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A B S T R A C T

Sleep and circadian timing systems are constantly regulated by both photic and non-photic signals. Connections 
between the vestibular nuclei and the biological clock raise the question of the effect of peripheral vestibular loss 
on daily rhythms, such as the sleep-wake cycle and circadian rhythm. To answer this question, we compared the 
sleep and rest-activity rhythm parameters of 15 patients with bilateral vestibulopathy (BVP) to those of 15 
healthy controls. Sleep and rest-activity cycle were recorded by a device coupling actimetry with the heart rate 
and actigraphy at home over 7 days. Subjective sleep quality was assessed by the Pittsburgh Sleep Quality Index 
(PSQI). Sleep efficiency and subjective sleep quality were significantly reduced, and sleep fragmentation was 
increased in BVP patients compared to controls. BVP patients displayed a damped amplitude of the rest-activity 
rhythm and higher sleep fragmentation, reflected by a higher nocturnal activity compared to controls. These 
results suggest that both rest-activity and sleep cycles are impaired in BVP patients compared to healthy controls. 
BVP patients seem to have greater difficulty maintaining good sleep at night compared to controls. BVP pa-
thology appears to affect the sleep-wake cycle and disturb the circadian rhythm synchronization. Nevertheless, 
these results need further investigation to be confirmed, particularly with larger sample sizes.

1. Introduction

Sleep and wake state alternate is regulated by the homeostatic and 
circadian timing system [1]. Together these two processes determine 
most aspects of sleep and related variables like sleepiness and alertness. 
Circadian timing system establishes an individual temporal organization 
[2] for each organism, enabling optimal task completion throughout the 
day-night cycle. For mammals, the primary temporal cue is the alter-
nation between day and night brought about by Earth’s rotation. Pho-
toreceptors within the retina transmit light signals to the biological clock 
located in the suprachiasmatic nucleus (SCN) via the reti-
nohypothalamic tract [3]. Additionally, non-photic cues such as feeding 
schedules and social interactions have been demonstrated to reliably 
synchronize the biological clock [4,5], and physical activity patterns can 
also impact the daily rhythm’s amplitude and phase [6,7]. Following 

this idea of non-photic stimuli influencing the biological clock, recent 
research has underscored the influence of the vestibular system on 
circadian rhythms, suggesting it may serve as a stimulus affecting both 
circadian rhythms and sleep regulation [8–12].

The vestibular system, located in the inner ear, comprises three semi- 
circular canals responsible for detecting angular head acceleration and 
two otolithic organs responsible for detecting linear head acceleration. 
This system is mainly responsible for postural control and gaze stabili-
zation during locomotion [13,14]. Animal and human studies have 
suggested links between the vestibular system, sleep, and circadian 
timing systems, with anatomical connections between the medial 
vestibular nuclei and the SCN [15]. First, physiological evidence sup-
ports these links: (a) the vestibular system can impact rapid eye move-
ments (REM) during sleep [16–19]; (b) vestibular inputs to neurons in 
the pontine reticular formation play a role in mediating transitions 
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between sleep states [15,20,21]; and (c) the medial vestibular nucleus 
projects to cortical regions involved in arousal and certain aspects of 
sleep, receiving orexinergic inputs from the lateral hypothalamus [15]. 
Second, human studies have shown that vestibular stimulation by 
rocking can accelerate the transition between wakefulness and sleep and 
enhance sleep quality during napping [22,23]. Stimulation of the oto-
liths via linear bed movements has shown potential effects on drowsi-
ness [24,25]. A study in mice has additionally confirmed the positive 
impact of vestibular stimulation on the wake-sleep transition [26].

Studies have highlighted a bidirectional association between 
vestibular symptoms and sleep disorders. For instance, individuals with 
vestibular disorders were found to exhibit abnormal sleep durations, 
such as very short or very long sleep durations, and experienced more 
severe sleep problems compared to those without vestibular disorders 
[27,28]. Using the Pittsburgh sleep questionnaire index (PSQI), studies 
revealed that patients with vestibular disorders reported significant 
sleep disturbances [29,30]. Polysomnography conducted over one night 
indicated reduced sleep efficiency (SE) and proportions of REM sleep in 
patients with vestibular migraine compared to healthy controls [31,32]. 
Overall, migraines, including vestibular migraines, have been linked 
with sleep disorders [33–35]. Wu et al. (2020) [31] demonstrated 
increased wake after sleep onset (WASO) in vestibular migraine patients 
compared to healthy controls. Finally, poor sleep quality was associated 
with more severe vestibular symptoms [29].

