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Abstract: The long-term monitoring of wetland ecosystem functioning is critical because wetlands,
which provide multiple services, can be affected by human activities and climate change. The aim
of this study was to monitor wetland ecosystem functioning in the long term using the Landsat
archive. Four contrasting, Ramsar wetlands were selected in boreal, temperate, arid, and tropical
areas. First, the annual sum of the normalized difference vegetation index (NDVI-I) was calculated
as an indicator of annual net primary productivity for the period 1984–2021 using the continuous
change detection and classification (CCDC) algorithm. Next, the influence of the number of Landsat
images and class of land use and land cover (LULC) on the accuracy of the CCDC was investigated.
Finally, correlations between annual NDVI-I and climate were analyzed. The results revealed that
NDVI-I accuracy was influenced mainly by the LULC class and to a lesser extent by the number of
cloud-free Landsat observations. Infra- and inter-site variations in NDVI-I were high and showed
an overall increasing trend. NDVI-I was positively correlated with the mean temperature. This
study shows that this approach applied in contrasting sites is robust for the long-term monitoring
of wetland ecosystem functioning and can be used to improve the implementation of international
biodiversity conservation policies.

Keywords: Landsat; Google Earth Engine; CCDC; ecosystem degradation; biodiversity preservation

1. Introduction

Although wetlands support many functions and ecosystem services [1], they have
been increasingly threatened over the past several decades due to climate change and hu-
man pressure [2]. In this context, international biodiversity conservation policies have been
implemented, such as the Ramsar Convention [3], the Aichi Targets of the Convention on
Biological Diversity [4], the UN Sustainable Development Goals [5], and the Paris Climate
Agreement [6]. However, these policies are difficult to implement due to the incomplete
evaluation of the ecological character of wetlands, which considers the composition and
structure of these ecosystems but not their functioning [7,8]. However, the scientific com-
munity has shown that indicators of the long-term functioning of wetlands can be derived
from satellite time series [8,9]. A number of wetland conservation initiatives based on
Earth Observation (EO) data have been implemented worldwide, such as the Globwetland
Program [10], the Satellite-Based Wetland Observation Service Project [11], and the Ramsar
Reporting Convention [12]. The studies conducted as part of these initiatives highlighted
the need for the systematic assessment of the accuracy, relevance, and transferability of
EO-derived products, as well as for the long-term continuous monitoring of wetlands at
high spatial resolution using an EO archive [13].

While different open access satellite data sources could be used for long-term wetland
monitoring, Landsat imagery was selected because it combines a long observation period
(40 years) with a high spatial resolution (30 m) [14] compared to Sentinel-2 imagery (9 years,
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10 m) or MODIS imagery (23 years, 250 m). The Landsat program provides unique capa-
bilities for observing the entire Earth for 40 years at 30 m spatial resolution [14]. Landsat
images were acquired every 16 days by Landsat 4–7 (1984–2022) and have been acquired
every 8 days by Landsat 8–9 (2013–present). The Landsat archive, which the U.S. Geological
Survey has provided free of charge since 2008 [15], can be easily accessed and processed
using cloud-computing platforms such as the Google Earth Engine (GEE) [16]. Although
the Landsat archive is increasingly used for the long-term monitoring of wetlands, it has
not been fully exploited, as cloudy images and images influenced by the failure of the SLC
on Landsat 7 have been discarded. This has resulted in discontinuous time series that may
exclude periods when ecosystems changed greatly [17].

The entire Landsat archive can now be turned into a continuous time series to gen-
erate a synthetic image for any date using harmonic regression methods [18]. Among
these methods, the CCDC algorithm is the most widely used for ecosystem monitoring
using Landsat data [19], as it is suited to time series with many missing observations
at the pixel scale [20] and is easily accessible using cloud-computing tools [21]. While
the CCDC algorithm has been widely used for classification, it has been under-used for
producing synthetic images [19] to derive indicators of ecosystem functioning [22]. For
example, continuous long-term time series derived from the Landsat archive using the
CCDC algorithm have better captured subtle changes and seasonal variations in biomass
in tropical [23] and semi-arid [24] forests, or phenology in a temperate marsh [25]. How-
ever, the worldwide relevance and transferability of the CCDC in producing continuous
long-term indicators of ecosystem functioning such as annual net primary productivity
(ANPP) has not been evaluated.

