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Abstract

Autoregressive models adapted to count time series have received less attention
than their classical counterparts for continuous time series. The main approach is
based on thinning stochastic operation that preserves the discrete nature of the
variable between successive times. The binomial thinning operator is the most
popular and the Poisson distribution emerges as the natural choice for the error
distribution of such an autoregressive counting process. The present paper intro-
duces the quasi Pólya thinning operator, that includes the binomial thinning
operator as a special case. The family of additive modified power series distribu-
tion is defined and is shown to be the natural choice for the error distribution
of such a counting process. We obtain the most general class of integer-valued
autoregressive models of order 1 (INAR(1) models) with margins having analytic
form and the property of closure under convolution introduced by Joe (1996). It
includes the usual cases of Poisson and generalized Poisson margins, but also the
less usual cases of binomial and negative binomial margins and the new case of
generalized negative binomial margin. These models cover a high range of disper-
sion that are strictly ordered from the binomial case to the generalized negative
binomial case. Asymptotic normality of the maximum likelihood estimator (MLE)
for such INAR(1) models is obtained. Finally, the proposed INAR(1) models are
applied on simulated and real datasets.

Keywords: Binomial thinning operator, Quasi Pólya distribution, INAR model,
modified power series distribution
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1 Introduction

A popular class of models for count time series is the class of INAR(1) models based on
thinning operator. A thinning operator is a stochastic operator that shrinks a random
count variable into a smaller one. This kind of operator is thus useful to define Xt

from Xt−1, ensuring that Xt is still an integer. The most popular thinning operator
is the binomial thinning operator, usually defined as follows. Let X denote a random

count variable and ρ ∈ (0, 1) a given parameter, then X ′ d
= ρ ◦X denotes the thinned

version of X. It is defined as the random sum X ′ =
∑X

i=1 Zi where Zi ∼ B(ρ) are
independent and identically distributed random Bernoulli variables with parameter ρ.
An INAR(1) model based on binomial thinning operator is defined by the equation

Xt = ρ ◦Xt−1 + εt, (1)

where the residual εt is assumed to be independent of (Xs)s≤t−1 and all the residuals
(εt)t∈N are independent and identically distributed according to the distribution Lε.
The most natural choice of error distribution Lε associated with the binomial thinning
operator is the Poisson distribution, since it is closed under this thinning operation
and under convolution. It implies that equation (1) defines a stationary process with
Poisson marginal distribution, as shown by McKenzie (1985). But count time series
often present over dispersion and the Poisson distribution becomes inappropriate. In
the case of negative binomial margin, McKenzie (1987) explicitly derived an expression
for the error distribution, but for other margins it becomes more difficult.

It is possible to use other thinning operator to obtain the desired marginal dis-
tribution. Several extensions of the binomial thinning operator have been proposed
in the literature. Latour (1998) introduced a generalized thinning operator by relax-
ing the assumption of Bernoulli distribution for the latent variables Zi. For instance,
the specific case of geometric distribution Zi ∼ G(ρ), has been studied by Ristić et al
(2009) leading to the negative binomial operator denoted by ρ ∗. But assuming a full
range for Zi in N instead of {0, 1} implies that the constraint ρ ∗ X ≤ X does not
hold anymore, and the operation ρ ◦ could not been viewed as a thinning operation.
Another extension of the binomial thinning operator is the random coefficient thinning
operator studied by Zheng et al (2007), where the variables Zi given ρ are assumed to
follow independent Bernoulli B(ρ) and ρ is assumed to be a random variable. Assume
for instance a beta distribution for ρ leads to the beta binomial thinning operator. It
could be shown that the natural choice for the error distribution in this case is the
negative binomial distribution (Joe, 1996).