Most of these studies have been conducted on individuals suffering 
from various vestibular disorders, and mainly on patients with incom-
plete vestibular lesions. The heterogeneity of these disorders and the 
potential effects of the underlying diseases have made it challenging to 
interpret the link between the vestibular system and sleep. In the present 
study, we aimed to investigate sleep patterns in patients with bilateral 
vestibulopathy (BVP), a condition characterized by bilateral hypo-
function of the vestibular organ or nerves with an unknown etiology 
[36] and not attributed to another disease as per the Barany Society 
diagnostic criteria [37]. BVP patients often exhibit significant distur-
bances in the vestibulo-ocular reflex during low-frequency movements, 
leading to symptoms such as oscillopsia [36,38,39]. They frequently 
report difficulties with gait initiation [40], balance issues in dark or 
uneven terrain, a sense of unsteadiness, and abnormal head and body 
alignment responses [39,41,42]. To our knowledge, no previous study 
has specifically examined sleep patterns in BVP patients, and only one 
investigation by Martin et al. (2016) [28] focused on rest-activity 
rhythm using actigraphy, coupled with temperature and cortisol pro-
file recordings. They found that BVP patients exhibited fragmented sleep 
periods, increased nocturnal activity, and shorter sleep duration 
compared to healthy controls [28]. While actimetry is a reliable method 
for studying sleep in various populations [43,44], it does not provide 
detailed information about sleep architecture. Polysomnography, while 
the gold standard for measuring sleep architecture [45], is cumbersome 
and typically limited to recording sleep over a few nights. New devices, 
that combine actigraphy with beat-to-beat heart rate analysis, offer a 
promising approach to quantifying sleep architecture. This device has 
been shown to provide results comparable to manual scoring of poly-
somnography [46–48], offering a more practical and informative way to 
assess sleep patterns over several nights.

The first objective of this study was to assess the objective sleep 
quality of BVP patients compared to healthy control participants. We 
hypothesized that BVP patients would exhibit lower sleep quality and 
alterations in sleep architecture when compared to healthy controls. The 
second objective was to evaluate the rest-activity rhythms and subjec-
tive sleep quality of BVP patients compared to healthy control partici-
pants. We hypothesized that BVP patients would demonstrate 
disturbances in rest-activity rhythms and report poorer subjective sleep 
quality compared to the control group.

2. Materials and methods

2.1. Study design

This study constituted a single-center exploratory investigation 
involving BVP patients and age-, sex- and education-level-matched 
healthy controls. The study protocol received approval from a French 
ethics committee (CPP Nord Ouest III, IDRCB 2022-A01513-40). All 
participants provided written informed consent following a compre-
hensive explanation of the study procedures.

2.2. Participant

The BVP patients group was composed of 15 adults, comprising 6 
men and 9 women, with a mean age of 53.3 ± 11.8 years. BVP was based 
on the criteria established by the Classification Committee of the Barany 
Society [37]. Specifically, each BVP patient exhibited bilateral reduction 
or absence of vestibulo-ocular reflex (VOR) angular function, as 
confirmed by video-head impulse test (vHIT) or caloric test. Addition-
ally, none of the patients reported any hearing loss or associated 
neurological symptoms.

The control group included individuals selected from a non- 
published laboratory database with a matching sleep protocol. Fifteen 
healthy controls (9 women and 6 men, with a mean age of 51.9 ± 10.9 
years) were selected, matching BVP patients based on sex, age, and 
education level.

All participants underwent a screening visit and had to meet the 
following inclusion criteria: (1) aged between 18 and 75 years old, and 
(2) diagnosed with BVP for the patients group or being healthy volun-
teers for the control group. Exclusion criteria included illiteracy; un-
controlled cardiovascular affection, psychiatric or neurologic affections; 
current or prior history of shift work; diagnosed sleep disorders 
(obstructive sleep apnea, chronic apnea, restless legs syndrome, 
narcolepsy-cataplexy); vestibular or hearing affections (for the controls 
group only); use of psychotropic or bradicardizing medications; sub-
stance abuse including alcohol, drug or caffeine; and pregnancy or 
breastfeeding. The demographic characteristics of the participants are 
presented in Table 1.