In this study, wetland ecosystem functioning refers to their annual greenness cycle
of vegetation, and the NDVI-I index was used as a surrogate of ANPP. This index is a
reliable indicator of wetland ecosystem functioning, such as carbon storage and fluxes [26]
or habitat support [27]. ANPP has high spatial and temporal variability in wetlands and
responds to human and climate disturbances [28,29]. ANPP can be derived from continuous
satellite-based time series of the NDVI, as the latter, which is strongly correlated with above-
ground net primary productivity, is a linear estimator of the fraction of photosynthetically
active radiation absorbed by vegetation, the main driver of primary production [30]. Thus,
the annual NDVI integral (NDVI-I), which equals the sum of NDVI and represents ANPP,
can be used as an integrated indicator of wetland ecosystem functioning [22]. To date,
monitoring ANPP using EO data in wetlands has meant a trade-off between the duration
of monitoring and spatial resolution: either long-term at low spatial resolution [31] or
short-term at high spatial resolution [28]. However, the long-term monitoring of ANPP at
high spatial resolution is now possible using the Landsat archive [32].

The aim of this study was to monitor long-term changes in wetland ecosystem func-
tioning using the Landsat archive and the CCDC algorithm. Specifically, we explored the
influence of the LULC class and the number of available cloud-free Landsat observations
for each pixel on the accuracy of the NDVI-I, as harmonic regression methods are likely to
perform better when applied to stable ecosystems with many cloud-free observations. Four
Ramsar wetlands were selected in boreal, temperate, arid, and tropical biomes to cover a
wide range of LULC classes and cloud-free Landsat observation numbers.

2. Materials and Methods
2.1. Study Sites

This study focused on four Ramsar wetlands that covered a wide range of wetland
types and cloud-free Landsat observation numbers due to bioclimatic conditions (Figure 1).
The first site is a 2586 ha unexploited tundra mire complex in northern Sweden (Pirt-
timysvuoma, Ramsar ID 2177) frequently grazed by reindeer. Due to the site’s high latitude
and boreal climate, it had the fewest cloud-free Landsat observations (Figure 1A).
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Figure 1. Top: Location of the four Ramsar wetland sites on a world map of the annual hours of
sunshine [33]: (A) Pirttimysvuoma; (B) Marais Vernier; (C) Ouled Saïd; (D) Taiamã Ecological Station.
Bottom: View of the four Ramsar wetland sites as Google Earth images (first row), the elevation
derived from the Copernicus DEM (second row), the number of cloud-free Landsat observations
(third row), and the LULC classes in 2021 (fourth row).

The second site, the Marais Vernier et Vallée de la Risle Maritime (Ramsar ID 2247), is
located in France and has a temperate climate. This 9565 ha site is dominated by seasonally
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flooded agricultural land. A moderate number of cloud-free Landsat observations were
available for this site (Figure 1B).

The third site, Oasis de Ouled Saïd (Ramsar ID 1060), is located in the Sahara Desert.
This 25,400 ha oasis wetland developed in a former channel bed. Due to this site’s arid
climate, many cloud-free Landsat observations were available for it (Figure 1C).

The fourth site, the Taiamã Ecological Station (Ramsar ID 2363) covers 11,555 ha in
the Pantanal wetland (Figure 1D). This tropical wetland is dominated by seasonal and
permanent freshwater marshes and is frequently threatened by fires. Few cloud-free
Landsat observations were available due to the frequency of tropical rainfall.

A more detailed description of each site is provided on the Ramsar Sites Information
Service website (https://rsis.ramsar.org/ (accessed on 17 July 2024)).

2.2. Data
2.2.1. Landsat Archive

Level-2 Landsat atmospherically corrected surface reflectance images were extracted
for 1984–2021 from the Landsat Collection 2 archive [34], which is available in the GEE [35].
Specifically, the images were acquired using the Landsat 4–5 thematic mapper (TM), Land-
sat 7 enhanced thematic mapper (ETM+), and Landsat 8–9 operational land imager (OLI)
sensors (Figure 2). The Landsat 1–2–3 Multispectral Scanner archive was not used in this
study because the spectral and spatial characteristics of this sensor differ greatly from
those of the other Landsat sensors. All available images were considered, including cloudy
images and Landsat 7 SLC-off images, as the CCDC algorithm contains a two-step cloud,
cloud shadow, and snow-masking tool to eliminate “noisy” observations [36]. In total, 1263,
2090, 2715, and 929 Landsat images were used for the Pirttimysvuoma, Marais Vernier,
Ouled Saïd, and Taiamã, respectively (Figure 2, Appendix A (Table A1)).

Figure 2. Number of Landsat images by tile per year for each site: (A) Pirttimysvuoma; (B) Marais
Vernier; (C) Ouled Saïd; (D) Taiamã Ecological Station.

Landsat images were pre-processed in the CCDC GEE application program inter-
face (API) [21] using a two-step procedure: noisy pixels were masked using the quality-
assessment band, and clouds, cloud shadows, and snow cover were removed using CF-
mask [37], a C programming language translation of the Fmask version 3.2 algorithm [38]
(Figure 3).

https://rsis.ramsar.org/
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Figure 3. The method used to calculate the annual normalized difference vegetation index integral
(NDVI-I) as an indicator of annual net primary productivity (ANPP) using the continuous change
detection and classification (CCDC) application program interface [21]. RMSE: root-mean-square
error, SD: standard deviation.

