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Abstract—This paper provides an introduction to an intriguing
geometric phenomenon that can occur when considering narrow-
band bivariate signals. This so-called geometric phase may
appear when the signal normalized second order instantaneous
moment follows a smooth curve in the curved projective space.
The resulting geometric phase is independent of the signal
frequency and magnitude. Well known in quantum mechanics,
optics or non-holonomic dynamical systems, the geometric phase
can be computed using the concept of Bargmann invariant. It
is associated to the time evolution of polarization parameters
for bivariate signals. Numerical simulations on signal processing
examples illustrate the pecular phenomenon of geometric phase.

Index Terms—Bivariate signals, time-varying parameters, ge-
ometric phase, Bargmann invariant, ray space

I. INTRODUCTION

We consider narrowband AM-FM signals, which for the
univariate case can be modeled using the well-known analytic
signal [1]. This complex-valued signal gives access to the
instantaneous attributes (amplitude and phase) of the original
univariate signal. In the bivariate case, four attributes are
necessary to fully describe the signal. They can be defined
using for example the modulated ellipse model or the analytic
signal pairs [2] and their associated attributes/parameters.
Alternatively, for the bivariate case, the quaternion embedding
[3] is a geometric extension of the analytic signal directly
parametrized with physics inspired quantities. The differ-
ent representations available for the bivariate extension of
the analytic signal are equivalent, and only differ by their
parametrization. Thus, in the sequel, we will use the formalism
introduced in [3] in order to make connections with concepts
well established in physics (optics and quantum mechanics).
First, we briefly review the instantaneous attributes that will
be of interest in the sequel and then move to the second order
representation for bivariate signals. Section IV then introduces
the concept of geometric phase for bivariate signals, and finally
a practical way of estimating this phase is proposed, together
with illustrative examples.

II. INSTANTANEOUS ATTRIBUTES FOR BIVARIATE SIGNALS

In this section we review known results in the representation
and analysis of AM-FM signals, see e.g. [2]–[4] for details. In
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the paper, L2(E) stands for the vector space of finite energy
signals indexed by R (typically time) with values in E.

A. Univariate case

A real valued AM-FM signal s(t) ∈ L2(R) can be modeled
as s(t) = a(t) cos’(t), where the instantaneous amplitude
a(t) and phase ’(t) (also named the canonical pair) are some
regular functions of time. It is well known that these two
parameters can be unambiguously determined via the complex
valued analytic signal x(t) = s(t) + j HT {s(t)} ∈ L2(C)
where HT {·} stands for the Hilbert transform and j 2 = −1.
Indeed, the polar expression of x(t) = a(t) exp(j’(t)) is
directly driven by the instantaneous parameters that give access
to the time evolution of magnitude and phase (assuming
Bedrosian’s theorem applies [1], [4]). The AM-FM property
of s(t) is thus encoded in the variations of a(t) and ’(t).

B. Bivariate case

For a real-valued bivariate AM-FM signal s(t) =
(s1(t); s2(t))

T ∈ L2(R2), it is also possible to define a
complex-valued analytic bivariate signal, denoted x(t) ∈
L2(C2). Several definitions of x(t) have been proposed:
modulated ellipse [2], rotary components [5], or quaternion
embedding [3]. Despite involving different parameterizations,
they all agree that four instantaneous parameters are needed to
describe the time evolution of x(t) (or equivalently s(t)), thus
giving rise to a canonical quadruplet that encodes the signal
fluctuations. Using the parametrization introduced in [3], the
complex bivariate narrow-band AM-FM signal x(t) takes the
following form:

x(t) = a(t)e j’(t)
„
cos „(t) cosffl(t) + j sin „(t) sinffl(t)
sin „(t) cosffl(t)− j cos „(t) sinffl(t)

«
(1)

where the canonical quadruplet [a(t); „(t);ffl(t);’(t)] com-
pletely describes the time evolution of the signal x(t). Just like
the univariate case, some conditions on the dynamics of those
parameters apply in order for the geometric interpretation (to
be detailed in section III) to be valid. This is the extension
of the Bedrosian theorem to the bivariate case, detailed in
[3]. Also, Eq. (1) allows to see x(t) as the product of
the magnitude a(t), a phasor exp(j’(t)) and a polarization
vector p(t) ∈ L2(C2). Interpretation of p(t) in terms of
the classical polarization observables or quantum two-level
systems (i.e. qubits) modelisation can be done through a 2nd
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order description of x(t). This is known as the ray space [6]
description of x(t).