2.3. Measurements

2.3.1. General procedure
Two test sessions were conducted in the laboratory, one for the BVP 

patients and another for the healthy controls. During each session, 
participants completed questionnaires covering socio-demographics 
information, clinical status, and the PSQI. Additionally, they were pro-
vided with an actigraph device to record their rest-activity rhythms 
characteristics and a sleep architecture recording device to wear at 
night. Participants received training on how to use these devices before 
returning home for data collection. The recording conditions for both 
groups involved a 7-day period during which the activity-rest cycle was 
continuously monitored using actigraphy, coupled with the wearing of a 
Somno-Art device (Somno-Art®, PPRS, Colmar, France) for 7 consecu-
tive nights. Subsequently, participants sent back the devices and the 
daily sleep diary to the laboratory for data analysis.

Table 1 
Participant characteristics of BVP and Control groups.

BVP (n = 15) Controls (n = 15)

Age (years) 53.3 ± 11.8 51.9 ± 10.9
Gender (number of women) 9 (60.0 %) 9 (60.0 %)
BMI 24.4 ± 4.1 24.2 ± 2.3
Sleep medications as reported by PSQI (n) 0 (0 %) 0 (0 %)
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2.3.2. Subjective sleep evaluation
The PSQI evaluates self-perceived sleep quality and disturbances 

experienced over the past month [49]. It covers various parameters 
including work schedule, sleep habits, disturbances during sleep, sub-
jective sleep quality, use of sleep medication, and daytime sleepiness. A 
PSQI score exceeding 5 is indicative of potential sleep disorders [49].

2.3.3. Sleep parameters
The Somno-Art device combines the analysis of both actigraphy and 

heart rate at a beat-to-beat resolution. Participants were instructed to 
wear the Somno-Art armband on their non-dominant forearm for seven 
consecutive nights. The armband was worn before participants turned 
off the lights to sleep and removed upon waking up. The device recorded 
actimetry and heart rate data at a resolution of 1 Hz, while sleep stage 
classification was conducted at a 1-s epoch resolution.

2.3.4. Rest-activity rhythm parameters
Actigraphy involves recording body movements using a wrist-worn 

triaxial accelerometer. Participants wore an actigraph device (Motion 
Watch 8, CamNTech Ltd, Cambridge, UK) on their non-dominant wrist 
continuously for seven days. Each movement was recorded and stored 
within the device’s memory, with movements above a 0.01G threshold 
being recorded. The device was set with filters in the range of 3–11 Hz to 
ensure accurate movement detection. After the seven-day recording 
period, the data were transferred and analyzed using Motion Watch 
Ware® software (V.1.3.33, Cambridge Neurotechnology Ltd, Cam-
bridge, UK). According to general recommendations [50], both the BVP 
and control groups were asked to keep a daily sleep diary during the 
study period, reporting bedtime, waking-up time, naps, and any other 
relevant events such as device removal from the wrist. This self-report 
data was utilized for interpreting actigraphy data and to address po-
tential errors.

2.4. Data analysis

2.4.1. Sleep parameters
The sleep classification algorithm utilized the Somno-Art Software 

v.1.6.1 employing expert rules for analysis [48]. Data collected from the 
Somno-Art device were processed using this software (v.1.6.1, PPRS, 
Colmar, France). Sleep classification was based on various parameters 
including sleep onset (hh:mm), wake-up time (hh:mm), total sleep time 
(TST, min), sleep onset latency (SOL, min), wake after sleep onset 
(WASO, min), sleep efficiency (SE, %), percentage of time (%) spent in 
each sleep stage (non-rapid-eye movements (NREM): S1, S2, S3; and 
REM).

2.4.2. Rest-activity rhythm parameters
Non-parametric circadian rhythm analysis (NPCRA) was conducted 

over the seven days of recording using actigraphy data processed with 
MotionWare® software (V.1.3.33, Cambridge Neurotechnology Ltd, 
Cambridge, UK). Two experimenters (E.M & T.M) analyzed the rest- 
activity rhythm using NPCRA. Five parameters were measured [51]: 
(a) the inter-daily stability (IS); (b) intra-daily variability (IV); (c) L5 
(average of the least active 5-h periods); (d) M10 (average of the most 
active 10-h); and (e) relative amplitude (RA).