2.2.2. LULC Data

The ESA WorldCover 2021 version 200 raster map was downloaded from the Zenodo
repository [39]. The map, which contains 11 LULC classes aligned with the UN-FAO Land
Cover Classification System, was produced from the Sentinel-1&2 time series. It has a
spatial resolution of 10 m and an overall accuracy of 77%.

2.2.3. Climatic Data

Gridded climate data were retrieved for 1984–2021 at 0.5◦ spatial resolution from the
Global Historical Climatology Network - Daily (GHCN-d) dataset [40] of the NOAA Climate
Prediction Center (CPC) [41], which contains records from more than 100,000 stations in
180 countries and territories. These climate data were gridded using the Shepard algorithm.
The distance of Pirrtimysvuoma, Marais Vernier, Ouled Saïd, and Taiamã Ecological Station
to the nearest GHCN meteorological station was 61, 26, 23, and 29 km, respectively. Daily
minimum (Tmin) and maximum (Tmax) temperatures were extracted for each site from the CPC
Global Unified Temperature product and then averaged per year. Daily mean temperature
(Tmean) was calculated as the mean of daily Tmin and daily Tmax and then averaged per
year. Daily precipitation (Pmm) was extracted for each site from the CPC Global Unified
Gauge-Based Analysis of Daily Precipitation product and then summed per year.

2.3. Calculating Indicator of Wetland Ecosystem Functioning

As a reliable indicator of ecosystem primary productivity [30], a continuous time series
of the NDVI was calculated in the cloud using the CCDC API [21] to estimate the ANPP
(Figure 3).

2.3.1. Generating the Observed NDVI Time Series

A discontinuous time series was generated for each 30 m pixel by calculating the
NDVI from each cloud-masked Landsat image using the following equation:

NDVI = (NIR − Red)/(NIR + Red) (1)

where NIR corresponds to the near-infrared spectrum (band 4: 0.76–0.90 µm for the TM and
ETM+ sensors and band 5: 0.85–0.88 µm for the OLI sensor) and Red to the red spectrum
(band 3: 0.63–0.69 µm for the TM and ETM+ sensors and band 4: 0.64–0.67 µm for the
OLI sensor).
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2.3.2. Generating the Simulated NDVI Time Series

A continuous simulated NDVI time series was generated for each 30 m pixel using
a harmonic regression model that was fit to a stable historical period at the beginning of
the observed NDVI time series. Next, new observations (pixels) were added to the model
iteratively, and their residuals were compared to the root-mean-square error (RMSE) of
the historical period. When the predictions differed significantly from the observations
on six consecutive dates (i.e., when residuals of future observations exceeded a chi-square
threshold value), a break (indicating a potential change in the structure or functioning of
the wetland) was flagged, and a new model was initialized. This process was repeated for
the remaining observations of the NDVI time series (Figure 4). The multi-temporal Tmask
algorithm [42] was also applied during this procedure to remove aberrant observations not
detected by the Fmask algorithm before fitting the harmonic model.

Figure 4. Example of the normalized difference vegetation index (NDVI) time series (TS) extracted
from the Landsat archive for 1984–2021 at the Marais Vernier Ramsar site. The yellow rectangle iden-
tifies the pixel from which the time series was extracted and analyzed using the continuous change
detection and classification (CCDC) algorithm. The colored lines indicate fits during time segments
detected by the CCDC algorithm; a change in color indicates a change in land cover/land use.

The CCDC API provides two types of harmonic models: ordinary least-square regres-
sion and least absolute shrinkage and selection operator (LASSO) regression. The latter
was selected because it has a regularization parameter that reduces overfitting [43] and
remains robust when only a few cloud-free Landsat images are available during a year [44].
CCDC also provides the RMSE for each band, which indicates the accuracy with which the
observed reflectance was predicted.

To evaluate the transferability of the CCDC algorithm, it was applied with the default
parameters set in the API (Table 1) to each Landsat pixel for specific dates each year for each
study site. It should be noted that the default parameters in the help document (https://
developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-ccdc

https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-ccdc
https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-ccdc
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(accessed on 17 July 2024)) and given in the literature [19,23] differed slightly from those in
the submit_CCDC script used (https://code.earthengine.google.com/?accept_repo=users/
parevalo_bu/gee-ccdc-tools (accessed on 17 July 2024)). In total, 1388 synthetic mean NDVI
images at a 10-day time step were generated for each site from 1984 to 2021. This decadal
interval was considered a reasonable trade-off between temporal resolution and computing
requirements. The model RMSE per period and the number of breaks in the time series
were retrieved from CCDC outputs for each Landsat pixel of the four sites.

