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Asymptotic properties of the maximum likelihood estimator
for Hidden Markov Models indexed by binary trees
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Abstract
We consider hidden Markov models indexed by a binary tree where the hidden state space

is a general metric space. We study the maximum likelihood estimator (MLE) of the model
parameters based only on the observed variables. In both stationary and non-stationary
regimes, we prove strong consistency and asymptotic normality of the MLE under standard
assumptions. Those standard assumptions imply uniform exponential memorylessness prop-
erties of the initial distribution conditional on the observations. The proofs rely on ergodic
theorems for Markov chain indexed by trees with neighborhood-dependent functions.

Key words and phrases— Hidden Markov tree (HMT), hidden Markov model (HMM), branching
process, maximum likelihood estimator (MLE), asymptotic normality, consistency, geometric ergodicity
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1 Introduction
In this article, we consider a generalization of the hidden Markov chain/model (HMM) where
the process is indexed by a binary tree, which we call hidden Markov tree (HMT). The HMT
is composed of a hidden process and an observed process. The hidden process is a branching
Markov process, that is, a random process X = (Xu, u ∈ T ) with values in a metric space
X indexed by a rooted tree T with the Markov property: sibling nodes take independent and
identically distributed values that depend only on the value of their parent node. Note that the
hidden process is sometimes called latent process in the literature. Conditionally on the hidden
process X, the observed process Y = (Yu, u ∈ T ), with values in another metric space Y, is
composed of independent random variables Yu which only depends on Xu for all u ∈ T . See
Definitions 2.1 and 2.2 below for a complete formal definitions. In this article, we consider the
case where the tree T is the (deterministic) complete infinite rooted binary tree, that is, each
vertex has exactly two children. See Figure 1 for a graphical representation of the dependance
between the variables composing the HMT process (X,Y ) indexed by T .

1.1 Literature review
HMMs were first introduced by Baum and Petrie in [BP66] and were popularized by Rabiner’s
tutorial [Rab89]. Since then, HMMs have been used in a wide variety of applications such
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Figure 1: Graph of dependance for variables of a HMT process indexed by the complete infinite
rooted binary tree T . The observed variables are represented inside square, while the hidden
variables are represented inside circles.

as speech recognition [YD15], bioinformatics [Kos01], finance [ME14], and time-series analysis
[ZM09]; see also [BFA22] for a more global reference on HMMs applications.

HMTs were first introduced in [CNB98] to account for the multi-scale dependency of wavelet
coefficients in statistical signal processing with applications in wavelet-based image processing
[RCBK00, CB01, DWB08, SH17]. After that, HMTs have been used in several application
contexts such as natural language processing [GOB13, KDM13], flood mapping [XJS18], medical
imaging [MBY+12, HYG17, HBSLLB+17], plant growth modeling [DGCC05], and bioinformatics
[OCB+09, BWX13, NSK20].

In practice, maximum likelihood estimation for HMMs often relies on iterative numerical
methods to approximate the maximum likelihood estimator (MLE). Those methods are often
based on the expectation-maximization algorithm which is an algorithm for models with missing
data and was popularized by Dempster et al. [DLR77] in a celebrated article. For HMMs with
finite hidden state space, the first presentation of a complete expectation-maximization strategy
is due to Baum et al. [BPSW70], and is the well-known “forward-backward” or Baum-Welch al-
gorithm. For more details on the expectation-maximization and “forward-backward” algorithms
and their stochastic approximations, see [CMR05, Chapters 10 and 11]. In the HMT case, the
“forward-backward” algorithm must be replaced by the “upward-downward” algorithm devel-
oped in [CNB98]. See also [DGG04] for alternative “upward-downward” recursive formulae that
can handle underflow issues implicitly.

The statistical properties of the MLE for the HMM were first studied in [BP66] which proved
consistency and asymptotic normality in the case where both the hidden and the observed pro-
cesses can only take finitely many values. Those results were then successively extended in a
series of articles [Ler92, BRR98, JP99, LGM00, DM01]. An extension of all those results for
HMMs with autoregression (that is, when conditionally on the hidden Markov chain, the ob-
served process is an inhomogeneous s-order Markov chain for some s ∈ N) was later developed in
[DMR04], which proved, using weaker assumptions, strong consistency and asymptotic normality
of the MLE for auto-regressive HMMs with compact hidden state space and with possibly non-
stationary regime. The methods used in [DMR04] relies on expressing the log-likelihood as an
additive function of an extended Markov chain with infinite past thanks to stationarity and using
geometric ergodicity of this extended chain (extension to non-stationary regime is then made sep-
arately). The method of [DMR04] was adapted in [KS19] under similar assumptions to allow the
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transition densities of the hidden process to be zero valued. Since the article [DMR04], the strong
consistency of the MLE was proved under weaker assumptions in [GL06, DMOVH11, DRS16],
but no generalization has been made for the asymptotic normality of the MLE.

In this article, we will adapt the proof method of [DMR04] to the HMT case. We shall also
refer to the monograph [CMR05] which exposes in details the theory of HMMs, and in particular
to its Chapter 12 which covers the strong consistency and asymptotic normality of the MLE,
under the same assumptions used in [DMR04], for HMMs where the hidden state space is a
general metric space.

To adapt the proof method of [DMR04] to the HMT case, we will need almost sure (a.s.)
and L2 ergodic convergence results for branching Markov chains under geometric ergodicity of
the transition kernel as in [Guy07, Wei24]. Indeed, we will need variants of those results for
neighborhood-dependent functions (that is, the function associated to each vertex u depends
on variables Xv for vertices v in the neighborhood of u) which we develop in Section 2.4 and
Appendix A.

1.2 New contribution
In this article, we consider the case where the distribution of the HMT is parametrized by some
vector θ, that is, the transition kernel Qθ between the hidden variables and the transition kernel
Gθ from hidden variables to observed variables both depend on θ. As an example, if the hidden
state space X is finite and Yu conditioned on Xu is a Gaussian random variable for each u ∈ T ,
then θ could parametrized the transition matrix of the hidden process and the mean and variances
of the Gaussian distribution associated to each hidden state values. Our goal is to estimate the
true parameter θ⋆ of the HMT process among a compact set of possible parameters Θ ⊂ Rd, for
some integer d, using only the knowledge of the observed process Y over n generations of the
tree. Note that as our assumptions will imply uniform exponential memorylessness properties for
the initial distribution, we cannot try estimate the initial distribution. Denote ∂ the root of the
tree T . Thus, we assume that the distribution of the hidden root variable X∂ is some unknown
measure ζ which does not depend on θ. Denote by Pθ⋆,ζ the probability distribution of the HMT
under the true parameter θ⋆ when the initial unknown distribution of X∂ is ζ. When ζ is the
unique invariant measure of Qθ (i.e. in the stationary case), we write Pθ⋆ instead of Pθ⋆,ζ .

To estimate the true parameter θ⋆ of the HMT, we will use the maximum likelihood estimator
(MLE). We will work with the likelihood conditioned on the hidden state of the root vertex X∂ .
The reason to do this is that the computation of the stationary distribution of the joint process
(X,Y ), and thus also the true likelihood, is intractable in typical applications. Note that the
idea of conditioning on the initial hidden state was already used in [DMR04] for HMMs with
the same motivation, and conditioning on initial observations in time series goes back at least to
[MW43]. Remind that T denote the (deterministic) complete infinite rooted binary tree. Denote
Tn the tree T up to and including the n-th generation. Hence, for any value x ∈ X , we denote
by ℓn,x(θ) the log-likelihood under the parameter θ of the observed process (Yu, u ∈ Tn) until the
n-th generation of the tree T conditionally on X∂ = x (see (7) on page 11 for exact definition).
Then, for any value x ∈ X , we define the MLE θ̂n,x as the maximizer of ℓn,x over Θ (see (33) on
page 22 for exact definition).

Our goal is to study the asymptotic properties of the MLE. We prove the strong consistency
and the asymptotic normality of the MLE in the stationary case in Sections 3 and 4, respectively.
We then extend those results to the non-stationary case in Section 5. In our results, the hidden
state space X and the observed state space Y are both general metric spaces. We prove our results
under the same assumptions used in [DMR04] and in [CMR05, Chapter 12] for HMMs with L1
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and L2 integrability assumptions replaced by L2 and L4 integrability assumptions, respectively,
to accommodate the stronger assumptions needed in ergodic theorems for branching Markov
chains. See Remark 1.6 below for a discussion on the main differences between the HMM case
as in [DMR04, CMR05] and the HMT case we develop in this article.

We first state that strong consistency of the MLE holds under standard assumptions for
HMMs. Following [DMR04], we assume a fully dominated model, that is, the transition kernels
Qθ and Gθ admits densities qθ and gθ w.r.t. to common measures λ and µ, respectively (see
Assumption 2). We also assume (see Assumption 3) :

0 < σ− ≤ inf
x,x′∈X

qθ(x, x′) ≤ sup
x,x′∈X

qθ(x, x′) ≤ σ+ < ∞. (1)

This assumption is rather strong as it imposes a full connection for the hidden space, see [KS19]
for an extension of the method in [DMR04] for HMMs where qθ is allowed to be zero valued.
Nevertheless, this assumption implies the uniform exponential memorylessness properties with
mixing rate ρ := 1−σ−/σ+ of the initial distribution conditional on the observations (Yu, u ∈ Tn).
The other assumptions are more standard regularity assumptions for the densities qθ and gθ (see
Assumptions 2-6), and identifiability of the model. We can now state the strong consistency of
the MLE under those assumptions, see Theorems 3.11 and 5.1 for the precise statements in the
stationary and non-stationary case, respectively.

Theorem 1.1 (Strong consistency of the MLE). Under those assumptions of fully dominated
model with density satisfying (1) and other more standard regularity assumptions, and under the
assumption that the model is identifiable, for any x ∈ X , the MLE θ̂n,x is strongly consistent,
that is, the sequence (θ̂n,x)n∈N converges Pθ⋆,ζ-almost surely to the true parameter θ⋆ ∈ Θ.

To prove asymptotic normality of the MLE, in addition to the assumptions used in Theo-
rem 1.1, we need existence and regularity assumptions for the gradient and the Hessian of the
transition densities qθ and gθ (see Assumptions 7-9). Denote by I(θ⋆) the limiting Fisher infor-
mation matrix of the model (see (54) on page 32 for precise definition). The proof of asymptotic
normality in the non-stationary case is an extension of the stationary case. The proof of asymp-
totic normality in the stationary case follows from a standard argument for asymptotic normality
of the MLE that relies on Theorem 1.1 and Theorems 1.2 and 1.3 below.

The following theorem, which we only prove in the stationary case, states that the normalized
score |Tn|−1/2 ∇θℓn,x(θ⋆) has asymptotic normal fluctuations with covariance matrix I(θ⋆), see
Theorem 4.3 for the precise statement. Note that the extra assumption in Theorem 1.2 (not
present in the case of HMMs) that ρ < 1/

√
2 for the mixing rate ρ of the HMT process comes

from the approximation bounds used in the proof of this theorem. See Remark 1.5 below for a
discussion on this condition on ρ.

Theorem 1.2 (Asymptotic normality of the normalized score). Under the assumptions from
Theorem 1.1 and existence and regularity assumptions for the gradient and the Hessian of the
transition densities (see Assumptions 7-9), and under the assumption that ρ < 1/

√
2 for the

mixing rate ρ of the HMT process, in the stationary case we have:

|Tn|−1/2 ∇θℓn,x(θ⋆) (d)−→
n→∞

N (0, I(θ⋆)) under Pθ⋆ .

The following theorem states the locally uniform convergence Pθ⋆,ζ-a.s. of the normalized
observed information −|Tn|−1∇2

θℓn,x(θ) towards the Fisher information matrix I(θ⋆), see Theo-
rems 4.6 and 5.2 for the precise statements in the stationary and non-stationary case, respectively.
Note that in this theorem we need the stronger assumption ρ < 1/2 for the mixing rate ρ of the
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HMT process as we use more restrictive approximation bounds in the proof of this theorem than
the ones used in the proof of Theorem 1.2.

Theorem 1.3 (Convergence of the normalized observed information). Under the assumptions
from Theorem 1.2 on the HMT model, and under the assumption that ρ < 1/2 for the mixing
rate ρ of the HMT process, for all x ∈ X , we have:

lim
δ→0

lim
n→∞

sup
θ∈Θ : ∥θ−θ⋆∥≤δ

∥∥∥−|Tn|−1∇2
θℓn,x(θ) − I(θ⋆)

∥∥∥ = 0 Pθ⋆,ζ-a.s.

In particular, combining Theorems 1.1 and 1.3, we get that the normalized observed infor-
mation −|Tn|−1∇2

θℓn,x(θ̂n,x) at the MLE θ̂n,x is a strongly consistent estimator of the Fisher
information matrix I(θ⋆).

As announced above, following a standard argument for asymptotic normality of the MLE,
Theorems 1.1, 1.2 and 1.3 imply the following theorem which states that the MLE has asymptotic
normal fluctuations with covariance matrix I(θ⋆)−1. See Theorems 4.7 and 5.5 for the precise
statements in the stationary and non-stationary case, respectively.

Theorem 1.4 (Asymptotic normality of the MLE). Under the assumptions from Theorem 1.2
on the HMT model, that θ⋆ is an interior point of Θ, and the Fisher information matrix I(θ⋆) is
non-singular, and under the assumption that ρ < 1/2 for the mixing rate ρ of the HMT process,
we have the following convergence in distribution:

|Tn|1/2(θ̂n − θ⋆
) (d)−→

n→∞
N (0, I(θ⋆)−1) under Pθ⋆,ζ ,

where N (0,M) denotes the centered Gaussian distribution with covariance matrix M .

Note that the standard argument used in the proof of Theorem 1.4 implies that we have the
following joint convergence in distribution:(

|Tn|1/2(θ̂n − θ⋆
)
, |Tn|−1/2 ∇θℓn,x(θ⋆)

) (d)−→
n→∞

(I(θ⋆)−1/2 G, I(θ⋆)1/2 G) under Pθ⋆ ,

where G is Gaussian random variable distributed as N (0, Id) with Id the identity matrix of
dimension d× d, and I(θ⋆)1/2 is a root matrix of I(θ⋆).

The following remark is a discussion on the condition on the mixing rate ρ of the HMT
process (X,Y ) that appear in Theorems 1.4, 1.2 and 1.3.

Remark 1.5 (On the condition on the mixing rate ρ). Note that in central limit theorems
for branching Markov chains, three regimes with different asymptotic behaviors (and different
normalization terms) for ρ < 1/

√
2, ρ = 1/

√
2 and ρ > 1/

√
2 were observed in [BPD22a],

corresponding to a competition between the ergodic mixing rate ρ and the branching rate 2
in T , see also [Ath69, BPDG14, BPD22b]. However, the condition on ρ disappears when we
consider martingale increments in the central limit theorem for branching Markov chains, see
[Guy07, BDSG09, DM10].

In our case, the condition ρ < 1/
√

2 on the mixing rate ρ that appears in Theorem 1.2 is due
to the coupling bounds and the grouping of terms used in the proof of Lemma 4.2 (the upper
bounds at the end of the proof only add a constant multiplicative factor). It is an open question
whether or not some convergence would still hold in Theorem 1.2 with ρ ≥ 1/

√
2 even with

a possibly stronger normalization term and a possibly non Gaussian limit. Nevertheless, note
that the proof of Theorem 1.2 relies on decomposing the score ∇θℓn,x(θ) as a sum of martingale
increments, which could indicate that convergence is possible for ρ ≥ 1/

√
2.
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Moreover, the stronger condition ρ < 1/2 on the mixing rate ρ that appears in Theorem 1.3,
and thus in Theorem 1.4, is due to the coupling bounds from Lemma 4.16 and the grouping of
terms used in the proof of Lemma 4.17 (the upper bounds in the rest of the proof only add a
constant multiplicative factor). It is an open question whether or not convergence would still hold
in Theorem 1.3 and in Theorem 1.4 with ρ ≥ 1/2 even with a possibly stronger normalization
term and a possibly non Gaussian limit in Theorem 1.4. Also note that the condition ρ < 1/2 is
used when proving that Theorem 1.4 extends to the non-stationary case to construct a coupling
between a stationary HMT process and a non-stationary HMT process, see Lemma 5.3.

In the following remark, we discuss the main differences between the HMM case as in [DMR04,
CMR05] and the HMT case we develop in this article.

Remark 1.6 (On main differences with the HMM case). In both HMM and HMT cases, the
study of the log-likelihood is based on decomposing it as a sum of increments, and then extending
the “past” seen by each variable. However, while the extended “past” only spreads backwards in
the HMM case, the extended “past” in the HMT case is a subtree that also spreads laterally due
to the different topologies between the line Z and the binary tree, see Figure 3 on page 12 for an
illustration. See also Sections 2.4 and 3.1 for the definition of those “past” and extended “past”.
Moreover, due to the enumeration of vertices in the tree in a breadth-first-search manner, those
extended “past” do not have the same “shapes” for all vertices, see Section 2.4. Also note that
the infinite expanded “past” of a vertex relies on a random infinite “backward spine” of left /
right ancestors (see Figure 4 on page 15), which adds extra randomness to the “shape” of the
“past”.

Furthermore, contrary to the HMM case, the lateral spreading of each vertex’s “past” in
the HMT case implies that log-likelihood increments with infinite extended “pasts” do not form
a branching Markov process. For this reason, we need to work with log-likelihood increments
whose “past” is trimmed to a fixed common subtree height, and only expand to infinite “past”
in the limit. To prove convergence for sums of log-likelihood increments with trimmed “pasts”
which have different shapes, we need to develop new ergodic theorems for branching Markov
chains and neighborhood-dependent functions, see Section 2.4 and Appendix A.

In the proof of asymptotic normality of the normalized score, the score is decomposed as a
sum of martingale increments which is no longer stationary in the HMT case due to the “pasts” of
vertices having different shapes. Thus, to apply the central limit theorem for martingales, we first
need to verify convergence for the quadratic variations of the martingale increment sequences
and Lindeberg’s condition. Moreover, the computation of the approximation bounds for the
increments used to decompose the score and the observed information are more involved and
impose conditions on the value of the mixing rate ρ, as already discussed in Remark 1.5. This
also implies that the proof scheme for convergence of the observed information matrix needs to
be modified as we cannot have almost sure convergence for all the increments simultaneously,
and we must rely on L2 convergence instead.

Lastly, as discussed in Section 1.1, the results for HMMs in [DMR04] allowed for autoregres-
sion (remind, that is, when conditionally on the hidden Markov chain, the observed process is
an inhomogeneous s-order Markov chain for some s ∈ N). Our results for HMTs are stated for
processes without autogression. However, as our approach adapts the proof scheme of [DMR04],
note that with straightforward modifications of our proofs, we could allow for autoregression in
HMT processes.
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1.3 Organization of the paper
The rest of the paper is organized as follows. In Section 2, we define the notations used in this
article, HMT processes and the log-likelihood for the HMT. For the stationary case, we prove
the strong consistency of the MLE in Section 3, and its asymptotic normality in Section 4. In
Section 5, we extend those results to the non-stationary case. In Appendix A, we develop the
ergodic theorems for branching Markov chains with neighborhood-dependent functions needed
in the proofs of the asymptotic properties of the MLE.

2 Definition of HMT and notations
In this section, we first define the notations we use for the infinite complete binary tree T .
We then define branching Markov chains and hidden Markov models (HMMs) indexed by the
binary tree T , which we will simply call Hidden Markov Tree (HMT) models. We continue with
the basic assumptions we need to define the log-likelihood for the HMT. Lastly, we present the
ergodic theorems for branching Markov chains and neighborhood-dependent functions needed in
this article, whose proofs can be found in Appendix A.

2.1 Notations for trees
Let T = ∪n∈N{0, 1}n denote the infinite complete plane rooted binary tree, that is the plane
rooted tree where each vertex u has exactly two children u0 and u1. Denote by ∂ the root vertex
of T (which is the unique point in {0, 1}0). If u is distinct from the root, we denote by p(u)
its parent vertex. We denote by h(u) its height, i.e. the number of edges separating u from
the root ∂. (The height of the root ∂ is zero.) In particular, for k ≤ h(u), note that pk(u)
denotes the k-th ancestor of u. For two vertices u, v ∈ T , we denote by u ∧ v the most recent
common ancestor of u and v, and by d(u, v) the graph-distance between u and v in T , that is
d(u, v) = h(u)+h(v)−2h(u∧v). For all n ∈ N, denote by Gn the n-th generation of the tree, that
is vertices that are at distance n from the root, and denote by Tn = ∪0≤k≤nGk the tree up to
generation n. For a vertex u ∈ T , we denote by T (u) the subtree of T composed of descendants
of u, and for all k ∈ N, we denote by T (u, k) = T (u) ∩ Th(u)+k the subtree of T (u) composed of
descendants of u at distance up to k from u. We will use the convention that for a subtree Tsub
of T , we write T ∗

sub for the subtree Tsub without its root vertex, for instance, T ∗
n = Tn \ {∂} and

T (u)∗ = T (u) \ {u}. For a finite subset A ⊂ T , we denote by |A| its cardinal.
We will sometimes use Neveu’s notation, which we define recursively: a vertex u ∈ T with

height h(u) = n can be represented as a sequence (u(j))1≤j≤n where u is the u(n)-th child of
p(u) and p(u) can be represented by (u(j))1≤j≤n−1; and the representation of the root ∂ is the
empty sequence. Note that Neveu’s notation can also be interpreted as encoding the path from
the root ∂ to the vertex u: starting from the root u0 = ∂, at each generation j we go from uj to
its u(j+1) child which we denote by uj+1, and at generation n we get un = u.

For simplicity, we will write u(k:n) = (u(j))k≤j≤n and u(k:n) = (u(j))k≤j≤n for path sequences
where k, n ∈ Z with k < n.

As T is a plane rooted tree, we can order its vertices in a breadth-first-search manner, that is,
the total order relation ≤ on T is defined for all u, v ∈ T as u ≤ v if h(u) < h(v) or h(u) = h(v)
and u ≤lex v (where ≤lex is the lexicographical order on T ). Moreover, we denote by v < u if
u ≤ v and v ̸= u.
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2.2 Definition of HMT processes
For a sequence (xu, u ∈ T ), for simplicity, we will write xA = (xu, u ∈ A) for all subsets A ⊂ T .
For a metric space X , we will always assume it is equipped with its Borel σ-field B(X ).

For a measure µ on a metric space X and an integrable function f ∈ L1(µ), we write µ(f) =∫
X f dµ. For two probability measures µ1, µ2 on a metric space X , we denote the total variation

norm between them by ∥µ1 −µ2∥TV = supA⊂X |µ1(A)−µ2(A)| (where A ranges over all measur-
able subsets of X ). We also remind the identities ∥µ1 − µ2∥TV = 1

2 supf :|f |≤1 |µ1(f) − µ2(f)| =
supf :0≤f≤1 |µ1(f) − µ2(f)| (where f is a measurable function). Note that ∥µ1 − µ2∥TV takes
value in [0, 1].

Denote by X = (Xu, u ∈ T ) the hidden (stochastic) process with values in a metric space X ,
and by Y = (Yu, u ∈ T ) the observed (stochastic) process with values in a metric space Y. We
assume that the hidden process X is a branching Markov process.

Definition 2.1 (Branching Markov process). The stochastic process X is called a (branching)
Markov process with transition (probability) kernel Q on (X ,B(X )) and initial (probability) dis-
tribution ν on X if for all n ∈ N, we have:

P(XTn
∈ dxTn

) = ν(dx∂) Πu∈T ∗
n
Q(xp(u); dxu).

We can now define the Hidden Markov Tree process.

Definition 2.2 (Hidden Markov Tree process). The stochastic process (X,Y ) = ((Xu, Yu), u ∈
T ) is called a Hidden Markov Tree (HMT) with parameter (Q,G, ν) if:

(i) the hidden process X = (Xu, u ∈ T ) is a branching Markov process with transition kernel
Q and initial distribution ν,

(ii) the observed process Y = (Yu, u ∈ T ) conditioned on the hidden process X is composed of
independent variables whose laws factorize using the transition (probability) kernel G on
(X ,B(Y)), that is for all n ∈ N, we have:

P(YTn
= yTn

|XTn
= xTn

) = Πu∈Tn
G(xu; dyu).

Note that the definitions of branching Markov chains and HMT processes also work for non-
plane rooted trees.

In particular, note that if (X,Y ) = ((Xu, Yu), u ∈ T ) is a HMT process, then the joint process
((Xu, Yu), u ∈ T ) is also a branching Markov chain (but the observed process Y is not necessarily
Markov). The following fact, which we shall reuse later, illustrates the Markov property of the
HMT process (X,Y ). For any k ∈ N∗, any u ∈ T with height at least k, and any subset A ⊂ T ,
we have :

L(Xu |YA, Xpk(u)) = L(Xu |YA∩T (pk−1(u)), Xpk(u)) (2)

where L(R |S) denotes the distribution of a random variable R conditionally on another random
variable S.

We say that a branching Markov process X is stationary if all its variables are identically
distributed (that is, for all u ∈ T , Xu has the same distribution as X∂), or equivalently if its
initial distribution ν is invariant for its transition kernel Q (that is, νQ = ν). Moreover, if (X,Y )
is a HMT process and the hidden process X is stationary, then the joint process (X,Y ) is also
stationary.
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Figure 2: Illustration of the Markov property for the HMT. Conditioning on X1 (in grey) im-
plies that the HMT process (X,Y ) becomes independent between the four connected compo-
nents of variable-dependence tree from Figure 1 where the vertex X1 is removed, that is, Y1,
(XT (11), YT (11)), (XT (12), YT (12)) and (XT \T (1), YT \T (1)) (respectively in yellow, blue, green and
red) are independent conditionally on X1.

2.3 Basic assumptions and definition of the log-likelihood
In this article, we consider the case where the kernels in the definition of the HMT (Qθ, Gθ, νθ)
are parametrized by some vector θ that we want to estimate using only the knowledge of the
observed process (Yu, u ∈ Tn) up to generation n. We denote by Θ the set of all possible vector
parameters θ, which we assume to be a subset of Rd for some integer d. And we denote by θ⋆

the true parameter of the HMT.
Through this article, with the exception of Section 5, we assume that the hidden process X

is stationary.

Assumption 1 (Stationarity). The hidden process (Xu, u ∈ T ) is stationary, (and thus the joint
process ((Xu, Yu), u ∈ T ) is also stationary).

We denote by Pθ the probability distribution under the parameter θ of the stationary joint
process (X,Y ), and by Eθ the corresponding expectation.

To prove asymptotic properties of the MLE for the HMT, we will use assumptions similar to
the HMM case in [CMR05, Chapter 12] and [DMR04]. We first assume that the HMT model is
fully dominated. For two probability measures λ, µ on the same space, we write λ ≪ µ to denote
that λ is absolutely continuous w.r.t. to µ.

Assumption 2 (Fully dominated model, [CMR05, Assumption 12.0.1]).

(i) There exists a probability measure λ on X such that for every x ∈ X and every θ ∈ Θ,
Qθ(x, ·) ≪ λ, with density qθ(x, ·). That is, Qθ(x;A) =

∫
A
qθ(x, x′)λ(dx′) for all A ∈

B(X ). Moreover, the density function qθ(·, ·) is B(X ) ⊗ B(X ) measurable.

(ii) There exists a σ-finite measure µ on Y such that for every x ∈ X and every θ ∈ Θ,
Gθ(x, ·) ≪ µ, with density gθ(x, ·). That is, Gθ(x;B) =

∫
B
gθ(x, y)µ(dy) for all B ∈ B(Y).

Moreover, the density function gθ(·, ·) is B(X ) ⊗ B(Y) measurable.

In addition to Assumption 2, we use the following regularity assumptions on the density
functions qθ and gθ.
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Assumption 3 (Regularity, [CMR05, Assumption 12.2.1]).

(i) The transition density qθ is bounded: there exist σ−, σ+ ∈ (0,+∞) such that ∀x, x′ ∈
X , ∀θ ∈ Θ, 0 < σ− ≤ qθ(x, x′) ≤ σ+ < +∞.

(ii) For every y ∈ Y, the function θ 7→
∫

X gθ(x, y)λ(dx) is bounded away from 0 and ∞
uniformly on Θ, that is, supθ∈Θ

∫
X gθ(x, y)λ(dx) < ∞ and infθ∈Θ

∫
X gθ(x, y)λ(dx) > 0.

(iii) For every x ∈ X and y ∈ Y, we have gθ(x, y) > 0.

We will denote by ρ = 1 − σ−/σ+ ∈ (0, 1) the mixing rate of the hidden process X.
Note that Assumption 3-(iii) is due to our choice of conditioning on X∂ = x for some x ∈ X

in the log-likelihood we analyse, we discuss how to get rid of this assumption after the definition
of the log-likelihood at the end of this subsection.

As λ is a probability measure and qθ is the density of a probability kernel, Assumption 3-(i)
implies that σ− ≤ 1 ≤ σ+. Moreover, Assumption 3-(i) also implies the following result.

Lemma 2.3. Assume that Assumptions 2-(i) and 3-(i) hold. Then, for all θ ∈ Θ, the transition
kernel Qθ has a unique invariant measure πθ and is uniformly geometrically ergodic, that is:

∀x ∈ X ,∀θ ∈ Θ,∀n ≥ 0, ∥Qn
θ (x, ·) − πθ∥TV ≤ (1 − σ−)n ≤ ρn.

Note that due to structure of the HMT, Lemma 2.3 extends naturally to the transition kernel
of the joint process (X,Y ) with the same mixing rate ρ. Moreover, note that Assumption 3-(i)
also implies that πθ ≪ λ with density dπθ

dλ taking value in [σ−, σ+].
Lemma 2.3 is due to Assumption 3-(i) implying the Doeblin condition:

∀θ ∈ Θ,∀x ∈ X σ−λ(·) ≤ Qθ(x; ·). (3)

As we will reuse Doeblin conditions later, before proving Lemma 2.3, we give a quick summary
on results for the Doeblin condition. For a transition kernel K on a metric space X (to itself),
we define its Dobrushin coefficient δ(K) as:

δ(K) = sup
x,x′∈X

∥K(x; ·) −K(x′; ·)∥TV. (4)

The Dobrushin coefficient gives the following coupling bound in the total variation norm. (Note
that the definition of the total variation norm ∥ · ∥TV used in [CMR05, Chapter 4] differs by a
factor 2 from ours, see [CMR05, Lemma 4.3.5].)

Lemma 2.4 ([CMR05, Lemma 4.3.8]). Let µ1, µ2 be two probability measures on a metric space
X , and let K be a transition kernel on X . Then, we have:

∥(µ1 − µ2)K∥TV ≤ δ(K)∥µ1 − µ2∥TV ≤ δ(K).

Moreover, the Dobrushin coefficient is sub-multiplicative.

