2897824.2925964
https://doi.org/10.1145/2897824.2925964
https://doi.org/10.1111/cgf.14766
https://doi.org/10.1111/j.1467-8659.2009.01423.x
https://doi.org/10.1111/j.1467-8659.2009.01423.x
https://doi.org/10.1111/j.1467-8659.2010.01739.x
https://doi.org/10.1145/2508363.2508383
https://doi.org/10.1145/2508363.2508383
https://doi.org/10.1007/s00371-014-1054-y
https://doi.org/10.1007/s00371-014-1054-y
https://doi.org/10.1137/130918010
https://doi.org/10.1137/130918010
https://doi.org/10.1007/s11263-005-4640-7
https://doi.org/10.1007/s11263-005-4640-7

	Mix-Max: A Content-Aware Operator for Real-Time Texture Transitions
	1. Introduction
	2. Related Work
	3. Mix-Max Operator
	3.1. Notations
	3.2. Mixing
	3.3. Priority maps

	4. Texture Synthesis
	5. Real-Time Filtering
	6. Micro-Priority and Sub-Pixel Blending
	7. N-Way Mixing
	8. Discussion
	9. Conclusions
	Acknowledgements
	Conflicts of Interest
	References 
	Supporting Information