III. RAY SPACE FOR BIVARIATE SIGNALS

The concept of ray space comes from quantum mechanics.
It is defined as the set of equivalent classes for the equivalence
relation x ∼ y ⇐⇒ x = e j¸y, an equivalent class being
called the state of the quantum system [6]. In terms of physical
observability, this means that if |Ψ(t)⟩ ∈ L2(C2) is the state
of a two-level quantum system, then for any – ∈ C such
that |–| = 1 the states – |Ψ(t)⟩ and |Ψ(t)⟩ are identical
[6]. The ray space associated to – |Ψ(t)⟩ is totally described
by |Ψ(t)⟩⟨Ψ(t)|, the instantaneous covariance matrix of all
– |Ψ⟩. The analogy with bivariate signals is straightforward
since for any real-valued function ¸(t) the two signals x(t)
and e j¸(t)x(t) have the same instantaneous covariance matrix
x(t)x†(t), where (·)† stands for the conjugate-transpose oper-
ation. After depicting the polarization inspired representation
of the instantaneous covariance matrix, we give details on how
it connects to a gauge invariant projective space for bivariate
signals.

A. Instantaneous 2nd order representation

Second order characterization of a bivariate signal can be
nicely formulated using the language of optics, as described in
[3]. It actually refers to quadratic observables first introduced
in optics by Stokes [7]. In particular, the geometric parameters
„(t) and ffl(t) introduced in II-B through the polarization
vector p(t) relate to the Poincaré sphere representation of x(t)
[7]. Given the expression of x(t) in (1), the instantaneous
covariance matrix x(t)x†(t) can be expanded on the basis
formed by the 2 × 2 Pauli matrices ffi for i = 0; 1; 2; 3, with
in particular ff0 = I the identity matrix, in the following way:

x(t)x†(t) =
1

2

"
S0(t)I+

3X
i=1

Si (t)ffi

#
:

The coefficients of the expansion are known as the Stokes
parameters. They relate to the parameters of bivariate AM-
FM signal (1) in the following way:

S0(t) = a2(t);
S1(t) = a2(t) cos 2ffl(t) cos 2„(t);
S2(t) = a2(t) cos 2ffl(t) sin 2„(t);
S3(t) = a2(t) sin 2ffl(t):

The normalized version of the covariance matrix, denoted
ȷ(t) ∈ C2×2 reads:

ȷ(t) =
x(t)x†(t)

∥x(t)∥2

where ∥x(t)∥2 = a2(t) = S0(t). The matrix ȷ(t)1 can
thus be studied using its coordinates: s1(t) = S1(t)=S0(t),
s2(t) = S2(t)=S0(t) and s3(t) = S3(t)=S0(t) known as the
normalized Stokes parameters [7]. From their expression, it
is obvious that ȷ(t) corresponds, at each instant t, to a point

1In quantum mechanics, ȷ(t) is known as the density matrix [6].

on the sphere S2 of R3 with spherical angular coordinates
(2„(t); 2ffl(t)). Fig. 1 illustrates the Poincaré sphere repre-
sentation (also known as Bloch sphere in quantum optics)
[7]. Parameters („(t); ffl(t)) describe the instantaneous ellipse
drawn by the bivariate AM-FM signal x(t) given in (1). See
also [3] for more details and examples.

x1

x2

χ

θ

⟲ χ > 0
⟳ χ < 0

S3

S0

S1

S0

S2

S0

Polarization ellipse

2θ

2χ

Fig. 1. Poincaré sphere representation and associated elliptical shape of
the bivariate signal x(t) = (x1(t); x2(t))

T . One point on the sphere with
coordinates (S1(t)=S0(t);S2(t)=S0(t);S3(t)=S0(t)) corresponds to one
matrix ȷ(t).

For the bivariate signal x(t), the instantaneous magnitude
a(t) and the instantaneous phase ’(t) may change with time
like for the univariate case. But in the bivariate case, „(t)
and ffl(t) that describe the polarization state of the signal may
also vary. This implies a time evolution of the normalized
instantaneous covariance ȷ(t), and this may have unsuspected
effects on x(t) as described in Section IV. Before investigating
the impact of changes in ȷ(t) on x(t), we report some
symmetry and invariance properties for ȷ(t).