Lemma 2.5 ([CMR05, Proposition 4.3.10]). The Dobrushin coefficient is sub-multiplicative.
That is, if K,R are two transition kernels on a metric space X , then we have δ(KR) ≤ δ(K)δ(R).

We know define the Doeblin condition.

Definition 2.6 (Doeblin condition, [CMR05, Definition 4.3.12]). We say that a transition kernel
K on a metric space X satisfies a Doeblin condition if there exist ε > 0 and a probability measure
ν on X such that for all x ∈ X and measurable subset A ⊂ X , we have:

K(x;A) ≥ εν(A).
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The Doeblin condition gives an upper bound on the Dobrushin coefficient.
Lemma 2.7 ([CMR05, Lemma 4.3.13]). Let K be transition kernel (on a metric space X ) that
satisfies a Doeblin condition with (ε, ν). Then, we have δ(K) ≤ 1 − ε.

Lastly, the Doeblin condition implies the existence of a unique invariant probability measure,
as well as uniform geometric ergodicity.
Lemma 2.8 ([CMR05, Theorem 4.3.16]). Let K be a transition kernel on a metric space X that
satisfies a Doeblin condition with (ε, ν). Then, K admits a unique invariant probability measure
π. Moreover, for any probability measure ζ on X , we have for all n ∈ N:

∥ζKn − π∥TV ≤ (1 − ε)n∥ζ − π∥TV.

Lemma 2.3 then follows immediately from Lemma 2.8 and the uniform Doeblin condition (3).
Remark 2.9 (More properties of the transition kernel from the Doeblin condition). For a tran-
sition kernel K on a metric space X , the Doeblin condition also implies that X is an (accessible)
1-small set. In particular, we get that K satisfies some extra classical properties (that we will
not use here): K is positive (i.e. irreducible and admits a unique invariant probability measure),
strongly aperiodic and Harris recurrent (see [DMPS18, Chapter 9 and 10] for definitions and
details).

We will use the letter p to denote (possibly conditional) probability density. For instance, for
any θ ∈ Θ, yTn

∈ YTn and x∂ ∈ X , we denote by:

pθ(yTn
|X∂ = x∂) = gθ(x∂ , y∂)

∫
X T ∗

n

∏
v∈T ∗

n

qθ(xp(v), xv)gθ(xv, yv)λ(dxv), (5)

the conditional density w.r.t. µ⊗Tn under the parameter θ of YTn
= yTn

conditionally on X∂ = x∂ .
Note that Assumption 3 guarantees that pθ(yTn

|X∂ = x∂) is positive for all yTn
∈ YTn and

x∂ ∈ X .
We are now ready to define the log-likelihood. As discussed in Section 1.2, we will analyze the

log-likelihood of the observed process (Yu, u ∈ Tn) up to generation n conditioned on the hidden
value of the root X∂ = x for some x ∈ X . Thus, for any x ∈ X , we define the log-likelihood
function as:

ℓn,x(θ; yTn
) := log

(
pθ(yTn

|X∂ = x)
)
. (6)

We then define the log-likelihood that we will analyze as the following random variable

ℓn,x(θ) := ℓn,x(θ;YTn
). (7)

For simplicity, we will write ℓn,x(θ) instead of ℓn,x(θ;YTn
) making the dependence on the observed

variables (Yu, u ∈ Tn) implicit. We will keep this convention for all quantities considered in this
article, and only make the dependence explicit when necessary. The MLE is then the maximizer
over Θ of the log-likelihood ℓn,x; we post-pone the precise definition of the MLE to when we will
first use it in Theorem 3.11.
Remark 2.10 (On Assumption 3-(iii)). Note that Assumption 3-(iii) is due to our choice of
conditioning on X∂ = x for some x ∈ X in the log-likelihood ℓn,x(θ) we analyse. Indeed, without
Assumption 3-(iii), there could be a non-zero probability under Pθ⋆ that gθ⋆(x, Y∂) = 0 for some
x ∈ X , implying ℓn,x(θ⋆) = −∞, and thus preventing the MLE to converge to θ⋆. Several
modifications of the log-likelihood ℓn,x(θ) can be considered to get rid of Assumption 3-(iii). A
first option would be to replace pθ(yTn

|X∂ = x) by pθ(yT ∗
n

|X∂ = x) in (6). A second option
would be to extend the tree T and the HMT (X,Y ) to add a parent vertex p(∂) for the root
vertex ∂ (see Section 3.1.1), and then replace pθ(yTn

|X∂ = x) by pθ(yTn
|Xp(∂) = x) in (6).
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Figure 3: Illustration of the subtrees ∆(u, k) and ∆∗(u, k) where vertices in ∆(u, k) and ∆∗(u, k)
are in blue and the vertex u is inside a double circle. From left to right and top to bottom, using
Neveu’s notation, we have ∆(12) = ∆(12, 2), ∆∗(12) = ∆∗(12, 2), ∆(12, 1) and ∆(21) = ∆(21, 2).
Note that ∆(12) and ∆(21) have a different number of vertices, while vertices 12 and 21 are in
the same generation.

2.4 Ergodic theorems with neighborhood-dependent functions
For all u ∈ T and 0 ≤ k ≤ h(u), define the subtrees of T :

∆∗(u, k) = {v ∈ T (pk(u)) : v < u},

and ∆(u, k) = ∆∗(u, k) ∪ {u}. In particular, note that when k = h(u), we have that ∆∗(u) :=
∆∗(u, h(u)) = {v ∈ T : v < u}, and we also write ∆(u) := ∆(u, h(u)). See Figure 3 for an
illustration of those subtrees. The subtree ∆∗(u) represents the past of the vertex u.

For the ergodic convergence results needed in this article, we will need to consider different
functions for each vertex u ∈ T depending on the “shape” of the subtree ∆(u, k) for some common
k ∈ N. For k ∈ N and vertices u, v ∈ T both with height at least k, we say that ∆(u, k) and
∆(v, k) have the same shape if they are equal up to translation, that is, if they are isomorphic
as (finite) rooted plane trees. For k ∈ N and any vertex u ∈ T with h(u) ≥ k, there exists a
unique vu ∈ Gk such that ∆(u, k) and ∆(vu) have the same shape, and we thus define the shape
of ∆(u, k) as:

Sh
(
∆(u, k)

)
= ∆(vu). (8)

Note that as |∆(v)| is different for each v ∈ Gk, thus the shape of ∆(u, k) is characterized by its
size. For any k ∈ N, we define the (finite) set Nk of possible shapes for ∆(u, k) with u ∈ T as:

Nk = {∆(v) : v ∈ Gk}. (9)

For any k ∈ N, we define a collection of neighborhood-shape-dependent functions as a collection
of functions (fS : ZS → R)S∈Nk

where Z ∈ {X ,Y,X × Y}. For such a collection of functions,
we will simply write f∆(u,k) instead of fSh(∆(u,k)). And we will also write f∆(u,k)(Y∆(u,k)) for
the evaluation of f∆(u,k) on Y∆(u,k). Note that indexing such a collection of functions with Gk

or with Nk is equivalent in light of (9).
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We prove the following ergodic convergence lemma for neighborhood-shape-dependent func-
tions. The proof of this lemma relies on the theorems in Appendix A. Note that if Un is uniformly
distributed over Gn with n ≥ k, then Sh(∆(u, k)) is uniformly distributed over Nk.

Lemma 2.11 (Ergodic theorem for neighborhood-dependent functions). Assume that Assump-
tions 1–3 hold. Let k ≥ 0. Let (fS : YS → R)S∈Nk

be a collection of neighborhood-shape-
dependent Borel functions that are in L2(Pθ⋆). Then, we have:

lim
n→∞

1
|Tn|

∑
u∈Tn\Tk−1

f∆(u,k)(Y∆(u,k)) = EUk
⊗ Eθ⋆

[
f∆(Uk)(Y∆(Uk))

]
Pθ⋆-a.s. and in L2(Pθ⋆),

(10)
with the convention T−1 = ∅, and where Uk is uniformly distributed over Gk and independent
of the process X, and EUk

⊗ Eθ⋆ denotes the joint expectation over Uk and X (under the true
parameter θ⋆).

Moreover, there exist finite constants C < ∞ and α ∈ (0, 1) such that:

∀n ≥ k, E


 1

|Tn|
∑

u∈Tn\Tk−1

f∆(u,k)(Y∆(u,k)) − EUk
⊗ Eθ⋆

[
f∆(Uk)(Y∆(Uk))

]2
 ≤ Cαn. (11)

Remark that in the left hand side of (10) the subtrees ∆(u, k) are deterministic, while the
subtree ∆(Uk) is a random function of Uk.

Proof. Using Lemma 2.3, remind that under Assumptions 1–3, the branching Markov process
(X,Y ) is stationary and its transition kernel has a unique invariant probability and is uniformly
geometrically ergodic. Hence, the lemma follows immediately from applying the ergodic Theo-
rems A.2 and A.4 for neighborhood-shape-dependent functions from the appendix.

As T is a plane rooted tree, we can enumerate its vertices as a sequence (vj)j∈N in a breadth-
first-search manner, that is, which is increasing for < (note that u0 = ∂). Note that if Vn is
uniformly distributed over An := {vj : |Tk−1| < j ≤ n} = ∆(vn) \ Tk−1, then the distribution
of Sh(∆(Vn, k)) converges to the uniform distribution over Nk as n → ∞. We will also need the
following variant of Lemma 2.11 where Tn \ Tk−1 is replaced by An.

Lemma 2.12 (Another ergodic theorem for neighborhood-dependent functions). Assume that
Assumptions 1–3 hold. Let k ≥ 0. Let (fS : YS → R)S∈Nk

be a collection of neighborhood-
shape-dependent Borel functions that are in L2(Pθ⋆). Let (vj)j∈N be the sequence enumerating
the vertices in T in a breadth-first-search manner. For all n > |Tk−1|, define An = ∆(vn)\Tk−1.
Then, we have:

lim
n→∞

1
n

∑
u∈An

f∆(u,k)(Y∆(u,k)) = EUk
⊗ Eθ⋆

[
f∆(Uk)(Y∆(Uk))

]
in L2(Pθ⋆),

where Uk is uniformly distributed over Gk and independent of the process X, and EUk
⊗ Eθ⋆

denotes the joint expectation over Uk and X (under the true parameter θ⋆).

Proof. Using Lemma 2.3, remind that under Assumptions 1–3, the branching Markov process
(X,Y ) is stationary and its transition kernel has a unique invariant probability and is uniformly
geometrically ergodic. Hence, the lemma follows immediately from applying the ergodic Theo-
rem A.2 for neighborhood-shape-dependent functions from the appendix.
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3 Strong consistency of the MLE
In this section, we first define the extended tree T∞ to get an infinite past horizon and rewrite
the log-likelihood as a sum of increments. Then, we construct the log-likelihood increments with
infinite past, which allows to define the contrast function. We prove properties for this contrast
function. Finally, we prove the strong consistency of the MLE.

3.1 Decomposition of the log-likelihood into increments
3.1.1 The extended tree T∞ to get an infinite past horizon

Remind that the subtree ∆∗(u) = ∆∗(u, h(u)) represents the past of the vertex u.
To get an infinite past horizon, we will consider an extended version of the tree T . Thus,

we are going to define a random (countable) plane rooted tree T∞ that contains T as a subtree
and is also rooted at ∂ the root vertex of T , and where each vertex (including ∂) has exactly
one parent node and two children nodes. To construct T∞, we start from T and add a line
L = {u−j : j ∈ N∗} of ancestors for ∂ (that is, u−j = pj(∂) for j ∈ N, where u0 = ∂),
and then for all j ∈ N∗, we graft on u−j a copy T (j) of T (that is, u−j is the parent of the
root vertex ∂(j) of T (j)). We extend the height function h from T to T∞ as follows: for all
j ∈ N∗, we set h(u−j) = −j and for all u ∈ T (j), we define h(u) as −j plus the number of edges
separating u from u−j . For u, v ∈ T∞, denote by u ∧ v their most recent common ancestor, and
by d(u, v) = h(u) + h(v) − 2h(u ∧ v) the graph distance between u and v. The definition of the
subtrees T∞(u) and T∞(u, k) then naturally extend to T∞.

Thus, we have constructed the deterministic non-plane version of the tree T∞, and we are
left to define the random plane embedding of T∞. That is, for each vertex u ∈ T∞, we have
to define a possibly random ordering of its children. As T is a plane rooted tree, note that if
u ∈ T or u ∈ T (j) for some j ∈ N∗, then its children are already order deterministically. Let
U = (U(j))−∞<j≤0 be a sequence of independent random variables with Bernoulli distribution of
parameter 1/2, and which is independent of the HMT process (X,Y ). For all j ∈ N, we order the
children of u−j−1, that is u−j and δ(j+1) (the root vertex of T (j)), as follows: u−j is the left child
of u−j−1 if U(−j) = 0, and is the right child otherwise. Hence, we have constructed the random
plane rooted tree T∞. (Note that U can be seen as the random shape of the backward spine of
∂.) See Figure 4 for an illustration of the extended random plane rooted tree T∞. We denote
by PU the distribution of the random sequence U , and by EU the corresponding expectation.

Note that the random plane embedding of T∞ allows to use Neveu’s notation to represent the
random path between any vertex in the plane tree T∞ and one of its descendants as a random
sequence U(k:n) (which depends on U) for some k, n ∈ Z with k < n. The random breadth-first-
search order relation ≤:=≤U can then be naturally extend from T to T∞ using the random plane
embedding of T∞ (which depends on U): we have u ≤ v for u, v ∈ T∞ if either h(u) < h(v), or
h(u) = h(v) and U(k:n) ≤lex V(k:n) where U(k:n) (resp. V(k:n)) is Neveu’s notation for the random
path (which depends on U) from u ∧ v to u (resp. v) with k = h(u ∧ v) + 1 and n = h(u).

Thanks to the stationarity assumption, for all k ∈ N, the HMT process (X,Y ) can be defined
on the (rooted) tree T∞(pk(∂)), and thus by Kolmogorov’s extension theorem, the HMT process
(X,Y ) can be defined on the whole tree T∞. In particular, note that the stationarity assumption
implies that the distribution of the HMT process (X,Y ) is invariant by translation on T∞, that
is, is the same (up to translation) on T and on T∞(u) for any u ∈ T∞. Note that the extended
process does not depend on U . Thus, we will now assume that the HMT process (X,Y ) is defined
on the whole tree T∞.
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Figure 4: Illustration of the construction of the extended random plane rooted tree T∞ (which
is rooted at ∂) for U(−1) = 0 and U(−2) = 1.

For all u ∈ T∞ and k ∈ N, define the subtrees (which are measurable functions of U):

∆∗
U (u, k) = {v ∈ T∞(pk(u)) : v <U u},

and ∆U (u, k) = ∆∗
U (u, k)∪{u}. For simplicity, we will write instead ∆∗(u, k) and ∆(u, k), making

the dependence on the random variable U implicit, and only make the dependence explicit when
necessary. The following fact illustrates that the shape and size of the ∆(u, k) do indeed depend
on the value of U : for u = ∂ and k = 1, note that ∆(∂, 1) contains two vertices if U(0) = 0,
and contains three vertices if U(0) = 1. Remark 3.1 below, which we shall reuse later, further
illustrates the randomness of the set ∆(u, k). However, for u ∈ T and k ≤ h(u), we have
that ∆(u, k) = ∆(u, k) and ∆∗(u, k) = ∆∗(u, k) are deterministic. Also note that we have the
following inclusions:

T∞(u, k − 1) ⊂ ∆(u, k) ⊂ T∞(u, k), (12)
where remind that the subtrees T∞(u, k − 1) and T∞(u, k) are deterministic.
Remark 3.1. For a vertex u = u(1:n) in T with h(u) = n ≥ k, note that ∆(u, k), up to re-rooting
(i.e. up to translation), can be identified with ∆(∂, k) conditioned on U(−k+1:0) = u(n−k+1:n).
In particular, when Un is a random vertex uniformly distributed over Gn for n ≥ k, we get the
following equality between the distribution of the shapes (that is, when the subtrees are seen up
to translation / re-rooting) for the subtrees ∆(∂, k), ∆(Un, k) and ∆(Uk):

Sh
(
∆(∂, k)

) L= Sh(∆(Un, k)) L= ∆(Uk). (13)

Moreover, if (fS : YS → R)S∈Nk
is a collection of neighborhood-shape-dependent Borel functions

that are in L2(Pθ⋆) (as in Lemmas 2.11 and 2.12), then we have:

EU ⊗ Eθ⋆

[
f∆(∂,k)(Y∆(∂,k))

]
= EUk

⊗ Eθ⋆

[
f∆(Uk)(Y∆(Uk))

]
, (14)

where EU ⊗ Eθ⋆ is the expectation corresponding to PU ⊗ Pθ⋆ .

3.1.2 The log-likelihood as a sum of increments

For any (possibly random) subtree ∆ of T∞ with root vertex w, note that we have:

pθ(y∆ |Xw = x) = gθ(x, y∂)
∫

X |∆|−1

∏
v∈∆\{w}

qθ(xp(v), xv)gθ(xv, yv)λ(dxv). (15)
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We will use the convention pθ(Y∆ |Xw = x) = 1 whenever ∆ = ∅ and w is any vertex in T∞.
For all u ∈ T , k ∈ N, x ∈ X and θ ∈ Θ, using the conditional probabilities formula, define:

Hu,k,x(θ) =
∫

X
gθ(xu, Yu)Pθ(Xu ∈ dxu |Y∆∗(u,k), Xpk(u) = x)

=
pθ(Y∆(u,k) |Xpk(u) = x)
pθ(Y∆∗(u,k) |Xpk(u) = x) · (16)

We then define the log-likelihood contribution of node u ∈ T with past over k ∈ N generation as:

hu,k,x(θ) = log
(
Hu,k,x(θ)

)
. (17)

Note that hu,k,x(θ) (resp. Hu,k,x(θ)) is a random variable as a function of Y∆(u,k) with an implicit
dependence on U through ∆(u, k), and that hu,k,x(θ) (resp. Hu,k,x(θ)) does not depend on U is
k ≤ h(u).

Hence, using (6), (7), (16) and (17) and a telescopic sum argument, the log-likelihood of the
observed variables YTn can be rewritten as the sum of the log-likelihood contributions defined in
(17):

ℓn,x(θ) =
∑

u∈Tn

hu,h(u),x(θ). (18)

3.2 Construction of the log-likelihood increments with infinite past
In this subsection, we construct the log-likelihood increment functions with infinite past.

The following lemma states that, as the HMT is uniformly geometrically ergodic, the tree
forgets exponentially fast its starting state. Recall the mixing ratio ρ = 1 − σ−/σ+ ∈ (0, 1) is
defined just after Assumption 3.

Lemma 3.2 (Exponential forgetting of the initial state). Assume that Assumptions 2 and 3
hold. We have for all u ∈ T , θ ∈ Θ, n ∈ N and yTn ∈ YTn , and all initials distributions ν and
ν′ on X , that: ∥∥∥∥∫

X
Pθ

(
Xu ∈ ·

∣∣∣ YTn = yTn , X∂ = x
)

[ν(dx) − ν′(dx)]
∥∥∥∥

TV
≤ ρh(u). (19)

For simplicity, Lemma 3.2 is stated with ∂ as the initial vertex, but note that the results still
holds when replacing ∂ and Tn by v and T (v, n) for any v ∈ T∞. We shall reuse this fact later.

Proof. Fix some u ∈ T , θ ∈ Θ, an integer n and observables yTn
∈ YTn . Denote by u0, · · · , uk

with k = h(u) the vertices on the path from ∂ to u. The proof relies on the fact that conditionally
on YTn = yTn , the sequence (Xuj )0≤j≤k is an inhomogeneous Markov chain where for 1 ≤ j ≤ k,
the (forward smoothing) transition kernel Fj from Xuj−1 to Xuj

is defined if j ≤ n as:

Fj [yT (uj ,n−j)](xuj−1 ; f) = Eθ

[
f(Xuj )

∣∣ YT (uj ,n−j) = yT (uj ,n−j), Xuj−1 = xuj−1

]
= Eθ

[
f(Xuj

)
∣∣ YTn

= yTn
, Xuj−1 = xuj−1

]
=
∫

X f(xuj
)pθ(yT (uj ,n−j) |Xuj

= xuj
)qθ(xuj−1 , xuj

)λ(dxuj
)∫

X pθ(yT (uj ,n−j) |Xuj
= xuj

)qθ(xuj−1 , xuj
)λ(dxuj

)
,

for any xuj−1 ∈ X and any bounded Borel function f on X (note that in the second equality,
we used the Markov property of the HMT process, see (2)); and is defined as Fj = Q for j > n.
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(Note that Assumption 3-(ii) is only used to insure that pθ(yT (uj ,n−j) |Xuj = xuj ) is positive,
and thus the denominator in the last equality is also positive.)

Note that for all 1 ≤ j ≤ k ∧ n, using Assumption 3-(i), the transition kernel Fj satisfies the
following Doeblin condition:

σ−

σ+ νj [yT (uj ,n−j)](f) ≤ Fj [yT (uj ,n−j)](x; f),

where for any bounded Borel function f on X , we have:

νj [yT (uj ,n−j)](f) = Eθ[f(Xuj ) |YT (uj ,n−j) = yT (uj ,n−j)]

=
∫

X f(xuj
)pθ(yT (uj ,n−j) |Xuj

= xuj
)λ(dxuj

)∫
X pθ(yT (uj ,n−j) |Xuj

= xuj
)λ(dxuj

)
·

Note that the difference between the definitions of Fj and νj is that the term qθ(xp(uj), xuj
) has

disappear from both the numerator and the denominator of νj . Remark that (3) also implies
the Doeblin condition σ−λ(·) ≤ Q(x, ·) for the transition kernel Q. Thus, Lemma 2.7 shows
that the Dobrushin coefficient of each transition kernel Fj for 1 ≤ j ≤ k is upper bounded by
ρ = 1 − σ−/σ+. Therefore, as the Dobrushin coefficient is sub-multiplicative (see Lemma 2.5),
applying Lemma 2.4, we get that (19) holds. This concludes the proof.

To construct the limit of the functions hu,k,x(θ) we first prove the following lemma which
states some uniform bound about the asymptotic behavior of those functions when k → ∞.
For this lemma, we need the following assumption on the density function gθ that strengthens
Assumption 3-(ii). Remind that Pθ denotes the stationary probability distribution under the
parameter θ ∈ Θ of the HMT process (X,Y ), and by Eθ the corresponding expectation.

Assumption 4 (L1 regularity, [CMR05, Assumption 12.3.1]). Assume that we have:

(i) b+ := 1 ∧ supθ supx,y gθ(x, y) < ∞.

(ii) Eθ⋆ | log b−(Y∂)| < ∞, where b−(y) := infθ

∫
X gθ(x, y)λ(dx).

Note that b−(y) > 0 for all y ∈ Y by Assumption 2-(ii).

Lemma 3.3 (Uniform bounds for hu,k,x(θ)). Assume that Assumptions 2–3 and 4-(ii) hold. For
all vertices u ∈ T and all integers k, k′ ∈ N∗, the following assertions hold true:

sup
θ∈Θ

sup
x,x′∈X

|hu,k,x(θ) − hu,k′,x′(θ)| ≤ ρ(k∧k′)−1

1 − ρ
, (20)

sup
θ∈Θ

sup
k∈N∗

sup
x∈X

|hu,k,x(θ)| ≤ log b+ ∨ | log(σ−b−(Yu))|. (21)

Proof. [The proof is a straightforward adaptation of the proof of [CMR05, Lemma 12.3.2] using
Lemma 3.2 for the coupling.] Remind the definition of Hu,k,x(θ) in (16). Let k′ ≥ k ≥ 1, and
write w = pk(u), w′ = pk′(u). Then, write:

Hu,k,x(θ) =
∫

X ×X

[∫
X
gθ(xu, Yu)qθ(xp(u), xu)λ(dxu)

]
× Pθ(Xp(u) ∈ dxp(u) |Y∆∗(u,k), Xw = xw) × δx(dxw), (22)
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and using the Markov property at Xw, write:

Hu,k′,x′(θ) =
∫

X ×X

[∫
X
gθ(xu, Yu)qθ(xp(u), xu)λ(dxu)

]
× Pθ(Xp(u) ∈ dxp(u) |Y∆∗(u,k), Xw = xw)
× Pθ(Xw ∈ dxw |Y∆∗(u,k′), Xw′ = x′). (23)

Applying Lemma 3.2, we get (note that the integrands in (22) and (23) are non-negative):

|Hu,k,x(θ) − Hu,k′,x′(θ)| ≤ ρk−1 sup
xp(u)∈X

∫
X
gθ(xu, Yu)qθ(xp(u), xu)λ(dxu)

≤ ρk−1σ+
∫

X
gθ(xu, Yu)λ(dxu). (24)

The integral in (22) can be lower bounded giving us:

Hu,k,x(θ) ≥ σ−
∫

X
gθ(xu, Yu)λ(dxu), (25)

where the right hand side is positive by Assumption 3-(ii); and similarly for (23). Combining
(24) with (25), and with the inequality | log x− log y| ≤ |x− y|/(x∧ y), we get the first assertion
of the lemma:

|hu,k,x(θ) − hu,k′,x′(θ)| ≤ σ+

σ− ρ
k−1 = ρk−1

1 − ρ
·

Combining (16) and (25), we get that σ−b−(Yu) ≤ Hu,k,x(θ) ≤ b+ (remind that b−(Yu) > 0 by
Assumption 3-(ii)), which yields the second assertion of the lemma.

We are now ready to construct the limit of the functions hu,k,x(θ) and state some properties
of this limit. Note that this result is stated for every u ∈ T , but we will only need it for u = ∂.
Remind that we are in the stationary case, and that the HMT process (X,Y ) is defined on T∞.

Proposition 3.4 (Properties of the limit function hu,∞(θ)). Assume that Assumptions 1–4 hold.
For every u ∈ T and θ ∈ Θ, there exists hu,∞(θ) ∈ L1(PU ⊗ Pθ⋆) such that for all x ∈ X , the
sequence (hu,k,x(θ))k∈N converges PU ⊗ Pθ⋆-a.s. and in L1(PU ⊗ Pθ⋆) to hu,∞(θ).

Furthermore, this convergence is uniform over θ ∈ Θ and x ∈ X , that is, we have that
limk→∞ supθ∈Θ supx∈X |hu,k,x(θ) − hu,∞(θ)| = 0 PU ⊗ Pθ⋆-a.s. and in L1(PU ⊗ Pθ⋆).

The limit function hu,∞(θ) can be interpreted as log pθ(Yu |Y∆∗(u,∞)), where ∆∗(u,∞) =
{v ∈ T∞ : v <U u} is a random subset of vertices. Note that hu,∞(θ) is a function of the
random set of variables (Yv, v ∈ ∆(u,∞)), where ∆(u,∞) = ∆∗(u,∞) ∪ {u}, and thus implicitly
depend on U trough ∆(u,∞).

Proof. Fix some u ∈ T . Note that (20) shows that the sequence (hu,k,x(θ))k∈N is Cauchy uni-
formly in θ and x, and thus has PU ⊗ Pθ⋆ -almost surely a limit when k → ∞ which does not
depend on x; we denote this limit by hu,∞(θ). Furthermore, we get from (21) that (hu,k,x(θ))k∈N
is uniformly bounded in L1(PU ⊗Pθ⋆), and thus hu,∞(θ) is in L1(PU ⊗Pθ⋆) and the convergence
also holds in L1(PU ⊗ Pθ⋆). Finally, as the bound in (20) is uniform in θ and x, we get that the
convergence holds uniform over θ and x both PU ⊗ Pθ⋆ -almost surely and in L1(PU ⊗ Pθ⋆).
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3.3 Properties of the contrast function
As the functions h∂,∞(θ) are in L1(PU ⊗Pθ⋆) under the assumptions used in Proposition 3.4, we
can now define the contrast function ℓ (which is deterministic) as:

ℓ(θ) = EU ⊗ Eθ⋆

[
h∂,∞(θ)

]
, (26)

where remind EU ⊗ Eθ⋆ is the expectation corresponding to PU ⊗ Pθ⋆ .
We prove under the following L2 regularity assumption the convergence of the normalized

log-likelihood to the contrast function. Remind that b−(y) = infθ

∫
X gθ(x, y)λ(dx). Also remind

that Pθ denotes the stationary probability distribution under the parameter θ ∈ Θ of the HMT
process (X,Y ), and by Eθ the corresponding expectation.

Assumption 5 (L2 regularity). Assume that Eθ⋆

[
(log b−(Y∂))2] < ∞.

Remind that the log-likelihood ℓn,x is defined in (7) on page 11.

Proposition 3.5 (Ergodic convergence for the stationary log-likelihood). Assume that Assump-
tions 1–5 hold. Then, for all x ∈ X , the normalized log-likelihood |Tn|−1ℓn,x(θ) converges Pθ⋆-a.s.
to the contrast function ℓ(θ) as n → ∞.

Proof. Let θ ∈ Θ be some parameter. Fix some k ∈ N∗ and x ∈ X . Remind that ℓn,x(θ) =∑
u∈Tn

hu,h(u),x(θ). Applying (20) for each vertex u ∈ Tn \ Tk−1, we get:

1
|Tn|

∣∣∣∣∣∣ℓn,x(θ) −
∑

u∈Tn\Tk−1

hu,k,x(θ)

∣∣∣∣∣∣ ≤ ρk−1

1 − ρ
+ 1

|Tn|
∑

u∈Tk−1

|hu,h(u),x(θ)|. (27)

Note that by (21), we have that |hu,h(u),x(θ)| < ∞ Pθ⋆ -a.s. for all u ∈ T \ {∂}. For u = ∂, we
have h∂,0,x(θ) = log gθ(x, Y∂) which is finite Pθ⋆ -a.s. by Assumption 3-(iii).