Table 1. Parameters for the continuous change detection and classification algorithm and default
values set in the API submit_ccdc script (https://code.earthengine.google.com/?accept_repo=users/
parevalo_bu/gee-ccdc-tools (accessed on 17 July 2024)) applied to the four study sites. Asterisks
indicate non-default values.

Parameter Meaning Value

breakpointBands The name or index of the bands used for change detection NDVI *
tmaskBands The name or index of the bands used for iterative TMask cloud detection Green, SWIR2

MinObs Moving window size for break detection 5
Lambda Penalty parameter for LASSO regression 0.005

ChiSquareProbability Chi-square probability threshold for break detection 0.99 *
MinNumOfYearsScaler Minimum number of years before applying a new fitting 1.33

Seg Maximum number of temporal segments in the entire time series 6
MaxIterations Maximum number of runs for LASSO regression convergence 10,000 *

2.3.3. Calculating NDVI-I

The NDVI-I is a reliable indicator of the ANPP [45]. Before calculating the NDVI-I,
the years 1984–1985 were removed as they corresponded to the initialization of the first
harmonic model, which had predicted many “no data” values on the synthetic NDVI
images. The NDVI-I was then calculated for each year and each site by setting negative
NDVI values to zero (to avoid water-related biases) and summing the decadal synthetic
NDVI images. As a result, the NDVI-I theoretically ranged from 0.0 (0 × 36 images) to
36.0 (1 × 36 images), and as NDVI-I values increased, ANPP increased.

To investigate spatiotemporal variations in the accuracy of NDVI-I, annual cumulative
RMSE images—corresponding to the sum of the RMSE of model predictions of decadal
synthetic NDVI images for the year—were generated per pixel for each site. Spatiotemporal
variations in the NDVI-I for 1986–2021 were assessed for each site by calculating, for each
pixel, the temporal mean, temporal standard deviation (SD), and temporal amplitude of
NDVI-I, as well as the two years with the minimum and maximum NDVI-I.

2.4. Influence of LULC Class and Number of Cloud-Free Landsat Observations on NDVI-I Accuracy

To investigate the influence of LULC on NDVI-I accuracy, we used the 2021 ESA
WorldCover map [39] instead of the CCDC classification output to ensure independence
between LULC and NDVI-I values. The cumulative RMSE of the synthetic NDVI images
for 2021, the LULC classes, and the number of Landsat cloud-free observations available
in 2021 (divided into five classes using the Jenks natural breaks method: very small (0–6),
small (7–19), moderate (20–35), large (36–63), and very large (64–113)) were extracted for
each Landsat pixel at each site. Under-represented (<100 pixels per site) combinations
of LULC class and observation number (e.g., grasslands and very large) were removed
from the analysis. Eighty pixels were then randomly selected from each combination of
LULC class and observation number. For each site, permutational Type II analysis of
variance (ANOVA) (i.e., with no assumptions about normality or heteroscedasticity [46])
was performed with the selected pixels to estimate the RMSE as a function of LULC class
and the number of observations. The size of RMSE variance explained by each factor and
their interaction was expressed by the partial eta-squared index (η2) [47] as follows:

η2 = SSeffect/(SSeffect + SSerror) (2)

https://code.earthengine.google.com/?accept_repo=users/parevalo_bu/gee-ccdc-tools
https://code.earthengine.google.com/?accept_repo=users/parevalo_bu/gee-ccdc-tools
https://code.earthengine.google.com/?accept_repo=users/parevalo_bu/gee-ccdc-tools
https://code.earthengine.google.com/?accept_repo=users/parevalo_bu/gee-ccdc-tools
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where SSeffect is the sum of squares associated with the effect of the factor, and SSerror is the
sum of squares error (i.e., unexplained variance) in the ANOVA model.

To reduce the bias due to sample balancing, pixels were randomly selected, and the
ANOVA was repeated 500 times.

2.5. Correlation between NDVI-I and Climate Data

For each site, the correlation between annual climate variables (i.e., mean Tmin,
mean Tmax, mean Tmean, and cumulative Pmm) and spatially averaged annual NDVI-I
for 1986–2021 was assessed using the Pearson correlation coefficient. Statistical analyses
were performed using R software version 3.3 [48] with the terra [49], FactoMineR [50], and
lmPerm [51] packages.