The IS quantifies the regularity of the rest-activity pattern, ranging 
from 0 to 1, where 0 indicates no rhythm and 1 indicates perfect sta-
bility. A low IS suggests a weaker circadian rhythm. The IV measures the 
fragmentation of activity-rest periods. The variable has a theoretical 
range of 0–2 with higher values indicating higher fragmentation. L5 
activity provides the average activity level during the least active 5-h, 
reflecting the restfulness and regularity of sleep periods; a lower L5 
value suggests more restful sleep. M10 activity provides the average 
activity level during the most active 10-h periods, indicating the activity 
and regularity of wake periods. RA ranges from 0 to 1, with higher 
values indicating a rhythm with a higher amplitude.

The dichotomy index (I < O) measures the percentage of time 
(ranging from 0 to 100 %) that activity during in-bed periods falls below 
the median level of activity during out-of-bed periods [52,53]. While 
this marker has mainly been validated in the cancer clinical population, 
we chose to utilize it due to the high degree of rest-activity rhythm 
fragmentation observed in BVP patients [28]. The I < O measure as-
sesses the reduction in physical activity during in-bed periods (I) 
compared to activity levels during out-of-bed periods (O). A high I < O 
value, close to 100 %, indicates a robust and prominent circadian 
rhythm, indicating restful sleep both at night and during the day. 
Conversely, a low I < O value indicates weak circadian rest-activity 
rhythmicity [52,54]. To categorize patients with circadian disruption, 
we applied a cut-off point for I < O of 99 % [55]. Thus, when I < O was 
lower or equal to 99 %, we inferred the presence of circadian 
rest-activity rhythm disruption. Conversely, when I < O exceeded 99 %, 
we concluded that the circadian rhythm was maintained.

2.5. Statistical analysis

PSQI score, rest-activity rhythm parameters, and sleep parameters 
were compared between the two subject groups using independent 
Student T-tests. A non-parametric Mann-Whitney U test was used when 
data were unequally distributed and the variances were unequal. Sta-
tistical analyses were performed using JASP 0.16.1.0 software. p-values 
less than 0.05 were considered statistically significant.

3. Results

3.1. Self-reported sleep measures

Significant differences in PSQI scores were observed between the two 
groups (Table 2). The PSQI score of the BVP patients was significantly 
higher compared to controls (+2.6; p = 0.006). 40 % of BVP patients 
(6.67 % of controls) had scores greater than the established cutoff score 
of 5, indicating decrements in sleep quality and the presence of sleep 
disorders.

3.2. Sleep parameters measures

All results concerning sleep parameters analysis are displayed in 
Table 3. WASO was significantly longer (+15.1min; p = 0.010) in BVP 
patients than in controls. SE was significantly lower (− 4.0 %; p = 0.024) 
in BVP patients than in controls. A trend for a later wake-up time in the 
BVP group was also observed (− 0.27min; p = 0.078). The 7-day analysis 
of sleep parameters did not reveal any significant differences between 
the two groups in sleep onset, wake-up time, TST, SOL, and the per-
centage of time in each sleep stage.

3.3. Rest-activity rhythm parameters

All results related to rest-activity rhythm analysis are presented in 
Table 4. L5 values were significantly higher (+365 counts; p = 0.045) in 
BVP patients than in controls. RA and I < O values were significantly 
lower (respectively, − 0.06; p = 0.009; − 2,92 %; p = 0.002) in BVP 
patients than in controls. I < O score was found below the 99 % cut-off 
in 14 out of 15 BVP patients and in 8 out of 15 controls. No significant 
differences were observed between the two subject groups for M10, IS, 
and IV values.

Table 2 
Score of PSQI questionnaire (Mean ± SD) for BVP patients and Controls.

BVP (n = 15) Controls (n = 15) p

PSQI 5.3 ± 2.9 2.7 ± 1.3 0.006a

a Indicates a significant difference with p < 0.05.
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4. Discussion

The primary main of this study was to evaluate the objective sleep 
quality of BVP patients compared to healthy control participants. The 
secondary objective was to assess the rest-activity rhythm and subjective 
sleep quality of BVP patients compared to healthy control participants. 
Our main hypotheses were that BVP patients would exhibit structural 
changes in sleep compared to healthy controls, specifically (a) a lower 
proportion of total sleep time, slow wave sleep (S3), and REM sleep; (b) 
a higher proportion of sleep latency, sleep lighter (S1+S2) and sleep 
fragmentation; and (c) a shifted phase of sleep.