For a vertex u in T \ Tk−1, let vu ∈ Gk be the unique vertex that satisfies (8) (on page 12),
then we have:

hu,k,x(θ;Y∆(u,k) = y∆(u,k)) = hvu,k,x(θ;Y∆(vu) = y∆(u,k)). (28)
Moreover, using (21) together with Assumption 5, we get for every u ∈ T \ Tk−1 that the
random variable hu,k,x(θ;Y∆(u,k)) is in L2(Pθ⋆). Hence, applying Lemma 2.11 to the collection
of neighborhood-shape-dependent functions (hv,k,x(θ;Y∆(v) = ·))v∈Gk

(remind that indexing
functions with Gk or with Nk is equivalent by (9)), and using (28) and (14) (in Remark 3.1), we
get:

|Tn|−1
∑

u∈Tn\Tk−1

hu,k,x(θ) −→
n→∞

EU ⊗ Eθ⋆

[
h∂,k,x(θ)

]
Pθ⋆ -a.s. (and in L2(Pθ⋆)). (29)

Using (20) with Proposition 3.4, we get:∣∣EU ⊗ Eθ⋆

[
h∂,k,x(θ)

]
− EU ⊗ Eθ⋆

[
h∂,∞(θ)

]∣∣ ≤ ρk−1

1 − ρ
·

Thus, combining this bound with (27) and (29), we get Pθ⋆ -a.s. that:

lim sup
n→∞

∣∣∣|Tn|−1ℓn,x(θ) − EU ⊗ Eθ⋆

[
h∂,∞(θ)

]∣∣∣ ≤ 2 ρk−1

1 − ρ
·

As the left hand side does not depend on k, letting k → ∞, we get that |Tn|−1ℓn,x(θ) converges
Pθ⋆ -a.s. to ℓ(θ) as n → ∞. This concludes the proof.
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We are going to prove that this convergence holds uniformly in θ. First, we need to prove
that the contrast function is continuous and has a unique global maximum at θ⋆. In order to get
those results, we need a natural continuity assumption on the transition functions.

Assumption 6 (Continuity, [CMR05, Assumption 12.3.5]). For all (x, x′) ∈ X × X and y ∈ Y,
the functions θ 7→ qθ(x′, x) and θ 7→ gθ(x, y) defined on Θ ⊂ Rd are continuous.

We denote by ∥ · ∥ the euclidean norm on Rd.

Proposition 3.6 (ℓ is continuous). Assume that Assumptions 1–4 and 6 hold. Then, for any
n ∈ N and x ∈ X , the log-likelihood function θ 7→ ℓn,x(θ) is Pθ⋆-a.s. continuous on Θ.

Moreover, for any θ ∈ Θ, we have:

EU ⊗ Eθ⋆

[
sup

θ′∈Θ:∥θ−θ′∥≤δ

∣∣h∂,∞(θ′) − h∂,∞(θ)
∣∣] → 0 as δ → 0,

and the contrast function θ 7→ ℓ(θ) is continuous on Θ.

Proof. This proof is a straightforward adaptation from the proof of [CMR05, Proposition 12.3.6].
Recall that h∂,∞(θ) is the limit of h∂,k,x(θ) as k → ∞. We first prove that, for every x ∈ X

and k ≥ 0, h∂,k,x(θ) is a continuous function of θ, and then use this to show continuity of the
limit. Recall from (16) the second equality defining Hu,k,x(θ), which we remind for convenience
for any u ∈ T and x ∈ X :

Hu,k,x(θ) =
pθ(Y∆(u,k) |Xpk(u) = x)
pθ(Y∆∗(u,k) |Xpk(u) = x) ·

Recall from (15) the definition of pθ(Y∆ |Xpk(u) = x) where here the possibly random subtree
∆ is either ∆(u, k) or ∆∗(u, k). First note that the integrand in (15) is by assumption contin-
uous w.r.t. θ and upper bounded by (1 ∨ σ+b+)|∆|. Thus, dominated convergence shows that
pθ(Y∆ |Xpk(u) = x) is continuous w.r.t. to θ (remind that λ, defined in Assumption 2, is finite).
Moreover, note that pθ(Y∆∗(u,k) |Xpk(u) = x) is lower bounded by

∏
v∈∆∗(u,k)\{pk(u)} σ

−b−(Yv)
which is positive PU ⊗ Pθ⋆ -a.s. (by Assumption 3). Thus, Hu,k,x(θ) and hu,k,x(θ) = log Hu,k,x(θ)
(remind (17)) are continuous w.r.t. θ PU ⊗ Pθ⋆ -a.s. as well. Hence, using (6), for all n ∈ N and
x ∈ X , we get that ℓn,x(θ) is also continuous w.r.t. θ Pθ⋆ -a.s.

Remind from Proposition 3.4 that (hu,k,x(θ))k∈N converges to hu,∞(θ) uniformly in θ PU ⊗Pθ⋆ -
a.s. Thus, the function θ 7→ hu,∞(θ) is continuous PU ⊗ Pθ⋆ -a.s. Using the uniform bound (21),
Assumption 4-(ii) and dominated convergence, we obtain the first part of the proposition.

We deduce the second part from the first one, as:

sup
θ′∈Θ:∥θ′−θ∥≤δ

|ℓ(θ′) − ℓ(θ)| = sup
θ′∈Θ:∥θ′−θ∥≤δ

∣∣EU ⊗ Eθ⋆ [h∂,∞(θ′) − h∂,∞(θ)]
∣∣

≤ EU ⊗ Eθ⋆

[
sup

θ′∈Θ:∥θ−θ′∥≤δ

|h∂,∞(θ′) − h∂,∞(θ)|
]
.

This concludes the proof.

We are now ready to state and prove that the convergence to the contrast function ℓ holds
uniformly in θ.
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Proposition 3.7 (Uniform convergence to ℓ). Assume that Assumptions 1–6 hold and Θ is
compact. Then, we have:

lim
n→∞

sup
θ∈Θ

∣∣∣|Tn|−1ℓn,x(θ) − ℓ(θ)
∣∣∣ = 0 Pθ⋆-a.s.

Proof. [We mimic the proof of [CMR05, Proposition 12.3.7].] As Θ is compact, it is sufficient to
prove that for every θ ∈ Θ:

lim sup
δ→0

lim sup
n→∞

sup
θ′∈Θ:∥θ′−θ∥≤δ

∣∣∣|Tn|−1ℓn,x(θ′) − ℓ(θ)
∣∣∣ = 0 Pθ⋆ -a.s. (30)

As this claim is not proven in the proof of [CMR05, Proposition 12.3.7], we give a short proof.
Indeed, assume that (30) holds for all θ ∈ Θ. Let ε > 0. By Proposition 3.6, the function ℓ is
continuous, and thus uniformly continuous as Θ is compact. In particular, there exists δ > 0
such that for all θ, θ′ ∈ Θ, we have that ∥θ − θ′∥ ≤ δ implies |ℓ(θ) − ℓ(θ′)| ≤ ε. For every
θ ∈ Θ, let δθ ∈ (0, δ) be such that lim supn→∞ supθ′∈Θ:∥θ′−θ∥≤δθ

∣∣∣|Tn|−1ℓn,x(θ′) − ℓ(θ)
∣∣∣ < ε. As

∪θ∈Θ{θ′ : ∥θ′ − θ∥ ≤ δθ} is an open cover of Θ and as Θ is compact, there exists a finite subset
{θj : 1 ≤ j ≤ m} of Θ with m ≥ 1 such that Θ = ∪m

j=1{θ′ : ∥θ′ − θj∥ ≤ δθj
}. Note that for

n large enough, for all 1 ≤ j ≤ m, we have that supθ′∈Θ:∥θ′−θj∥≤δθj

∣∣∣|Tn|−1ℓn,x(θ′) − ℓ(θj)
∣∣∣ < ε.

Thus, for n large enough, we have:

sup
θ∈Θ

∣∣∣|Tn|−1ℓn,x(θ) − ℓ(θ)
∣∣∣ ≤ ε+ max

1≤j≤m
sup

θ′∈Θ:∥θ′−θj∥≤δθj

∣∣∣|Tn|−1ℓn,x(θ′) − ℓ(θj)
∣∣∣ ≤ 2ε.

This being true for all ε > 0, we get that the statement in the proposition holds.

We now prove (30). Fix some θ ∈ Θ. Remind that by Proposition 3.5, we have that
limn→∞ |Tn|−1ℓn(θ) = ℓ(θ) Pθ⋆ -a.s. Using this fact, we get:

lim sup
n→∞

sup
θ′∈Θ:∥θ′−θ∥≤δ

∣∣∣|Tn|−1ℓn,x(θ′) − ℓ(θ)
∣∣∣

= lim sup
n→∞

sup
θ′∈Θ:∥θ′−θ∥≤δ

∣∣∣|Tn|−1ℓn,x(θ′) − |Tn|−1ℓn,x(θ)
∣∣∣. (31)

Using (27), for any k ≥ 1, we get that (31) is Pθ⋆ -a.s. bounded by:

2 lim sup
n→∞

sup
θ′∈Θ:∥θ′−θ∥≤δ

|Tn|−1
∣∣∣ℓn,x(θ′) −

∑
u∈Tn\Tk−1

hu,k,x(θ′)
∣∣∣

+ lim sup
n→∞

|Tn|−1
∑

u∈Tn\Tk−1

sup
θ′∈Θ:∥θ′−θ∥≤δ

∣∣∣hu,k,x(θ′) − hu,k,x(θ)
∣∣∣

≤ 2 ρ
k−1

1 − ρ
+ lim sup

n→∞
|Tn|−1

∑
u∈Tn\Tk−1

sup
θ′∈Θ:∥θ′−θ∥≤δ

∣∣∣hu,k,x(θ′) − hu,k,x(θ)
∣∣∣

= 2 ρ
k−1

1 − ρ
+ EU ⊗ Eθ⋆

[
sup

θ′∈Θ:∥θ′−θ∥≤δ

∣∣∣h∂,k,x(θ′) − h∂,k,x(θ)
∣∣∣]

≤ 4 ρ
k−1

1 − ρ
+ EU ⊗ Eθ⋆

[
sup

θ′∈Θ:∥θ′−θ∥≤δ

∣∣∣h∂,∞(θ′) − h∂,∞(θ)
∣∣∣] ,

(32)
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where we used Lemma 2.11 for ergodic convergence (with L2(Pθ⋆) boundedness given by (21))
in the equality, and we used (20) (with Proposition 3.4) in the second inequality. Then, letting
k → ∞ in the upper bound of (32) (note that (31) does not depend on k), and then letting δ → 0
with Proposition 3.6, we get that (30) holds. This concludes the proof.

Remark 3.8 (Uniform convergence for the log-likelihood with general initial condition). Let ν
be a probability distribution on X such that supθ |

∫
gθ(x, Y∂)ν(dx)| is finite Pθ⋆ -a.s. The uniform

convergence of |Tn|−1ℓn,x(θ) to ℓ(θ) still holds when modifying the definition of the log-likelihood
ℓn,x(θ) of the HMT to replace the Dirac mass δx by ν for the distribution of the root hidden
variable X∂ . When ν is the stationary distribution πθ associated to qθ, uniform convergence holds
without this extra regularity assumption by conditioning on the state of the root’s parent Xp(∂)
instead (which allows to replace h∂,0,x(θ) = gθ(x, Y∂) in (27) by h∂,1,ν(θ) := log

∫
X H∂,1,x(θ) ν(dx)

for which supθ |h∂,1,ν(θ)| is finite by an immediate adaptation of (21)).

3.4 Identifiability and strong consistency
In this subsection, we prove the strong consistency of the MLE. We must first study the identifi-
ability of the parameter of the HMT model. We start with a definition of equivalent parameters.

Definition 3.9 (Equivalent parameters). We say that two parameters θ, θ′ ∈ Θ are equivalent
if they define the same distribution for the process (Yu, u ∈ T ), i.e. Pθ(Y ∈ ·) = Pθ′(Y ∈ ·).

Note that by Kolmogorov’s extension theorem, θ and θ′ are equivalent if and only if they
define the same law on every finite tree Tn, i.e. for (Yu, u ∈ Tn).

The following proposition characterizes global maxima of the contrast function ℓ.

Proposition 3.10 (Global maxima of the contrast function ℓ). Assume that Assumptions 1–5
hold. Then a parameter θ ∈ Θ is a global maximum of ℓ if and only if θ is equivalent to θ⋆.

We get as an immediate corollary that θ⋆ is a global maximum of ℓ.
The proof of Proposition 3.10, which is postponed to the end of this section, is an adaptation

of the proof of [CMR05, Theorem 12.4.2]. This adaptation comes from the difference of topology
between the tree and the line.

Remind that the log-likelihood function θ 7→ ℓn,x(θ) is continuous Pθ⋆ -a.s. under Assump-
tions 1-4 and 6. Thus, when we further assume that Θ is compact, we get that the argmax set
argmaxθ∈Θ ℓn,x(θ) is non-empty. The maximum likelihood estimator (MLE) is then defined as
the maximizer over Θ of the log-likelihood ℓn,x, that is as the following random variable (which
depends on YTn

):
θ̂n,x = θ̂n,x(YTn

) ∈ argmaxθ∈Θ ℓn,x(θ). (33)

Note that the argmax set in (33) is not necessarily unique, in which case we select one parameter
θ from the argmax set in a measurable manner (which is possible, see [BS96, Proposition 7.33]).

We are now ready to prove the following theorem that states the strong consistency of the
MLE for the HMT model in the stationary case.

Theorem 3.11 (Strong consistency of the MLE). Assume that Assumptions 1–6 hold, the con-
trast function ℓ has a unique maximum (which is then located at θ⋆ ∈ Θ by Proposition 3.10)
and Θ is compact. Then, for any x ∈ X , the MLE θ̂n,x (defined in (33)) converges Pθ⋆-a.s. as
n → ∞ to the true parameter θ⋆ ∈ Θ, i.e. the MLE is strongly consistent.
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Proof. [The proof is a straightforward adaptation of an argument for HMMs in [CMR05, Sec-
tion 12.1], which itself adapts an argument that goes back to [Wal49].]

By definition of θ̂n, we have that ℓn,x(θ̂n) ≥ ℓn,x(θ) for every θ ∈ Θ. As the contrast function
ℓ has a unique maximum located at θ⋆, we have that ℓ(θ⋆) ≥ ℓ(θ) for every θ ∈ Θ, and in
particular, ℓ(θ⋆) ≥ ℓ(θ̂n) for every n ∈ N. Combining those two bounds, we get that:

0 ≤ ℓ(θ⋆) − ℓ(θ̂n)
≤ ℓ(θ⋆) − |Tn|−1ℓn,x(θ⋆) + |Tn|−1ℓn,x(θ⋆) − |Tn|−1ℓn,x(θ̂n) + |Tn|−1ℓn,x(θ̂n) − ℓ(θ̂n)

≤ 2 sup
θ∈Θ

∣∣∣ℓ(θ) − |Tn|−1ℓn,x(θ)
∣∣∣,

where the upper bound in the last line goes to zero Pθ⋆ -a.s. as n → ∞ by Proposition 3.7 as Θ is
compact. Hence, we get that ℓ(θ̂n) → ℓ(θ⋆) Pθ⋆ -a.s. as n → ∞. Consequently, as ℓ is continuous
(by Proposition 3.6) and has a unique global maximum located at θ⋆, and as Θ is compact, we
get that θ̂n converges Pθ⋆ -a.s. to θ⋆ as n → ∞.

We now prove Proposition 3.10.

Proof of Proposition 3.10. Remind that hu,k,x(θ) is defined in (17). By definition of ℓ(θ) (see
(26)) and using the L1(PU ⊗ Pθ⋆) convergence of (h∂,k,x(θ))k∈N to h∂,∞(θ) (remind Proposi-
tion 3.4), we have:

ℓ(θ⋆) − ℓ(θ) = EU ⊗ Eθ⋆

[
h∂,∞(θ⋆) − h∂,∞(θ)

]
= EU ⊗ Eθ⋆

[
lim

k→∞

(
h∂,k,x(θ⋆) − h∂,k,x(θ)

)]
= lim

k→∞
EU ⊗ Eθ⋆

[
h∂,k,x(θ⋆) − h∂,k,x(θ)

]
.

Remind that Hu,k,x(θ) is defined in (16). Then, write:

Eθ⋆ [h∂,k,x(θ⋆) − h∂,k,x(θ)] = EU

[
Eθ⋆

[
Eθ⋆

[
log H∂,k,x(θ⋆)

H∂,k,x(θ)

∣∣∣∣Y∆∗(∂,k), Xpk(∂) = x

]]]
, (34)

where the inner expectation is on Y∂ conditionally on Xpk(∂) = x and Y∆∗(∂,k) (and thus also
implicitly on U as ∆∗(∂, k) = ∆∗

U (∂, k)). Recalling from (16) that H∂,k,x(θ) is the conditional
density of Y∂ given Y∆∗(∂,k) and Xpk(∂) = x, we see that the inner (conditional) expectation in
the right hand side is a Kullback-Leibler divergence and thus is non-negative. Hence, the two
outer expectations and the limit ℓ(θ⋆) − ℓ(θ) as k → ∞ are non-negative as well, and thus θ⋆ is
a global maximum of ℓ.

Remark that if θ is equivalent to θ⋆, then as the process (Yu, u ∈ T ) is stationary and has
same law under both parameters, the roles of θ⋆ and θ can be swapped in the argument above,
and thus we get ℓ(θ) = ℓ(θ⋆). Hence, any θ equivalent to θ⋆ is a global maximum of ℓ.

We now turn to prove that any global maximum θ ∈ Θ of ℓ is equivalent to θ⋆.
Remind that we use the letter p to denote (possibly conditional) densities of random variables,

e.g. pθ(Yu |Y∆∗(u,k), Xpk(u) = x) denotes the conditional density (w.r.t. the measure µ defined
in Assumption 2-(i)) under the parameter θ of Yu conditionally on Y∆∗(u,k) and Xpk(u) = x.
Note that Pθ(Yu ∈ · |Y∆∗(u,k), Xpk(u) = x) denotes the distribution under the parameter θ of Yu

conditionally on Y∆∗(u,k) and Xpk(u) = x.
We first need a variant of the convergence in Proposition 3.4 where instead of considering one

vertex u as in hu,k,x(θ) we consider a whole subtree T∞(u,m) for any m ≥ 1 (this can be seen as
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∂

1

11
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12
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2

21
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Figure 5: Illustration of the “past” subtree ∆∗(T (u,m), k) of the block subtree T (u,m) for m = 1,
u = 12 and k = 1. The block subtrees are circled with blue lines, and the block subtree T (12, 1)
is circled a second time with a red line. The vertices in green are those in ∆∗(T (12, 1), 1). Note
the difference with ∆(u′, k′), e.g. vertex 111 is in ∆∗(T (12, 1), 1) but not in ∆∗(12, 2), and vertex
21 is in ∆∗(121, 3) but not in ∆∗(T (12, 1), 1).

a convergence by block). To this end, we need to define an analogue of the breadth-first-search
order relation < on T∞ for subtree blocks of the form T∞(u,m). Let m ≥ 1 be fixed. For
u, v ∈ T∞ with h(u) ≡ h(v) mod m + 1, we write T∞(u,m) < T∞(v,m) if u < v (informally,
“T∞(u,m) is above or on the left of T∞(v,m)”). Note that the modulo congruence is there to
insure the collection of block subtrees T∞(u,m) with h(u) ≡ h(∂) mod m+ 1 form a partition
(i.e. a cover with non-overlapping subsets) of T∞ (this still holds for any other class of congruence
mod m+ 1). Also note that in this congruence we have m+ 1 and not m, because any subtree
T∞(u,m) (e.g. Tm = T∞(∂,m)) spans over m+ 1 different generations (remind that h(∂) = 0).
We can then define the analogue of the subset ∆∗(u, k) for subtree blocks, that is, for all u ∈ T∞

and k ∈ N, we define:

∆∗(T (u,m), k) =
⋃{

T (v,m) : v ∈ ∆∗(u, k(m+ 1)) such that h(v) ≡ h(u) mod m+ 1
}
.

See Figure 5 for an illustration of the “past” subtree ∆∗(T (u,m), k) of the block subtree T (u,m).
(Informally, “the subset ∆∗(T (u,m), k) is the union of the subtree blocks (with height m) above
and on the left of T (u,m) up to k block generations”. Note that we will not need to understand
in details the geometry of the subset ∆∗(T (u,m), k), we only need to remember that all its
vertices are upstream of the edge (p(u), u), and we will then use the Markov property.) Remind
that T∞(∂,m) = Tm. Then, a straightforward adaptation of Lemma 3.3, and Propositions 3.4
and 3.5 to a decomposition of the log-likelihood into non-overlapping subtrees of height m instead
of single vertices (see Appendix C for detailed proofs of those adaptations) give us for all θ ∈ Θ,
x ∈ X and m ∈ N∗:

lim
k→∞

EU ⊗ Eθ⋆

[
log pθ(YTm

|Y∆∗(Tm,k), Xpk(m+1)(∂) = x)
]

= |Tm| ℓ(θ). (35)

Let U+ = (U(j))1≤j<∞ be a sequence of independent random variables with Bernoulli dis-
tribution of parameter 1/2 (note that U+ can be seen as a random forward spine), which is
independent of U and of the HMT process (X,Y ). For all n ∈ N∗, define the random vertex Un

as the unique vertex in Gn whose path from ∂ is encoded by U(1:n) in Neveu’s notation. For all
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n ∈ N, define the deterministic vertex U−n = pn(∂). Note that ∂ = U0 and that Un−1 is the
parent vertex of Un for all n ∈ Z. Moreover, using a similar argument as in Remark 3.1, note
that for any m, k ∈ N, the sequence of random shapes (Sh(∆(T∞(Un,m), k)))n∈Z is stationary.

Now, pick θ ∈ Θ such that ℓ(θ) = ℓ(θ⋆). Thus for any positive integer n < m, we have:

0 = |Tm| (ℓ(θ⋆) − ℓ(θ))

= lim
k→∞

EU ⊗ Eθ⋆

[
log

pθ⋆(YTm |Y∆∗(T (∂,m),k), Xpk(m+1)(∂) = x)
pθ(YTm |Y∆∗(T (∂,m),k), Xpk(m+1)(∂) = x)

]

= lim
k→∞

{
EU ⊗ Eθ⋆

[
log

pθ⋆(YT (Um−n,n) |Y∆∗(T (∂,m),k), Xpk(m+1)(∂) = x)
pθ(YT (Um−n,n) |Y∆∗(T (∂,m),k), Xpk(m+1)(∂) = x)

]

+EU ⊗ Eθ⋆

[
log

pθ⋆(YTm\T (Um−n,n) |Y∆∗(T (∂,m),k)∪T (Um−n,n), Xpk(m+1)(∂) = x)
pθ(YTm\T (Um−n,n) |Y∆∗(T (∂,m),k)∪T (Um−n,n), Xpk(m+1)(∂) = x)

]}

≥ lim sup
k→∞

EU ⊗ Eθ⋆

[
log

pθ⋆(YT (Um−n,n) |Y∆∗(T (∂,m),k), Xpk(m+1)(∂) = x)
pθ(YT (Um−n,n) |Y∆∗(T (∂,m),k), Xpk(m+1)(∂) = x)

]

= lim sup
k→∞

EU ⊗ Eθ⋆

[
log

pθ⋆(YTn
|Y∆∗(T (U−m+n,m),k), Xpk(m+1)(U−m+n) = x)

pθ(YTn |Y∆∗(T (U−m+n,m),k), Xpk(m+1)(U−m+n) = x)

]
, (36)

where the inequality follows by noting that the second term is non-negative as an expectation of
a (conditional) Kullback-Leibler divergence (using an argument similar as for (34) above), and
the last equality follows by using stationarity of the HMT process (X,Y ), of the spinal process
(Un)n∈Z, and of the shape process (Sh(∆(T∞(Un,m), k)))n∈Z. Note that the term in the lower
bound is also non-negative as an expectation of a (conditional) Kullback-Leibler divergence.

Let n ∈ N be fixed. Now, we define for all θ ∈ Θ and m, k ∈ N∗:

Wm,k(θ) = log pθ(YTn |Y∆∗(T (U−m,m+n),k), Xpk(m+n+1)(U−m) = x),
and W (θ) = log pθ(YTn

). (37)

Note that log pθ(YTn) is well defined using an integral expression similar to (5) along Assump-
tions 2 and 3 and the comment on πθ after Lemma 2.3. From (36), we deduce that (where m in
(37) and (38) below corresponds to m− n in (36)):

∀m ∈ N∗, lim
k→∞

EU ⊗ Eθ⋆

[
Wm,k(θ⋆) −Wm,k(θ)

]
= 0. (38)

Hence, we have managed to insert a gap between the variables (Yv, v ∈ Tn) whose density we
examine and the variables (Yv, v ∈ ∆∗(T (U−m,m + n), k)) and Xpk(m+n+1)(U−m) that appear in
the conditioning. Remark that the following fact illustrates the gap between the variables: if
u ∈ Tn and v ∈ ∆∗(T (U−m,m + n), k), then the most recent common ancestor u ∧ v of u and
v has height h(u ∧ v) < −m, that is u ∧ v is an ancestor of U−m. See Figure 6 for a graphical
illustration of this gap.

The idea is now to let this gap tend to infinity to show that in the limit the conditioning has
no effect. Our next goal is thus to prove that:

lim
m→∞

sup
k∈N

∣∣∣EU ⊗ Eθ⋆

[
Wm,k(θ⋆) −Wm,k(θ)

]
− Eθ⋆

[
W (θ⋆) −W (θ)

]∣∣∣ = 0. (39)

Combining (39) with (38), it is clear that if θ ∈ Θ is such that ℓ(θ) = ℓ(θ⋆), then we have
that Eθ⋆ [log[pθ⋆(YTn

)/pθ(YTn
)]] = 0, that is, the Kullback-Leibler divergence between the |Tn|-

dimensional densities pθ⋆(YTn
) and pθ(YTn

) is null. This implies, by the information inequality,
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T (U−m,m+ n)

U−m

∂ = U0

Tn

U−m−k(m+n+1)

∆∗(T (U−m,m+ n), k)

Figure 6: Illustration of the gap in (38) between the variables (Yv, v ∈ Tn) (bottom triangle in
blue) and the variables (Yv, v ∈ ∆∗(T (U−m,m+ n), k)) and Xpk(m++n1)(U−m) that appear in the
conditioning (top partial triangle in red). Note that the two groups of variables are separated
by the path from U−m−1 = p(U−m) to ∂ = U0, which is of length m+ 1.

that these densities coincide except on a set with µ⊗|Tn|-measure zero, so that the Tn-marginal
laws of Pθ⋆ and Pθ agree. Because n was arbitrary, we find that θ⋆ and θ are equivalent.

What remains to do to complete the proof is thus to prove (39). Remind the definition of
Wm,k(θ) and W (θ) in (37). Obviously, it is enough to prove that for all θ ∈ Θ, we have:

lim
m→∞

EU ⊗ Eθ⋆

[
sup
k∈N

|Wm,k(θ) −W (θ)|
]

= 0. (40)

Let θ ∈ Θ be fixed. To prove that (40) holds for θ, we write (remind the discussion above on the
gap between variables):

exp(Wm,k(θ)) = pθ(YTn
|Y∆∗(T (U−m,m+n),k), Xpk(m+n+1)(U−m) = x)

=
∫

X ×X
pθ(YTn

|Xp(∂) = xp(∂))Qm−1
θ (xU−m

; dxp(∂))

× Pθ(XU−m
∈ dxU−m

|Y∆∗(T (U−m,m+n),k), Xpk(m+n+1)(U−m) = x),

and

exp(W (θ)) = pθ(YTn
) =

∫
X ×X

pθ(YTn
|Xp(∂) = xp(∂))Qm−1

θ (xU−m
; dxp(∂))πθ(dxU−m

),

where remind from Lemma 2.3 that πθ is the stationary distribution of the process (Xu, u ∈ T∞)
with transition kernel Qθ (that is, under the distribution Pθ). Note that we have the upper
bound (remind that b+ is defined in Assumption 4):

pθ(YTn
|Xp(∂) = xp(∂)) =

∫
X Tn

∏
u∈Tn

qθ(xp(u), xu)gθ(xu, Yu)λ(dxu) ≤ (b+)|Tn|. (41)

Thus, as Assumptions 2 and 3 hold, applying the uniform geometric bound from Lemma 2.3 to
the Markov chain (XUj )j∈Z with transition kernel Qθ, we obtain Pθ⋆ -a.s. :

sup
k∈N

∣∣∣pθ(YTn
|Y∆∗(T (U−m,m+n),k), Xpk(m+n+1)(U−m) = x) − pθ(YTn

)
∣∣∣ ≤ (b+)|Tn|(1 − σ−)m−1. (42)
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Moreover, as we have the lower bound:

pθ(YTn |Xp(∂) = xp(∂)) =
∫

X Tn

∏
u∈Tn

qθ(xp(u), xu)gθ(xu, Yu)λ(dxu)

≥
∏

u∈Tn

σ−b−(Yu), (43)

this implies that pθ(YTn |Y∆∗(T (U−m,m+n),k), Xpk(m+n+1)(U−m) = x) and pθ(YTn
) both obey the

same lower bound. This lower bound combined with the observation that b−(Yu) > 0 for all
u ∈ Tn (which follows from Assumption 3-(ii)), and the bound | log(x) − log(y)| ≤ |x− y|/x ∧ y,
(42) shows that:

PU ⊗ Pθ⋆ -a.s. lim
m→∞

sup
k∈N

|Wm,k(θ) −W (θ)| = 0.

Using the bounds (41) and (43) with Assumptions 3 and 4-(ii), we get:

EU ⊗ Eθ⋆

[
sup

m∈N∗
sup
k∈N

|Wm,k(θ)|
]
< ∞.

Hence, as this expectation is finite, (40) follows from dominated convergence. This concludes
the proof.

4 Asymptotic normality of the MLE
In this section, we prove that the MLE for the HMT has asymptotic normal fluctuations. We
keep the assumptions used in Section 3. This section is divided in two parts: we first prove
the asymptotic normality of the score, and then we prove a strong law of large numbers for
the observed information. Together with the strong consistency, those two results imply the
asymptotic normality of the MLE.

We will need the following assumption for existence and regularity of the gradient and Hessian
of the transition kernels. Remind that Pθ denotes the stationary probability distribution under
the parameter θ ∈ Θ of the HMT process (X,Y ), and by Eθ the corresponding expectation.
Also remind that the measures λ and µ are defined in Assumption 2. We denote by ∇θ and ∇2

θ,
respectively, the gradient and Hessian operator w.r.t. the parameter θ ∈ Θ. With a slight abuse
of notations, we denote by ∥ · ∥ the euclidean norm on either Rd or Rd×d.

Assumption 7 (Regularity of the gradient, [CMR05, Assumption 12.5.1]). There exists an open
(for the trace topology on Θ ⊂ Rd) neighborhood O = {θ ∈ Θ : ∥θ− θ⋆∥ < δ0} of θ⋆ such that the
following hold.

(i) For all (x, x′) ∈ X × X and all y ∈ Y, the functions θ 7→ qθ(x, x′) and θ 7→ gθ(x, y) are
twice continuously differentiable on O.

(ii) We have:

sup
θ∈O

sup
x,x′

∥∇θ log qθ(x, x′)∥ < ∞, and sup
θ∈O

sup
x,x′

∥∇2
θ log qθ(x, x′)∥ < ∞.

(iii) We have:

Eθ⋆

[
sup
θ∈O

sup
x

∥∇θ log gθ(x, Y∂)∥2
]
< ∞, and Eθ⋆

[
sup
θ∈O

sup
x

∥∇2
θ log gθ(x, Y∂)∥

]
< ∞.
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(iv) For µ-almost all y ∈ Y, there exists a function fy : X → R+ in L1(λ) such that we have
supθ∈O gθ(x, y) ≤ fy(x).

