Supplementary information for

Influence of ammonia annealing on Cr-N thin films and their thermoelectric properties

Victor Hjort^{1,*}, Franck Tessier², Fabien Giovannelli³, Arnaud le Febvrier¹, Per Eklund^{1,4}

¹Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden

²Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France

³GREMAN UMR 7347, Université de Tours, CNRS, INSA CVL, IUT de Blois, 15 rue de la chocolaterie, CS 2903, F-41029 Blois Cedex, France

⁴ Inorganic Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden

Figure S1 presents the full range XRD pattern of the as grown and annealed samples from the two samples series. The $10x10 \text{ mm}^2$ samples were cut in half making the XRD holder visible on the XRD pattern with a peak at 25 ° coming from the XRD holder. No other peaks than the ones the 111 peak and its higher order 222 from CrN are visible.

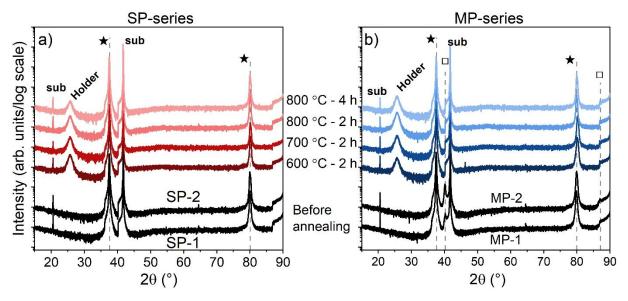


Figure S1: XRD $\theta/2\theta$ scans of as-grown and annealed films from a) the SP series and from b) the MP-series. For both panels, the bottom two patterns are XRD scans from as-grown films. Marked reflections, star: cubic CrN 111; square: hexagonal Cr₂N 0002; sub: Al₂O₃ 0006; and holder: diffuse diffraction from the XRD holder.

^{*}Corresponding author: victor.hjort@liu.se