BVP patients presented significant sleep modifications characterized 
by lower sleep quality, higher sleep fragmentation, and increased sleep 
complaints compared to controls. BVP patients displayed significant 
rest-activity rhythm alterations, including lower amplitude and I < O 
values, and higher L5 period than controls.

4.1. Sleep disturbances

PSQI is commonly used as a clinical scale to assess subjective sleep 
quality [49]. Epidemiological studies suggest that approximately 20 % 
of adults report experiencing poor sleep quality [56]. In line with our 
hypothesis, we found that the PSQI score was higher in BVP patients 
compared to the controls. This finding is consistent with previous studies 
by Kim et al. (2018) [30] and Smith et al. (2018) [57], indicating that 
BVP patients are more likely to experience sleep complaints. Similar 
findings have been reported in studies examining other vestibular pa-
thologies such as vestibular migraine, further supporting the results of 
our study [29,31].

To our knowledge, sleep parameters have not been previously eval-
uated in BVP patients before the present study. Previous investigations 
have focused on other vestibular pathologies such as vestibular migraine 
[31,32,58] and Ménière’s disease [59]. These studies utilized poly-
somnography (PSG), which is considered the gold standard for sleep 

assessment, but its use remains cumbersome. In our study, our meth-
odological choice was to use Somno-art. This device offers a less invasive 
and more cost-effective means of monitoring sleep architecture at home 
over several consecutive nights. Importantly, studies have demonstrated 
that the results obtained with the Somno-Art device are comparable to 
those obtained through manual scoring of PSG [46–48]. Our findings 
reveal a decrease in sleep efficiency and an increase in WASO proportion 
among BVP patients compared to controls, which is consistent with the 
results obtained from the PSQI assessment. These results align with 
existing literature, as several studies have reported significantly lower 
sleep efficiency and higher sleep fragmentation in patients with 
vestibular migraine [31,32,58] and Ménière’s disease [59] compared to 
controls. Interestingly, these two pathologies involving spontaneous 
episodic vestibular syndrome and without hypofunction of the vestib-
ular system, or a peripheral organ hypofunction caused similar sleep 
alterations. This observation suggests a potential hypothesis that daily 
altered vestibular signals, originating either from the peripheral organ 
or modified centrally (e.g., in the vestibular nuclei), may contribute to 
sleep disturbances.

The vestibular nuclei indirectly project to the SCN [15,60], which 
regulates the sleep/wake cycle circadian rhythm. Supra-optical nucleus 
and paraventricular nucleus of the hypothalamus respond to the 
vestibulo-cochlear nerve and caloric stimulation of the labyrinth [61]. 
The locus coeruleus [62,63] and the intergeniculate leaflet (IGL) [62] 
serve as potential relays of vestibular inputs to the hypothalamic 
structures involved in circadian rhythms and sleep regulation. The IGL 
being involved in the transmission of both photic and non-photic stimuli 
to the SCN [64–66], could constitute a neuronal relay of vestibular in-
puts to the SCN, through the geniculohypothalamic tract (GHT). Based 
on these findings, it has been hypothesized that BVP affects the syn-
chronization of the circadian rhythm and disrupts the sleep-wake cycle. 
In addition, hypocretin/orexin neurons in the hypothalamus, which are 
involved in maintaining wakefulness and alertness during the day 
[67–69], have projections from the medial vestibular nucleus [15]. 
These neurons promote the release of excitatory neurotransmitters such 
as norepinephrine, dopamine, and serotonin, which stimulate the brain 
and maintain wakefulness [68,69]. Dysfunction of hypocretin/orexin 
neurons could disrupt this regulation, contributing to an imbalance in 
the sleep-wake balance, including increased nighttime awakenings and 
thus decreased sleep efficiency.

The absence of changes in Wake-up time, Sleep onset, TST, and SOL 
values between our two groups is consistent with actigraphy findings 
reported by Martin et al. [28]. These results may indicate that BVP pa-
tients can maintain their daily routines, such as office work, business 
activities, domestic chores, and physical activity, without experiencing 
significant phase shifts despite their pathology symptoms, such as gait 
ataxia and postural balance disorders. While studies have established 
that poor sleep quality is a recognized risk factor for anxiety and major 
depressive disorders, and that the severity of dizziness and sleep-related 
problems are closely linked, both contributing to a reduced quality of 
life and emotional stress [70–73], a review of the literature suggests that 
BVP patients may not experience heightened anxiety distress compared 
to the other vestibular pathologies [74]. Nevertheless, many BVP pa-
tients report significant fatigue due to the symptoms associated with the 
disease, particularly those related to maintaining balance [16,57,75]. 
Therefore, it is plausible that the lack of difference in SOL and TST 
observed in our study may be attributed to this chronic fatigue.