(v) For λ-almost all x ∈ X , there exist functions f1
x : X → R+ and f2

x : X → R+ in L1(µ)
such that supθ∈O ∥∇θgθ(x, y)∥ ≤ f1

x(y) and supθ∈O ∥∇2
θgθ(x, y)∥ ≤ f2

x(y).
These assumptions insures that the log-likelihood ℓn,x is twice continuously differentiable,

and that the score function ∇θℓn,x(θ) and the observed information −∇2
θℓn,x(θ) exist and are in

L2(Pθ⋆) and L1(Pθ⋆), respectively.

4.1 Asymptotic normality of the score
In this subsection, we prove the asymptotic normality of the score under the true parameter θ⋆.
Note that the score function can be written for all n ∈ N and x ∈ X as:

∇θℓn,x(θ) =
∑

u∈Tn

∇θ log
[∫

gθ(Xu, Yu)Pθ(Xu ∈ dxu |Y∆∗(u,h(u)), X∂ = x)
]
,

and ∇θℓn,x(θ) is implicitly a function of YTn
.

4.1.1 Decomposition of the score as a sum of increments

Remind that for u ∈ T , the subtrees ∆∗(u, k) and ∆(u, k) are defined in Section 2.4 for k ≤ h(u)
(with ∆∗(u) = ∆∗(u, h(u)) and ∆(u) = ∆(u, h(u))) and the random subtrees ∆∗(u, k) and
∆(u, k) are defined in Section 3.1 for k > h(u). Also remind that we use the letter p to denote
(possibly conditional) probability density, and in particular remind that pθ(Y∆ |X∂ = x∂) for any
subtree ∆ ⊂ T with root ∂ is defined in (15) in Section 3.1.2 (with the convention pθ(Y∅ |X∂ =
x∂) = 1). Using (16) and (17) in Section 3.1.2, note that for any u ∈ T and x ∈ X , we have:

hu,h(u),x(θ) = log pθ(Y∆(u) |X∂ = x) − log pθ(Y∆∗(u) |X∂ = x). (44)
Using elementary computation along with permutations of the integral and the gradient

operator which are valid under Assumption 7 (note that this result is also known as Fisher
identity, see [CMR05, Proposition 10.1.6]), we get:

∇θ log pθ(Y∆(u) |X∂ = x)

= ∇θ log gθ(x, Y∂) + Eθ

 ∑
v∈∆(u)\{∂}

ϕθ(Xp(v), Xv, Yv)

∣∣∣∣∣∣Y∆(u), X∂ = x

 , (45)

where
ϕθ(x′, x, y) = ∇θ log

[
qθ(x′, x)gθ(x, y)

]
. (46)

Note that under Assumption 7, ∥ϕθ(Xp(v), Xv, Yv)∥ is upper bounded by a square integrable
function of Yv (which does not depend on θ), and ϕθ(Xp(v), Xv, Yv) is thus integrable conditionally
on Y∆(u) and X∂ = x. Also note that ∇θ log gθ(x, Y∂) is Pθ⋆ -a.s. finite by Assumption 7-(iii).

Combining those two equations with (18) in Section 3.1.2, we can express the score function
as:

∇θℓn,x(θ) = ∇θ log gθ(x, Y∂) +
∑

u∈T ∗
n

Eθ

 ∑
∆(u)\{∂}

ϕθ(Xp(v), Xv, Yv)

∣∣∣∣∣∣Y∆(u), X∂ = x


−
∑

u∈T ∗
n

Eθ

 ∑
∆∗(u)\{∂}

ϕθ(Xp(v), Xv, Yv)

∣∣∣∣∣∣Y∆∗(u), X∂ = x

 .
28



We want to express the score function ∇θℓn,x(θ) as a sum of increments (conditional scores)
in order to apply a convergence result for the normalized score. To this end, define for every
u ∈ T , k ∈ N and x ∈ X , the function ḣu,k,x(θ) by ḣu,0,x(θ) = ∇θ log gθ(x, Yu) if k = 0, and
otherwise by:

ḣu,k,x(θ) = Eθ

 ∑
v∈∆(u,k)\{pk(u)}

ϕθ(Xp(v), Xv, Yv)

∣∣∣∣∣∣Y∆(u,k), Xpk(u) = x


− Eθ

 ∑
v∈∆∗(u,k)\{pk(u)}

ϕθ(Xp(v), Xv, Yv)

∣∣∣∣∣∣Y∆∗(u,k), Xpk(u) = x

 .
Note that ḣu,k,x(θ) is well defined as ∆(u, k) is finite and as ϕθ(Xp(v), Xv, Yv) is integrable
conditionally on Y∆∗(u,k) and Xpk(u) = x under Assumption 7 (see the comment after (46)).
Also note that ḣu,k,x(θ) is the gradient w.r.t. θ of hu,k,x(θ) defined in (17) (see (44) and (45) for
the case k = h(u)). Furthermore, note that ḣu,k,x(θ) is a function of Y∆(u,k) with an implicit
dependence on U through ∆(u, k), and that ḣu,k,x(θ) does not depend on U is k ≤ h(u).

Using the increment functions ḣu,k,x(θ), we can rewrite the score function as:

∇θℓn,x(θ) =
∑

u∈Tn

ḣu,h(u),x(θ). (47)

4.1.2 Construction of score increments with infinite past

Our goal is to let k → ∞ as before to get a limit function ḣu,∞. We now proceed to construct
ḣu,∞. First, we rewrite ḣu,k,x(θ) (which is in L2(PU ⊗ Pθ⋆) by Assumption 7), as:

ḣu,k,x(θ) = Eθ[ϕθ(Xp(u), Xu, Yu) |Y∆(u,k), Xpk(u) = x]

+
∑

v∈∆∗(u,k)\{pk(u)}

(
Eθ[ϕθ(Xp(v), Xv, Yv) |Y∆(u,k), Xpk(u) = x]

−Eθ[ϕθ(Xp(v), Xv, Yv) |Y∆∗(u,k), Xpk(u) = x]
)
. (48)

We will need the following lemma that states a coupling bound that works “backwards in
time”, or rather along the path between a vertex v and the newly observed vertex u. Remind
from (12) on page 15 that ∆(u, k) is a random subtree of the deterministic subtree T∞(pk(u), k).

Lemma 4.1 (Total variation bound “backwards in time”). Assume that Assumptions 2–3 hold.
Let k ∈ N∗, x ∈ X and u ∈ T , and let v ∈ T∞(pk(u), k) \ {u}. Then, we have:∥∥Pθ(Xv ∈ · |Y∆(u,k), Xpk(u) = x) − Pθ(Xv ∈ · |Y∆∗(u,k), Xpk(u) = x)

∥∥
TV ≤ ρd(u,v)−1.

The proof of Lemma 4.1, which is postponed to Appendix B, relies on a “backward in time”
bound from p(u) to u∧v and then a “forward in time” bound from u∧v to v, and using the initial
distributions Pθ(Xp(u) ∈ · |Y∆, Xpk(u) = x) with ∆ equal to ∆(u, k) and ∆∗(u, k), respectively.
Note that this proof is similar to the proofs for Lemma 3.2 and [CMR05, Proposition 12.5.4].

The following lemma gives an L2-bound on the difference between ḣu,k,x(θ) and ḣu,k′,x′(θ)
with a geometric decay. As we will reuse this result later with different functions, we state a
more general version.
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Note that the condition ρ < 1/
√

2 on the mixing rate ρ of the HMT process (X,Y ) is due
to the coupling bounds and the grouping of terms used in the proof of Lemma 4.2 (the upper
bounds at the end of the proof only add a constant multiplicative factor). See the discussion in
Remark 1.5.

Lemma 4.2. Assume that Assumptions 1–4. Further assume that ρ < 1/
√

2.
Let Θ0 be a closed ball in Θ, and let ψ be a Borel function from Θ0 × X 2 × Y to Rd for some

d ∈ N such that for all x, x′ ∈ X and y ∈ Y, θ 7→ ψ(θ, x, x′, y) = ψθ(x, x′, y) is a continuous
function on Θ0. Furthermore, assume that there exists b ∈ [1,+∞) such that:

Eθ⋆

[
sup

θ∈Θ0

sup
x,x′∈X

∥ψθ(x, x′, Y∂)∥b

]
< ∞.

Let ξu,k,x(θ) be defined as in (48) (with ḣu,k,x(θ) and ϕθ replaced by ξu,k,x(θ) and ψθ, respectively),
and note that it is in Lb(PU ⊗ Pθ⋆). Then, there exists a finite constant C < ∞ such that for all
u ∈ T and k′ ≥ k ≥ 1, we have:

(
EU ⊗ Eθ⋆

[
sup

θ∈Θ0

sup
x,x′∈X

∥ξu,k,x(θ) − ξu,k′,x′(θ)∥b

])1/b

≤ C

(
Eθ⋆

[
sup

θ∈Θ0

sup
x,x′∈X

∥ψθ(x, x′, Y∂)∥b

])1/b

k
(
max(ρ, 2ρ2)

)k/2
.

As a consequence of Lemma 4.2, for all u ∈ T and x ∈ X , the sequence of function
(ξu,k,x(θ))n∈N converges in Lb(PU ⊗ Pθ⋆) to some limit function ξu,∞(θ) which does not depend
on x. Moreover, the bound in Lemma 4.2 still holds when ξu,k′,x′(θ) is replaced by ξu,∞(θ).

For the particular choice of ψθ = ϕθ, under Assumptions-1-4 and 7, for all u ∈ T , we denote by
ḣu,∞(θ) the limit function of the sequence (ḣu,k,x(θ))n∈N (for all x ∈ X ) which is in L2(PU ⊗Pθ⋆).

As an immediate corollary of Lemma 4.2, there exists a finite constant C ′ < ∞ such
that for all x ∈ X , u ∈ T ∗ and k ≥ 1, we have that (EU ⊗ Eθ⋆ [supx∈X ∥ξu,k,x(θ)∥b])1/b ≤
Eθ⋆ [supx∈X ∥ξu,1,x(θ)∥b])1/b +C ′ < ∞, (note that by stationarity, Eθ⋆ [supx∈X ∥ξu,1,x(θ)∥b])1/b =
Eθ⋆ [supx∈X ∥ξv,1,x(θ)∥b])1/b for any other v ∈ T ∗). Hence, we get:

sup
θ∈O

sup
u∈T

sup
k≥1

(
EU ⊗ Eθ⋆

[
sup
x∈X

∥ξu,k,x(θ)∥b

])1/b

< ∞. (49)

Proof. We mimic the scheme of the proof of [CMR05, Lemma 12.5.3].
Let u ∈ T and k′ ≥ k ≥ 1 be fixed. The idea of the proof is to match, for each vertex index v

of the sums expressing ξu,k,x(θ) and ξu,∞(θ), pairs of terms that are close. To be more precise,
we match:

1. For v close to u,
Eθ[ψθ(Xp(v), Xv, Yv) |Y∆(u,k), Xpk(u) = x]

and
Eθ[ψθ(Xp(v), Xv, Yv) |Y∆(u,k′), Xpk′ (u) = x′],

and similarly for the corresponding terms with ∆(u, k) and ∆(u, k′) replaced by ∆∗(u, k)
and ∆∗(u, k′), respectively;
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2. For v far from u,
Eθ[ψθ(Xp(v), Xv, Yv) |Y∆(u,k), Xpk(u) = x]

and
Eθ[ψθ(Xp(v), Xv, Yv) |Y∆∗(u,k), Xpk(u) = x],

and similarly for the corresponding terms with k and x replaced by k′ and x′, respectively.

Remind from (12) on page 15 that ∆(u, k) ⊂ T∞(pk(u), k) and that the subtree ∆(u, k)
is random while the subtree T∞(pk(u), k) is deterministic. Let (x, x′) ∈ X × X and let v ∈
T∞(pk(u), k) \ {pk(u)}, which implies that p(v) ∈ ∆(u, k).

We start with the first kind of matches. Using the Markov property (remind (2)), we have:∥∥∥Eθ[ψθ(Xp(v), Xv,Yv) |Y∆(u,k), Xpk(u) = x] − Eθ[ψθ(Xp(v), Xv, Yv) |Y∆(u,k′), Xpk′ (u) = x′]
∥∥∥

=
∥∥∥∥∫

X 3
ψθ(xp(v), xv, Yv)Pθ(Xv ∈ dxv |Y∆(u,k)∩T (v), Xp(v) = xp(v))

×Pθ(Xp(v) ∈ dxp(v) |Y∆(u,k), Xpk(u) = xpk(u))

×
[
δx(dxpk(u)) − Pθ(Xpk(u) ∈ dxpk(u) |Y∆(u,k′), Xpk′ (u) = x′)

]∥∥∥∥
≤ 2 sup

x1,x2∈X
∥ψθ(x1, x2, Yv)∥ ρd(v,pk(u))−1, (50)

where the inequality is obtained using Lemma 3.2 (note that d(p(v),pk(u)) = d(v,pk(u)) − 1).
Note that this upper bound is a.s. finite as supx1,x2∈X ∥ϕθ(x1, x2, Yv)∥ is in Lb(PU ⊗ Pθ⋆) by
assumption (remind that the HMT process (X,Y ) is stationary by Assumption 1). For v ̸= u,
note that this bound remains valid if ∆(u, k) and ∆(u, k′) are replaced by ∆∗(u, k) and ∆∗(u, k′),
respectively. Obviously, this bound is small if v is far away from pk(u) (remind that k is fixed).

We now give a bound for the second kind of matches. Assume that v ̸= u. If v is not
an ancestor of u (then d(u, v) = d(u,p(v)) + 1), using the Markov property (remind (2)) and
Lemma 4.1, we get:∥∥Eθ[ψθ(Xp(v), Xv, Yv) |Y∆(u,k), Xpk(u) = x] − Eθ[ψθ(Xp(v), Xv, Yv) |Y∆∗(u,k), Xpk(u) = x]

∥∥
=
∥∥∥∥∫

X 3
ψθ(xp(v), xv, Yv)Pθ(Xv ∈ dxv |Y∆(u,k)∩T (v), Xp(v) = xp(v))

×
[
Pθ(Xp(v) ∈ dxp(v) |Y∆(u,k), Xpk(u) = x) − Pθ(Xp(v) ∈ dxp(v) |Y∆∗(u,k), Xpk(u) = x)

]∥∥∥∥
≤ 2 sup

θ∈Θ0

sup
x1,x2∈X

∥ψθ(x1, x2, Yv)∥ ρd(u,v)−2.

If v is an ancestor of u (then d(u,p(v)) = d(u, v) + 1), using the Markov property (remind (2))
and Lemma 4.1, we get:∥∥Eθ[ψθ(Xp(v), Xv, Yv) |Y∆(u,k), Xpk(u) = x] − Eθ[ψθ(Xp(v), Xv, Yv) |Y∆∗(u,k), Xpk(u) = x]

∥∥
=
∥∥∥∥∫

X 3
ψθ(xp(v), xv, Yv)Pθ(Xp(v) ∈ dxp(v) |Y∆(u,k)\T (v), Xv = xv)

×
[
Pθ(Xv ∈ dxv |Y∆(u,k), Xpk(u) = x) − Pθ(Xv ∈ dxv |Y∆∗(u,k), Xpk(u) = x)

]∥∥∥∥
≤ 2 sup

θ∈Θ0

sup
x1,x2∈X

∥ψθ(x1, x2, Yv)∥ ρd(u,v)−1.
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In both cases, we get:∥∥Eθ[ψθ(Xp(v), Xv, Yv) |Y∆(u,k), Xpk(u) = x] − Eθ[ψθ(Xp(v), Xv, Yv) |Y∆∗(u,k), Xpk(u) = x]
∥∥

≤ 2 sup
θ∈Θ0

sup
x1,x2∈X

∥ψθ(x1, x2, Yv)∥ ρd(u,v)−2. (51)

Note that the same bound remain valid for the corresponding terms with k and x replaced by
k′ and x′, respectively, and with v ∈ ∆(u, k′) \ {pk′(u)} instead of v ∈ ∆(u, k) \ {pk(u)}. This
bound is small if v is far away from u.

Remind from (12) on page 15 that ∆(u, k) ⊂ T∞(pk(u), k) and as k′ ≥ k note that:

∆(u, k′) \ ∆(u, k) ⊂ T∞(pk′
(u), k′) \ T∞(pk(u), k).

For a vertex v ∈ T∞(pk(u), k) \ {pk(u)} (note that u ∧ v ∈ T∞(pk(u))), note that the term
ρd(v,pk(u))−1 is smaller than ρd(u,v)−2 whenever d(v,pk(u)) > d(u, v) − 1, that is when d(u ∧
v,pk(u)) ≥ d(u ∧ v, u), that is when d(u ∧ v, u) ≤ k/2.

Combining those facts with the bounds (50) and (51), and using Minkowski’s inequality for
the Lb-norm, we find that (EU ⊗ Eθ⋆ [supθ∈Θ0 supx,x′∈X ∥ξu,k,x(θ) − ξu,k′,x′(θ)∥b] )1/b is upper
bounded by:

4
∑

v∈T ∞(p⌊k/2⌋(u),⌊k/2⌋)

ρd(v,pk(u))−1 + 4
∑

v∈T ∞(pk′ (u),k′)\T ∞(p⌊k/2⌋(u),⌊k/2⌋)

ρd(u,v)−2, (52)

up to the factor
(
Eθ⋆

[
supθ∈Θ0 supx1,x2∈X ∥ψθ(x1, x2, Yv)∥b

])1/b (remind that the process (Yu, u ∈
T∞) is stationary under Assumption 1). Denote by A1 and A2 respectively the first and second
terms in (52). We are going to reindex those sums by j := d(u, u ∧ v) and q := d(u ∧ v, v) with
q ≤ j. Note that if q > 0, then the first vertex after u∧v = pj(u) on the path from u to v cannot
be pj−1(u) and must be the other children of pj(u). Thus, there are 2q−1 choices of v with the
same coding (j, q) with 0 < q ≤ j. Hence, we get:

A1 = 4
⌊k/2⌋∑
j=0

ρk−j−1

(
1 +

j∑
q=1

2q−1ρq

)
and A2 = 4

k′∑
j=⌊k/2⌋+1

ρj−2

(
1 +

j∑
q=1

2q−1ρq

)
.

Remark that there exists a finite constant C < ∞ (which depends on the value of ρ) such that
for all j ∈ N∗ we have (1 +

∑j
q=1 2q−1ρq) ≤ C max(j, (2ρ)j) and

∑∞
q=j qρ

q ≤ Cρj . Hence, there
exists a finite constant C ′ < ∞ (which depends only on the value of ρ) such that (remind that
ρ < 1/

√
2):

A1 ≤ C ′
(
kρk/2 + (2ρ2)k/2

)
and A2 ≤ C ′

(
ρk/2 + (2ρ2)k/2

)
. (53)

Combining (52) and (53), we get that the bound in the lemma holds. This concludes the proof
of the lemma.

4.1.3 Asymptotic normality of the score

Define the limiting Fisher information as:

I(θ⋆) = EU ⊗ Eθ⋆

[
ḣ∂,∞(θ⋆)ḣ∂,∞(θ⋆)t

]
, (54)

where we see ḣ∂,∞(θ⋆) as a column vector.
For the asymptotic normality of the score, we need the following extra regularity assumption

of the gradient.
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Assumption 8 (L4 gradient regularity). In addition to Assumption 7, we have:

Eθ⋆

[
sup
θ∈O

sup
x∈X

∥∇θ log gθ(x, Y∂)∥4
]
< ∞.

We are now ready to prove the following theorem stating the asymptotic normality of the
normalized score towards a centered Gaussian random variable whose variance is the limiting
Fisher information. Note that the condition ρ < 1/

√
2 on the mixing rate ρ of the HMT process

(X,Y ) comes from the use of Lemma 4.2 in the proof of this theorem. See the discussion in
Remark 1.5 for comments on this condition on ρ.

Theorem 4.3 (Asymptotic normality of the normalized score). Assume that Assumptions 1–4
and 7–8 hold with θ⋆ ∈ Θ given. Further assume that ρ < 1/

√
2. Then, for all x ∈ X , we have:

|Tn|−1/2 ∇θℓn,x(θ⋆) (d)−→
n→∞

N (0, I(θ⋆)) under Pθ⋆ ,

where N (0,M) denotes the centered Gaussian distribution with covariance matrix M , and I(θ⋆)
is the limiting Fisher information defined in (54).

Proof. Step 1: Approximation of the score by the stationary score.
Remind from Lemma 2.3 that πθ⋆ denotes the invariant distribution for the hidden process

X associated with Qθ⋆ . Define the stationary score ∇θℓn,πθ⋆ (θ) as:

∇θℓn,πθ⋆ (θ) :=
∫

X
∇θℓn,x(θ)πθ⋆(dx).

First, for all x, x′ ∈ X and θ ∈ O, write:

∇θℓn,x(θ) − ∇θℓn,x′(θ) =
∑

u∈T ∗
n

Φ(θ;u, x, x′),

where:

Φ(θ;u, x, x′) = Eθ[ϕθ(Xp(u), Xu, Yu) |YTn
, X∂ = x] − Eθ[ϕθ(Xp(u), Xu, Yu) |YTn

, X∂ = x′].

Using Minkowski’s inequality and the upper bound (50) from the proof of Lemma 4.2, we get:

(
Eθ⋆

[
sup

x,x′∈X

1
|Tn|

∥∇θℓn,x(θ) − ∇θℓn,x′(θ)∥2
])1/2

≤ 1
|Tn|1/2

∑
u∈T ∗

n

(
Eθ⋆

[
sup

x,x′∈X
∥Φ(θ;u, x, x′)∥2

])1/2

≤ 2
(
Eθ⋆

[
sup

θ∈Θ0

sup
x,x′∈X

∥ϕθ(x, x′, Y∂)∥2
])1/2 1

|Tn|1/2

n∑
k=1

2kρk−1

≤ C max(n2−n, (2ρ2)n/2),

where C < ∞ is some finite constant. Thus (remind that ρ < 1/
√

2), for any x ∈ X , we have:

lim
n→∞

1
|Tn|1/2

(
∇θℓn,x(θ⋆) − ∇θℓn,πθ⋆ (θ⋆)

)
= 0 in L2(Pθ⋆). (55)
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In particular, to prove asymptotic normality for the score ∇θℓn,x(θ⋆) for any x ∈ X , it is enough
to prove asymptotic normality for the stationary score ∇θℓn,πθ⋆ (θ⋆) (see for instance [Bil99,
Theorem 3.1]).

For any u ∈ T and k ∈ N and θ ∈ O, define:

ḣu,k,πθ⋆ (θ) :=
∫

X
ḣu,k,x(θ)πθ⋆(dx). (56)

In particular, note that, as the bound in Lemma 4.2 is uniform in x ∈ X , this bound still holds
with ḣu,k,x(θ) replaced by ḣu,k,πθ⋆ (θ). Using (47), note that we have:

∇θℓn,πθ⋆ (θ) =
∑

u∈Tn

ḣu,h(u),πθ⋆ (θ).

Moreover, remark that for θ = θ⋆ and for any u ∈ T and k ∈ N∗, we have:

ḣu,k,πθ⋆ (θ⋆) = Eθ⋆ [ϕθ⋆(Xp(u), Xu, Yu) |Y∆(u,k)]

+
∑

v∈∆∗(u,k)\{pk(u)}

(
Eθ⋆ [ϕθ⋆(Xp(v), Xv, Yv) |Y∆(u,k)]

−Eθ⋆ [ϕθ⋆(Xp(v), Xv, Yv) |Y∆∗(u,k)]
)
. (57)

Step 2: The stationary score is a sum of martingale increments.
As T is a plane rooted tree, we can enumerate its vertices in a breadth-first-search manner,

that is, as a sequence (uj)j∈N which is increasing for <. (Note that u0 = δ.) Remind that
∆(uj−1) = ∆∗(uj) for all j ≥ 1. Define the filtration F by Fj = σ(Yv : v ∈ T, v ≤ uj) =
σ(Y∆(uj)) for all j ∈ N, and note that Fj ⊂ σ(YT ). Let j ∈ N∗, 1 ≤ k ≤ h(uj), x ∈ X and
v ∈ Y∆∗(uj ,k). Note that we have:

Eθ⋆

[
Eθ⋆ [ϕθ⋆(Xp(v), Xv, Yv) |Y∆(uj ,k)]

∣∣∣ Fj−1

]
= Eθ⋆ [ϕθ⋆(Xp(v), Xv, Yv) |Y∆∗(uj ,k)].

Also note that Assumption 7 (on page 27) implies that:

Eθ⋆ [ϕθ⋆(Xp(uj), Xuj , Yuj ) |Xp(uj)]

=
∫

X ×Y
∇θ log[qθ(Xp(uj), x)gθ(x, y)] qθ(Xp(uj), x)gθ(x, y)λ(dx)µ(dy)

=
∫

X ×Y
∇θ[qθ(Xp(uj), x)gθ(x, y)]λ(dx)µ(dy)

= ∇θ

[ ∫
X ×Y

qθ(Xp(uj), x)gθ(x, y)λ(dx)µ(dy)
]

= 0.

Thus, we have:

Eθ⋆

[
Eθ⋆ [ϕθ⋆(Xp(uj), Xuj

, Yuj
) |Y∆(uj ,k)]

∣∣∣ Fj−1

]
= Eθ⋆ [ϕθ⋆(Xp(uj), Xuj

, Yuj
) |Y∆∗(uj ,k)]

= Eθ⋆

[
Eθ⋆ [ϕθ⋆(Xp(uj), Xuj

, Yuj
) |Y∆∗(uj ,k), Xp(uj)]

∣∣∣ Y∆∗(uj ,k)

]
= Eθ⋆

[
Eθ⋆ [ϕθ⋆(Xp(uj), Xuj

, Yuj
) |Xp(uj)]

∣∣∣ Y∆∗(uj ,k)

]
= 0,
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where we used the Markov property for the inner expectation in the third equality. Moreover,
it is immediate that ḣuj ,k,πθ⋆ (θ⋆) is Fj-measurable for all j ∈ N∗ and 1 ≤ k ≤ h(j). Hence,
we get that the sequence

(
ḣuj ,h(uj),πθ⋆ (θ⋆)

)
j∈N∗ is a Pθ⋆ -martingale increment sequence adapted

to the filtration F = (Fj)j∈N in L2(Pθ⋆) (thanks to Assumption 7). We are going to apply
a central limit theorem for martingales (see [Duf11, Corollary 2.1.10]). For all n ∈ N, define
Mn =

∑n
j=0 ḣuj ,h(uj),πθ⋆ (θ⋆). Note that M0 = ḣ∂,0,πθ⋆ (θ⋆) =

∫
X ∇θ log gθ⋆(x, Y∂)πθ⋆(dx) is in

L2(Pθ⋆) by Assumption 7. Hence, the sequence (Mn)n∈N is a Pθ⋆ -martingale sequence adapted
to the filtration F = (Fj)j∈N in L2(Pθ⋆), and whose quadratic variation is:

⟨M⟩n =
n∑

j=1
Eθ⋆

[
ḣuj ,h(uj),πθ⋆ (θ⋆)ḣuj ,h(uj),πθ⋆ (θ⋆)t

∣∣∣ Fj−1

]
,

where, as in (54), we see ḣuj ,h(uj),πθ⋆ (θ⋆) as a column vector. Note that for all n ∈ N, Mn and
⟨M⟩n do not depend on U .

Step 3: Convergence of the quadratic variation. Before applying the central limit
theorem for martingales, we first need to prove that limn→∞ n−1⟨M⟩n = I(θ⋆) in Pθ⋆ -probability.
Indeed, we will prove that this convergence holds in L2(Pθ⋆). Let k ∈ N∗ and x ∈ X . Note that
for uj ∈ T \ Tk−1 is equivalent to j ≥ |Tk−1| (remind that u0 = ∂). Using (48) along with
Assumption 8, we get that supx∈X ḣu,k,x(θ⋆, Y∆(u,k)) is in L4(Pθ⋆), and thus the random variable
supx∈X ḣu,k,x(θ⋆, Y∆(u,k))ḣu,k,x(θ⋆, Y∆(u,k))t is in L2(Pθ⋆) for every u ∈ T \ Tk−1. Thus, using
(56) and Lemma 4.2 (remind that ρ < 1/

√
2) for the first moment (b = 2), there exists a finite

constant C > 0 and α ∈ (0, 1) such that we have (remind (49)):

Eθ⋆

∥∥∥∥∥∥n−1⟨M⟩n − 1
n

n∑
j=|Tk−1|

Eθ⋆

[
ḣuj ,k,x(θ⋆)ḣuj ,k,x(θ⋆)t

∣∣∣ Fj−1

]∥∥∥∥∥∥
 ≤ Cαk + C|Tk−1|

n
, (58)

where remind that ∥ · ∥ denotes the euclidean norm for d×d matrices (or any other norm as they
are all equivalent in finite dimension). To prove that the second term inside the expectation in
the left hand side of (58) converges in L2(Pθ⋆) as n → ∞, we are going to apply the ergodic
convergence Lemma 2.12 where the averages are done on the vertex subset {uj : |Tk−1| ≤ j ≤ n}.
Note that this lemma is stated for scalar-valued functions, but we can apply it individually for
each of the matrix coefficients to get the equivalent for matrix-valued functions.

For all u ∈ T \ Tk−1, define the function:

Ψu,k,x : y∆∗(u,k) ∈ Y∆∗(u,k) 7→ Eθ⋆

[
ḣu,k,x(θ⋆;Y∆(u,k))ḣu,k,x(θ⋆;Y∆(u,k))t

∣∣∣ Y∆∗(u,k) = y∆∗(u,k)

]
.