B. Gauge invariance

As mentioned previously, several bivariate signals may have
the same matrix ȷ(t). Consider a normalized bivariate signal,
i.e. ∥x(t)∥2 = 1, then a transformation on x(t) that leaves
ȷ(t) unchanged is a so-called gauge invariant transformation.
In our study, it takes the simple form:

x̃(t) = x(t)e j¸(t); (2)

where ¸ : R → R is an arbitrary function, implying obviously
that x(t)x†(t) = x̃(t)x̃†(t) = ȷ(t). As a consequence, ȷ(t)
can be viewed as a point in the projective space P(C) (in
the bivariate case it is the Poincaré sphere), and to this point
corresponds multiple possible values of x̃(t). This fiber bundle
structure in depicted in Fig. 2. The time evolution of ȷ(t) at
the surface of the sphere can be thought as a smooth curve
C(t) (see Fig. 2). To such a curve C(t) corresponds infinitely
many different possible curves for x̃(t) in the space of bivariate
signals L2(C2).

The possible existence of an evolution (along a curve C(t))
of ȷ(t) has direct consequences on the bivariate signal x(t)
itself. It may induce a non intuitive phase factor directly on
x(t): the geometric phase.
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Fig. 2. Schematic representation of the U(1) gauge invariance. A trajectory
C(t) in the ray space P(C) of matrices ȷ(t) corresponds to an infinity of
signals in the space L2(C2).

IV. GEOMETRIC PHASE

There exists several types of geometric phases which have
been identified for classical or quantum systems [8]. The
geometric phase we report here for bivariate signals belongs
to the family of Berry-Pancharatnam phases [9], [10]. Its
appearance is due to the evolution of ȷ(t) along the curve
C(t). Its computation can be performed thanks to a class of
invariants discovered in [11].

A. The U(1)×n-invariant

As detailed in [6] and under some assumptions, an inter-
esting family of invariant quantities can be constructed for
bivariate signals. Remarkably, in the univariate case, these
invariants vanish, a behaviour that relates to the fact that no
geometric phase can exist for univariate signals. We briefly
recall hereafter the construction of the invariant family that
will then be used for the geometric phase evaluation in Section
IV-C. Remember that we only consider unitary bivariate
signals, i.e., such that ∥x(t)∥2 = 1 ∀t. Now, given a set
of n time instants (t1; t2; : : : ; tn) with t1 < t2 < : : : < tn, the
following complex-valued form:

x†(t1)x(t2)
hQn−1

i=2 x†(ti )x(ti+1)
i
x†(tn)x(t1)

= x†(t1)
ˆQn

i=2 ȷ(ti )
˜
x(t1)

(3)

is invariant to the gauge transformation given in (2), i.e. to
the substitution, for any i ∈ [1; n], of x(ti ) by e j¸(ti )x(ti ) for
¸(ti ) ∈ R. It is the circular product of the inner products
between two successive vectors along the path designed by
x(t). Since the gauge transformation is a U(1) transformation
(multiplication by a unit complex number, i.e. a member of the
U(1) group), the quantity in (3) is a U(1)×n-invariant quantity
known as the Bargmann invariant [6]. This invariant will be
used in Section IV-C to compute the geometric phase.

B. The geometric phase of bivariate signals

First, we briefly recall the reasoning detailed in [6]. Con-
sidering a unitary bivariate signal x(t) and the gauge trans-
formation x̃(t) = e j¸(t)x(t) for t ∈ [t1; tn], we wish to define
an invariant quantity that is concerned with the phase of x(t).

The fact that x†(t)x(t) = 1 implies Re
`
x†(t)ẋ(t)

´
= 0, and

thus:
x†(t)ẋ(t) = j Im

`
x†(t)ẋ(t)

´
where we used the notation dx(t)

dt
= ẋ(t). Applying the gauge

transformation leads to

x̃†(t) ˙̃x(t) = j Im
`
x̃†(t) ˙̃x(t)

´
= j

`
Im
`
x†(t)ẋ(t)

´
+ ˙̧ (t)

´
As a consequence, given two instants t1 < t2, the quantity:

arg
`
x̃†(t1)x̃(t2)

´
− Im

Z t2

t1

x̃†(t) ˙̃x(t)dt

= arg
`
x†(t1)x(t2)

´
− Im

Z t2

t1

x†(t)ẋ(t)dt

(4)

is proved to be gauge invariant. In addition, it can be shown
[6] that it is also invariant to a reparametrization (i.e. changing
t by a smooth monotonically increasing function of t). With
this extra property, this invariant is called the geometric phase
of the bivariate signal x(t) during the time interval t2 − t1.
Looking closely at (4), the two involved quantities correspond
to two different “phases” between instants t1 and t2: the
relative phase Φrel = arg

`
x†(t1)x(t2)

´
= ’(t2) − ’(t1)

and the dynamical phase Φdyn = Im
R t2
t1

x†(t)ẋ(t)dt. The
geometric phase of a bivariate signal can be defined as follows.