The present paper proposes to view the binomial thinning operation as a compound
distribution operation, i.e., ρ◦X given X = n follows a binomial distribution, denoted
by Bn(ρ). In other words, if L denotes the distribution of X then ρ ◦ X follows the
compound distribution Bn(ρ) ∧

n
L, where the notation ∧

n
L means that the parameter

n is considered as a random variable following the distribution L. It is then possible
to replace the binomial distribution by another distribution supported on {0, . . . , n},
such as the hypergeometric distribution for instance or the quasi binomial distribution.
These two examples have been studied by Al-Osh and Alzaid (1991) and Alzaid and
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Al-Osh (1993) respectively. They have shown that if a binomial (resp. generalized
Poisson) distribution is assumed for the residuals, then the process is stationary with
the same distribution. These models, such as the binomial thinning with Poisson
margin or the beta binomial thinning with negative binomial margin, fall into the class
of INAR(1) models with margins in the convolution-closed infinitely divisible class
described by Joe (1996). Another INAR(1) model with negative binomial margin and
negative binomial error distribution has been proposed by Al-Osh and Aly (1992),
using an operator based on a sum of geometrically distributed variables with a number
of terms given by a binomial thinning operation.

In fact, the hypergeometric, binomial and beta binomial thinning operators have
previously been studied in the framework of damage models; see (Patil and Ratna-
parkhi, 1975) for a review. In this framework, a random variable N is split into two
random variables Y1 and Y2, i.e., such thatN = Y1+Y2. The conditional distribution of
Y1 given N = n is called damage distribution, e.g., the binomial distribution. The vari-
able Y1 can be viewed as a damaged version of the original variable N . Two properties
of such a model have been intensively studied: the closure under damage operation and
the characterization of the original distribution of N through the condition of inde-
pendence between Y1 and Y2. For instance, Rao (1965) showed that binomial, Poisson
and negative binomial distribution are closed under the binomial thinning operation.
It was generalized by Janardan and Rao (1986) which demonstrated the closure of
generalized Pólya Eggenberger distributions under quasi Pólya thinning operation.

Based on this closure property, we propose a general class of INAR(1) models using
the quasi Pólya distribution as thinning operator; see (Peyhardi, 2023) for a study
of this stochastic operator. The present paper relates the closure properties under
thinning operator to the marginal distribution of the stationary INAR(1) process. The
proposed class of INAR(1) models includes the cases of binomial and quasi binomial
thinning operators, already studied, the less usual cases of hypergeometric and beta
binomial thinning operators and the new case of quasi beta binomial thinning operator.
All properties of these models will be studied in a general way based on the class of
quasi Pólya distributions. For instance, it will be shown that the natural choice for
the error distribution is the class of additive modified power series distribution that
lead to a stationary process with the same marginal distribution. Recently, another
general approach was proposed by Sellers et al (2020) based on the Conway-Maxwell-
Binomial (CMB) thinning operator with Conway-Maxwell-Poisson (CMP) as marginal
distribution. It includes the three cases of hypergeometric, binomial and beta binomial
thinning operators. But the first case is obtained as a limit, not really as a subcase.
Moreover, the CMB and CMP distributions do not have closed form and thus need
the computation of a normalizing constant. The present paper introduces the most
general class of INAR(1) models with margins having analytic form and the property
of closure under convolution introduced by Joe (1996).

The paper is organized as follows. Section 2 introduces some preliminary notations
and definitions about the class of quasi Pólya distributions and its counterpart, the
class of additive modified power series distributions. Section 3 presents the quasi Pólya
thinning operator and its properties. Section 4 defines INAR(1) models based on quasi
Pólya thinning operator. It focuses on the natural choice for the error distribution that
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is preserved at stationary state for the marginal distribution. The five specific INAR(1)
models based on quasi Pólya thinning operator are described and the standardized
Pearson residuals are given in order to evaluate the model adequacy. Section 5 gives
regularity conditions under which the asymptotic normality of the MLE is obtained.
Finally, Section 6 presents some applied results of INAR(1) models on simulated and
real datasets.