3. Results
3.1. CCDC Sensitivity

The sensitivity of the CCDC algorithm for the wetland sites varied at the site scale
(Figure 5) and pixel scale (Figure 6). At the site scale, the CCDC algorithm was consistently
accurate when generating NDVI-I for 1986–2021. The slope of the trend in RMSE ranged
from −0.010 for Taiamã (Figure 5D) to 0.002 for Marais Vernier (Figure 5B). NDVI-I accuracy
was higher and less variable for Ouled Saïd (mean RMSE: 0.44–0.49, SD of RMSE: 0.17–0.19)
(Figure 5C) and Pirrtimysvuoma (mean RMSE: 2.63–2.70, SD of RMSE: 0.49–0.51) (Figure 5A)
than for Marais Vernier (mean RMSE: 3.80–4.03, SD of RMSE: 1.38–1.54) (Figure 5B) and
Taiamã (mean RMSE: 1.89–2.38, SD of RMSE: 0.94–1.51). For Taiamã, the RMSE decreased
continuously beginning in the 2000s (Figure 5D).

Figure 5. Annual variation in spatially averaged root-mean-square error (RMSE) of the annual
normalized difference vegetation index integral (NDVI-I) (black line) and standard deviation (grey
area) calculated from all pixels for each site from 1986 to 2021: (A) Pirttimysvuoma; (B) Marais
Vernier; (C) Ouled Saïd; (D) Taiamã Ecological Station.
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Figure 6. Temporal mean, standard deviation (StDev), and amplitude (Amp.) of the annual normal-
ized difference vegetation index integral (NDVI-I) root-mean-square error (RMSE) and number of
breaks (No. Breaks) detected in the NDVI time series using the continuous change detection and
classification algorithm for the four study sites from 1986 to 2021. Image stretching was applied to
each site to highlight its spatial pattern. (A) Pirttimysvuoma; (B) Marais Vernier; (C) Ouled Saïd;
(D) Taiamã Ecological Station.

At the pixel scale, NDVI-I accuracy had a fine-grained pattern for all sites (Figure 6).
For Pirttimysvuoma, scattered patches of larger RMSE (mean ≥ 3.90, SD ≥ 0.05, and
amplitude ≥ 0.1) and more breaks (≥1) were observed for water bodies and herbaceous
wetlands. For Marais Vernier, the southern part (i.e., grassland and woodland) clearly
differed from the northern part (i.e., cropland), which had larger RMSE (mean ≥ 7.80,
SD ≥ 1.30, and amplitude ≥ 4.20) and more breaks (≥2). For Ouled Saïd, bare soil and
vegetated areas differed greatly, with the latter having a larger mean RMSE (≥0.70) and
amplitude (≥0.10). Interestingly, the largest SD of RMSE and the highest number of breaks
(≥2) were observed in the center of the site along a northeast/southwest line, which
corresponded to a depression (Figure 1). Site-specific stretching of these images also
revealed linear patterns in the northwestern part that may have been due to the Landsat 7
SLC-off images. In comparison, Taiamã had many patches with large RMSE (mean ≥ 5.00,
SD ≥ 0.50, and amplitude ≥ 5.00) and many breaks (≥3). Similarly, for Pirttimysvuoma,
these patches covered water bodies and herbaceous wetlands.

The ANOVA confirmed that LULC class had a large influence on NDVI-I accuracy
for the four sites (η2: 0.37–0.56), whereas the number of Landsat observations had a small
influence on this value for Marais Vernier (η2: 0.01) but a moderate influence on those for
the other three sites (η2: 0.09–0.12) (Table 2). The interaction between the two factors had a



Sustainability 2024, 16, 6301 10 of 18

small (η2: 0.02–0.05) but significant influence on NDVI-I accuracy for Marais Vernier, Ouled
Saïd, and Taiamã.

Table 2. Results of two-factor permutational analysis of variance to quantify the variance (expressed
as mean partial eta-squared based on 500 iterations) in the accuracy (root-mean-square error) of
the annual normalized difference vegetation index integral (NDVI-I) in 2021 for each Ramsar site
explained by land use and land cover class (LULC), number of Landsat observations (NLO), and
their interaction. *** p < 0.001, “ns” p ≥ 0.05.

Ramsar Site
Factors

LULC NLO LULC × NLO

Pirttimysvuoma 0.37 ± 0.05 *** 0.10 ± 0.03 *** ns
Marais Vernier 0.56 ± 0.03 *** 0.01 ± 0.01 *** 0.02 ± 0.01 ***

Ouled Saïd 0.40 ± 0.03 *** 0.09 ± 0.02 *** 0.05 ± 0.02 ***
Taiamã Ecological

Station 0.37 ± 0.03 *** 0.12 ± 0.02 *** 0.05 ± 0.02 ***

Analysis of the interaction plots provided details about variations in NDVI-I accuracy
as a function of LULC class and the number of Landsat observations (Figure 7). As expected,
the mean RMSE was largest (≥3.40) for water bodies and cropland and smallest (<3.00) for
tree cover, bare/sparse vegetation, and built-up areas. Interestingly, the RMSE values by
LULC class were similar among the sites; for example, the mean RMSE for permanent water
bodies ranged from 4.03 to 4.86 for Pirttimysvuoma and from 4.25 to 4.53 for Marais Vernier.
The larger number of Landsat observations resulted in a smaller RMSE for permanent
water bodies (Pirttimysvuoma and Taiamã), cropland (Marais Vernier), herbaceous wetland
(Taiamã), and tree cover (Ouled Saïd and Taiamã).