We did not observe a difference in REM and NREM sleep in the BVP 
patients compared to the controls. This finding contrasts with previous 
studies that have reported significantly lower percentages of NREM and 
REM sleep in patients with vestibular migraine [31,32,58] and 
Ménière’s disease [59]. However, these studies have focused on in-
dividuals experiencing incomplete and intermittent vestibular disorders. 
Furthermore, we cannot exclude that the absence of alteration in sleep 
architecture among BVP patients in our study may be limited by sta-
tistical underpowering, which remains thus puzzling and requires more 

Table 3 
Mean Somno-Art sleep parameters (Mean ± SD).
Measurements of sleep parameters for sleep onset, wake-up time, total sleep time 
(TST), sleep onset latency (SOL), wake after sleep onset (WASO), sleep efficiency 
(SE), and percentage of time in each sleep stage (S1+2, S3, and REM).

BVP (n = 15) Controls (n = 15) p

Sleep onset (hh:mm) 00:08 ± 01:51 23:31 ± 00:38 0.595
Wake-up time (hh:mm) 07:39 ± 00:46 07:12 ± 00:32 0.068
TST (min) 397.8 ± 52.2 417.0 ± 55.9 0.336
SOL (min) 23.1 ± 25.1 17.7 ± 12.9 0.967
WASO (min) 44.3 ± 16.4 29.2 ± 13.3 0.010a

SE (%) 85.7 ± 4.7 89.7 ± 4.5 0.024a

S1þ2 mean percentage (%) 60.4 ± 5.7 59.8 ± 4.5 0.764
S3 mean percentage (%) 19.2 ± 5.3 18.7 ± 3.2 0.764
REM mean percentage (%) 20.4 ± 3.4 21.5 ± 2.6 0.306

a Indicates a significant difference with p < 0.05.

Table 4 
Mean rest-activity rhythm parameters (Mean ± SD).
Measurements of rest-activity rhythm parameters using actigraphy for IS (inter- 
daily stability), IV (intra-daily variability), L5 activity (least active 5 h), M10 
activity (most active 10 h), RA (relative amplitude), and I < O (dichotomy 
index).

BVP patients (n = 15) Controls (n = 15) p

IS 0.53 ± 0.14 0.56 ± 0.13 0.506
IV 0.90 ± 0.19 0.79 ± 0.17 0.111
L5 activity (counts) 749 ± 661 384 ± 277 0.045a

M10 activity (counts) 14 144 ± 4254 16 407 ± 4105 0.149
RA 0.90 ± 0.08 0.96 ± 0.03 0.009a

I < O 95.57 ± 4.01 98.49 ± 1.14 0.002a

a Indicates a significant difference with p < 0.05.
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investigation.

4.2. Rest-activity rhythm disturbances

The influence of the vestibular system on circadian rhythms has been 
studied in rodents, primarily through methods such as 2G hypergravity, 
which have been shown to disrupt circadian rhythms of temperature and 
locomotor activity [8,11,76,77]. Data indicate a similar disruption of 
circadian rhythms in rats through chemical induction of a bilateral 
vestibular lesion [76]. In humans, the impact of vestibular stimulation 
on circadian rhythms has been characterized by a shift in sleep phases in 
healthy adults exposed to vestibular stimulation on a rotating chair [78]. 
Martin et al. (2016) [28] also showed a disruption of rest-activity and 
temperature circadian rhythms in BVP patients. Disruption of the 
circadian rhythm can lead to disturbances in the sleep-wake cycle and 
inversely [79,80]. Based on these findings, we hypothesized that BVP 
patients would exhibit rest-activity rhythm disorders characterized by 
reduced amplitude, increased sleep fragmentation with higher activity 
during the L5 period, and lower activity during the M10 period.