Consider a unitary complex AM-FM bivariate signal x(t)
and its associated instantaneous covariance matrix ȷ(t). Given
a smooth curve C(t) followed by ȷ(t) in the ray space,
the geometric phase of x(t) associated to C(t), and denoted
Φgeo [C(t)], is given by:

Φrel [C(t)]− Φdyn [C(t)] = ±Φgeo [C(t)] (5)

The sign of the geometric phase depends on the direction used
to follow the path C(t). For the univariate case and as said
previously, the geometric phase is null. It comes from the fact
that relative and dynamical phases are equal for univariate
signals, while it is no longer true in general for the bivariate
case. There are however two particular cases for which the
geometrical phase is null in the bivariate case. The first and
obvious one occurs if the curve C(t) is restricted to a point
on the sphere. In this case the polarisation parameters ffl and „
are constant in time. The second and less intuitive one is the
case of a geodesic curve (details and other properties can be
found in [6] and [8]).

C. Computation of Φgeo[C(t)]
In order to evaluate the geometric phase Φgeo[C(t)] of a

bivariate signal, Eq. (5) can be implemented, requiring the
computation of the relative and dynamical phases. However,
another approach consists in using the Bargmann invariants
introduced in IV-A, as proposed originally in [12]. Consider
a unitary bivariate signal x(t) and its associated instantaneous
covariance matrix ȷ(t), together with a time interval ∆t
sampled at n time instants t1; t2; : : : ; tn with ∆t = tn − t1.
Assuming that ȷ(t) evolves along a path C(t) on the Poincaré
sphere, the geometric phase acquired by x(t) during ∆t is
given by:
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Φgeo[C(∆t)] = − arg
`
x†(t1)

ˆQn
i=2 ȷ(ti )

˜
x(t1)

´
= − arg (Tr (ȷ(t1)ȷ(t2) : : : ȷ(tn)))

(6)

which corresponds to the argument/phase of the Bargmann
invariant introduced in (3). The geometric phase thus consists
in the phase of the trace of the accumulated product of rank-1
instantaneous covariance matrices between the initial and final
time instants [t1; tn]. It is worth noticing that the phase can
only be non-null if more than two time instants are considered.
This can be inferred from (6) due to the properties of the
trace of a product of hermitian matrices (details in [12]).
Note that in practice since (6) is only defined modulo 2ı,
estimating the geometric phase acquired during ∆t requires
to compute the phase for every t1; t2; : : : tn, before getting the
correct geometric phase value for the duration ∆t through
phase unwrapping. The next section provides examples of this
estimation on two bivariate signals.

V. EXAMPLES

In order to illustrate how the variations of the instantaneous
covariance matrix of a bivariate signal can lead to the appear-
ance of a geometric phase, we first consider a toy example
where the time evolution of ȷ(t) follows a controlled path
(geodesic triangle) on the Poincaré sphere. We then show how
it can be used on a real bivariate signal from a seismic dataset.

A. Geodesic triangle on the Poincaré sphere

The original idea2 of Pancharatnam was to consider the
state of a totally polarized light beam undergoing a cyclic
change of polarization [7]. He predicted that during such a
change, a phase proportional to the area surrounded by the
path in the polarization state space (Poincaré sphere) would
be accumulated by the signal. Here, we consider the same
idea with a bivariate narrow-band signal. We consider a pure
frequency bivariate signal x(t) (at 10 Hz) with real parts of
components x1(t) and x2(t) displayed in Fig. 3.