Figure 7. Influence of the number of Landsat observations (very small: 0–6; small: 7–19; moderate:
20–35; large: 36–63; very large: 64–113), land use and land cover (LULC) class, and their interaction on
the accuracy of the continuous change detection and classification algorithm (median and standard
deviation of the root-mean-square error (RMSE) for each wetland site). Lines that are nearly parallel
indicate weak interactions.



Sustainability 2024, 16, 6301 11 of 18

3.2. Spatiotemporal Dynamics of NDVI-I

At the site scale, the temporal trends indicated that mean NDVI-I was highest for
Taiamã (23.94–28.19) and Marais Vernier (19.45–22.26) and lowest for Pirttimysvuoma
(16.76–20.18) and especially Ouled Saïd (2.85–3.16) (Figure 8). The mean annual NDVI-I
increased over time, except for Ouled Saïd, whose trend was stable. In addition, spatial
variability was higher for Marais Vernier (SD: 6.65–7.69) and Taiamã (SD: 4.74–6.11) than
for Pirttimysvuoma (SD: 2.69–2.80) and Ouled Saïd (SD: 0.77–0.96).

Figure 8. Annual variation in spatial mean annual normalized difference vegetation index integral
(NDVI-I) (black line) and standard deviation of the annual variation in spatial mean NDVI-I (grey
area) for each site for 1986–2021. (A) Pirttimysvuoma; (B) Marais Vernier; (C) Ouled Saïd; (D) Taiamã
Ecological Station.

This high spatial variability in NDVI-I was highlighted at the pixel scale for each site
(Figure 9). For Pirttimysvuoma, mean NDVI-I was highest for grassland (>21.40) and lowest
(≤1.50) for permanent water bodies. The variability in NDVI-I differed greatly among
pixels, as illustrated by the fine-grained pattern of SD and amplitude images. NDVI-I
tended to increase over time over nearly the entire site (minimum in ~1986, maximum
in ~2021).
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Figure 9. Temporal mean, standard deviation (StDev), amplitude (Amp.) of NDVI-I, and years
of minimum and maximum NDVI-I for the four study sites for 1986–2021: (A) Pirttimysvuoma;
(B) Marais Vernier; (C) Ouled Saïd; (D) Taiamã Ecological Station. Image stretching was applied to
each site to highlight its spatial pattern.

For Marais Vernier, the mean NDVI-I was highest for grassland and tree cover (>26.80),
lower for cropland (16.00–19.00), and lowest for water bodies (≤3.00). The NDVI-I clearly
varied the most over time for cropland (SD ≥ 2.50, amplitude ≥ 10.00). Unlike the rest of
the site, cropland often had a decreasing trend in NDVI-I, with the minimum and maximum
values observed in ~2021 and ~1986, respectively.

For Ouled Saïd, the mean NDVI-I was highest for vegetated areas (≥4.00), intermediate
in the central depression (3.00–3.50), and lowest throughout the rest of the site (≤2.50).
The NDVI-I generally varied little, although it varied more (SD ≥ 1.00, amplitude ≥ 3.00)
for vegetated areas. Overall, NDVI-I increased over time, but the year with maximum
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NDVI-I varied greatly among pixels. Interestingly, linear patterns were observed in the
northwestern part, likely due to the Landsat 7 SLC-off images.

For Taiamã, the NDVI-I was highest for tree cover (≥29.00), lower for herbaceous
wetland (22.00–27.00), and lowest for permanent water bodies (≤10.00). NDVI-I values
varied more (SD ≥ 3.80, amplitude ≥ 8.00) for these flooded LULC classes. Overall, NDVI-I
values increased over time (minimum ~1986, maximum ~2021), but they decreased for
flooded classes (herbaceous wetlands and permanent water bodies).

3.3. Relationship between NDVI-I Temporal Trends and Climate

Correlations between the climate variables and the NDVI-I were significant (Table 3).
For temperature variables, the mean annual Tmax (r: 0.53–0.62) and, to a lesser extent,
Tmean (r: 0.47–0.59) were strongly positively correlated with the annual NDVI-I for all sites,
whereas the mean annual Tmin was positively correlated only for Pirttimysvuoma and
Marais Vernier (r = 0.39 and 0.57, respectively). Pmm was negatively correlated only with
the annual mean NDVI-I for Taiamã (r = −0.38).