2 Preliminary notations and definitions

Let us introduce the parametric sequence

a
[c,d]
θ (n) =

θ(θ + dn)(n;c)

(θ + dn)n!
, (2)

where n ∈ N, θ ∈ Θ (with Θ = N∗ when c = −1, d = 0 and Θ = R∗
+ otherwise), c ∈

{−1, 0, 1}, d ∈ R+ andm(n;c) :=
∏n−1

k=0(m+ck) , where N∗ (resp. R∗
+) denotes the set of

positive integers (resp. positive reals). Let
(
θ
n

)
denote the binomial coefficient using the

gamma function, i.e.,
(
n+θ−1

n

)
= Γ(n+θ)

Γ(n+1)Γ(θ) that is well-defined for continuous values

of θ ∈ R∗
+. One can distinguish five equivalence classes for the parametric sequence

a
[c,d]
θ (n) according to the (c, d) values, with the following representative elements:

1. a
[−1,0]
θ (n) =

(
θ
n

)
2. a

[0,0]
θ (n) = θn/n!

3. a
[1,0]
θ (n) =

(
n+θ−1

n

)
4. a

[0,d]
θ (n) = θ(θ+dn)n−1

n! with d > 0

5. a
[1,d]
θ (n) = θ

θ+dn

(
θ+dn+n−1

n

)
with d > 0

Remark that the second case is included in the fourth case if d = 0 and the first and
third cases are included in the fifth case if d = −1 and d = 0 respectively. The case

c = −1 and d ̸= 0 is omitted since a
[−1,d+1]
θ (n) = a

[1,d]
θ (n) for all d ≥ −1. In each

case, it can be shown that the parametric sequence a
[c,d]
θ (n) respects the two following

properties:

(P1) Additive closure under convolution:

a
[c,d]
θ ∗ a[c,d]γ = a

[c,d]
θ+γ

(P2) Modified power series convergence: there exists a function g such that

∞∑
k=0

a
[c,d]
θ (k){g(α)}k = hθ(α)

for all θ ∈ Θ and α ∈ (0, R). Note that R is the radius of convergence of the power
series when g is the identity function.
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The property (P1) is exactly the convolution identity of Abel when c = 0 and those
of Hagen-Rothe when c ̸= 0; see (Chu, 2010) for demonstration. The symbol ∗ here
denotes the convolution of sequences, i.e., (aθ ∗ aγ)(n) =

∑n
k=0 aθ(k)aγ(n − k).The

property (P2) corresponds to usual power series when c = 0 and their Lagrangian
expansion when c ̸= 0: see (Consul and Famoye, 2006) for the demonstration of the
case c ̸= 0 and see Table A2 in Appendix A for details about the function g and the
normalizing constant h in the five cases. These properties allow defining the following
two classes of distributions.
Definition 1. A discrete non-negative variable X is said to follow a quasi Pólya
distribution if its probability mass function (pmf) is given by

P (X = k) =
a
[c,d]
θ (k)a

[c,d]
γ (n− k)

a
[c,d]
θ+γ(n)

1k≤n,

for some (θ, γ) ∈ Θ2 and n ∈ N. This distribution will be denoted by qP [c,d]
n (θ, γ).

Property (P1) ensures that we obtain a proper distribution. This class of distributions
includes for instance the hypergeometric distribution when c = −1 and d = 0, or the
binomial distribution when c = 0 and d = 0. More generally, this is the family of quasi
Pólya distributions, introduced by Janardan (1973) as urn model with predetermined
strategies. The different examples of quasi Pólya distributions are summarized in Table
1 and more details are given in Table A1 of Appendix A. The moments of quasi Pólya
distributions are recalled in the following Lemma.