For a vertex u in T \ Tk−1, let vu ∈ Gk be the unique vertex that satisfies the shape equality
constraint (8) (on page 12), then we have the equality between functions:

Ψu,k,x = Ψvu,k,x. (59)

Moreover, using (48) along with Assumption 8, we get that ḣu,k,x(θ⋆, Y∆(u,k)) is in L4(Pθ⋆), and
thus the random variable Ψu,k,x(Y∆∗(u,k)) is in L2(Pθ⋆) for every u ∈ T \ Tk−1. Hence, applying
Lemma 2.12 to the collection of neighborhood-shape-dependent functions (Ψv,k,x)v∈Gk

(remind
that indexing functions with Gk or with Nk is equivalent by (9)), and using (59) and (14) (in
Remark 3.1), we get that the second term inside the expectation in the left hand side of (58)
converges in L2(Pθ⋆) to EU ⊗ Eθ⋆

[
ḣ∂,k,x(θ⋆)ḣ∂,k,x(θ⋆)t

]
as n → ∞. Using Lemma 4.2, we have

that limk→∞ EU ⊗ Eθ⋆

[
ḣ∂,k,x(θ⋆)ḣ∂,k,x(θ⋆)t

]
= I(θ⋆). Combining those facts with (58), we get

that limn→∞ n−1⟨M⟩n = I(θ⋆) in L2(Pθ⋆).
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Step 4: Lindeberg’s condition holds. We now need to verify that Lindeberg’s condition
holds (see [Duf11, Corollary 2.1.10]), that is, to prove for all ε > 0 that limn→∞ Fn(ε

√
n) = 0 in

Pθ⋆ -probability where for all n ∈ N∗ and A ∈ R+:

Fn(A) = 1
n

n∑
j=1

Eθ⋆

[∥∥ḣuj ,h(uj),πθ⋆ (θ⋆)
∥∥2
1{∥ḣuj ,h(uj ),πθ⋆ (θ⋆)∥≥A}

∣∣∣ Fj−1

]
. (60)

Remind that by Assumption 8 and Lemma 4.2 (remind that ρ < 1/
√

2) for the fourth moment
(b = 4), we have:

C := sup
u∈T

sup
k∈N∗

EU ⊗ Eθ⋆

[
sup
x∈X

∥∥ḣu,k,x(θ⋆)
∥∥4
]
< ∞.

Using Cauchy-Schwarz inequality and Markov inequality, we get:

Eθ⋆ [Fn(A)] ≤ 1
n

n∑
j=1

Eθ⋆

[
supx∈X

∥∥ḣuj ,h(uj),x(θ⋆)
∥∥4]

A2 ≤ C

A2 .

Let ε > 0. Then, setting An = ε
√
n for all n ∈ N∗, we get that limn→∞ Fn(ε

√
n) = 0 in L1(Pθ⋆),

and thus in Pθ⋆ -probability. Hence, we get that Lindeberg’s condition holds.

Step 5: Applying the central limit theorem for martingales. Hence, we can apply the
central limit theorem for martingales (see [Duf11, Corollary 2.1.10]), which gives us that Pθ⋆ -a.s.
limn→∞ n−1Mn = 0 and that the sequence (n−1/2Mn)n∈N∗ converges in Pθ⋆ -distribution towards
a centered Gaussian distribution N (0, I(θ⋆)) whose covariance matrix is I(θ⋆). In particular,
using (55), we get that Pθ⋆ -a.s. limn→∞ |Tn|−1∇θℓn,x(θ⋆) = 0 and that:

|Tn|−1/2 ∇θℓn,x(θ⋆) (d)−→
n→∞

N (0, I(θ⋆)) under Pθ⋆ .

This concludes the proof of the theorem.

4.2 Law of large number for the normalized observed information
In this subsection, we prove that for all possibly random sequence (θn)n∈N such that limn→∞ θn =
θ⋆ Pθ⋆ -a.s., then the normalized observed information −n−1∇2

θℓn,x(θn) converges Pθ⋆ -a.s. as
n → ∞ to the limiting Fisher information matrix I(θ⋆) which is defined in (54).

Remind the definition of the log-likelihood ℓn,x(θ) in (7) on page 11. We start by decomposing
the Hessian of the log-likelihood ℓn,x(θ) as a sum of increment indexed by the tree T . Using
elementary computation along with permutations of the integral and the gradient operator which
are valid under Assumption 7 (note that this result is also known as Louis missing information
principle, see [CMR05, Proposition 10.1.6]), we get for all θ ∈ O and x ∈ X :

∇2
θℓn,x(θ) = ∇2

θ log(gθ(X∂ , Y∂)) + Eθ

∑
u∈T ∗

n

φθ(Xp(u), Xu, Yu)

∣∣∣∣∣∣YTn
, X∂ = x


+ Varθ

∑
u∈T ∗

n

ϕθ(Xp(u), Xu, Yu)

∣∣∣∣∣∣YTn
, X∂ = x

 ,
where remind that ϕθ is defined in (46) on page 28, and φθ is defined as:

φθ(x′, x, y) = ∇2
θ log(qθ(x′, x)gθ(x, y)). (61)
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Note that similarly to the case of ϕθ, the random variale φθ(Xp(u), Xu, Yu) is integrable condi-
tionally on Y∆(u) and X∂ = x (see the discussion after (46)). Also note that ∇θ log gθ(x, Y∂) is
Pθ⋆ -a.s. finite by Assumption 7-(iii).

For all u ∈ T , k ∈ N∗ and x ∈ X , we define:

Λu,k,x(θ) = Eθ

 ∑
v∈∆(u,k)\{pk(u)}

φθ(Xp(v), Xv, Yv)

∣∣∣∣∣∣Y∆(u,k), X∂ = x∂


− Eθ

 ∑
v∈∆∗(u,k)\{pk(u)}

φθ(Xp(v), Xv, Yv)

∣∣∣∣∣∣Y∆∗(u,k), X∂ = x∂

 , (62)

and:

Γu,k,x(θ) = Varθ

 ∑
v∈∆(u,k)\{pk(u)}

ϕθ(Xp(v), Xv, Yv)

∣∣∣∣∣∣Y∆(u,k), X∂ = x∂


− Varθ

 ∑
v∈∆∗(u,k)\{pk(u)}

ϕθ(Xp(v), Xv, Yv)

∣∣∣∣∣∣Y∆∗(u,k), X∂ = x∂

 , (63)

where Varθ (resp. Covθ) denotes the (possibly conditional) variance (resp. covariance) corre-
sponding to PU ⊗ Pθ. Note that Λu,k,x(θ) and Γu,k,x(θ) are random variables which depend on
Y∆(u,k) with an implicit dependence on U , and that they do not depend on U if k ≤ h(u).

Then, using telescopic sums involving the quantities defined in (62) and (63), the Hessian of
the log-likelihood ℓn,x(θ) can be rewritten for all θ ∈ O and x ∈ X as:

∇2
θℓn,x(θ) = ∇2

θ log(gθ(X∂ , Y∂)) +
∑

u∈T ∗
n

Λu,h(u),x(θ) +
∑

u∈T ∗
n

Γu,h(u),x(θ). (64)

To prove the convergence of the two sums in the right hand side of (64), and thus get the
convergence of the normalized observed information −n−1∇2

θℓn,x(θ), we will need the following
L2 regularity assumption on the Hessian of the transition kernel gθ of the HMT.

Assumption 9 (L2 Hessian regularity). In addition to Assumption 7, assume that we have:

Eθ⋆

[
sup
θ∈O

sup
x

∥∇2
θ log gθ(x, Y∂)∥2

]
< ∞.

Propositions 4.4 and 4.5 below (whose proofs are given in Sections 4.2.1 and 4.2.2, respec-
tively) state that Λu,k,x(θ) and Γu,k,x(θ) both have limits Pθ⋆ -a.s. and in L2(Pθ⋆) when k → ∞.
Denote those limits by Λu,∞(θ) and Γu,∞(θ), respectively. Furthermore, Propositions 4.4 and 4.5
also state that the two sums in the right hand side of (64) converge to EU ⊗ Eθ⋆ [Λ∂,∞(θ)] and
EU ⊗ Eθ⋆ [Γ∂,∞(θ)], respectively, with some uniformity in θ near θ⋆.

We start with the proposition for the terms Λu,k,x(θ). Note that the condition ρ < 1/
√

2 on
the mixing rate ρ of the HMT process (X,Y ) is due to the use of Lemma 4.2 in the proof of
Proposition 4.4. See the discussion in Remark 1.5 for comments on this condition on ρ.

Proposition 4.4 (Convergence for averages of Λu,k,x(θ)). Assume that Assumptions 1–4, 6-7
and 9 hold. Assume that ρ < 1/

√
2. Then, for each θ ∈ O, we have that Λu,k,x(θ) converges in
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L2(PU ⊗Pθ⋆) to some limit Λu,∞(θ) (that does not depend on x) as k → ∞. Moreover, we have:

lim
n→∞

Eθ⋆

sup
x∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Λu,h(u),x(θ⋆) − EU ⊗ Eθ⋆

[
Λ∂,∞(θ⋆)

]∣∣∣∣∣∣
 = 0. (65)

Furthermore, the function θ 7→ EU ⊗ Eθ⋆ [Λ∂,∞(θ)] is continuous on O, and for all x ∈ X and
θ ∈ O, we have:

lim
δ→0

lim
n→∞

sup
θ′∈O:∥θ′−θ∥≤δ

∣∣∣∣∣∣|Tn|−1
∑

u∈T ∗
n

Λu,h(u),x(θ′) − EU ⊗ Eθ⋆ [Λ∂,∞(θ)]

∣∣∣∣∣∣ = 0, Pθ⋆-a.s.

The following proposition is the equivalent of Proposition 4.4 for the terms Γu,k,x(θ). Note
that the condition ρ < 1/2 on the mixing rate ρ of the HMT process (X,Y ) is due to the use of
Lemma 4.17 in the proof of Proposition 4.5. See the discussion in Remark 1.5 for comments on
this condition on ρ.

Proposition 4.5 (Convergence for the averages of Γu,k,x(θ)). Assume that Assumptions 1–4
and 6-8 hold. Assume that ρ < 1/2. Then, for each θ ∈ O, we have that Γu,k,x(θ) converges in
L2(PU ⊗Pθ⋆) to some limit Γu,∞(θ) (that does not depend on x) as k → ∞. Moreover, we have:

lim
n→∞

Eθ⋆

sup
x∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Γu,h(u),x(θ⋆) − EU ⊗ Eθ⋆

[
Γ∂,∞(θ⋆)

]∣∣∣∣∣∣
 = 0. (66)

Furthermore, the function θ 7→ EU ⊗ Eθ⋆ [Γ∂,∞(θ)] is continuous on O, and for all x ∈ X and
θ ∈ O, we have:

lim
δ→0

lim
n→∞

sup
θ′∈O:∥θ′−θ∥≤δ

∣∣∣∣∣∣|Tn|−1
∑

u∈T ∗
n

Γu,h(u),x(θ′) − EU ⊗ Eθ⋆ [Γ∂,∞(θ)]

∣∣∣∣∣∣ = 0, Pθ⋆-a.s.

With Propositions 4.4 and 4.5, we are now ready to prove the following theorem which states
that the normalized observed information −|Tn|−1∇2

θℓn,x(θn) converges Pθ⋆ -a.s. locally uniformly
to the limiting Fisher information I(θ⋆) (which is defined in (54)). Note that the condition
ρ < 1/2 on the mixing rate ρ of the HMT process (X,Y ) is inherited from Proposition 4.5. See
the discussion in Remark 1.5 for comments on this condition on ρ.

Theorem 4.6 (Convergence of the normalized observed information). Assume that Assump-
tions 1–4 and 6–9 hold. Assume that ρ < 1/2. Assume that Θ is compact. Then, for all x ∈ X ,
we have:

lim
δ→0

lim
n→∞

sup
θ∈O : ∥θ−θ⋆∥≤δ

∥∥∥−|Tn|−1∇2
θℓn,x(θ) − I(θ⋆)

∥∥∥ = 0 Pθ⋆-a.s. (67)

As an immediate corollary, for any possibly random sequence (θn)n∈N such that limn→∞ θn =
θ⋆ Pθ⋆ -a.s. and any x ∈ X , we get that Pθ⋆ -a.s. limn→∞ −|Tn|−1∇2

θℓn,x(θn) = I(θ⋆). In par-
ticular, choosing θn = θ̂n,x for all n ∈ N (remind that the MLE θ̂n,x is defined in (33) on
page 22), and combining Theorems 3.11 and 4.6, we get that the normalized observed infor-
mation −|Tn|−1∇2

θℓn,x(θ̂n,x) at the MLE θ̂n,x is a strongly consistent estimator of the Fisher
information matrix I(θ⋆).
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Proof. Using (64) and Propositions 4.4 and 4.5, we get that (67) holds with I(θ⋆) replaced by
−EU ⊗ Eθ⋆ [Λ∂,∞(θ⋆) + Γ∂,∞(θ⋆)]. Thus, it remains to prove that this latter quantity is equal to
I(θ⋆).

Using elementary computation along with permutations of the integral and the gradient
operator which are valid under Assumption 7 (note that this result is also known as Fisher
information matrix identity, see [RS18, p.21] or [CMR05, p.355]), we get for all θ ∈ O and
x ∈ X :

|Tn|−1 Eθ

[
∇θℓn,x(θ)∇θℓn,x(θ)t

∣∣ X∂ = x
]

= −|Tn|−1 Eθ

[
∇2

θℓn,x(θ)
∣∣ X∂ = x

]
.

Setting θ = θ⋆ and taking the expectation over X∂ , we get:

|Tn|−1 Eθ⋆

[
∇θℓn,X∂

(θ⋆)∇θℓn,X∂
(θ⋆)t

]
= −|Tn|−1 Eθ⋆

[
∇2

θℓn,X∂
(θ⋆)

]
. (68)

Using (64) on page 37, Propositions 4.4 and 4.5 give us that the right hand side of (68)
converges as n → ∞ to −EU ⊗ Eθ⋆ [Λ∂,∞(θ⋆) + Γ∂,∞(θ⋆)].

Remind that using (48) along with Assumption 8, we get that ḣu,k,x(θ⋆, Y∆(u,k)) is in L4(Pθ⋆),
and thus the random variable ḣu,k,x(θ⋆, Y∆(u,k))ḣu,k,x(θ⋆, Y∆(u,k))t is in L2(Pθ⋆) for every u ∈
T \ Tk−1. Thus, using Lemma 4.2 for the first moment (b = 1), there exists a finite constant
C > 0 and α ∈ (0, 1) such that for any k ∈ N∗ and x ∈ X , we have:

Eθ⋆

 1
|Tn|

∥∥∥∥∥∥∇θℓn,X∂
(θ⋆)∇θℓn,X∂

(θ⋆)t −
∑

u∈Tn\Tk−1

ḣu,k,x(θ⋆)ḣu,k,x(θ⋆)t

∥∥∥∥∥∥
 ≤ Cαk + C|Tk−1|

|Tn|
, (69)

where remind that we see ḣu,k,x(θ⋆) as a column vector. Then, using an ergodic convergence
argument similar to the one used in Step 3 in the proof of Theorem 4.3, we get:

lim
n→∞

1
|Tn|

∑
u∈Tn\Tk−1

ḣu,k,x(θ⋆)ḣu,k,x(θ⋆)t = EU ⊗ Eθ⋆

[
ḣ∂,k,x(θ⋆)ḣ∂,k,x(θ⋆)t

]
in L2(Pθ⋆).

Using Lemma 4.2, we have that limk→∞ EU ⊗ Eθ⋆

[
ḣ∂,k,x(θ⋆)ḣ∂,k,x(θ⋆)t

]
= I(θ⋆). Combining

those facts with (69), we get that the left hand side in (68) converges to I(θ⋆) as n → ∞.
Hence, we get I(θ⋆) = −EU ⊗ Eθ⋆ [Λ∂,∞(θ⋆) + Γ∂,∞(θ⋆)], which concludes the proof.

Using Theorems 3.11, 4.3 and 4.6, we can prove the following theorem which states that
the MLE has asymptotic normal fluctuations with covariance matrix I(θ⋆)−1 where the Fisher
information matrix I(θ⋆) is defined in (54) on page 32. Recall that the contrast function ℓ is
defined in (26) on page 19, that the MLE θ̂n,x is defined in (33) on page 22, and that the mixing
rate ρ of the HMT process (X,Y ) is defined after Assumption 3 on page 10.

Note that the condition ρ < 1/2 on the mixing rate ρ of the HMT process (X,Y ) is inherited
from Theorem 4.6, and thus from Proposition 4.5. See the discussion in Remark 1.5 for comments
on this condition on ρ.

Theorem 4.7 (Asymptotic normality of the MLE). Assume that Assumptions 1–9 hold. Assume
that ρ < 1/2. Further assume that the contrast function ℓ has a unique maximum (which is then
located at θ⋆ ∈ Θ by Proposition 3.10) and that Θ is compact, θ⋆ is an interior point of Θ, and
the limiting Fisher information matrix I(θ⋆) (which is defined in (54)) is non-singular. Then,
for all x ∈ X , we have:

|Tn|1/2(θ̂n,x − θ⋆
) (d)−→

n→∞
N (0, I(θ⋆)−1) under Pθ⋆ ,

where N (0,M) denotes the centered Gaussian distribution with covariance matrix M .
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Proof. The proof is a standard argument and is similar to the proof of [BRR98, Theorem 1].
Remind that the gradient of ℓn,x vanishes at the MLE θ̂n,x by definition. Thus, using a Taylor
expansion for ∇θℓn,x around θ⋆, we get:

0 = ∇θℓn,x(θ̂n,x) = ∇θℓn,x(θ⋆) +
(∫ 1

0
∇2

θℓn,x(θ⋆ + t(θ̂n,x − θ⋆)) dt
)

(θ̂n,x − θ⋆),

where we see θ̂n,x and θ⋆ as column vectors. As I(θ⋆) is non-singular (indeed definite positive),
remark that Theorems 3.11 and 4.6 insure that Pθ⋆ -a.s. for n large enough the integrand in the
integral of the above formula is non-singular (indeed definite positive) for all values of t, and thus
the matrix-valued integral is non-singular. Thus, from the above equation, we obtain Pθ⋆ -a.s. for
n large enough:

|Tn|1/2(θ̂n,x − θ⋆
)

=
(

−|Tn|−1
∫ 1

0
∇2

θℓn,x(θ⋆ + t(θ̂n,x − θ⋆)) dt
)−1

|Tn|−1/2∇θℓn,x(θ⋆).

As by Theorem 3.11, we have that Pθ⋆ -a.s. limn→∞ θ̂n,x = θ⋆, using Theorem 4.6, we get that
the first factor in the right hand side Pθ⋆ -a.s. converges to I(θ⋆) as n → ∞. Using Theo-
rem 4.3, we get that the second factor in the right hand side converges Pθ⋆ -weakly as n → ∞
to the Gaussian random distribution N (0, I(θ⋆)). Hence, using Cramér-Slutsky’s theorem, we
get that |Tn|1/2(θ̂n,x − θ⋆

)
converges Pθ⋆ -weakly as n → ∞ to the Gaussian random distribution

N (0, I(θ⋆)−1). This concludes the proof.

4.2.1 Proof of Proposition 4.4

We are going to prove a version of Proposition 4.4 where the functions φθ used in (62) to
define Λu,k,x(θ) are replaced by scalar-valued functions, still denoted by φθ, under more general
assumptions. The extension to matrix-valued functions is then straightforward by applying the
result coordinate-wise.

Let Θ0 be a compact subset of Θ, Let Θ0 be a closed ball in Θ, and let φ : Θ0 × X 2 × Y → R
be a Borel function such that for all x′, x ∈ X and y ∈ Y, θ 7→ φ(θ, x′, x, y) = φθ(x′, x, y) is a
continuous function on Θ0, and such that:

Eθ⋆

[
sup

θ∈Θ0

sup
x,x′∈X

|φθ(x, x′, Y∂)|2
]
< ∞.

Let Λu,k,x(θ) be defined as in (62) on page 37 and note that it is in L2(PU ⊗ Pθ⋆).
The proof of Proposition 4.4 is decomposed into several lemmas.

We start with the following lemma, stating a uniform L2(PU ⊗Pθ⋆) approximation bound on
the quantities Λu,k,x(θ), and the existence of a limit function Λu,∞(θ) which does not depend
on x. This lemma is an immediate consequence of Lemma 4.2 (remind that ρ < 1/

√
2 under

the assumptions of Proposition 4.4) for the second moment (b = 2) with ψθ = φθ, see also the
discussion after Lemma 4.2 for the existence of the limit function.

Lemma 4.8. Under the assumptions of Proposition 4.4, there exist finite constants C < ∞ and
α ∈ (0, 1) such that for all u ∈ T there exists some function Λu,∞(θ) in L2(PU ⊗ Pθ⋆) such that
for all k ∈ N∗, we have:(

EU ⊗ Eθ⋆

[
sup

θ∈Θ0

sup
x,∈X

|Λu,k,x(θ) − Λu,∞(θ)|2
])1/2

≤ Cαk.
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In particular, for all u ∈ T , θ ∈ Θ0 and x ∈ X , the sequence (Λu,k,x(θ))k∈N∗ converges in
L2(PU ⊗ Pθ⋆) to Λu,∞(θ) which does not depend on x.

The following lemma gives an exponential bound on the L2(Pθ⋆) norm uniformly in x ∈ X
for the the average of the quantities Λu,h(u),x(θ⋆) over u ∈ T ∗

n .

Lemma 4.9. Under the assumptions of Proposition 4.4, for all x ∈ X and θ ∈ Θ0, there exist
finite constants C < ∞ and α ∈ (0, 1) such that for all n ∈ N∗ we have:

Eθ⋆

sup
x∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Λu,h(u),x(θ) − EU ⊗ Eθ⋆

[
Λ∂,∞(θ)

]∣∣∣∣∣∣
2


1/2

≤ Cαn.

Proof. Let x′ ∈ X and θ ∈ Θ0. Using Minkowski’s inequality and Jensen’s inequality, for all
n, k ∈ N∗, we get:

Eθ⋆

sup
x∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Λu,h(u),x(θ) − EU ⊗ Eθ⋆

[
Λ∂,∞(θ)

]∣∣∣∣∣∣
2


1/2

≤ Eθ⋆

 sup
x,x′∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

k−1

Λu,h(u),x(θ)

∣∣∣∣∣∣
2


1/2

+ Eθ⋆

 sup
x,x′∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈Tn\Tk−1

Λu,h(u),x(θ) − Λu,k,x′(θ)

∣∣∣∣∣∣
2


1/2

+ Eθ⋆


∣∣∣∣∣∣ 1
|Tn|

∑
u∈Tn\Tk−1

Λu,k,x′(θ) − EU ⊗ Eθ⋆

[
Λ∂,k,x′(θ)

]∣∣∣∣∣∣
2


1/2

+ EU ⊗ Eθ⋆

[
|Λ∂,k,x′(θ) − Λ∂,∞(θ)|2

]1/2
.

(70)

Using Lemma 4.8 together with (49) on page 30 (which, remind, are both immediate consequences
of Lemma 4.2), there exists a finite constant C < ∞ and β ∈ (0, 1) such that the first term in
the right hand side of (70) is upper bounded by C2−(n−k) (note that |Tk−1|

|Tn| ≤ 2−(n−k)), and the
second and fourth terms in the right hand side of (70) are both upper bounded by Cβk/2.

We now give an upper bound for the second term in the right hand side of (70). For a vertex
u in T \ Tk−1, let vu ∈ Gk be the unique vertex that satisfies the shape equality constraint (8)
(on page 12), then we have:

Λu,k,x′(θ;Y∆(u,k) = y∆(u,k)) = Λvu,k,x′(θ;Y∆(vu) = y∆(u,k)). (71)

Moreover, using the definition of Λu,k,x(θ) in (62) together with the assumption on φθ in Propo-
sition 4.4, we get that the random variable Λu,k,x′(θ;Y∆(u,k) = y∆(u,k)) is in L2(Pθ⋆) for ev-
ery u ∈ T \ Tk−1. Thus, we can apply Lemma 2.11 (see in particular (11)) to the collection
of neighborhood-shape-dependent functions (Λvu,k,x′(θ;Y∆(v) = ·))v∈Gk

(remind that indexing
functions with Gk or with Nk is equivalent by (9)). Using (11) in Lemma 2.11 together with (28)
and (14) in Remark 3.1, we get that there exist γ ∈ (0, 1) and a finite constant C ′ < ∞ (note
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that they both do not depend on k and n) such that for all n, k ∈ N∗ with n ≥ k, the second
term in the right hand side of (70) is upper bounded by C ′γn−k.

Hence, taking k = ⌈n/2⌉, we get that the left hand side of (70) is upper bounded by 2Cβn/4 +
C ′αn/2+C2−n/2+1, and thus decays at exponential rate as desired. This concludes the proof.

Lemma 4.9 implies as a corollary the convergence Pθ⋆ -a.s. and in L2(Pθ⋆) uniformly in x ∈ X
for the the sum of the quantities Λu,h(u),x(θ⋆) over u ∈ T ∗

n .

Corollary 4.10. Under the assumptions of Proposition 4.4, for all x ∈ X and θ ∈ Θ0, we have:

lim
n→∞

sup
x∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Λu,h(u),x(θ) − EU ⊗ Eθ⋆

[
Λ∂,∞(θ)

]∣∣∣∣∣∣ = 0 Pθ⋆-a.s. and in L2(Pθ⋆).

Proof. The convergence in L2(Pθ⋆) follows immediately from Lemma 4.9. Moreover, using again
Lemma 4.9, we have:

∑
n∈N∗

Eθ⋆

sup
x∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Λu,∞(θ) − EU ⊗ Eθ⋆ [Λ∂,∞(θ)]

∣∣∣∣∣∣
2
 < ∞.

Hence, Borel-Cantelli lemma and Markov’s inequality imply that the convergence in the lemma
also holds Pθ⋆ -a.s.

The following lemma gives some continuity properties of the function θ 7→ Λ∂,k,x(θ).

Lemma 4.11. Under the assumptions of Proposition 4.4, for all x ∈ X and k ∈ N, the random
function θ 7→ Λ∂,k,x(θ) is PU ⊗ Pθ⋆-a.s. continuous on Θ0. Moreover, for all θ ∈ Θ0, we have:

lim
δ→0

EU ⊗ Eθ⋆

[
sup

θ′∈Θ0:∥θ′−θ∥≤δ

|Λ∂,k,x(θ′) − Λ∂,k,x(θ)|2
]

= 0.

Proof. We mimic the proof of [DMR04, Lemma 14].
For all v ∈ T∞, define the random variable ∥φv∥∞ = supθ′∈Θ0 supx,x′∈X |φθ′(x′, x, Yv)|.

Remind that under the assumptions of Proposition 4.4, the HMT process (X,Y ) is stationary
and the random variable ∥φ∂∥∞ is in L2(Pθ⋆). Thus, for all v ∈ T∞, the random variable ∥φv∥∞
is in L2(Pθ⋆). Remind from (12) on page 15 that ∆(∂, k) is a random subtree of the deterministic
subtree T∞(pk(u), k). Then, note that we have:

sup
θ∈Θ0

|Λ∂,k,x(θ)| ≤ 2
∑

v∈T ∞(pk(∂),k)

∥φv∥∞,

where the upper bound is a random variable in L2(Pθ⋆) (and thus in L2(PU ⊗Pθ⋆)) which depends
only on YT ∞(pk(u),k) but not on U . Hence, to prove the lemma, it suffices to prove that for all
v ∈ T∞(pk(u), k) \ {pk(∂)} we have:

lim
δ→0

sup
θ′∈Θ0:∥θ′−θ∥≤δ

∣∣∣Eθ′ [φθ′(Xp(v), Xv, Yv) |Y∆(∂,k), Xpk(∂) = x]

−Eθ[φθ(Xp(v), Xv, Yv) |Y∆(∂,k), Xpk(∂) = x]
∣∣∣ = 0, PU ⊗ Pθ⋆ -a.s.
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Denote xpk(∂) = x, and write:

Eθ[φθ(Xp(v), Xv, Yv) |Y∆(∂,k), Xpk(∂) = x]

=
∫

X ∆(∂,k)\{pk(∂)} φθ(xp(v), xv, Yv)
∏

w∈∆(∂,k)\{pk(∂)} qθ(xp(w), xw)gθ(xw, Yw)λ(dxw)∫
X ∆(∂,k)\{pk(∂)}

∏
w∈∆(∂,k)\{pk(∂)} qθ(xp(w), xw)gθ(xw, Yw)λ(dxw)

· (72)

Using Assumptions 2-4 (which are part of the assumptions in Proposition 4.4), we know that
the integrand in the numerator of the right hand side of (72) is continuous w.r.t. θ and is upper
bounded by the random variable ∥φv∥∞(σ+b+)|T ∞(pk(u),k)|−1 (remind that σ+ ≥ 1 and b+ ≥ 1).
And similarly, the denominator is continuous w.r.t. θ, and, using Assumption 3-(ii), is lower
bounded by the random variable:∏

w∈∆(∂,k)\{pk(∂)}

σ− inf
θ′∈Θ

∫
gθ′(xw, Yw)λ(dxw) > 0.

Hence, using dominated convergence, we conclude that PU ⊗ Pθ⋆ -a.s. the left hand side of (72)
is continuous w.r.t. θ. This concludes the proof.

As a corollary of Lemma 4.11, we get that the function θ 7→ Λ∂,∞(θ) is continuous in L2(Pθ⋆).

Corollary 4.12. Under the assumptions of Proposition 4.4, for all θ ∈ Θ0, we have:

lim
δ→0

EU ⊗ Eθ⋆

[
sup

θ′∈Θ0:∥θ′−θ∥≤δ

|Λ∂,∞(θ′) − Λ∂,∞(θ)|2
]

= 0.

In particular, the function θ 7→ EU ⊗ Eθ⋆ [Λ∂,∞(θ)] is continuous on Θ0.

Proof. Using Minkowski’s inequality and Lemma 4.8, there exist a finite constant C < ∞ and
β ∈ (0, 1) such that for all x ∈ X and k ∈ N∗, we have:

EU ⊗ Eθ⋆

[
sup

θ′∈Θ0:∥θ′−θ∥≤δ

|Λ∂,∞(θ′) − Λ∂,∞(θ)|2
]1/2

≤ 2Cβk/2 + EU ⊗ Eθ⋆

[
sup

θ′∈Θ0:∥θ′−θ∥≤δ

|Λ∂,k,x(θ′) − Λ∂,k,x(θ)|2
]1/2

. (73)

Using Lemma 4.11, we get:

lim sup
δ→0

EU ⊗ Eθ⋆

[
sup

θ′∈Θ0:∥θ′−θ∥≤δ

|Λ∂,∞(θ′) − Λ∂,∞(θ)|2
]1/2

≤ 2Cβk/2,

and taking k → ∞, the upper bound vanishes. This concludes the proof.

We now prove a locally uniform law of large numbers for the quantities Λu,k,x(θ).