Table 3. Pearson correlations between annual mean NDVI-I and climate variables per study site.
Tmin: mean annual minimum temperature; Tmax: mean annual maximum temperature; Tmean: mean
annual mean temperature; Pmm: cumulative annual precipitation. * p < 0.05, ** p < 0.01, “ns” p ≥ 0.05.

Climate
Variable Pirttimysvuoma Marais Vernier Oasis de Ouled

Saïd
Taiamã Ecological

Station

Tmin 0.39 * ns 0.57 ** ns
Tmax 0.53 ** 0.62 ** 0.57 ** 0.60 **
Tmean 0.47 ** 0.49 ** 0.59 ** 0.51 **
Pmm ns ns ns −0.38 *

4. Discussion

The sensitivity of the CCDC algorithm can be influenced by the parameter values
defined in the GEE API [21]. Consequently, we performed an exploratory calibration step
before the analyses, as recommended by Pasquarella et al. [19]. Increasing the number of
consecutive observations needed to identify a break (minObservations) from five (default
value) to eight greatly decreased the number of breaks detected. Conversely, increasing the
chi-square probability threshold at which changes were detected from 0.90 (default value) to
0.99 decreased the identification of false breaks. However, increasing the penalty parameter
for LASSO regression lambda from 0.005 (default value) to 0.10 decreased the amplitude of
the temporal profiles significantly. We decreased the maxIteration parameter from 25,000
to 10,000, as doing so slightly decreased calculation times without increasing the RMSE.
This exploratory step demonstrated that the default parameters in the submit_CCDC script
were generally appropriate. We could have performed site-specific hyper-calibration to
increase the accuracy of the synthetic images, even though the CCDC algorithm is not
highly sensitive to small parameter changes [19], but we used the same parameter values
for all sites to emphasize the algorithm’s generality. However, no break was identified
for much of the Pirttimysvuoma and Marais Vernier sites, which seems unusual given the
length of the study period and the dynamic characteristics of wetlands, which highlights
the CCDC’s limited ability to detect subtle changes, such as vegetation regrowth [19].
CCDC customizations such as DECODE (Detection and Characterization of Coastal Tidal
Wetlands Change) have been developed recently to detect this type of change [52], but they
have not yet been integrated into a cloud-based solution.

One major advantage of the CCDC algorithm over other approaches was its ability
to use all Landsat archive images, including those with high cloud cover and/or SLC-
off, to better capture wetland dynamics. For example, it was able to use 929 images for
Taiamã instead of only the 91 images without clouds and was not influenced by the failure
of the Landsat 7 SLC sensor. However, one disadvantage was that cloudy and noisy
areas were over-masked at the expense of flooded areas, as indicated by the few Landsat
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observations retained over water (Figure 1D). The over-detection of cloud shadows over
water bodies was observed for CFmask [37], and although it was partially corrected in
Fmask version 4.0 [53], it has not yet been integrated into the CCDC API of GEE. In addition,
the Tmask used in CCDC sometimes confuses ephemeral floods with temporal artifacts.
Because the developers of Tmask acknowledged this limitation [36], we initially considered
disabling Tmask to better monitor flood dynamics, but preliminary tests indicated that it
removed noise effectively from the time series.

Overall, using CCDC to simulate decadal synthetic NDVI images (from 1984 to 2021)
enabled an accurate estimation of ANPP in wetlands. The results support previous stud-
ies that used CCDC to generate synthetic images for continuous monitoring of wetland
ecosystem functioning over the long term [25]. However, Fu et al. [25] did not explore
the sensitivity of the CCDC algorithm. The present study demonstrated that the accu-
racy (mean RMSE) of NDVI synthetic images ranged from 0.01 (0.46/36 dates) for the
arid wetland to 0.11 (3.94/36 dates) for the tropical wetland. These results are similar to
those of Liao et al. [24] for wooded vegetation in Australia (mean RMSE of 0.13 in the
NIR band). The present study provided a deeper analysis, highlighting that the RMSE
generally remained constant over time (1984–2021) but not over space. The high varia-
tions among and within sites were due to the LULC classes and the number of Landsat
observations available.