Lemma 1. Let Y follow a quasi Pólya distribution qP [c,d]
n (θ, γ) and Z = n− Y , then

• E[Y ] =
θ

θ + γ
n

• V(Y ) =
θγ

θ + γ

[
n2

θ + γ
−

n−1∑
j=1

n(j+1;−1)(d+ c)j−1

{θ + γ + dxt−1 + (n− j + 2)c}(j;c)

]
• If d = 0, Y follows a simple Pólya distribution P [c]

n (θ, γ), then

V(Y ) =
θγ

(θ + γ)(θ + γ + c)
n+ c

θγ

(θ + γ)2(θ + γ + c)
n2

Cov(Y,Z) = − θγ

(θ + γ)(θ + γ + c)
n− c

θγ

(θ + γ)2(θ + γ + c)
n2

The two first points of this Lemma have been shown by Janardan and Schaeffer (1977)
and the third by Johnson et al (1997).
Definition 2. A discrete non-negative variable X is said to follow an additive modified
power series distribution if its pmf is given by

P (X = k) =
a
[c,d]
θ (k){g(α)}k

hθ(α)

for some θ ∈ Θ and α ∈ (0, R). This distribution will be denoted by APS [c,d](θ, α).
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d = 0 d > 0

c < 0 hypergeometric quasi hypergeometric

Hn(θ, γ) qH[d]
n (θ, γ)

c = 0 binomial quasi binomial

Bn(ρ) qB[d]
n (ρ)

c > 0 beta binomial quasi beta binomial

βBn(θ, γ) qβB[d′]
n (θ, γ)

Table 1 Equivalence classes of quasi Pólya

distributions qP [c,d]
n (θ, γ) according to (c, d) values.

The cell with quasi hypergeometric distribution is
greyed out since it is equivalent to the quasi beta
binomial distribution, more precisely we have

qH[d]
n (θ, γ) = qβB[d−1]

n (θ, γ). Note that ρ = θ
θ+γ

and

d′ = d
θ+γ

.

Property (P2) ensures that we obtain a proper distribution. This is a subclass of
the modified power series distributions introduced by Gupta (1974). It includes for
instance the binomial distribution when c = −1 and d = 0, or the Poisson distribution
when c = 0 and d = 0. The different examples of additive modified power series distri-
butions are summarized in Table 2 and more details are given in Table A2 of Appendix
A. The mean and variance of such distributions are expressed in the following Lemma.
Lemma 2. Let X ∼ APS [c,d](θ, α) then there exists two functions f1 and f2 such
that the expectation and variance of X can be decomposed as follows:

E[X] = θf1(α),

V(X) = θf2(α).

Proof. Let X ∼ APS [c,d](θ, α). According to Gupta (1974) we have

µ = E[X] =
g(α)

g′(α)

h′
θ(α)

hθ(α)
,

V(X) =
g(α)

g′(α)
µ′(α),

where g and h are given in Table A2 of Appendix A. It is easily seen that

h′
θ(α)

hθ(α)
=


θ

1+α if c = −1

θ if c = 0
θ

1−α if c = 1

and thus with

f1(α) :=


g(α)

g′(α)(1+α) if c = −1
g(α)
g′(α) if c = 0

g(α)
g′(α)(1−α) if c = 1

and f2(α) :=
g(α)
g′(α)f

′
1(α) we obtain E[X] = θf1(α) and V(X) = θf2(α).
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d = 0 d > 0

c < 0 binomial generalized binomial

Bθ(p) GB[d](θ, p)
c = 0 Poisson generalized Poisson

P(λ) GP [d](λ)
c > 0 negative binomial generalized negative binomial

NB(θ, α) GNB[d](θ, α)

Table 2 Equivalence classes of additive modified power

series distributions APS[c,d](θ, α) according to (c, d) values.
The cell generalized binomial distribution GB[d](θ, p) is greyed
out, since it is equivalent to the generalized negative binomial
distribution GNB[d−1](θ, p). Note that p = α

1+α
andλ = θα.