The actigraph is a highly reliable tool for characterizing the rest- 
activity rhythm, validated for various populations [44,81,82], 
including those in free-living condition [50]. Using actigraphy, we 
observed a reduced amplitude of rest-activity rhythm in BVP patients 
compared to controls, which constitutes a marker of disrupted sleep, as 
commonly seen in populations with sleep disorders [50]. BVP patients 
showed higher movement during the L5 period compared to controls. 
Lower amplitude and increased movement during the L5 period are 
commonly associated with the trough of the sleep-wake cycle. We did 
not find differences in IS values between BVP patients and controls. 
However, IS values recorded for the BVP patients were similar to those 
reported in a previous study for insomniac people. Natale et al. (2014) 
[83] found no differences in IS values between insomniac people and 
healthy subjects, suggesting that altered rest-activity rhythm is not a 
systematic feature among patients with sleep disorders.

The dichotomy index I < O, utilized as a measure to assess both 
daytime activity and nighttime rest, has been established as a reliable 
marker of circadian rhythmicity alteration and is commonly employed 
in sleep research in patients with chronic diseases, such as cancer or 
insomnia [55,84]. Our findings indicate a high circadian disruption, 
which aligns with higher WASO, lower sleep efficiency, and diminished 
subjective sleep quality measured with the PSQI. This I < O score 
observed in BVP patients (95.57 ± 4.01) was even under the cut-off of 
97.5 %, which has been identified as a clinically relevant marker for the 
quality of life and survival outcomes in patients having chronic diseases 
such as cancer [54]. The alteration in rest-activity rhythms among BVP 
patients might be a key component strongly linked to sleep disruption 
and fragmented sleep-wake patterns. However, one must note that the I 
< O values of the control participants (98.49 ± 1.14) appear to be 
slightly below the 99 % cut-off, even if 46.7 % of controls were above 
this cut-off. This result might question the quality of the rhythmicity of 
our control patient but is not surprising since a dramatic decline in the 
quality and quantity of sleep has been observed in the general healthy 
population and more than 8 out of 10 French people are affected by 
nocturnal awakenings as highlighted by a recent French national survey 
[85].

M10 values recorded in the BVP patients did not differ from those of 
the controls, indicating that the BVP patients were similarly as active as 
the controls during the M10 sequence. These results are consistent with 
the findings on sleep parameters obtained with the Somno-Art device 
and reflect the ability of our BVP patients to complete their daily routine 
(e.g. office work, business, domestic activities, physical activity) despite 
their pathology and its associated symptoms. In this study, patients had 
been diagnosed several years prior, suggesting that certain dynamic 
compensatory processes had already been completed [41,86], allowing 
for normal postural adjustments in common situations. This could also 
explain why patients in our study maintained similar M10 values to the 

control group during the 7-day home actigraphy.

4.3. Limitations

Due to the rarity of the BVP pathology (120/100 000) [87], we 
cannot exclude that our study suffers from statistical underpowering 
limitation, therefore these results requires more investigation and need 
to be confirmed in studies with larger sample sizes. Consequently, we 
did not consider the subtypes of BVP due to the same size of our sample. 
Additionally, despite their common pathology, the subjects are varied in 
age, physical activity, and lifestyle. Furthermore, we did not account for 
the level of physical activity when matching our BVP patients with 
controls. Although we observed trends for wake-up time, we cannot 
discount the possibility that the small number of subjects prevented us 
from observing other significant results in this study. However, our 
sample size was sufficient to detect significant differences in some sleep 
and rest-activity rhythm parameters. The absence of a thorough PSG, 
typically including respiratory parameters, may be a limitation due to 
the potential presence of participants with undiagnosed obstructive 
sleep apneas – a condition previously associated with vestibular weak-
ness [88] – which could have introduced bias to the study sample.

5. Conclusion

The present study highlights that BVP patients experience poorer 
objective and subjective sleep compared to healthy participants. BVP 
patients seem to have greater difficulty maintaining good sleep at night, 
which is consistent with greater and more pronounced sleep complaints 
in BVP patients compared to controls. These findings support the 
concept that good overall health correlates with better sleep quality and 
robust circadian motor rest-activity rhythms.

Evaluating sleep parameters and rest-activity rhythm may contribute 
to a better understanding of vestibular involvement in sleep. These re-
sults may also help to establish more effective therapeutic interventions, 
such as vestibular rehabilitation and stimulation for sleep improvement 
[73,89,90]. The present data could be a further step in promoting 
additional clinical attention and research into sleep disturbances in BVP 
patients, but, these results warrant further investigations to be 
confirmed, particularly with larger sample sizes. For future work, we 
plan to conduct a larger-scale study using polysomnography, the gold 
standard for sleep measurement.
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