The associated ȷ(t) matrix evolution is depicted in Fig. 4.
The signal x(t) starts in a purely linear polarization state at
time t0 with parameters „(t0) = −ı=8 and ffl(t0) = 0. This
corresponds to the blue point A in Fig. 4. As t grows from
t0 to t1, ffl(t) remains constant while „(t) grows linearly until
it reaches ı=8 (the great circle portion between points A and
B on the equator). As shown in the lower panel of Fig. 3,
no geometric phase is accumulated during this time evolution.
Then, the signal evolves from t1 to t2 along the great circle
connecting points B and C. At time t2, the polarization state
is then „(t2) = +ı=8 and ffl(t2) = ı=4 (point C). During this
interval, the polarization state moved from a linear state to a
circular state (north pole at C). As depicted in the lower panel
of Fig. 3, during this period of time, the geometric phase varies
linearly and reaches a value of −ı=4. Finally, the triangle
ABC is closed with a transition from point C to A from time

2It was actually a Gedankenexperiment at the time he proposed it.
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Fig. 3. Components x1(t) and x2(t) of the bivariate signal x(t) which matrix
ȷ(t) follows a geodesic triangle at the surface of the Poincaré sphere (see
Fig. 4). Dotted grey lines indicates the time instants where corners of the
geodesic triangle ABC are reached by ȷ(t). Lower panel shows the evolution
of relative, dynamical and geometric phases.

Fig. 4. Geodesic triangle trajectory followed by ȷ(t) on the Poincaré sphere
for signal x(t) displayed in Fig. 3. Point C is at the north pole while points
A and B are on the equator.

t2 to a time t3 so that „(t3) = „(t0) and ffl(t3) = ffl(t0). No
geometric phase is a acquired along this path (see Fig. 3).

During the whole evolution of ȷ(t), a total geometric phase
of −ı=4 has been acquired by the bivariate signal. The minus
sign would have been changed into a plus sign if the triangle
had been travelled in the opposite direction. The value of the
geometric phase corresponds to half the area encountered by
the path, i.e. an eighth of the surface of the sphere. The phase
shift on the bivariate signal x(t) can be seen in Fig. 3 where
the signal at time t0 = 0s (start at A) and time t3 = 3s
(arrival back at A) is phase shifted by Φgeo[C(t)], C(t) being
the geodesic triangle ABC depicted in orange in Fig. 4.

B. Seismic signal from the Gresivaudan valley

We consider a seismic signal recorded in 1997 by the first
author and colleagues near Grenoble in the Gresivaudan valley.
The original dataset consists in the recording of 47 two-
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Fig. 5. Original vertical v(t) and horizontal h(t) components and of
seismic signal. The selected time interval is displayed with grey background.
Associated x1(t) and x2(t) of the bivariate signal x(t) to be used for
geometric phase estimation are given in upper and lower insets.

components seismometers, placed in a linear array shape, that
recorded the vibrations of the ground after an impulsive source
was created nearby the array (hammer shock on an iron bar).
Each seismometer records two signals: one horizontal h(t)
and one vertical v(t). The signals considered were recorded by
sensor No. 42 placed approximately 50 meters from the source.
The corresponding h(t) and v(t) signals are shown in Fig. 5,
where two Rayleigh waves impinge the sensor between 0:3s
and 0:8s (grey area). Our analysis is performed on this time
interval. The corresponding components x1(t) and x2(t) of the
signal x(t) considered are displayed in the two insets of Fig.
5. To perform the geometric phase estimation and analysis, the
signal x(t) was band-pass filtered around 8 Hz. This allows to
validate the narrow-band AM-FM hypothesis for the geometric
phase existence and interpretation. The resulting components
of x(t) and phases (relative, dynamical and geometric) are
given in Fig. 6. Several regimes for Φgeo during the time
interval considered appear. During the time period where the
Rayleigh modes hit the sensor, the geometric phase does not
increase (time intervals 0:35s − 0:45s and 0:6s − 0:7s) which
means that the polarization state is constant during these peri-
ods. In between those intervals, the geometric phase increases
or decreases depending on the polarization variations in the
bivariate signal. The variations in the sign of the geometric
phase are also interesting. The geometric phase can accumulate
positive or negative values along time. This actually depends
on the evolution of ȷ(t) on the Poincaré sphere, i.e. the
direction (direct or reverse) with which it surrounds an area.
From Fig. 7, one can see that many changes occur during the
time interval considered due to the complicated path followed.
Obviously, there is also an effect of the ambient noise on the
path smoothness, impacting geometric phase estimation. The
study of such effects is left for further work.

This example demonstrates the potential use of the geo-
metric phase for real bivariate signal analysis and its possible
use to highlight distinctive features related to instantaneous
covariance variations.
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