Studies have recently highlighted the sensitivity of the CCDC algorithm to the number
of observations available, but that number should be described more precisely than as “a
sufficient number” [19]. The present study highlights that the increase in the number of
Landsat images available (Figure 2), due to the launch of Landsat 7 in 1999 and Landsat-8
in 2013, has not increased the accuracy of the CCDC algorithm, except for Taiamã (Figure 5).
For this site, which is covered by only one Landsat tile and thus had the fewest images,
the mean and SD of the RMSE decreased significantly in the early 2000s. This period
corresponds to the increase in the mean number of annual observations (from 12 for
1984–1999 to 33 for 2000–2021) due to the launch of Landsat 7. This result was not observed
for Pirttimysvuoma, even though it also had few Landsat observations available. This
may have been due to the contrasting dynamics of these sites: Pirttimysvuoma is covered
mainly by extensive grasslands [54], whose relatively stable dynamics can be captured
accurately with a few Landsat observations (6–19/years), unlike those of the herbaceous
wetlands that are periodically flooded by the Paraguay River [55] and cover much of the
Taiamã site (Figure 7). Thus, increasing the number of Landsat observations is the best
way to increase the accuracy of CCDC for LULC classes with irregular or hazard-related
dynamics, such as herbaceous wetlands, water bodies, and cropland.

The ANOVA indicated that the LULC class explained a large percentage of the vari-
ation in CCDC accuracy, likely due, as before, to the irregular and/or hazard-related
dynamics of each LULC class caused by hydrodynamics and/or agricultural practices.
CCDC was most accurate for the tree cover and grassland LULC classes, as they have
relatively stable and linear dynamics. Interestingly, the RMSE for grasslands was larger
for Marais Vernier, where grasslands were alternately grazed and mowed, which resulted
in highly irregular seasonal cycles, than for Pirttimysvuoma, where grasslands were only
grazed extensively. Conversely, the CCDC algorithm was less accurate for water bodies,
herbaceous wetlands, and cropland, perhaps due to the algorithm itself, which assumes lin-
ear variations and constant amplitudes within a given time segment, which is not the case
for crop rotations or floods. As reported by Liao et al. [24], this results in the over-detection
of breaks and thus larger RMSE values (Figure 6). Approaches based on generalized addi-
tive models can also improve the continuous monitoring of frequently flooded areas [56],
but these models are sensitive to outliers and discontinuous observations.

The present study identified a long-term increase in the NDVI-I at all four wetland
sites, in coherence with the global “greening” phenomenon widely documented in the
literature [57] and related to climate change, particularly in boreal regions [58]. Unsur-
prisingly, the Pirttimysvuoma boreal wetland showed the largest increase in the NDVI-I.
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The greening phenomenon also occurred at Marais Vernier, accentuated by fertilizer in-
puts for agriculture [57]. At Taiamã, the greening phenomenon has been observed in the
Pantanal [59], but NDVI-I values decreased in 2020 and 2021 (Figure 8), potentially due to
drought and wildfires in 2020 [60]. Conversely, a relatively stable trend was observed for
the arid Ouled Saïd site, which agrees with the observations of Wen et al. [56] for semi-arid
marshes in Australia. However, recent studies of wetlands have highlighted that the green-
ing phenomenon varies locally, with larger temporal amplitudes in water levels in flooded
areas [25,56]. This was particularly evident for Taiamã, in which large amplitudes and
negative trends in NDVI-I were observed in areas that flooded frequently (Figure 9) [61]. It
also explains the negative correlation between rainfall and NDVI-I at Taiamã. Furthermore,
the relationship between the NDVI and primary productivity can be biased in wetlands
due to the decrease in spectral reflectance caused by water absorption [26]. Although the
present study addressed this bias for flooded areas by reclassifying negative NDVI values
to zero, it may remain for semi-submerged vegetated areas.

This study shows that the implemented method for the long-term monitoring of
wetland ecosystem functioning is robust under contrasting bioclimatic conditions. The
method is based on the cloud computing use of a large volume of open access satellite data
and algorithms, making it an easily accessible tool to improve the long-term monitoring and
management of wetlands considering the dimension of their ecosystem functioning [7–9].
For example, this tool could improve the implementation of target 5 “maintenance of
ecological character” of the Ramsar Strategic Plan 2016–2024 [3], Aichi target 1 “conserve
biodiversity” of the Convention on Biological Diversity [4], or target 6.6 “protect and restore
water-related ecosystems” of the UN Sustainable Development Goals [5].
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Appendix A

Table A1. Summary of the number of available images per Landsat sensor and per tile for each study
site for the 1984–2021 study period. ES: Ecological Station.

Sensor
Pirttimysvuoma Marais Vernier Ouled Saïd Taiamã ES

194/12 195/12 196/12 197/12 200/26 201/25 201/26 196/40 197/39 197/40 222/72

L4–5 TM 106 61 96 110 222 342 237 426 352 365 344

L7 ETM+ 143 139 137 128 237 332 245 318 331 330 419

L8–9 OLI/TIRS 73 87 79 104 129 197 149 198 197 198 166
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