Lemma 4.13. Under the assumptions of Proposition 4.4, for all x ∈ X , we have:

lim
δ→0

lim
n→∞

sup
θ′∈Θ0 : ∥θ′−θ∥≤δ

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Λu,h(u),x(θ′) − EU ⊗ Eθ⋆ [Λ∂,∞(θ)]

∣∣∣∣∣∣ = 0, Pθ⋆-a.s.
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Proof. First, write:

sup
θ′∈Θ0 : ∥θ′−θ∥≤δ

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Λu,h(u),x(θ′) − EU ⊗ Eθ⋆ [Λ∂,∞(θ)]

∣∣∣∣∣∣
≤ 1

|Tn|
∑

u∈T ∗
n

sup
θ′∈Θ0 : ∥θ′−θ∥≤δ

∣∣Λu,h(u),x(θ′) − Λu,h(u),x(θ)
∣∣

+

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Λu,h(u),x(θ) − EU ⊗ Eθ⋆ [Λ∂,∞(θ)]

∣∣∣∣∣∣ .
(74)

Then, we use the exact same argument as in the proofs of Lemma 4.9 and Corollary 4.10
where for all u ∈ T ∗, the random variable Λu,h(u),x(θ) is replaced by the random variable:

sup
θ′∈Θ0 : ∥θ′−θ∥≤δ

∣∣Λu,h(u),x(θ′) − Λu,h(u),x(θ)
∣∣,

which are in L2(Pθ⋆) using the assumptions of Proposition 4.4. This gives us that the first term
in the upper bound of (74) converges Pθ⋆ -a.s. as n → ∞ to:

EU ⊗ Eθ⋆

[
sup

θ′:∥θ′−θ∥≤δ

|Λ∂,∞(θ′) − Λ∂,∞(θ)|
]
,

which, by Corollary 4.12, vanishes when δ → 0. Corollary 4.10 implies that the second term in
the upper bound of (74) vanishes Pθ⋆ -a.s. when n → ∞. This concludes the proof.

Combining the previous lemmas in this subsection, we are now ready to prove Proposition 4.4.

Proof of Proposition 4.4. By Lemma 4.8, for all u ∈ T , we have that (Λu,k,x(θ))k∈N∗ is a Cauchy
sequence uniformly w.r.t. θ ∈ Θ0 in L2(PU ⊗ Pθ⋆) that converges to some limit Λu,∞(θ) (that
does not depend on x). By Corollary 4.10, we have that Pθ⋆ -a.s. the convergence for the the
average of the quantities Λu,h(u),x(θ⋆) over u ∈ T ∗

n holds uniformly in x ∈ X , that is, (65) in
Proposition 4.4 holds. By Corollary 4.12, we have that the function θ 7→ EU ⊗ Eθ⋆ [Λ∂,∞(θ)] is
continuous on Θ0. Finally, the last part of the proposition is given by Lemma 4.13.

4.2.2 Proof of Proposition 4.5

Similarly to what we have done for Proposition 4.4, we are going to prove a version of Propo-
sition 4.5 where the functions ϕθ used in (63) to define Γu,k,x(θ) are replaced by scalar-valued
functions, still denoted by φθ, under more general assumptions. The extension to matrix-valued
functions is then straightforward by applying the result coordinate-wise.

Let Θ0 be a compact subset of Θ, Let Θ0 be a closed ball in Θ, and let ϕ : Θ0 × X 2 × Y → R
be a Borel function such that for all x′, x ∈ X and y ∈ Y, θ 7→ ϕ(θ, x′, x, y) = ϕθ(x′, x, y) is a
continuous function on Θ0, and such that:

Eθ⋆

[
sup

θ∈Θ0

sup
x,x′∈X

|ϕθ(x, x′, Y∂)|4
]
< ∞.

Let Γu,k,x(θ) be defined as in (63) on page 37 and note that it is in L2(PU ⊗ Pθ⋆).

The proof of Proposition 4.4 can be straightforwardly adapted to Proposition 4.5 except
for Lemma 4.8. Thus, for brevity, we only present the adaptation of Lemma 4.8 to the terms
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Γu,k,x(θ). (The details of the adaptation for the rest of the proof of Proposition 4.4 to the terms
Γu,k,x(θ) can be found in Appendix D.)

We start with two lemmas giving coupling bounds that will be used to control the covariance
terms that appear in the definition of the terms Γu,k,x(θ). The following lemma is a variant of
Lemma 3.2 for two vertices of T .

Lemma 4.14 (Forward coupling bound for two vertices). Assume that Assumptions 2 and 3
hold. Then, for all u, v ∈ T , all yTn ∈ Y |Tn| (and n ∈ N) and all initials distributions ν and ν′

on X , we have:∥∥∥∥∫
X
Pθ

(
Xu ∈ ·, Xv ∈ ·

∣∣∣ YTn
= yTn

, X∂ = x
)

[ν(dx) − ν′(dx)]
∥∥∥∥

TV
≤ 2 ρmin(h(u),h(v)).

For simplicity, Lemma 4.14 is stated with ∂ as the initial vertex, but note that the results
still holds when replacing ∂ and Tn by v and T (v, n) for any v ∈ T∞. We shall reuse this fact
later.

Proof. We are going to construct a coupling that achieves this minimum. Denote by ((X ′
w, Y

′
w),

w ∈ T ) the process started from the distribution ν′ (and similarly without the ′). Remark that
we only need to define the (joint) coupling for the variables Xw and X ′

w for w on the paths
between the vertices ∂, u and v.

Lemma 3.2 applied to the vertex u ∧ v gives us a coupling for the variables Xw and X ′
w

for w on the path between ∂ and u ∧ v with successful coupling probability upper bounded by
1 − ρh(u∧v). On this successful coupling event before or on u ∧ v, the two processes are still
defined to be equal after the fork on both branches leading to u and v.

On the complementary event (no successful coupling before or on u ∧ v), we get two new
distributions νu∧v and ν′

u∧v for the variables Xu∧v and X ′
u∧v, respectively. Note that conditioned

on the value of Xu∧v, the two branches leading to u and v are independent. Thus, applying
Lemma 3.2 to u (resp. v) with the initial distributions νu∧v and ν′

u∧v, we construct a coupling
of the processes X and X ′ on the branch from u ∧ v to u (resp. v) with successful coupling
probability upper bounded by 1 − ρh(u)−h(u∧v) (resp. 1 − ρh(v)−h(u∧v)).

Hence, the probability that we do not get a successful coupling on at least one of the two
variables Xu and Xv is upper bounded by ρh(u∧v)(ρh(u)−h(u∧v) +ρh(v)−h(u∧v)) ≤ 2ρmin(h(u),h(v)).
This concludes the proof.

The following lemma is a variant of Lemma 4.1 giving a “backward in time” coupling bound
for two vertices of T .

Lemma 4.15 (Backward coupling bound for two vertices). Assume that Assumptions 2–3 hold.
Let k ∈ N∗, x ∈ X and u ∈ T , and let v, w ∈ T∞(pk(u), k) \ {u}. Then, we have:∥∥Pθ(Xv ∈ ·, Xw ∈ · |Y∆(u,k), Xpk(u) = x) − Pθ(Xv ∈ ·, Xw ∈ · |Y∆∗(u,k), Xpk(u) = x)

∥∥
TV

≤ 2 ρmin(d(u,v),d(u,w))−1.

Proof. The idea of the proof is similar to that of Lemma 4.14. We explicitly construct a coupling
with coupling failure probability upper bounded by 2 ρmin(d(u,v),d(u,w))−1. Denote by w0 the
vertex on the path between v and w that is the closest to u, and note that we have w0 ∈
T∞(pk(u), k)\{u}. Note that w0 is on the path from p(u) to v, and thus d(p(u), v) = d(p(u), w0)+
d(w0, v), and similarly when replacing v by w. On the path from p(u) to w0, we use the coupling
provided by the “backward in time” coupling bound from Lemma 4.1 with successful probability
1−ρd(p(u),w0). On the path from w0 to v and the other path from w0 to w, which are independent
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using the Markov property, we use two independent couplings that are constructed using a similar
coupling argument as in Lemma 4.1 with p(u) replaced by w0. Those independent couplings have
successful probabilities 1−ρd(w0,v) and 1−ρd(w0,w), respectively. Note that the coupling we have
constructed has a coupling failure probability upper bounded by 2 ρmin(d(u,v),d(u,w))−1.

For brevity, for all u ∈ T we will denote ϕθ,u = ϕθ(Xp(u), Xu, Yu) and ∥ϕu∥∞ = supθ∈Θ0
supx,x′∈X |ϕθ(x′, x, Yu)|. The following lemma gives several upper bounds on the covariance
terms that appear in the definition of the terms Γu,k,x(θ). Remind from (12) on page 15 that
∆(∂, k) is a random subtree of the deterministic subtree T∞(pk(u), k).

Note that this lemma is stated under the assumptions of Proposition 4.5, but here we do not
need the assumption that ρ < 1/2 for the mixing rate ρ of the HMT process (X,Y ).

Lemma 4.16. Under the assumptions of Proposition 4.5 (without the need for the assumption
that ρ < 1/2), for all x, x′ ∈ X , θ ∈ Θ0, k′ ≥ k > 0 and u ∈ T , and for all v, w ∈ T∞(pk(u), k) \
{pk(u)}, we have:

|Covθ[ ϕθ,v, ϕθ,w |Y∆(u,k), Xpk(u) = x]| ≤ 2 ∥ϕv∥∞∥ϕw∥∞ ρd(v,w)−2, (75)

and,

|Covθ[ ϕθ,v, ϕθ,w |Y∆(u,k), Xpk(u) = x] − Covθ[ ϕθ,v, ϕθ,w |Y∆(u,k′), Xpk′ (u) = x′]|

≤ 8 ∥ϕv∥∞∥ϕw∥∞ ρmin(d(pk(u),v),d(pk(u),w))−2. (76)

Moreover, if v, w ∈ ∆∗(u, k), then we have:

|Covθ[ ϕθ,v, ϕθ,w |Y∆(u,k), Xpk(u) = x] − Covθ[ ϕθ,v, ϕθ,w |Y∆∗(u,k), Xpk(u) = x]|
≤ 8 ∥ϕv∥∞∥ϕw∥∞ ρmin(d(u,v),d(u,w))−2. (77)

Proof. We start by proving (75), that is, the first inequality in the lemma. Let A1, A2, B1, B2
be measurable subsets of X , and we write A = A1 × A2 and B = B1 × B2. If one of the two
vertices v and w is an ancestor of the other, say w is an ancestor of v (which implies that w is
also an ancestor of p(v)), then using the Markov property of the HMT process (X,Y ), we get:∣∣Pθ(X{p(v),v} ∈ A,X{p(w),w} ∈ B |Y∆(u,k), Xpk(u) = x)

−Pθ(X{p(v),v} ∈ A |Y∆(u,k), Xpk(u) = x)Pθ(X{p(w),w} ∈ B |Y∆(u,k), Xpk(u) = x)
∣∣

= Pθ(X{p(w),w} ∈ B |Y∆(u,k), Xpk(u) = x)

×
∣∣∣∫

X 2
1{(xp(v),xv)∈A} Pθ(Xv ∈ dxv |Y∆(u,k), Xp(v) = xp(v))

× [Pθ(Xp(v) ∈ dxp(v) |Y∆(u,k), Xw ∈ B2, Xpk(u) = x)

−Pθ(Xp(v) ∈ dxp(v) |Y∆(u,k), Xpk(u) = x)]
∣∣∣

≤ ρd(p(v),w)

= ρd(v,w)−1,

where the inequality follows using the same argument as in the proof of the “backward in time”
coupling Lemma 4.1 (with the role of p(u) replaced by w and using the initial distributions
P((Xp(w), Xw) ∈ · |Y∆(u,k), Xw ∈ B2, Xpk(u) = x) with B′ = B and X respectively).
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Otherwise, we have that both p(v) and p(w) are on the path between v and w, and similarly
to the first case, we get:∣∣Pθ(X{p(v),v} ∈ A,X{p(w),w} ∈ B |Y∆(u,k), Xpk(u) = x)

−Pθ(X{p(v),v} ∈ A |Y∆(u,k), Xpk(u) = x)Pθ(X{p(w),w} ∈ B |Y∆(u,k), Xpk(u) = x)
∣∣

= Pθ(X{p(w),w} ∈ B |Y∆(u,k), Xpk(u) = x)

×
∣∣∣∫

X 2
1{(xp(v),xv)∈A} Pθ(Xv ∈ dxv |Y∆(u,k), Xp(v) = xp(v))

× [Pθ(Xp(v) ∈ dxp(v) |Y∆(u,k), Xp(w) ∈ B1, Xpk(u) = x)

−Pθ(Xp(v) ∈ dxp(v) |Y∆(u,k), Xpk(u) = x)]
∣∣∣

≤ ρd(p(v),p(w))

= ρd(v,w)−2.

Thus, in both case, we get:∣∣Pθ(X{p(v),v} ∈ A,X{p(w),w} ∈ B |Y∆(u,k), Xpk(u) = x)
−Pθ(X{p(v),v} ∈ A |Y∆(u,k), Xpk(u) = x)Pθ(X{p(w),w} ∈ B |Y∆(u,k), Xpk(u) = x)

∣∣
≤ ρd(v,w)−2.

This gives that (75) holds. (Note that the functions ϕθ,v and ϕθ,w can take positive, null or
negative values.)

For (76), that is, the second inequality in the lemma, use the decomposition:

|Covθ[ ϕθ,v, ϕθ,w |Y∆(u,k), Xpk(u) = x] − Covθ[ ϕθ,v, ϕθ,w |Y∆(u,k′), Xpk′ (u) = x′]|
≤ |Eθ[ ϕθ,v ϕθ,w |Y∆(u,k), Xpk(u) = x] − Eθ[ ϕθ,v ϕθ,w |Y∆(u,k′), Xpk′ (u) = x′]|

+ |Eθ[ ϕθ,v |Y∆(u,k), Xpk(u) = x] − Eθ[ ϕθ,v |Y∆(u,k′), Xpk′ (u) = x′]|
× |Eθ[ ϕθ,w |Y∆(u,k), Xpk(u) = x]|

+ |Eθ[ ϕθ,w |Y∆(u,k), Xpk(u) = x] − Eθ[ ϕθ,w |Y∆(u,k′), Xpk′ (u) = x′]|
× |Eθ[ ϕθ,v |Y∆(u,k′), Xpk′ (u) = x′]|,

and then use the joint coupling Lemma 4.14 with v′ = p(v) and w′ = p(w) for the first term in
the upper bound, and use the coupling Lemma 3.2 for the other two terms with p(v) and p(w),
respectively.

For (77), that is, the third inequality in the lemma, use a similar decomposition as for (76),
and then use the “backward in time” coupling for two vertices from Lemma 4.15 for the first
term in the upper bound, and use the “backward in time” coupling Lemma 4.1 for the other
two terms. This gives an upper bound of 8 ∥ϕv∥∞∥ϕw∥∞ ρm with m = min{d(p(u), w0) : w0 ∈
{p(v), v,p(w), w}}. Noting m ≤ min(d(u, v), d(u,w)) − 2, we get that (77) holds. This concludes
the proof of the lemma.

We are now ready to prove the following lemma which is the adaptation of Lemma 4.8 to the
terms Γu,k,x(θ), and which gives us a uniform L2(Pθ⋆) approximation bound.

Note that the condition ρ < 1/2 on the mixing rate ρ of the HMT process (X,Y ) is due to the
coupling bounds from Lemma 4.16 and the grouping of terms used in the proof of Lemma 4.17
(the upper bounds at the end of the proof only add a constant multiplicative factor). See the
discussion in Remark 1.5.
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Lemma 4.17. Under the assumptions of Proposition 4.5, there exists a positive constant C < ∞
such that for all u ∈ T and 0 < k ≤ k′, we have:

EU ⊗ Eθ⋆

[
sup

θ∈Θ0

sup
x,x′∈X

|Γu,k,x(θ) − Γu,k′,x′(θ)|2
]1/2

≤ C Eθ⋆

[
sup

θ∈Θ0

sup
x,x′∈X

|φθ(x, x′, Y∂)|4
]1/2

k2 (2ρ)k/3.

Proof. Let u, k and k′ be as in the lemma. Similarly to the proof of Lemma 4.2, we use the
bounds from Lemma 4.16 and Minkowski’s inequality to bound the left hand side of the inequality
in the lemma. For a finite subset I ⊂ T∞, we write SI =

∑
v∈I ϕθ,v (the dependence on θ is

implicit). Similarly to the proof of [DMR04, Lemma 17], the difference Γu,k,x(θ) − Γu,k′,x′(θ)
may be rewritten as A + 2B + C + D + 2E + 2F , where all those terms are random variables
which depend on Y∆(u,k′) and implicitly on U , and are define as:

A = Varθ[S∆∗(u,k) |Y∆(u,k), Xpk(u) = x] − Varθ[S∆∗(u,k) |Y∆∗(u,k), Xpk(u) = x]
− Varθ[S∆∗(u,k) |Y∆(u,k′), Xpk′ (u) = x′] + Varθ[S∆∗(u,k) |Y∆∗(u,k′), Xpk′ (u) = x′],

B = Covθ[S∆∗(u,k), ϕθ,u |Y∆(u,k), Xpk(u) = x]
− Covθ[S∆∗(u,k), ϕθ,u |Y∆(u,k′), Xpk′ (u) = x′],

C = Varθ[ϕθ,u |Y∆(u,k), Xpk(u) = x] − Varθ[ϕθ,u |Y∆(u,k′), Xpk′ (u) = x′],
D = Varθ[S∆∗(u,k′)\∆∗(u,k) |Y∆(u,k′), Xpk′ (u) = x′]

− Varθ[S∆∗(u,k′)\∆∗(u,k) |Y∆∗(u,k′), Xpk′ (u) = x′],
E = Covθ[S∆∗(u,k′)\∆∗(u,k), S∆∗(u,k) |Y∆(u,k′), Xpk′ (u) = x′]

− Covθ[S∆∗(u,k′)\∆∗(u,k), S∆∗(u,k) |Y∆∗(u,k′), Xpk′ (u) = x′],
F = Covθ[S∆∗(u,k′)\∆∗(u,k), ϕθ,u |Y∆(u,k′), Xpk′ (u) = x′]

− Covθ[S∆∗(u,k′)\∆∗(u,k), ϕθ,u |Y∆∗(u,k′), Xpk′ (u) = x′].

Using Minkowski’s inequality, we will upper bound each of those six terms separately. First
remark using Cauchy-Schwarz inequality, the stationarity of the process ((Xu, Yu), u ∈ T∞) and
the assumptions in the proposition, that we have Eθ⋆ [∥ϕv∥2

∞∥ϕw∥2
∞] ≤ Eθ⋆ [∥ϕ∂∥4

∞] < ∞ for all
v, w ∈ T∞.

Remind from (12) on page 15 that ∆(u, k) is a random subtree of the deterministic subtree
T∞(pk(u), k).

Upper bound for A: Applying the three inequalities in Lemma 4.16 and Minkowski’s
inequality, we get that Eθ⋆ [|A|2]1/2 is upper bounded (up to the factor Eθ⋆ [∥ϕ∂∥4

∞]) by:

2
∑

v,w∈T ∞(pk(u),k)

(
2 × 8ρmin(d(v,u),d(w,u))−2 ∧ 2 × 8ρmin(d(v,pk(u)),d(w,pk(u)))−2 ∧ 4 × 2ρd(v,w)−2)

≤ 32
ρ2

∑
v,w∈T ∞(pk(u),k)

(
ρmin(d(v,u),d(w,u)) ∧ ρmin(d(v,pk(u)),d(w,pk(u))) ∧ ρd(v,w)). (78)

Note that the value of this sum does not depend on the choice of u ∈ T .
For all j ∈ N, denote uj = pj(u). We will divide the sum in the upper bound of (78)

according to four cases: v, w ∈ T∞(uk, k) \ T∞(u⌊k/3⌋, ⌊k/3⌋), or v, w ∈ T∞(u⌊2k/3⌋, ⌊2k/3⌋),
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or v ∈ T∞(uk, k) \ T∞(u⌊2k/3⌋, ⌊2k/3⌋) and w ∈ T∞(u⌊k/3⌋, ⌊k/3⌋) or similarly exchanging the
roles of v and w. Note that those conditions are non-exclusive and we will count some vertices
several times, but this is not a problem.

Let i, j ∈ N be such that u∧ v = ui and u∧w = uj , and let a, b ∈ N be such that a = d(ui, v)
and b = d(uj , w). Note that for v, w in the first case, either min(d(v, u), d(w, u)) or d(v, w) is
large, and thus using elementary computation we upper bound the sum for v, w in the first case
by:

k∑
i=⌊k/3⌋

k∑
j=⌊k/3⌋

i∑
a=0

j∑
b=0

2a+b
(
ρmin(i+a,j+b) ∧ ρa+b+|j−i|)

≤ 2
k∑

i=⌊k/3⌋

k∑
j=i

i∑
a=0

j∑
b=0

2a+b
(
ρi+min(a,b) ∧ ρa+b

)
≤ 8(1 − ρ)

(1 − 2ρ)3 k (2ρ)⌊k/3⌋+1.

Note that for v, w in the second case, either min(d(v,pk(u)), d(w,pk(u)) or d(v, w) is large, and
thus using elementary computation we upper bound the sum for v, w in the second case by:

⌊2k/3⌋∑
i=0

⌊2k/3⌋∑
j=0

i∑
a=0

j∑
b=0

2a+b
(
ρmin(k−i+a,k−j+b) ∧ ρa+b+|j−i|) ≤ 8(1 − ρ)

(1 − 2ρ)3 k (2ρ)⌊k/3⌋+1.

Note that for v, w in the third and fourth case, either min(d(v,pk(u)), d(w,pk(u)) or d(v, w) is
large, and thus we upper bound the sum for v, w in the third and fourth case by:

2
⌊k/3⌋∑
i=0

k∑
j=⌊2k/3⌋

i∑
a=0

j∑
b=0

2a+bρa+b+|j−i| ≤ 2
1 − 2ρ k

2 ρk/3−1.

Putting those three upper bounds together, we get that Eθ⋆ [|A|2]1/2 is upper bounded by an
expression as in the lemma.

Upper bound for B: Using the first and second inequalities in Lemma 4.16 and Minkowski’s
inequality, we get that Eθ⋆ [|B|2]1/2 is upper bounded (up to the factor Eθ⋆ [∥ϕ∂∥4

∞]) by:

8
∑

v∈∆∗(u,k)

(ρd(v,u)−2 ∧ ρd(v,pk(u))−2) ≤ C k
(
max(ρ, 2ρ2)

)k/2
,

where we used the same computation as in the proof of Lemma 4.2 and C < ∞ is some finite
constant (which depends only on ρ).

Upper bound for C: Using the second equation in Lemma 4.16, we get that Eθ⋆ [|C|2]1/2 ≤
8ρk−2Eθ⋆ [∥ϕ∂∥2

∞].

Upper bound for D: Using the first and third equation in Lemma 4.16, Minkowski’s in-
equality and elementary computation, we get that Eθ⋆ [|D|2]1/2 is upper bounded (up to the
factor Eθ⋆ [∥ϕ∂∥4

∞]) by:∑
v,w∈T ∞(uk′ ,k′)\T ∞(uk,k)

(2 × 2ρd(v,w)−2 ∧ 8ρmin(d(v,u),d(w,u))−2) ≤ 96
ρ2(1 − 2ρ)4 k (2ρ)k.
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Upper bound for E: Using the first and third equation in Lemma 4.16, Minkowski’s in-
equality and elementary computation, we get that Eθ⋆ [|E|2]1/2 is upper bounded (up to the
factor Eθ⋆ [∥ϕ∂∥4

∞]) by:∑
v∈T ∞(uk′ ,k′)\T ∞(uk,k)

∑
w∈T ∞(uk,k)

(2 × 2ρd(v,w)−2 ∧ 8ρmin(d(v,u),d(w,u))−2)

≤ 64
ρ2(1 − ρ)(1 − 2ρ)2 k

2 (2ρ)⌊k/2⌋.

Upper bound for F: Using the first equation in Lemma 4.16 and Minkowski’s inequality,
we get that Eθ⋆ [|F |2]1/2 is upper bounded (up to the factor Eθ⋆ [∥ϕ∂∥4

∞]) by:

2 × 2
∑

v∈T ∞(uk′ ,k′)\T ∞(uk,k)

ρd(v,u)−2 ≤ 4
1 − 2ρ

ρk−1

1 − ρ
·

Hence, as the L2(Pθ⋆) norm for the six terms A, B, C, D, E and F are all upper bounded by
expressions as in the lemma, we get that the upper bound in the lemma holds. This concludes
the proof.

As annonce at the beginning of this subsection, the rest of the proof of Proposition 4.5 closely
follows the lines of the proof of Proposition 4.4.

5 Extension to the non-stationary case
In Sections 3 and 4, the stationarity assumption of the process (Yu : u ∈ T ) played a crucial role.
In this section, we extend the strong consistency and the asymptotic normality of the MLE for
the HMT to the case where this process is not stationary.

Hence, we assume that the HMT process (X ′, Y ′) = ((X ′
u, Y

′
u) : u ∈ T ) has the same transition

kernel Qθ⋆ and Gθ⋆ that are parametrized by some θ⋆ ∈ Θ as before, and the hidden variable
X ′

∂ of the root vertex ∂ has distribution ζ. This initial distribution ζ is unknown to us, may
depend on θ⋆, and in general is different from the invariant distribution πθ⋆ . As before, we
will denote by (X,Y ) = ((Xu, Yu) : u ∈ T ) a stationary process distributed according to the
same parameter θ⋆. Note that, in this section, we will use the convention that objects with
an added ′ symbol are related to the non-stationary process (X ′, Y ′), while those without the ′

symbol are their counterpart for the stationary process (X,Y ). Also note that due to the non-
stationarity assumption, in this section, we will only consider the HMT process on the original
tree T∞ = T (∂).

For the non-stationary process (X ′, Y ′), similarly to the stationary case in (7) on page 11,
define its log-likelihood for all n ∈ N and x ∈ X as:

ℓ′
n,x(θ) := ℓn,x(θ;Y ′

Tn
), (79)

where ℓn,x(θ; ·) is defined in (6) on page 11. Moreover, when Assumptions 1-4 and 6 hold and Θ
is compact, similarly to the stationary case in (33) on page 22, we define the MLE θ̂′

n,x for the
non-stationary process as:

θ̂′
n,x = θ̂′

n,x(Y ′
Tn

) ∈ argmaxθ∈Θ ℓ
′
n,x(θ). (80)
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Denote by Pθ⋆,ζ the probability distribution of the non-stationary HMT process (X ′, Y ′), and
by Eθ⋆,ζ the corresponding expectation.

We can now prove the strong consistency of the MLE for a non-stationary HMT process.

Theorem 5.1 (Strong consistency of the MLE, non-stationary case). Assume that Assump-
tions 2–6 hold. the contrast function ℓ has a unique maximum (which is then located at θ⋆ ∈ Θ
by Proposition 3.10) and Θ is compact. Then, the MLE is strongly consistent, that is, for all
initial distributions ζ and all x ∈ X , the MLE θ̂′

n,x converges Pθ⋆,ζ-a.s. as n → ∞ to the true
parameter θ⋆ ∈ Θ.

Proof. We start by proving that for any n ∈ N∗, the distribution of the non-stationary HMT
process (X ′, Y ′) on T ∗ is absolutely continuous w.r.t. the distribution of the stationary HMT
process (X,Y ) on T ∗, that is:

Pθ⋆,ζ(X ′
T ∗ ∈ ·, Y ′

T ∗ ∈ ·) ≪ Pθ⋆,πθ⋆ (X ′
T ∗ ∈ ·, Y ′

T ∗ ∈ ·) = Pθ⋆(XT ∗ ∈ ·, YT ∗ ∈ ·). (81)

Remind that Assumption 3-(i) implies that πθ⋆ ≪ λ with density dπθ⋆

dλ taking value in [σ−, σ+].
Denote by u1 and u2 the two children vertices of ∂. Using Assumption 3, for any non-negative
measurable function f from X 2 to R+, we get:∫

X 2
f(xu1 , xu2)Pθ⋆,ζ(X ′

u1
∈ dxu1 , X

′
u2

∈ dxu2)

=
∫

X 3
f(xu1 , xu2) qθ⋆(x∂ , xu1)qθ⋆(x∂ , xu2)λ(dxu1)λ(dxu2)ζ(dx∂)

≤
(
σ+

σ−

)2 ∫
X 2
f(xu1 , xu2)πθ⋆(dxu1)πθ⋆(dxu2)

=
(
σ+

σ−

)2 ∫
X 2
f(xu1 , xu2)Pθ⋆(Xu1 ∈ dxu1 , Xu2 ∈ dxu2).

In particular, for any measurable subset A of X T ∗ × YT ∗ , we can choose f to be define as:

f(xu1 , xu2) = Eθ⋆,ζ [1A(X ′
T ∗ , Y ′

T ∗) |X ′
u1

= xu1 , X
′
u2

= xu2 ]
= Eθ⋆ [1A(XT ∗ , YT ∗) |Xu1 = xu1 , Xu2 = xu2 ]

Hence, we get that (81) holds.
Using (81), we get that Proposition 3.7 also holds Pθ⋆,ζ-a.s. with ℓn,x(θ) replaced by ℓ′

n,x(θ),
that is, in the non-stationary case. Thus, the proof of Theorem 3.11 can be immediately adapted
to the non-stationary case (note that Propositions 3.6 and 3.10 state properties of the contrast
function ℓ, which is the same in the stationary and non-stationary cases). This concludes the
proof of the Theorem.

Using a similar argument as for Theorem 5.1, we get that in the non-stationary case, the
normalized observed information −|Tn|−1∇2

θℓ
′
n,x(θn) converges Pθ⋆,ζ-a.s. locally uniformly to the

limiting Fisher information I(θ⋆) (which is defined in (54)). Note that the condition ρ < 1/2 on
the mixing rate ρ of the HMT process (X,Y ) is inherited from Theorem 4.6 in the stationary
case. See the discussion in Remark 1.5 for comments on this condition on ρ.

Theorem 5.2 (Convergence of the normalized observed information, non-stationary case). As-
sume that Assumptions 2–4 and 6–9 hold. Assume that ρ < 1/2. Assume that Θ is compact.
Then, for all initial distributions ζ and all x ∈ X , we have:

lim
δ→0

lim
n→∞

sup
θ∈O : ∥θ−θ⋆∥≤δ

∥∥∥−|Tn|−1∇2
θℓ

′
n,x(θ) − I(θ⋆)

∥∥∥ = 0 Pθ⋆,ζ-a.s.

51



In particular, combining Theorems 5.1 and 5.2, we get that the normalized observed infor-
mation −|Tn|−1∇2

θℓn,x(θ̂n,x) at the MLE θ̂n,x is a strongly consistent estimator of the Fisher
information matrix I(θ⋆).

Before proving the asymptotic normality of the MLE in the non-stationary case, we start
with the following lemma which present a coupling construction for the two processes (X,Y )
and (X ′, Y ′).

Lemma 5.3 (Coupling construction of two HMTs). Assume that Assumptions 2 and 3 hold.
Further assume that σ− ≥ 1/2. Then, it is possible to construct the two processes (X,Y ) and
(X ′, Y ′) on a common probability space such that there exists an a.s. finite random time N , which
we call the coupling time, such that (Xu, Yu) = (X ′

u, Y
′

u) for all u ∈ Tn with n ≥ N .

