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Abstract — This paper presents two innovative Microwave 
Non-Destructive Testing and Evaluation (MNDT&E) techniques 
designed specifically for characterizing planar dielectric materials, 
regardless of their thickness. These techniques involve 
measuring the reflection coefficient parameters 𝑺𝟏𝟏 of the 
materials  using  two  separate  microwave  characterization 
instruments: a monostatic free-space radar and an open-ended 
rectangular waveguide (OERW). Our objective is to develop a 
compact, low-power, fast instrument for classifying and evaluating 
the materials sensed by microwaves across a frequency range 
varying from 3.95 to 5.85 GHz. These approaches coupled with 
machine learning (ML) models, are employed and validated within 
two distinct environmental settings: controlled laboratory 
conditions and more challenging real-world noisy conditions. 
Furthermore, a comparative performance analysis is conducted 
between the two proposed techniques. 

Keywords — radar, open ended rectangular waveguide, VNA, 
machine learning, material characterization 

I. INTRODUCTION 

Microwave nondestructive testing and evaluation field 
(MNDT&E) is a set of methods that enable the characterization 
and evaluation of material conditions within the microwave 
frequency range, without causing damage, whether during 
production, usage, or maintenance [1]. Advantages such as low-
power, low cost and non-ionizing electromagnetic radiation 
have attracted the research community to contribute to the 
dissemination of MNDT&E techniques in various field [2 - 4]. 
By employing these techniques, electromagnetic waves 
penetrate dielectric materials and interact with their surface and 
internal structure. This interaction provides valuable 
information about the material under test (MUT), including its 
type, geometry, and the presence of surface or subsurface 
defects. 

MNDT&E techniques for material characterization can be 
categorized into resonant and non-resonant methods. In 
resonant methods, a sample of the MUT is inserted at a 
predefined position, and the measurements focus on changes in 
the resonance frequency and quality factor (Q) [5]. The second 
category comprises non-resonant techniques. These methods 
use instead the scattering parameters as the primary parameter 
for extracting the dielectric properties of the MUT. The 
methods that fall under this category include waveguide open-
ended probe, and free-space [6] methods. The dielectric 
properties of the MUT are then extracted from the measured 

𝑆11 using appropriate conversion methods. This latter is 

mandatory to identify the types of materials. Recently, ML 
algorithms have been emerged with microwave techniques as a 
powerful approach for material characterization. This 
combination enables accurate and rapid material 
characterization, even in complex scenarios. Moreover, it 
reduces the dependency on complex conversion methods and 
provides an automated process. 
In this study, we proposed two new methodologies combining 
MNDT&E techniques and ML models to characterize dielectric 
materials regardless their thicknesses. We definitively target to 
classify the materials into four types: Air, glass, Plexiglas and 
wood. These methodologies offer advantages when analytical 
modeling is not feasible, and (ML) algorithms have a crucial 
role to play in addressing these challenges [7 - 8]. 

The remaining sections of the paper are structured as 
follows. Section II introduces the proposed methodology. 
Section III including the experimental procedures and details of 
the data collection setup. In Section IV, we present the results 
obtained from the experiments and discuss their performance. 
Finally, Section V concludes the paper and outlines future work. 

II. METHODOLOGY 

This section provides an overview of the proposed 
methodologies (figure 1) for classifying three well-known 
dielectric materials: wood, glass, and Plexiglas. Both 
methodologies follow identical steps. 

Initially, the systems measure the broadband complex 
reflection coefficient 𝑆11 , capturing variations in magnitude and 
phase-shift across a frequency range varying from 3.95 to 
5.85 GHz with a step of 2.2MHz. The recorded data is 
influenced by the type of MUT. The measurements were 
performed in two distinct environments. The first group of data 
was recorded under laboratory conditions, while the second 
group was obtained in noisy environments to simulate realistic 
conditions. 

Then, parameters selection step is conducted. The purpose 
of exploring different training features is to identify the optimal 
features, achieving a balance between the number of features 
and the performance of the ML algorithm. 

Following this, the dataset is divided into training and 
validation sets to train the ML algorithms. The output of these 
algorithms categorizes materials into one of the following 
classes: wood, glass, Plexiglas, or air. 



To evaluate and compare the performance of different 
scenarios, a variety of evaluation metrics are used. These 
metrics provide valuable insights into the effectiveness of the 
proposed methodologies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Block diagram of the for material classification methodologies. 

 
III. EXPERIMENTAL SETUP 

In this section, the measurement system of each technique 
is introduced. 