It should be remarked that both distributions (definitions 1 and 2) are related by the

same parametric sequence a
[c,d]
θ (n) that respects properties (P1) and (P2). This is the

key point in the demonstration of the following Lemma.
Lemma 3. An additive modified power series distribution is additively closed under
convolution, more precisely we have

APS [c,d](θ, α) ∗ APS [c,d](γ, α) = APS [c,d](θ + γ, α),

for all (θ, γ) ∈ Θ2, α ∈ (0, R), c ∈ {−1, 0, 1} and d ∈ R+ (the symbol ∗ here denotes
the convolution of distributions).
The proof of this Lemma is given by Peyhardi (2023) in Proposition 1.

3 Quasi Pólya thinning operator

Let us first recall the definition of the classical binomial thinning operator. Let X

denote a count variable and ρ ∈ (0, 1) a parameter, then X ′ d
= ρ◦X denote the thinned

variable. It is usually defined as a random sum X ′ =
∑X

i=1 Zi where Zi ∼ B(ρ) are
independent random Bernoulli variables with parameter ρ. Two kinds of extension
have been proposed: assume that ρ is a random variable, or assume that Zi follow
another count distribution than the Bernoulli.

To propose a new extension, we need to see the binomial thinning as a binomial

mixed distribution. Remark that X ′ d
= ρ ◦X is equivalent to X ′ ∼ Bn(ρ)∧

n
L where L

denotes the distribution of X. It is thus easy to extend the binomial thinning to the
quasi Pólya thinning as follows

X ′ ∼ qP [c,d]
n (θ, γ) ∧

n
L.

Note that with this parametrization, ρ corresponds to the proportion θ/(θ + γ). In
the following, let ρ • denote the quasi Pólya thinning operator, i.e., ρ •X = X ′ with

X ′|X = n ∼ qP [c,d]
n (θ, γ) for all n ∈ N. This new class of thinning operators includes

five distinct examples; see Table 1 for notations.
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Let us briefly recall the interpretation of (quasi) Pólya distribution in terms of urn
models. The Pólya urn model is generally presented in terms of n random drawings
of balls from an urn, that initially contains θ white balls and γ black balls. One ball
is drawn at random and then replaced with c additional balls of the same color. This
procedure is repeated n times and focus is made on the count X ′ of drawn white balls.
Knowing the number n of draws, the count distribution for X ′ is known as the Pólya

distribution, i.e., we have X ′|X = n ∼ P [c]
n (θ, γ). In this framework, the parameter

ρ = θ/(θ + γ) corresponds to the proportion of white balls initially contained in the
urn. The parameter n being related to the support of the distribution, is intentionally
noted as an index of the distribution, distinguishing it from other parameters θ and
γ used to define the pmf. The Pólya distribution turns out to be the hypergeometric
distribution when c = −1 (without replacement), the binomial distribution when
c = 0 (with replacement meaning independent draws) and the negative hypergeometric
distribution when c = 1 (with reinforcement). Let us note that the last two cases are
defined for continuous values of θ and γ. The negative hypergeometric distribution is
thereby extended to the beta binomial distribution. Finally, the parameter d is added
to take into account a predetermined strategy, leading to the quasi Pólya distribution

qP [c,d]
n (θ, γ); see Consul and Mittal (1975) and Janardan (1973) for more details. The

quasi Pólya distribution turns out to the Pólya distribution when d = 0.
Proposition 1. Let X denote an arbitrary random count variable, then

• E[ρ •X] = ρE[X]

• If d = 0, ρ • denotes the simple Pólya thinning operator P [c]
n (θ, γ) ∧

n
L, then

V(ρ •X) = ρ2V (X) + ρ(1− ρ)
θ + γ

θ + γ + c
E[X] + cρ(1− ρ)

1

θ + γ + c
E[X2]

Cov(ρ •X,X) = ρV(X)

where ρ = θ/(θ + γ).

Proof. Let Y = ρ • X and Z = X − Y . Next equalities are due to the total law of
mean (variance and covariance) and moments of (quasi) Pólya given in Lemma 1.