We will denote by Pθ⋆▷◁ζ the probability distribution that realizes this coupling.
Note that ρ ≤ 1/2 implies that σ− ≥ σ+/2 ≥ 1/2 (see Assumption 3).

Proof. We first construct the coupling only for the process X and X ′. We define the coupling
construction inductively on the height of the tree. For the root vertex, we use an independent
coupling construction for X∂ and X ′

∂ , which are distributed according to πθ⋆ and ζ respectively
(note that it is also possible to use a perfect coupling with probability error ∥πθ⋆ −ζ∥TV). Then, if
the coupling has been constructed up to generation n ∈ N, using the Markov property, we proceed
to construct independently the coupling for each vertices in generation n+1. Let u ∈ Gn+1. If the
variables were already coupled for the parent vertex p(u), that is Xp(u) = X ′

p(u), then we choose
the new value Xu = X ′

u according to the transition kernel Qθ⋆ . Otherwise, if Xp(u) ̸= X ′
p(u), then

using the uniform geometric ergodicity (remind Assumption 3) of the transition kernel Qθ⋆ , we
know that supx,x′∈X ∥Qθ⋆(x; ·)−Qθ⋆(x′; ·)∥TV ≤ 1−σ−, and thus we can construct a coupling of
Xu and X ′

u conditionally on Xp(u) ̸= X ′
p(u) with exact matching probability at least 1 −σ−. We

have constructing the matching for u, and thus for the whole generation n+1. Using Kolmogorov
extension theorem, there exists a coupling measure for the whole tree T whose finite dimensional
marginals are the ones given above.

Remark that the joint process (X,Y ) satisfies a uniform geometric ergodicity bound with the
same constant 1−σ−. Thus, the construction above can be extended to the joint process (X,Y ).
Denote by Pθ⋆▷◁ζ the probability distribution of the coupling we have constructed for the joint
process (X,Y ).

Define the random coupling time N = inf{n ∈ N | ∀u ∈ Gn, Xu = X ′
u}, which is the first

generation for which the exact coupling occurs for all vertices (and N = ∞ is this never happens).
We are left to prove that Pθ⋆▷◁ζ-a.s. N < ∞. We say that a vertex u is a special vertex if Xu ̸= X ′

u.
Note that if u is not special, then all its descendants are also not special. Also note that special
vertices form a Bienaymé-Galton-Watson tree whose (homogeneous) offspring distribution takes
the values: 0 with probability (σ−)2; 1 with probability 2σ−(1 − σ−); and 2 with probability
(1 − σ−)2. The average of this offspring distribution is 2(1 − σ−). Hence, the number of special
vertices if finite Pθ⋆▷◁ζ-a.s., that is, N is finite Pθ⋆▷◁ζ-a.s., if and only if 2(1 − σ−) ≤ 1, that is,
σ− ≥ 1/2. This concludes the proof.

Remind that the log-likelihood function ℓn,x (resp. ℓ′
n,x), which is a random function de-

pending on YTn from the stationary HMT process (resp. on Y ′
Tn

from the non-stationary HMT
process), is defined in (7) on page 11 (resp. just before (79) on page 50). For all θ ∈ Θ, define:

Dn,x(θ) = ℓ′
n,x(θ) − ℓn,x(θ)

=
∑

u∈Tn

log pθ(Y ′
u |Y ′

∆∗(u,h(u)), X
′
∂ = x) − log pθ(Yu |Y∆∗(u,h(u)), X∂ = x),
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where remind that pθ denotes possibly conditional density (see (5) on page 11).
Remind that when Assumptions 1-4 and 6 hold and Θ is compact, for all x ∈ X , the MLE

θ̂n,x (resp. θ̂′
n,x) is a random variable which depends on YTn

from the stationary HMT process
(resp. on Y ′

Tn
from the non-stationary HMT process) and is defined in (33) on page 22 (resp. in

(80) on page 50).
To prove that limn→∞ |Tn|1/2(θ̂′

n,x − θ̂n,x) = 0 Pθ⋆▷◁ζ-a.s., and thus that θ̂′
n,x and θ̂n,x are

asymptotically normal with the same covariance matrix (remind Theorem 4.7), we must first
prove that the function θ 7→ Dn,x(θ) satisfies some kind of continuity property. Note that we
proved in the proof of Theorem 5.1 that Proposition 3.7 holds both in the stationary and the
non-stationary cases, and thus we have:

lim
n→∞

sup
θ∈Θ

∣∣∣|Tn|−1Dn,x(θ)
∣∣∣ = 0 Pθ⋆▷◁ζ-a.s.

However, we need some kind of continuity property without the normalizing term ||Tn|−1, which
is given by the following lemma.

Lemma 5.4. Assume that Assumptions 2–6 hold. Further assume that ρ < 1/2. Then, for all
initial distributions ζ and all x ∈ X , we have:

lim
n→∞

|Dn,x(θ̂′
n,x) −Dn,x(θ̂n,x)| = 0, Pθ⋆▷◁ζ-a.s.

Proof. [The proof is a straightforward adaptation of the proof of [DMR04, Lemmas 11 and 12].]
Let N be the random time provided by Lemma 5.3. We first prove that Pθ⋆▷◁ζ-a.s., we have:∑

u∈T \TN

sup
θ∈Θ

| log pθ(Y ′
u |Y ′

∆∗(u,h(u)), X
′
∂ = x) − log pθ(Yu |Y∆∗(u,h(u)), X∂ = x)| < ∞. (82)

Note that for all u ∈ Tn and v an ancestor of u (distinct of u), we have:

pθ(Yu |Y∆∗(u,h(u)), X∂ = x)

=
∫

X 3
gθ(xu, Yu)qθ(xp(u), xu)λ(dxu)Pθ(Xp(u) ∈ dxp(u) |Xv = xv, Y∆∗(u,h(u)−h(v)))

× Pθ(Xv ∈ dxv |Y∆∗(u,h(u)), X∂ = x),

and similarly for pθ(Y ′
u |Y ′

∆∗(u,h(u)), X
′
∂ = x). Using the fact that for v ∈ T with height h(v) ≥ N ,

we have Yv = Y ′
v , and using Lemma 3.2, we have for all u ∈ T with height h(u) > N :

|pθ(Y ′
u |Y ′

∆∗(u,h(u)), X
′
∂ = x) − pθ(Yu |Y∆∗(u,h(u)), X∂ = x)|

≤ 2 ρh(u)−N−1σ+
∫
gθ(x, Yu)λ(dx).

Thus, using a similar argument as in the proof of Lemma 3.3, we get:

| log pθ(Y ′
u |Y ′

∆∗(u,h(u)), X
′
∂ = x) − log pθ(Yu |Y∆∗(u,h(u)), X∂ = x)| ≤ ρh(u)−N−1

1 − ρ
·

Hence, the sum in (82) is Pθ⋆▷◁ζ-a.s. upper bounded by a constant times
∑∞

k=N+1 2kρk ≤
(2ρ)N+1/(1 − 2ρ), and is thus finite Pθ⋆▷◁ζ-a.s.

Let ε > 0. Using (82), there exists a random integer Nε which Pθ⋆▷◁ζ-a.s. is finite and satifies:∑
u∈T \TNε

sup
θ∈Θ

| log pθ(Y ′
u |Y ′

∆∗(u,h(u)), X
′
∂ = x) − log pθ(Yu |Y∆∗(u,h(u)), X∂ = x)| ≤ ε.
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Thus, Pθ⋆▷◁ζ-a.s., for all n ≥ Nε, we have:

|Dn,x(θ̂′
n,x) −Dn,x(θ̂n,x)| ≤ 2ε+ |ℓ′

Nε,x(θ̂′
n,x) − ℓ′

Nε,x(θ̂n,x)| + |ℓNε,x(θ̂′
n,x) − ℓNε,x(θ̂n,x)|.

Note that under the given assumptions, the functions θ 7→ ℓ′
Nε,x(θ) and θ 7→ ℓNε,x(θ) are contin-

uous Pθ⋆▷◁ζ-a.s. (see the proof of Proposition 3.6). Hence, the proof is complete upon observing
that θ̂′

n,x and θ̂n,x both converge Pθ⋆▷◁ζ-a.s. to θ⋆ (see Theorem 5.1), and that ε was arbitrary.

We can now prove the asymptotic normality of the MLE θ̂′
n,x in the non-stationary case.

Remind that the contrast function ℓ is defined in (26) on page 19.

Theorem 5.5 (Asymptotic normality of the MLE, non-stationary case). Assume that Assump-
tions 2–9 hold. Assume that ρ < 1/2. Further assume that the contrast function ℓ has a unique
maximum (which is then located at θ⋆ ∈ Θ by Proposition 3.10) and that Θ is compact, θ⋆ is an
interior point of Θ, and the limiting Fisher information matrix I(θ⋆) (which is defined in (54))
is non-singular. Then, for all initial distributions ζ and for all x ∈ X , we have:

|Tn|1/2(θ̂′
n,x − θ⋆

) (d)−→
n→∞

N (0, I(θ⋆)−1) under Pθ⋆,ζ ,

where N (0,M) denotes the centered Gaussian distribution with covariance matrix M .

Proof. [The proof is a straightforward adaptation of the proof of [DMR04, Theorem 6].]
Define εn = |Tn|1/2(θ̂n,x − θ̂′

n,x) for all n ∈ N, and remark that it is sufficient to prove that
limn→∞ εn = 0 Pθ⋆▷◁ζ-a.s. Since θ̂′

n,x is the maximizer of the function θ 7→ ℓ′
n,x(θ), we have that

ℓ′
n,x(θ̂′

n,x) ≥ ℓ′
n,x(θ̂n,x). Thus, using a Taylor expansion of ℓn,x around its maximizer θ̂n,x (for

which we have ∇θℓn,x(θ̂n,x) = 0), we get that there exists tn ∈ [0, 1] such that:

Dn,x(θ̂′
n,x) −Dn,x(θ̂n,x) ≥ ℓn,x(θ̂n,x) − ℓn,x(θ̂′

n,x)

= −1
2 |Tn|−1εt

n∇2
θℓn,x(tnθ̂′

n,x + (1 − tn)θ̂n,x)εn.

Note that we have limn→∞ tnθ̂
′
n,x + (1 − tn)θ̂n,x = θ⋆ Pθ⋆▷◁ζ-a.s. by Theorem 5.1. Thus, applying

Theorem 4.6, we have:

lim
n→∞

−|Tn|−1∇2
θℓn,x(tnθ̂′

n,x + (1 − tn)θ̂n,x) = I(θ⋆), Pθ⋆▷◁ζ-a.s.

As I(θ⋆) is positive definite, there exits M > 0 such that on a set with Pθ⋆▷◁ζ-probability one
and for n sufficiently large, we have:

Dn,x(θ̂′
n,x) −Dn,x(θ̂n,x) ≥ M |εn|2.

Then, the proof is complete by applying Lemma 5.4.
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A Ergodic theorem for Markov processes indexed by trees
with neighborhood-dependent functions

In this appendix, we prove generalization of the ergodic theorems in [Guy07] and in [Wei24],
which give a.s. and L2 convergences for branching Markov chains, to allow for neighborhood-
dependent functions. Those ergodic theorems are used to prove the ergodic convergence lemmas
in Section 2.4 which are used in the main body of this article. Remind that we need those
generalization as in the study of asymptotic property of the MLE for the HMT relies on the
study of the likelihood contribution functions hu,k,x(θ;Y∆(u,k)) (defined in (17) on page 16)
which are neighborhood-dependent.

Remind from Section 2 that if (X,Y ) is a HMT process, then the joint process ((Xu, Yu), u ∈
T ) is a branching Markov chain. Thus, it is enough to prove those ergodic theorems for branching
Markov chains instead of HMT processes.

Let Q be a transition kernel on (X ,B(X )) where X is a metric space. We assume that Q
has a unique invariant probability distribution π and is uniformly geometrically ergodic, that
is, there exists ρ ∈ (0, 1) and a finite positive constant C such that for all x ∈ X , we have
∥Qn(x; ·) − π∥TV ≤ Cρn. Remind from Lemma 2.3 that this covers the case Q = Qθ for any
θ ∈ Θ. Let X = (Xu, u ∈ T ) be a branching Markov chain with transition kernel Q and initial
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distribution π. Denote by PQ the probability distribution of the process X, and by EQ the
corresponding expectation.

In this section, for a probability measure ν on X , a transition kernel Q on (X ,B(Z)) and a
Borel integrable function f on B(Z) where Z = X A for some finite subset A ⊂ T , we will write
νQ for the image probability measure (νQ)(·) =

∫
X Q(x; ·) ν(dx), and Qf for the Borel function

(Qf)(x) =
∫

Z f(z)Q(x; dz). For a probability measure ν on X and a Borel integrable function
f on X , we will write ⟨ν, f⟩ = νf =

∫
X f dν.

We will need the following lemma which states geometric convergence bounds for functions
in L2(π).

Lemma A.1 (Convergence bounds when Q is uniformly geometrically ergodic). Assume that
the transition kernel Q has a unique invariant measure π, and that Q is uniformly geometrically
ergodic. Then, there exists finite positive constants α ∈ (0, 1) and M < ∞ such that for all
functions f ∈ L2(π), we have:

∀n ∈ N, sup
k∈N

πQk(Qnf − ⟨π, f⟩)2 = π(Qnf − ⟨π, f⟩)2 ≤ Mα2n∥f − ⟨π, f⟩∥2
L2(π).

In particular, the function f satisfies supn∈N πQ
nf2 < ∞.

Note, using Cauchy-Schwarz and Jensen’s inequalities, that supn∈N πQ
nf2 < ∞ implies that

Qnf , Qnf2, and Qk(Qnf ×Qmf) (with n,m, k ∈ N) are well-defined and finite π-almost every-
where and are π-integrable.

Proof. Using [DMPS18, Proposition 22.3.5 and Definition 22.3.1], we get that there exists finite
positive constants α ∈ (0, 1) and M < ∞ such that for all functions f ∈ L2(π), we have
π(Qnf − ⟨π, f⟩)2 = ∥Qn(f − ⟨π, f⟩)∥2

L2(π) ≤ Mα2n∥f − ⟨π, f⟩∥2
L2(π) for all n ∈ N. In particular,

we get that supn∈N πQ
nf2 < ∞.

Let k ∈ N be fixed. Remind from Section 2.4 the definitions of the subtrees ∆(u, k), of
their shapes Sh

(
∆(u, k)

)
(defined in (8)), and of the finite set of possible shapes Nk (defined in

(9)). For simplicity, in this appendix we will write Su instead of Sh
(
∆(u, k)

)
. Also remind from

Section 2.4 the definition of a collection of neighborhood-shape-dependent functions (fS : X S →
R)S∈Nk

. Remind that for such a collection of functions, we simply write f∆(u,k) or fSu
instead

of fSh(∆(u,k)). And also remind that we write fSu
(X∆(u,k)) for the evaluation of fSu

= f∆(u,k)
on X∆(u,k). Note that up to translation, we may identify X S and X ∆(u,k) for any u ∈ T \ Tk−1
such that Su = S.

Remind that any subset A ⊂ T , we denote by XA the gathered variables (Xv : v ∈ A).
For a collection of neighborhood-shape-dependent functions f = (fS : X S → R)S∈Nk

, define the
empirical average of f over a finite subset A ⊂ T \ Tk−1 as:

M̄A(f) = |A|−1
∑
u∈A

fSu
(X∆(u,k)). (83)

For a neighborhood shape S ∈ Nk, let u ∈ Gk be the unique vertex such that Su = S,
and define the transition kernel QS on (X ,B(X S)) for any x ∈ X and any Borel function f on
X S = X ∆(u) which is in L1(X∆(u)) = L1(XS) by:

QSf(x) = EQ

[
f(X∆(u))

∣∣∣ X∂ = x
]
. (84)

That is, from the value x ∈ X of the root vertex v in S, the transition kernel QS returns the
distribution of the Markov process X on S with transition kernel Q conditioned on the value
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Xv of the vertex v being x. Note that (84) also extends to any vertex u ∈ T \ Tk−1 such that
Su = S, which gives us:

QSuf(x) = EQ

[
f(X∆(u,k))

∣∣∣ Xpk(u) = x
]
. (85)

Moreover, using Jensen’s inequality, note that if f ∈ L2(XS), then QSf is in L2(π) = L2(X∂).

Remind that as T is a plane rooted tree, we can enumerate its vertices as a sequence (vj)j∈N
in a breadth-first-search manner, that is, which is increasing for < (note that u0 = ∂). Also
remind that, for n ≥ |Tk−1|, if Vn is uniformly distributed over An := {vj : |Tk−1| < j ≤ n} =
∆(vn) \ Tk−1, then the distribution of SVn

converges to the uniform distribution over Nk as
n → ∞.

We are now ready to state the ergodic theorem with neighborhood-shape-dependent functions
for branching Markov chains indexed by the infinite complete binary tree T . Remind that M̄An

(f)
is defined in (83).

Theorem A.2 (Ergodic theorem with neighborhood-dependent functions). Let k ∈ N be fixed.
Let (vj)j∈N be the sequence enumerating the vertices in T in a breadth-first-search manner. For
all n > |Tk−1|, define An = ∆(vn) \ Tk−1.

Let Q be a transition kernel on (X ,B(X )) which is uniformly geometrically ergodic and has a
unique invariant probability measure π. Let X = (Xu, u ∈ T ) be a branching Markov chain with
transition kernel Q and initial distribution π.

Let f = (fS : X S → R)S∈Nk
be a collection of neighborhood-shape-dependent Borel functions

that are in L2(X). Then, we have:

M̄An
(f) −→

n→∞
EUk

⊗ EQ

[
fSUk

(X∆(Uk))
]

in L2(π) = L2(X), (86)

where Uk is uniformly distributed over Gk and independent of the process X, and EUk
⊗ EQ

denotes the joint expectation over Uk and X.

As an immediate corollary, we get that the result still holds if An is replaced by Tn \ Tk−1.

Remark A.3 (More general assumptions). Note that without changing the proof, we could
replace the subtrees ∆(u, k) by general subtrees (i.e. a connected subsets) Ou of the the k-
neighborhood BT (u, k) := {v ∈ T : d(u, v) ≤ k} of u such that Ou contains u. In that case,
we must assume that the distribution of the shape (i.e. when seen up to translation) Sh(OVn

)
converges to some limit distribution. Also note that we could allow more general choices as in
[Wei24] for the averaging sets (An)n∈N, for the tree T , and for the transition kernel Q and initial
distribution of the branching Markov chain X.

Proof. First case: we only have constant functions fS ≡ c(S) for all S ∈ Nk. Then, for
every n ∈ N we have:

M̄An
(f) =

∑
S∈Nk

c(S) |u ∈ An : Su = S|
|An|

, (87)

where the right hand side converges in distribution (and thus in L2) as n → ∞ to EUk

[
c(SUk

)
]

(remind that the distribution of SVn
converges to the uniform distribution on Gk when n → ∞).

This concludes the proof in this first case.

General case: We adapt the proof of [Wei24, Theorem 2.2] to the case of neighborhood-
shape-dependent functions.
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Using the first case and the linearity in f of the empirical averages, and replacing fS by
fS − ⟨π,QSfS⟩, we may assume that ⟨π,QSfS⟩ = 0 for all S ∈ Nk. For all n ∈ N, we have:

EQ

[
M̄An

(f)2
]

= 1
|An|2

∑
u,v∈An

EQ

[
fSu

(X∆(u,k))fSv
(X∆(v,k))

]
. (88)

Using Lemma A.1, as the transition kernel Q is uniformly geometrically ergodic and has
unique invariant probability measure π, and as the function QSfS for S ∈ Nk are all in L2(π)
(see the comment just after (85)), we have that CS := supn∈N πQ

n(QSfS)2 < ∞ for all S ∈ Nk.
Define C := maxS∈Nk

CS < ∞ (remind that Nk is finite). Thus, for u ∈ T , we have:

EQ

[
fSu(X∆(u,k))2

]
= πQ(h(u)−k)+(QSufSu)2 ≤ C < ∞.

Hence, for all u, v ∈ T , using Cauchy-Schwarz inequality, we have:

EQ

[
fSu

(X∆(u,k))fSv
(X∆(v,k))

]
≤
(
EQ

[
fSu

(X∆(u,k))2
]
EQ

[
fSv

(X∆(v,k))2
])1/2

≤ C < ∞. (89)

Let u, v ∈ T such that d(u, v) > 2k, which implies that ∆(u, k) ∩ ∆(v, k) = ∅. Without loss
of generality, assume that h(u) ≥ h(v). Then, we have that h(u ∧ v) < h(u) − k. Denote by v0
the last ancestor of u in ∆(v, k) ∪ {u ∧ v}. Remark that u ∧ v is an ancestor of v0. Then, we
have:

EQ

[
fSu

(X∆(u,k))fSv
(X∆(v,k))

]
= EQ

[
EQ

[
fSu

(X∆(u,k))
∣∣ X∆(v,k), Xu∧v

]
fSv

(X∆(v,k))
]

≤
(
EQ

[
EQ

[
fSu(X∆(u,k))

∣∣ X∆(v,k), Xu∧v

]2]EQ

[
fSv (X∆(v,k))2

])1/2

≤ C1/2
(
EQ

[
EQ

[
fSu

(X∆(u,k))
∣∣ Xv0

]2])1/2

≤ C1/2
(
EQ

[
EQ

[
fSu

(X∆(u,k))
∣∣ Xu∧v

]2])1/2

= C1/2
(
πQh(u∧v)

(
Qd(u∧v,u)−kQSufSu

)2
)1/2

≤ C1/2
(

max
S∈Nk

πQh(u∧v)
(
Qd̃(u,v)−kQSfS

)2
)1/2

, (90)

where we used Cauchy-Schwarz inequality in the first inequality, we used (89) and the Markov
property of the process X in the second inequality, and we used Jensen’s inequality in the third
inequality. Remark that d̃(u, v) = max(d(u ∧ v, u), d(u ∧ v, v)) is a distance on T that satisfies
d/2 ≤ d̃ ≤ d.

Let Un and Vn be uniformly distributed over An, and independent of each other and of the
branching Markov chain X, and denote by PUn,Vn

their joint probability distribution. Using
again Lemma A.1, there exist finite constants M < ∞ and α ∈ (0, 1) such that for all S ∈ N we
have

∀m ∈ N, sup
j∈N

πQj
(
QmQSfS

)2 ≤ M2α2m. (91)
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Hence, combining (88), (89), (90) and (91), we get for any K ≥ k:

EQ

[
M̄An

(f)2
]

≤ C PUn,Vn
(d̃(Un, Vn) ≤ 2K)

+ C1/2 |An|−2
∑

u,v∈An:d̃(u,v)>2K

(
max
S∈Nk

πQh(u∧v)
(
Qd̃(u,v)−KQSfS

)2
)1/2

≤ C PUn,Vn
(d(Un, Vn) ≤ 4K)

+ C1/2 |An|−2
∑

u,v∈An:d̃(u,v)>2K

Mαd̃(u,v)−K (92)

≤ C PUn,Vn(d(Un, Vn) ≤ 4K) + C1/2MαK . (93)

Let ε > 0. Let K ≥ k be such that C1/2MαK < ε. Using [Wei24, Lemma 3.1], we get that
the first term in the right hand side of (93) goes to zero as n → ∞. Thus, for n large enough,
the right hand side of (93) is upper bounded by 2ε. This being true for all ε > 0, we get that
limn→∞ EQ

[
M̄An

(f)2] = 0. This concludes the proof.

We now state and prove a strong law of large numbers for branching Markov chains indexed
by the infinite complete binary tree T and with neighborhood-shape-dependent functions. This
result uses the same assumptions as in Theorem A.2.

Theorem A.4 (Strong law of larger numbers with neighborhood-dependent function). Let Q be
a transition kernel on (X ,B(X )) which is uniformly geometrically ergodic and has a unique in-
variant probability measure π. Let X = (Xu, u ∈ T ) be a branching Markov chain with transition
kernel Q and initial distribution π.

Let k ∈ N be fixed. Let Uk be uniformly distributed over Gk and independent of the process
X, and let EUk

⊗ EQ denote the joint expectation over Uk and X. Let f = (fS : X S → R)S∈Nk

be a collection of neighborhood-shape-dependent Borel functions that are in L2(X).
Then, we have:

a.s. lim
n→∞

M̄Gn
(f) = lim

n→∞
M̄Tn\Tk−1(f) = EUk

⊗ EQ

[
fSUk

(X∆(Uk))
]
.

Moreover, there exist finite constants C0 < ∞ and β ∈ (0, 1) such that:

∀n ≥ k, EQ

[(
M̄Gn

(f) − EUk
⊗ EQ

[
fSUk

(X∆(Uk))
])2
]

≤ C0β
n. (94)

Proof. After using (92), the proof is an easy adaptation of the proof of [Guy07, Theorem 14].
The case of M̄Tn\Tk−1(f) follows directly from the case of M̄Gn

(f) as:

|M̄Tn(f)| ≤
n∑

j=k

|Gj |
|Tn \ Tk−1|

M̄Gj (f).

Thus, it it enough to treat the case of M̄Gn(f). In the case where all functions fS for S ∈ Nk

are constant, writing M̄Gn
(f) as in (87), and using the convergence in distribution of (SUn

)n∈N
the uniform distribution over Nk, we get that the sought convergence holds a.s. for M̄Gn

(f).
Thus, without loss of generality, we assume that ⟨π,QSfS⟩ = 0 for all S ∈ Nk.

Remark that it is enough to prove that
∑

n≥k E[M̄Gn
(f)2] < ∞, as then we can immediately

conclude using Borel-Cantelli lemma with Markov’s inequality. Thus, for n ≥ k, using (92) with
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n′ = |Tn| (such that An′ = Gn) and K = k, we get:

EQ

[
M̄Gn

(f)2] ≤ C 2−(n−2k) + C1/2M 2−2n
∑

u,v∈Gn:d(u,v)>2k

αd̃(u,v)−k

= C 2−(n−2k) + C1/2M

n∑
j=k

2−(n−j)−1{j>0}αj−k

≤ C 2−(n−2k) + C1/2M 2−(n−k)
n∑

j=k

2j−kαj−k

≤ C 2−(n−2k) + C1/2M 2−(n−k)C ′ max(n+ 1, (2α)n−k)
≤ C 2−(n−2k) + C1/2MC ′ max((n+ 1)2−(n−k), αn−k),

where C ′ is a constant whose value only depends on the value of 2α. Hence, there exist fi-
nite constants C0 < ∞ and β ∈ (0, 1) such that (94) holds. In particular, we get that∑

n≥k E[M̄Gn(f)2] < ∞. This concludes the proof of the theorem.

B Proof of the “backward” coupling Lemma 4.1
We now prove Lemma 4.1.

Proof of Lemma 4.1. The proof relies on a “backward in time” bound from u to u∧ v, and then
a “forward in time” bound from u ∧ v to v. We divide the proof in two cases: first when v is an
ancestor of u, and then the general case.

For all j ≤ k, define the vertex Uj = pj(u) which is random for j > h(u) (in which case, it
depends on U). Write xUk

= x. For all j ∈ {1, · · · , k}, define the random set (which depends on
U):

∆−(u, k, j) = (∆∗(u, k) \ {Uk}) ∩ (T∞(Uk) \ T∞(Uj−1)),

and in particular remark that U0 = u ̸∈ ∆−(u, k, j) and Uk = pk(u) ̸∈ ∆−(u, k, j).
Case 1: v is an ancestor of u. We mimic the proof of [CMR05, Proposition 12.5.4].

The proof of the first case relies on the observation that conditioned on Xpk(u) and Y∆(u,k), the
backward ancestral process X from U0 = u to Uk = pk(u) is a non-homogeneous Markov chain
satisfying a uniform mixing condition. The fact that (XUj

)0≤j≤k is a Markov chain comes from
the Markov property of the HMT (X,Y ) (remind the discussion around (2) on page 8) which
gives for all j ∈ {1, · · · , k}:

L(XUj
|Y∆(u,k), XUk

, XT ∞(Uj−1)) = L(XUj
|Y∆(u,k), XUk

, XUj−1)
= L(XUj

|Y∆−(u,k,j), XUk
, XUj−1). (95)

For all integers j ∈ {1, · · · , k}, the backward transition kernel (which depends on U) from
XUj−1 to XUj

is defined as:

BxUk
,j [y∆(u,k)](xUj−1 ; f) = Eθ

[
f(XUj

)
∣∣ Y∆(u,k) = y∆(u,k), XUk

= xUk
, XUj−1 = xUj−1

]
,

for any xUj−1 ∈ X and any bounded Borel function f on X . By the Markov property (see (95)),
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note that BxUk
,j [y∆(u,k)](xUj−1 , f) only depends on y∆−(u,k,j) instead of y∆(u,k), that is:

BxUk
,j [y∆(u,k)](xUj−1 ;f)

= Eθ

[
f(XUj

)
∣∣ Y∆−(u,k,j) = y∆−(u,k,j), XUk

= xUk
, XUj−1 = xUj−1

]
=
∫

X f(xUj ) pθ(y∆−(u,k,j), xUj |XUk
= xUk

)qθ(xUj , xUj−1)λ(dxUj )∫
X pθ(y∆−(u,k,j), xUj |XUk

= xUk
)qθ(xUj , xUj−1)λ(dxUj )

, (96)

where:

pθ(y∆−(u,k,j), xUj
|XUk

= xUk
) =∫

X ∆−(u,k,j)

∏
w∈∆−(u,k,j)

qθ(xp(w), xw)gθ(xw, yw)
∏

w∈∆−(u,k,j)\{Uj}

λ(dxw).