The first technique based on free space characterization is 
built up with a compact one-port VNA [Anritsu® MS46121B – 
figure 2(a)] connected to a horn antenna [ATM® P/N 187- 251-
6 – figure 2 (b)]. The antenna is connected directly to the VNA. 
No coaxial cable is considered to reduce random errors 
commonly found and attributed to cable movement during 
measurement operation. 

 

(a) (b) 
Fig. 2(a) Compact 1-port vector network analyzer Anritsu® MS46121B (150 

kHz – 6GHz). (b) Horn antenna [ATM® P/N 187-251-6]. 
 

The second microwave system used in this work is built 
up with an OERW [ATM® P/N 187-251-6] presented in the 
figure 2 with the same VNA [Anritsu® MS46121B 
MS46121B]. The waveguide has a cross section of 50 mm by 
25 mm and it is connected to the input port of the VNA using 
N-to- SMA coaxial transition and SMA-to-waveguide 
transition. The measurement operates within the frequency 
covered by the waveguide between 3.95 and 5.85 GHz with a 
step of 2.2MHz. 

(a) Front view (c) Back view 

 
Fig. 1. Waveguide [ATM® P/N 187-251-6]. 

 
The Intermediate frequency bandwidth – IFBW is set to 

100 (Hz) in both configurations. Before starting the 
measurement, the VNA is calibrated using the calibration-kit: 
OSLN50A-8 from Anritsu®). 

Before initiating the measurements campaign, a 
repeatability study is considered to quantify the overall 
measurement uncertainty and to ensure the reproducibility of 
measurements including mechanical positioning of the MUT. 
To that end, in the free space configuration, the MUT consists 
of wood in planar structure was positioned at a stand-off 
distance set to 5 cm from the antenna. 𝑆11 is measured 10 
consecutive times. The maximum standard deviation between 
all measurements are computed at each frequency. Maximum 
standard deviations of 0.0018 and 3deg, for the linear 
magnitude and phase-shift of 𝑆11 respectively, are obtained. 

Same study is repeated for the contact configuration, the 
MUT consists of wood was positioned in contact with the 
OERW. The maximum standard deviation between all 
measurements are 0.0028 and 0.75 degree, for the linear 

magnitude and phase-shift of 𝑆11 respectively, are obtained. 

IV. MATERIALS PREPARATION AND DATA ACQUISITION 

A. Materials preparation 

Samples with known material properties, such as, wood, 
glass and Plexiglas are used. Figure 1 shows photos of some 
samples, while table 1 presents the thicknesses of the samples. 

 

Fig. 2. Some of the material samples considered for materials classification. 
 

Material Thickness (cm) 

Wood { 0.6 ; 0.9 ; 1; 1.6; 1.8} 

Glass {0.2; 0.4; 0.5} 

Plexiglas {0.25; 0.4} 

Table 1. Thicknesses of the experimental samples. 



B. Datasets 

For the initial technique relying on free space 
characterization, the measurement process consists of two 
steps. Initially, 𝑆11 is measured without the presence of the 
MUT. Subsequently, 𝑆11 measurements are conducted for all 
samples with a stand-off distance of 5 cm between the antenna 

and the MUT (figure 3 (a)). The antenna is fixed for all 
experiments and only the MUT is moved using a mechanical 

displacement mechanism with 500μm displacement resolution. 
In the second technique, which is based on contact 

characterization, the measurement campaign also follows the 
same two-step procedure. However, in this configuration, the 

MUT is in contact with the OERW (figure 3 (b)). 
These steps are repeated under the two conditions: 

controlled laboratory and more challenging realistic conditions. 
 

(a) (b) 

Fig. 3. Experimental set-up for microwave sensing: (a) using the antenna, (b) 
using the OERW. 

 
Two novel and unique datasets have been generated: one 

employing the first technique, which relies on free space 
characterization with the antenna, and the other using the 
OERW in contact characterization. The data obtained under 
controlled laboratory conditions are categorized as Group I, 
while the data collected under more realistic conditions are 
classified as Group II. These datasets are detailed in Table 2. 

 
Measurement 

system Group I Group II 

Antenna 161 49 

OERW 617 270 

Table 2. Dataset of recorded measurements using the antenna and the OERW. 

Figures 4 and 5 illustrate the 𝑆11 of different materials 
characterized by closely similar thicknesses, obtained through 
the antenna and the OERW based systems, respectively. Each 
material presents distinct 𝑆11 signatures, but even for identical 
materials, these signatures change as thickness varies, as 
demonstrated by previous results. Thus, it is challenging to 
characterize these materials with analytical models. This 
highlights the importance of using ML models to classify and 
characterize these materials, regardless their thicknesses; due 

to the robust capabilities of ML models in handling complex 
and evolving patterns in the data. 