E[ρ •X] = E[E[Y |X]] = E[ρX] = ρE[X]

Assuming d = 0 we have

V(ρ •X) = V(E[Y |X]) + E[V(Y |X)]

= V(ρX) + E

[
θγ

(θ + γ)(θ + γ + c)
X + c

θγ

(θ + γ)2(θ + γ + c)
X2

]
V(ρ •X) = ρ2V (X) + ρ(1− ρ)

θ + γ

θ + γ + c
E[X] + cρ(1− ρ)

1

θ + γ + c
E[X2]
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and

Cov(ρ •X,X) = Cov(E[Y |X],E[X|X]) + E [Cov(Y,X|X)]

= Cov(ρX,X) + E [Cov(Y, Y + Z|X)]

= ρV(X) + E [V(Y |X) + Cov(Y, Z|X)]

Cov(ρ •X,X) = ρV(X)

remarking that V(Y |X) = −Cov(Y, Z|X) according to Lemma 1.

These results coincide with those of Weiß (2008b) about the hypergeometric thinning
operator (c = −1 and d = 0), the binomial thinning operator (c = 0 and d = 0) and
the beta binomial thinning operator (c = 1 and d = 0).

Now, let us describe different properties of quasi Pólya thinning operator and
additive modified power series distributions, that will be used in next sections
to demonstrate the stationarity of INAR(1) model based on quasi Pólya thinning
operator.
Lemma 4. An additive modified power series distribution is closed under the corre-
sponding quasi Pólya thinning operator if the parameters respect the sum constraint,
more precisely we have

qP [c,d]
n (θ, γ) ∧

n
APS [c,d](θ + γ, α) = APS [c,d](θ, α),

for all (θ, γ) ∈ Θ2, α ∈ (0, R), c ∈ {−1, 0, 1} and d ∈ R+.
The proof of this Lemma is given by Peyhardi (2023) in Theorem 1 (item 2).
Lemma 5. Let X, Y and Z denote three random count variables, then the following
assertions are equivalent

X ∼ APS [c,d](θ + γ, α)
Y = ρ •X
Z = X − Y

⇔


Y ∼ APS [c,d](θ, α)

Z ∼ APS [c,d](γ, α)
Y ⊥⊥ Z
X = Y + Z

Proof. • Assume that the left part holds. According to Lemma 4 we have Y ∼
APS [c,d](θ, α). Since Y |X = n ∼ qP [c,d]

n (θ, γ) we have n− Y |X = n ∼ qP [c,d]
n (γ, θ)

and thus Z = X −Y ∼ qP [c,d]
n (γ, θ)∧

n
APS [c,d](θ+ γ, α). Using Lemma 4 we obtain

Z ∼ APS [c,d](γ, α). Finally, the joint distribution of Y and Z is given by

P (Y = y, Z = z) = P (Y = y, Z = z|X = y + z)P (X = y + z)

=
a
[c,d]
θ (y)aγ(z)

a
[c,d]
θ+γ(y + z)

a
[c,d]
θ+γ(y + z){g(α)}y+z

hθ+γ(α)

P (Y = y, Z = z) =
a
[c,d]
θ (y){g(α)}ya[c,d]γ (z){g(α)}z

hθ+γ(α)
,
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We know that hθ+γ = hθhγ and thus Y and Z are independent.
• Assume that the right part holds. According to Lemma 3 we have X ∼ APS [c,d](θ+
γ, α). Moreover, we have

P (Y = y|X = n) =
P (Y = y,X = n)

P (X = n)

=
P (Y = y)P (Z = n− y)

P (X = n)

=
a
[c,d]
θ (y){g(α)}y

hθ(α)

a
[c,d]
γ (n− y){g(α)}n−y

hγ(α)

hθ+γ(α)

a
[c,d]
θ+γ(n){g(α)}n

P (Y = y|X = n) =
a
[c,d]
θ (y)a

[c,d]
γ (n− y)

a
[c,d]
θ+γ(n)

,

i.e., Y |X = n ∼ qP [c,d]
n (θ, γ) or equivalently Y = ρ •X.