To simplify notations, we will keep the dependence on y∆(u,k) for all indices j. Note that the
integral in the denominator in the right hand side of (96) is lower bounded by:∏

w∈∆−(u,k,j)

σ−
∫

X
gθ(xw, yw)λ(dxw),

and is thus positive Pθ-a.s. under Assumption 3.
Using Assumption 3, we get that those backward transition kernels satisfy the following

Doeblin condition (remind Definition 2.6):

σ−

σ+ νxUk
,j [y∆(u,k)](f) ≤ BxUk

,j [y∆(u,k)](xUj−1 ; f),

where for any bounded Borel function f on X , we have:

νxUk
,j [y∆(u,k)](f) = Eθ

[
f(XUj

)
∣∣ Y∆−(u,k,j) = y∆−(u,k,j), XUk

= xUk

]
=
∫

X f(xUj ) pθ(y∆−(u,k,j), xUj |XUk
= xUk

)λ(dxUj )∫
X pθ(y∆−(u,k,j), xUj |XUk

= xUk
)λ(dxUj )

,

where note that the only difference with the definition of BxUk
,j [y∆(u,k)](xUj−1 ; f) is that the term

qθ(xUj
, xUj−1) has disappeared in both the numerator and the denominator of νxUk

,j [y∆(u,k)](f).
Thus, Lemma 2.7 shows that the Dobrushin coefficient δ(BxUk

,j) (defined in (4)) of the backward
transition kernel BxUk

,j is upper bounded by ρ = 1 − σ−/σ+.
Note that the Markov property in (95) (with j = 1) also gives us:

L(XU1 |Y∆(u,k), XUk
, XU0) = L(XU1 |Y∆−(u,k,j), XUk

, XU0)
= L(XU1 |Y∆∗(u,k), XUk

, XU0). (97)

Finally, if we write:

Pθ(Xv ∈ · |Y∆(u,k) = y∆(u,k), XUk
= xUk

)

=
∫

Pθ(Xv ∈ · |Y∆−(u,k,1) = y∆−(u,k,1), XUk
= xUk

, XU1 = xU1)

× Pθ(XU1 ∈ dxU1 |Y∆(u,k) = y∆(u,k), XUk
= xUk

),
(98)
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and we also write (using (97)):

Pθ(Xv ∈ · |Y∆∗(u,k) = y∆∗(u,k), XUk
= xUk

)

=
∫

Pθ(Xv ∈ · |Y∆−(u,k,1) = y∆−(u,k,1), XUk
= xUk

, XU1 = xU1)

× Pθ(XU1 ∈ dxU1 |Y∆∗(u,k) = y∆∗(u,k), XUk
= xUk

),
(99)

then the two distributions (for Xv) on the left hand sides of those displayed equations can be
considered as obtained through running d(u, v) − 1 iterations of the backward ancestral condi-
tional Markov chain described above, using two different initial conditions. Therefore, as the
Dobrushin coefficient is sub-multiplicative (remind Lemma 2.5), we get that those two probabil-
ity distribution differ by at most 2 ρd(u,v)−1 in total variation. This concludes the proof of the
first case.

Case 2: general case. The proof of the second case relies on the observation that condi-
tioned on Xpk(u) and Y∆(u,k), if we consider the process X backward from u to u∧v (remind that
v ∈ ∆∗(u, k)) and then forward from u∧v to v, we get a non-homogeneous Markov chain satisfying
uniform mixing rate ρ. Note that as v ∈ T∞(pk(u), k) \ {u}, we have that u∧ v ∈ {U1, · · · , Uk}.
Using the first case, it only remains to check those observations for the forward segment, which
were already proved in the proof of Lemma 3.2.

Hence, if we use the same decomposition as in (98) and (98), which corresponds to run
d(u, v) − 1 iterations of the backward-forward conditional chain described above (d(u, u ∧ v) − 1
backward iterations and d(u∧ v, v) forward iterations), we get as in the first case that those two
probability distribution differ by at most 2 ρd(u,v)−1 in total variation. This concludes the proof
of the lemma.

C Proof of (35) (used in the proof of Proposition 3.10)
Let m ∈ N∗ be fixed through this section.

For ease of read, we restate some notation definitions used only in the proof of Proposi-
tion 3.10. For u, v ∈ T∞ with h(u) ≡ h(v) mod m + 1, we write T (u,m) < T (v,m) if u < v.
Moreover for u, v ∈ T∞, we write u < T (v,m) if h(u) < h(v) or h(u) ≤ h(v) + m and for all
w ∈ T (v,m) with h(w) = h(u) (note that such w must exist), we have u < w. Informally u is
“above or on the left of T (v,m)”. For all u ∈ T , k ∈ N, define the random subtrees which depend
on U :

∆∗(T (u,m), k) =
⋃{

T (v,m) : v ∈ ∆∗(u, k(m+ 1)) such that h(v) ≡ h(u) mod m+ 1
}
,

and ∆(T (u,m), k) = ∆∗(T (u,m), k)∪T (u,m). When h(u) ≥ k(m+1), then those subtrees do not
depend on U , and we write ∆∗(T (u,m), k) = ∆∗(T (u,m), k) and ∆(T (u,m), k) = ∆(T (u,m), k)
to indicate it. See Figure 5 on page 24 for an illustration of the “past” subtree ∆∗(T (u,m), k)
of the block subtree T (u,m).

The goal of this section is to prove (35) for all θ ∈ Θ and x ∈ X , which we restate here for
ease of read:

lim
k→∞

EU ⊗ Eθ⋆

[
log pθ(YTm

|Y∆∗(Tm,k), Xpk(m+1)(∂) = x)
]

= |Tm| ℓ(θ).
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C.1 Decomposition of the log-likelihood into subtree increments
Following (16), for all u ∈ T , k ∈ N, x ∈ X and θ ∈ Θ, using the conditional probabilities
formula, define:

HT (u,m),k,x(θ) =
pθ(Y∆(T (u,m),k) |Xpk(u) = x)
pθ(Y∆∗(T (u,m),k) |Xpk(u) = x) (100)

=
∫
pθ(YT (u,m) |Xu = xu)Pθ(Xu ∈ dxu |Y∆∗(T (u,m),k), Xp(k−1)(m+1)(u) = x),

where:

pθ(YT (u,m) |Xu = xu) =
∫

X |T (u,m)|
gθ(xu, Yu)

∏
w∈T (u,m)\{u}

gθ(xw, Yw)qθ(xp(w), xw)λ(dxw).

We then define the log-likelihood contribution of the subtree T (u,m) with past over k ∈ N
subtree generations (that is, k(m+ 1) (node) generations) as:

hT (u,m),k,x(θ) = log HT (u,m),k,x(θ)

For all n ∈ N∗, we decompose the tree Tn(m+1)−1 into subtrees of height m (such as Tm), and
we order those subtrees according to <. Hence, using (6), (7) and (100) and a telescopic sum
argument, the log-likelihood of the observed variables YTn(m+1)−1 can be rewritten as:

ℓn(m+1)−1,x(θ) =
n−1∑
k=0

∑
u∈Gk(m+1)

hT (u,m),k,x(θ). (101)

C.2 Construction of the log-likelihood increments with infinite past
for subtrees

In this subsection, we construct the log-likelihood increments with infinite past for subtrees.
To construct the limit of the functions hT (u,m),k,x(θ) we first prove the following lemma which

states some uniform bound about the asymptotic behavior of those functions when k → ∞.

Lemma C.1 (Uniform bounds for hT (u,m),k,x(θ)). Assume that Assumptions 2–3 and 4-(ii) hold.
For all vertices u ∈ T and all integers k, k′ ∈ N∗, the following assertions hold true:

sup
θ∈Θ

sup
x,x′∈X

|hT (u,m),k,x(θ) − hT (u,m),k′,x′(θ)| ≤ ρ(k∧k′)(m+1)−1

(1 − ρ)|Tm| , (102)

sup
θ∈Θ

sup
k∈N∗

sup
x∈X

|hT (u,m),k,x(θ)| ≤
(
|Tm| log b+) ∨

∣∣∣∣∣∣
∑

w∈T (u,m)

log(σ−b−(Yw))

∣∣∣∣∣∣ . (103)

Proof. [The proof is a straightforward adaptation of the proof of [CMR05, Lemma 12.3.2] using
Lemma 3.2 for the coupling.] Let k′ ≥ k ≥ 1, and write v = pk(m+1)(u), v′ = pk′(m+1)(u). Then,
write:

HT (u,m),k,x(θ) =
∫

X 2

∫
X T (u,m)

∏
w∈T (u,m)

gθ(xw, Yw)qθ(xp(w), xw)λ(dxw)

 (104)

× Pθ(Xp(u) ∈ dxp(u) |Y∆∗(T (u,m),k), Xv = xv) × δx(dxv),
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and using the Markov property at Xv, write:

HT (u,m),k′,x′(θ) =
∫

X 2

∫
X T (u,m)

∏
w∈T (u,m)

gθ(xw, Yw)qθ(xp(w), xw)λ(dxw)

 (105)

× Pθ(Xp(u) ∈ dxp(u) |Y∆∗(T (u,m),k), Xv = xv)
× Pθ(Xv ∈ dxv |Y∆∗(T (u,m),k′)\∆(T (u,m),k), Xv′ = x′).

Applying Lemma 3.2, we get (note that the integrands in (104) and (105) are non-negative):

|HT (u,m),k,x(θ) − HT (u,m),k′,x′(θ)|

≤ ρk(m+1)−1 sup
xp(u)∈X

∫ ∏
w∈T (u,m)

gθ(xw, Yw)qθ(xp(w), xw)λ(dxw)

≤ ρk(m+1)−1(σ+)|Tm|
∏

w∈T (u,m)

∫
gθ(xw, Yw)λ(dxw). (106)

The integral in (104) can be lower bounded giving us:

Hu,k,x(θ) ≥ (σ−)|Tm|
∏

w∈T (u,m)

∫
gθ(xw, Yw)λ(dxw), (107)

where the right hand side is positive by Assumption 3-(ii); and similarly for (105). Combining
(106) with (107), and with the inequality | log x− log y| ≤ |x−y|/(x∧y), we get the first assertion
of the lemma:

|hT (u,m),k,x(θ) − hT (u,m),k′,x′(θ)| ≤
(
σ+

σ−

)|Tm|

ρk(m+1)−1 = ρk(m+1)−1

(1 − ρ)|Tm| ·

Combining (100) and (107), we get:∏
w∈T (u,m)

σ−b−(Yw) ≤ HT (u,m),k,x(θ) ≤ (b+)|Tm|,

which yields the second assertion of the lemma (remind that b−(Yw) > 0 for all w ∈ T∞ by
Assumption 3-(ii)).

We are now ready to construct the limit of the functions hT (u,m),k,x(θ) and state some prop-
erties of this limit. Note that this result is stated for every u ∈ T , but we will only need it for
u = ∂. Remind that we are in the stationary case, and that the HMT process (X,Y ) is defined
on T∞.
Proposition C.2 (Properties of the limit function hT (u,m),∞(θ)). Assume that Assumptions
1–4 hold. For every u ∈ T and θ ∈ Θ, there exists hT (u,m),∞(θ) ∈ L1(PU ⊗ Pθ⋆) such that
for all x ∈ X , the sequence (hT (u,m),k,x(θ))k∈N converges PU ⊗ Pθ⋆-a.s. and in L1(PU ⊗ Pθ⋆) to
hT (u,m),∞(θ).

Furthermore, this convergence is uniform over θ ∈ Θ and x ∈ X , that is, we have that
limk→∞ supθ∈Θ supx∈X |hT (u,m),k,x(θ) − hT (u,m),∞(θ)| = 0 PU ⊗ Pθ⋆-a.s. and in L1(PU ⊗ Pθ⋆).

The limit function hT (u,m),∞(θ) can be interpreted as log pθ(YT (u,m) |Y∆∗(T (u,m),∞)), where
∆∗(T (u,m),∞) = {v ∈ T∞ : v <U T (u,m)} is a random subset of vertices. Note that
hT (u,m),∞(θ) is a function of the random set of variables (Yv, v ∈ ∆(T (u,m),∞)), where we
define ∆(T (u,m),∞) = ∆∗(T (u,m),∞) ∪ T (u,m), and thus implicitly depend on U trough
∆(T (u,m),∞).
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Proof. Fix some u ∈ T . Note that (102) shows that the sequence (hT (u,m),k,x(θ))k∈N is Cauchy
uniformly in θ and x, and thus has PU ⊗ Pθ⋆ -almost surely a limit when k → ∞ which does
not depend on x; we denote this limit by hT (u,m),∞(θ). Furthermore, we get from (103) that
(hT (u,m),k,x(θ))k∈N is uniformly bounded in L1(PU ⊗Pθ⋆), and thus hT (u,m),∞(θ) is in L1(PU ⊗Pθ⋆)
and the convergence also holds in L1(PU ⊗ Pθ⋆). Finally, as the bound in (102) is uniform in θ
and x, we get that the convergence holds uniform over θ and x both PU ⊗Pθ⋆ -almost surely and
in L1(PU ⊗ Pθ⋆).

C.3 Properties of the contrast function
As the functions hT (u,m),∞(θ) are in L1(PU ⊗Pθ⋆) under the assumptions used in Proposition C.2,
we can now define the contrast function ℓ(m) (which is deterministic) for block subtree of height
m as:

ℓ(m)(θ) = EU ⊗ Eθ⋆

[
hTm,∞(θ)

]
,

where remind EU ⊗ Eθ⋆ is the expectation corresponding to PU ⊗ Pθ⋆ . We prove under the L2

regularity assumption Assumption 5 the convergence of the normalized log-likelihood to this
contrast function.

Proposition C.3 (Ergodic convergence for the log-likelihood). Assume that Assumptions 1–5
hold. Then, for all x ∈ X , the normalized log-likelihood |Tn(m+1)−1|−1ℓn(m+1)−1,x(θ) converges
Pθ⋆-a.s. to the contrast function ℓ(m)(θ) as n → ∞.

lim
n→∞

|Tm|
|Tn(m+1)−1|

ℓn(m+1)−1,x(θ) = ℓ(m)(θ) Pθ⋆-a.s. (108)

In particular, we get that ℓ(m)(θ) = |Tm|ℓ(θ).

Proof. Let θ ∈ Θ be some parameter. Fix some k ∈ N∗ and x ∈ X . Remind (101). Applying
(102) for each vertex u ∈ Gj(m+1) with j ∈ {k, · · · , n− 1}, we get:

|Tm|
|Tn(m+1)−1|

∣∣∣∣∣∣ℓn(m+1)−1,x(θ) −
n−1∑
j=k

∑
u∈Gj(m+1)

hT (u,m),k,x(θ)

∣∣∣∣∣∣
≤ ρk(m+1)−1

(1 − ρ)|Tm| + |Tm|
|Tn(m+1)−1|

k−1∑
j=0

∑
u∈Gj(m+1)

|hT (u,m),j,x(θ)|. (109)

Note that by (103), we have that |hT (u,m),j,x(θ)| < ∞ Pθ⋆ -a.s. for all j ∈ N∗ and u ∈ Gj(m+1). For
u = ∂, we have hTm,0,x(θ) = log pθ(YTm

|X∂ = x) which is finite Pθ⋆ -a.s. by Assumption 3-(iii).
The definition of the shape from Section 2.4 can straightforwardly be adapted to the (de-

terministic) subtrees ∆(T (u,m), k) for vertices u ∈ Gj(m+1) with j ≥ k, where u is seen as a
distinguished vertex of ∆(T (u,m), k). Following (8) (on page 12) in the initial vertex-by-vertex
decomposition setting, for a vertex u ∈ Gj(m+1) with j ≥ k, let vu ∈ Gk(m+1) be the unique
vertex Gk(m+1) such that ∆(T (u,m), k) and ∆(T (vu,m), k) have the same shape. Then, we
have:

hT (u,m),k,x

(
θ;Y∆(T (u,m),k) = y∆(T (u,m),k)

)
= hT (vu,m),k,x

(
θ;Y∆(T (vu,m),k) = y∆(T (u,m),k))

)
. (110)
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Moreover, using (103) together with Assumption 5, we get for every u ∈ Gj(m+1) with j ≥ k that
the random variable hT (u,m),k,x(θ;Y∆(T (u,m),k)) is in L2(Pθ⋆). Hence, applying a straightforward
modification of Lemma 2.11 for subtree blocks T (u,m) to the collection of neighborhood-shape-
dependent functions (hT (v,m),k,x(θ;Y∆(T (v,m)) = ·))v∈Gk(m+1) (remind that indexing functions
with Gk(m+1) or with the set of possible shapes is equivalent by (9)), and using (110) and (14)
(in Remark 3.1), we get:

|Tm|
|Tn(m+1)−1|

n−1∑
j=k

∑
u∈Gj(m+1)

hT (u,m),k,x(θ) −→
n→∞

EU ⊗ Eθ⋆

[
hTm,k,x(θ)

]
Pθ⋆ -a.s. (111)

Using (102) with Proposition C.2, we get:

∣∣EU ⊗ Eθ⋆

[
hTm,k,x(θ)

]
− EU ⊗ Eθ⋆

[
hTm,∞(θ)

]∣∣ ≤ ρk(m+1)−1

(1 − ρ)|Tm| ·

Thus, combining this bound with (109) and (111), we get Pθ⋆ -a.s. that:

lim sup
n→∞

∣∣∣∣ |Tm|
|Tn(m+1)−1|

ℓn(m+1)−1,x(θ) − EU ⊗ Eθ⋆

[
hTm,∞(θ)

]∣∣∣∣ ≤ 2 ρk(m+1)−1

(1 − ρ)|Tm| ·

As the left hand side does not depend on k, letting k → ∞, we get that (108) in the lemma holds.
Lastly, as the limit must be the same as in Proposition 3.5, we get that ℓ(m)(θ) = |Tm|ℓ(θ). This
concludes the proof.

We are now ready to close this section by proving that (35) holds.

Proposition C.4. Assume that Assumptions 1–5 hold. Then, (35) holds for all θ ∈ Θ and
x ∈ X .

Proof. Applying Proposition C.2, we get that the left hand side of (35) is equal to ℓ(m)(θ) =
EU ⊗ Eθ⋆ [hT (∂,m),∞(θ)], which is equal to |Tm|ℓ(θ) by Proposition C.3.

D Details of the proof of Proposition 4.5
Remind that the proof of Proposition 4.4 can be straightforwardly adapted to Proposition 4.5
except for Lemma 4.8. In Section 4.2.2, for brevity, we have only presented the adaptation of
Lemma 4.8 to the terms Γu,k,x(θ). In this appendix, we present all the details of the adaptation
of the rest of the proof of Proposition 4.4 to the terms Γu,k,x(θ).

The following lemma gives an exponential bound on the L2(Pθ⋆) norm uniformly in x ∈ X
for the the average of the quantities Γu,h(u),x(θ⋆) over u ∈ T ∗

n .

Lemma D.1. Under the assumptions of Proposition 4.5, for all x ∈ X and θ ∈ Θ0, there exist
finite constants C < ∞ and α ∈ (0, 1) such that for all n ∈ N∗ we have:

Eθ⋆

sup
x∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Γu,h(u),x(θ) − EU ⊗ Eθ⋆

[
Γ∂,∞(θ)

]∣∣∣∣∣∣
2


1/2

≤ Cαn. (112)
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Proof. Let x′ ∈ X and θ ∈ Θ0. Using Minkowski’s inequality and Jensen’s inequality, for all
n, k ∈ N∗, we get:

Eθ⋆

sup
x∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Γu,h(u),x(θ) − EU ⊗ Eθ⋆

[
Γ∂,∞(θ)

]∣∣∣∣∣∣
2


1/2

≤ Eθ⋆

 sup
x,x′∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

k−1

Γu,h(u),x(θ)

∣∣∣∣∣∣
2


1/2

+ Eθ⋆

 sup
x,x′∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈Tn\Tk−1

Γu,h(u),x(θ) − Γu,k,x′(θ)

∣∣∣∣∣∣
2


1/2

+ Eθ⋆


∣∣∣∣∣∣ 1
|Tn|

∑
u∈Tn\Tk−1

Γu,k,x′(θ) − EU ⊗ Eθ⋆

[
Γ∂,k,x′(θ)

]∣∣∣∣∣∣
2


1/2

+ EU ⊗ Eθ⋆

[
|Γ∂,k,x′(θ) − Γ∂,∞(θ)|2

]1/2
.

(113)

Using Lemma 4.17 together with (49) on page 30 (which, remind, are both immediate conse-
quences of Lemma 4.2), there exists a finite constant C < ∞ and β ∈ (0, 1) such that the first
term in the right hand side of (113) is upper bounded by C2−(n−k) (note that |Tk−1|

|Tn| ≤ 2−(n−k)),
and the second and fourth terms in the right hand side of (113) are both upper bounded by
Cβk/2.

We now give an upper bound for the second term in the right hand side of (113). For a vertex
u in T \ Tk−1, let vu ∈ Gk be the unique vertex that satisfies the shape equality constraint (8)
(on page 12), then we have:

Γu,k,x′(θ;Y∆(u,k) = y∆(u,k)) = Γvu,k,x′(θ;Y∆(vu) = y∆(u,k)). (114)

Moreover, using the definition of Γu,k,x(θ) in (63) together with the assumption on ϕθ in Propo-
sition 4.5, we get that the random variable Γu,k,x′(θ;Y∆(u,k) = y∆(u,k)) is in L2(Pθ⋆) for ev-
ery u ∈ T \ Tk−1. Thus, we can apply Lemma 2.11 (see in particular (11)) to the collection
of neighborhood-shape-dependent functions (Γvu,k,x′(θ;Y∆(v) = ·))v∈Gk

(remind that indexing
functions with Gk or with Nk is equivalent by (9)). Using (11) in Lemma 2.11 together with (28)
and (14) in Remark 3.1, we get that there exist γ ∈ (0, 1) and a finite constant C ′ < ∞ (note
that they both do not depend on k and n) such that for all n, k ∈ N∗ with n ≥ k, the second
term in the right hand side of (113) is upper bounded by C ′γn−k.

Hence, taking k = ⌈n/2⌉, we get that the left hand side of (113) is upper bounded by
2Cβn/4 + C ′αn/2 + C2−n/2+1, and thus decays at exponential rate as desired. This concludes
the proof.

Lemma D.1 implies as a corollary the convergence Pθ⋆ -a.s. and in L2(Pθ⋆) uniformly in x ∈ X
for the the sum of the quantities Γu,h(u),x(θ⋆) over u ∈ T ∗

n .
Corollary D.2. Under the assumptions of Proposition 4.5, for all x ∈ X and θ ∈ Θ0, we have:

lim
n→∞

sup
x∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Γu,h(u),x(θ) − EU ⊗ Eθ⋆

[
Γ∂,∞(θ)

]∣∣∣∣∣∣ = 0 Pθ⋆-a.s. and in L2(Pθ⋆).
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Proof. The convergence in L2(Pθ⋆) follows immediately from Lemma D.1. Moreover, using again
Lemma D.1, we have:

∑
n∈N∗

Eθ⋆

sup
x∈X

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Γu,∞(θ) − EU ⊗ Eθ⋆ [Γ∂,∞(θ)]

∣∣∣∣∣∣
2
 < ∞.

Hence, Borel-Cantelli lemma and Markov’s inequality imply that the convergence in the lemma
also holds Pθ⋆ -a.s.

The following lemma gives some continuity properties of the function θ 7→ Γ∂,k,x(θ).

Lemma D.3. Under the assumptions of Proposition 4.5, for all x ∈ X and k ∈ N, the random
function θ 7→ Γ∂,k,x(θ) is PU ⊗ Pθ⋆-a.s. continuous on Θ0. Moreover, for all θ ∈ Θ0, we have:

lim
δ→0

EU ⊗ Eθ⋆

[
sup

θ′∈Θ0:∥θ′−θ∥≤δ

|Γ∂,k,x(θ′) − Γ∂,k,x(θ)|2
]

= 0.

Proof. We mimic the proof of [DMR04, Lemma 14].
For all v ∈ T∞, define the random variable ∥ϕv∥∞ = supθ′∈Θ0 supx,x′∈X |ϕθ′(x′, x, Yv)|. Re-

mind that under the assumptions of Proposition 4.5, the HMT process (X,Y ) is stationary and
the random variable ∥ϕ∂∥∞ is in L4(Pθ⋆). Thus, for all v ∈ T∞, the random variable ∥ϕv∥∞ is
in L4(Pθ⋆). Remind from (12) on page 15 that ∆(∂, k) is a random subtree of the deterministic
subtree T∞(pk(u), k). Then, note that we have:

sup
θ∈Θ0

|Γ∂,k,x(θ)| ≤ 4

 ∑
v∈T ∞(pk(∂),k)

∥ϕv∥∞

2

,

where the upper bound is a random variable in L2(Pθ⋆) (and thus in L2(PU ⊗ Pθ⋆)) which
depends on YT ∞(pk(u),k) but not on U . Hence, to prove the lemma, it suffices to prove that for
all v1, v2 ∈ T∞(pk(u), k) \ {pk(∂)} and ϵ ∈ {0, 1}, we have PU ⊗ Pθ⋆ -a.s. :

lim
δ→0

sup
θ′∈Θ0:∥θ′−θ∥≤δ

∣∣∣Eθ′ [ϕ(2,ϵ)
θ′ (Xp(v1), Xv1 , Yv1 , Xp(v2), Xv2 , Yv2) |Y∆(∂,k), Xpk(∂) = x]

−Eθ[ϕ(2,ϵ)
θ (Xp(v1), Xv1 , Yv1 , Xp(v2), Xv2 , Yv2) |Y∆(∂,k), Xpk(∂) = x]

∣∣∣ = 0,

where:

ϕ
(2,ϵ)
θ′ (Xp(v1), Xv1 , Yv1 , Xp(v2), Xv2 , Yv2) := ϕθ′(Xp(v1), Xv1 , Yv1)ϕθ′(Xp(v2), Xv2 , Yv2)ϵ.

Denote xpk(∂) = x, and write:

Eθ[ϕ(2,ϵ)
θ′ (Xp(v1), Xv1 , Yv1 , Xp(v2), Xv2 , Yv2) |Y∆(∂,k), Xpk(∂) = x]

=
∫

X |∆(∂,k)|−1 ϕ
(2,ϵ)
θ′ (xp(v1), xv1 , Yv1 , xp(v2), xv2 , Yv2) Ψ(dx∆(∂,k)\{pk(∂)})∫

X ∆(∂,k)\{pk(∂)} 1 Ψ(dx∆(∂,k)\{pk(∂)})
· (115)

where:
Ψ(dx∆(∂,k)\{pk(∂)}) :=

∏
w∈∆(∂,k)\{pk(∂)}

qθ(xp(w), xw)gθ(xw, Yw)λ(dxw).
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Using Assumptions 2-4 (which are part of the assumptions in Proposition 4.5), we know that the
integrand in the numerator of the right hand side of (115) is continuous w.r.t. θ and is upper
bounded by the random variable ∥ϕv1∥∞(∥ϕv2∥∞)ϵ(σ+b+)|T ∞(pk(u),k)|−1 (remind that σ+ ≥ 1
and b+ ≥ 1). And similarly, the denominator is continuous w.r.t. θ, and, using Assumption 3-(ii),
is lower bounded by the random variable:∏

w∈∆(∂,k)\{pk(∂)}

σ− inf
θ′∈Θ

∫
gθ′(xw, Yw)λ(dxw) > 0.

Hence, using dominated convergence, we conclude that PU ⊗ Pθ⋆ -a.s. the left hand side of (115)
is continuous w.r.t. θ. This concludes the proof.

As a corollary of Lemma D.3, we get that the function θ 7→ Γ∂,∞(θ) is continuous in L2(Pθ⋆).

Corollary D.4. Under the assumptions of Proposition 4.5, for all θ ∈ Θ0, we have:

lim
δ→0

EU ⊗ Eθ⋆

[
sup

θ′∈Θ0:∥θ′−θ∥≤δ

|Γ∂,∞(θ′) − Γ∂,∞(θ)|2
]

= 0.

In particular, the function θ 7→ EU ⊗ Eθ⋆ [Γ∂,∞(θ)] is continuous on Θ0.

Proof. Using Minkowski’s inequality and Lemma 4.17, there exist a finite constant C < ∞ and
β ∈ (0, 1) such that for all x ∈ X and k ∈ N∗, we have:

EU ⊗ Eθ⋆

[
sup

θ′∈Θ0:∥θ′−θ∥≤δ

|Γ∂,∞(θ′) − Γ∂,∞(θ)|2
]1/2

≤ 2Cβk/2 + EU ⊗ Eθ⋆

[
sup

θ′∈Θ0:∥θ′−θ∥≤δ

|Γ∂,k,x(θ′) − Γ∂,k,x(θ)|2
]1/2

. (116)

Using Lemma D.3, we get:

lim sup
δ→0

EU ⊗ Eθ⋆

[
sup

θ′∈Θ0:∥θ′−θ∥≤δ

|Γ∂,∞(θ′) − Γ∂,∞(θ)|2
]1/2

≤ 2Cβk/2,

and taking k → ∞, the upper bound vanishes. This concludes the proof.

We now prove a locally uniform law of large numbers for the quantities Γu,k,x(θ).

Lemma D.5. Under the assumptions of Proposition 4.5, for all x ∈ X , we have:

lim
δ→0

lim
n→∞

sup
θ′∈Θ0 : ∥θ′−θ∥≤δ

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Γu,h(u),x(θ′) − EU ⊗ Eθ⋆ [Γ∂,∞(θ)]

∣∣∣∣∣∣ = 0, Pθ⋆-a.s.

Proof. First, write:

sup
θ′∈Θ0 : ∥θ′−θ∥≤δ

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Γu,h(u),x(θ′) − EU ⊗ Eθ⋆ [Γ∂,∞(θ)]

∣∣∣∣∣∣
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≤ 1
|Tn|

∑
u∈T ∗

n

sup
θ′∈Θ0 : ∥θ′−θ∥≤δ

∣∣Γu,h(u),x(θ′) − Γu,h(u),x(θ)
∣∣

+

∣∣∣∣∣∣ 1
|Tn|

∑
u∈T ∗

n

Γu,h(u),x(θ) − EU ⊗ Eθ⋆ [Γ∂,∞(θ)]

∣∣∣∣∣∣ .
(117)

Then, we use the exact same argument as in the proofs of Lemma D.1 and Corollary D.2
where for all u ∈ T ∗, the random variable Γu,k,x(θ) is replaced by the random variable:

sup
θ′∈Θ0 : ∥θ′−θ∥≤δ

∣∣Γu,h(u),x(θ′) − Γu,h(u),x(θ)
∣∣,

which are in L2(Pθ⋆) using the assumptions of Proposition 4.5. This gives us that the first term
in the upper bound of (117) converges Pθ⋆ -a.s. as n → ∞ to:

EU ⊗ Eθ⋆

[
sup

θ′:∥θ′−θ∥≤δ

|Γ∂,∞(θ′) − Γ∂,∞(θ)|
]
,

which, by Corollary D.4, vanishes when δ → 0. Corollary D.2 implies that the second term in
the upper bound of (117) vanishes Pθ⋆ -a.s. when n → ∞. This concludes the proof.

Combining the previous lemmas in this appendix and Lemma 4.17, we are now ready to prove
Proposition 4.5.

Proof of Proposition 4.5. By Lemma 4.17, for all u ∈ T , we have that (Γu,k,x(θ))k∈N∗ is a Cauchy
sequence uniformly w.r.t. θ ∈ Θ0 in L2(PU ⊗ Pθ⋆) that converges to some limit Γu,∞(θ) (that
does not depend on x). By Corollary D.2, we have that Pθ⋆ -a.s. the convergence for the the
average of the quantities Γu,h(u),x(θ⋆) over u ∈ T ∗

n holds uniformly in x ∈ X , that is, (66) in
Proposition 4.5 holds. By Corollary D.4, we have that the function θ 7→ EU ⊗ Eθ⋆ [Γ∂,∞(θ)] is
continuous on Θ0. Finally, the last part of the proposition is given by Lemma D.5.
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