 

Fig. 4. Measured S11 of some samples types using the antenna. 

 
           

           

           

           

 
           

           

           

           

 
Fig. 5. Measured S11 of some samples types using the OERW. 

 
V. DATA PROCESSING AND SUPERVISED CLASSIFICATION 

Following the collection of datasets, a parameter selection 
step is conducted. In this step, two feature scenarios are 
proposed. Initially, the magnitude and phase-shift of the 
measured S11, encompassing all parameters across all 
frequencies, are directly employed. Then to extract the most 
informative features and reduce dimensionality, principal 
component analysis (PCA) is applied to select the most 
representative features. It is the most popular dimensionality 
reduction technique widely used in various fields of data 
analysis and ML. In this study, specifically, we retain PCA 
components that contribute to more than 90% of the total 
variance in the magnitude and phase-shift data. 

We then proceed with data splitting step. The dataset 
consists of two groups. Group I, referred to as the "non-testing 
subset," consists of the data recorded under controlled 
laboratory conditions, is divided into training and validation 
subsets using a 5-fold cross validation (CV) approach. One fold 
for validating and the remaining fold for training. Group 
II referred to as the " testing subset," consists of the data 
recorded under realistic conditions, is used for testing after the 
standardization and PCA projection. The testing subset, allows 
for an evaluation of the performance of the proposed classifiers 
on new unseen data 



This division serves the purpose of training and validating 
the well-known supervised ML algorithms: random forest (RF) 
[10], and support vector machine (SVM) [9] with a three kernel 
functions: linear, polynomial (POL.) and radial basis (RBF). 
These algorithms are commonly used in the literature and they 
can provide excellent performance for classification. 

The effectiveness of these models is computed using various 
performance metrics: Accuracy, and F1 score. 

VI. RESULTS 

Python was employed in this work for the purpose of data 
analysis. 

Table 3 illustrates the classification performance 
outcomes of the dataset captured using the initial technique 
based on the antenna. The stand-off distance is fixed at 5 cm. 

Table 4 illustrates the classification performance 
outcomes of the dataset captured using the second technique 
based on the OERW. 

Two subsets are used: the CV subset (non-testing subset) 
and the unseen subset (Group II recorded under noisy 
conditions).  Two separate feature representations are 
examined: the magnitude and phase-shift of 𝑆11, and the PCA 
applied to the magnitude and phase-shift data. 

 
 Magnitude 

& 
Phase-shift 

PCA 
(Magnitude & 

Phase-shift) 

Data Subset 
CV 

subset 
Unseen 
subset 

CV 
subset 

Unseen 
subset 

Accuracy 99 
95 

99 
91 (%) ±0.3 ±0.5 

F1_score (%) 98 95 98 90 
Best 

Classifiers 
SVM RBF 

SVM POL 
SVM RBF 

Table 3. Performance evaluation of best ML classifiers trained with antenna- 
measured Dataset. Stand-off distance is set to 5 cm. 

 
 Magnitude 

& 
Phase-shift 

PCA 
(Magnitude & Phase- 

shift) 
Data 

Subset 
CV 

subset 
Unseen 
subset 

CV 
subset 

Unseen 
subset 

Accuracy 
(%) 

100 99 .6 100 97.77 

F1_score 
(%) 

100 99 .6 100 98.6 

Best 
Classifiers 

RF RF 

Table 4. Performance evaluation of best ML classifiers trained with OERW- 
measured Dataset. 

 
As shown, SVM gives the best performance on dataset 

recorded using the antenna. RF gives the highest performance 
when using the data recorded using the OERW; 

Similar performance is demonstrated within the CV 
subset. However, an improvement in classifier performance is 

observed when both magnitude and phase-shift features under 
unseen subset were used. 

It is worth noting that the introduction of PCA led to a 
slight decrease in performance. Nevertheless, the use of PCA 
contributes to a reduction in computational complexity. 

VII. CONCLUSION 

This study proposed two MNDT&E microwave 
techniques for non-destructive dielectric material 
characterization regardless their thicknesses based on: free 
space characterization using a horn antenna and contact 
characterization using an open-ended rectangular waveguide. 
Both techniques are effective for material characterization. 
Each method will depend on the specific requirements of the 
application. For example, if high spatial resolution is required 
then an open-ended rectangular waveguide may be the best 
option. Otherwise, if the material to be characterized is at a 
distance, then free space radar may be the best option. 

In a future work, the aim is to integrate the microwave 
instrumentations into an automated system designed to regulate 
and adapt the distance. This automation allows to take the 
benefits of integrating the two techniques. 
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