Lemma 6. If X ∼ APS [c,d](θ + γ, α) then

E[ρ •X] = ρE[X],

V(ρ •X) = ρV(X),

Cov(ρ •X,X) = ρV(X),

where ρ = θ/(θ + γ).

Proof. According to Lemma 4 we have ρ • X ∼ APS [c,d](θ, α). Then according to
Lemma 2 we have

E[ρ •X] = θf1(α)

=
θ

θ + γ
(θ + γ)f1(α)

E[ρ •X] = ρE(X),

where ρ = θ
θ+γ . In the same way, we obtain V(ρ •X) = ρV(X). Using Lemma 5 we

have

Cov(ρ •X,X) = Cov(Y, Y + Z)

= V(Y ) + Cov(Y, Z)︸ ︷︷ ︸
=0

Cov(ρ •X,X) = ρV(X).
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4 Integer valued autoregressive models of order 1

Let (Xt)t∈N denote a discrete time process with discrete state space. An INAR(1)
model based on quasi Pólya thinning operator is defined as follows:

Xt = ρ •Xt−1 + εt

where εt ∼ Lε are independent and identically distributed random variables and ρ •
denotes a quasi Pólya thinning operator (with parameters ψ = (c, d, θ, γ)) independent
of (εt)t∈N. Denoting by Lt the distribution of Xt we have

Lt =
{
qP [c,d]

n (θ, γ) ∧
n
Lt−1

}
∗ Lε,

where ∗ denotes the convolution of distributions.
Theorem 2. Let (Xt)t∈N follow an INAR(1) model based on quasi Pólya thinning
operator. Assume that the error distribution is the specific additive modified power
series distribution Lε = APS [c,d](γ, α) for some α ∈ (0, R). Then (Xt)t∈N is an

ergodic Markov chain with stationary distribution APS [c,d](θ + γ, α). Moreover, at
stationary state we have

E[Xt] =
µε

1− ρ
,

V(Xt) =
σ2
ε

1− ρ
,

Corr(Xt+h, Xt) = ρh,

where µε = E(εt), σ
2
ε = V(εt) and ρ = θ/(θ + γ). Finally, the process (Xt)t∈N is time

reversible.

Proof. The conditional distribution of Xt+1 given Xt = xt is

p(xt+1|xt) =

min(xt+1,xt)∑
k=0

a
[c,d]
θ (k)a

[c,d]
γ (xt − k)

a
[c,d]
θ+γ(xt)

a
[c,d]
γ (xt+1 − k){g(α)}xt+1−k

hγ(α)
(3)

The support of p(·|x) is related to the support of a
[c,d]
θ (·). A necessary condition for

the ergodicity is to have p(x + 1|x) > 0 and p(x|x + 1) > 0 for all x such that x and

x+ 1 belong to the support of the distribution APS [c,d](θ + γ, α). For the four cases

such that (c, d) ̸= (−1, 0), the demonstration is straightforward since Supp a
[c,d]
θ = N.

For the special case (c, d) = (−1, 0), we have Supp a
[−1,0]
θ = {0, . . . , θ}. In this case,

let show that p(x+ 1|x) > 0 for all x ∈ {0, . . . , θ+ γ − 1}. It is sufficient to show that
there exists k ≤ x such that k ≤ θ and x+1−k ≤ γ since at least one term in the sum
of equation (3) would be positive. Remark that k = min(x, θ) is a good candidate. A
similar argument leads to p(x|x + 1) > 0 for all x ∈ {0, . . . , θ + γ − 1}. The Markov
chain (Xt)t∈N is thus ergodic.
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Now let us show that the stationary distribution is APS [c,d](θ+γ, α). Assume that

Xt−1 ∼ APS [c,d](θ + γ, α) and remark that the distribution of Xt is

Lt =
{
qP [c,d]

n (θ, γ) ∧
n
Lt−1

}
∗ Lε,

=
{
qP [c,d]

n (θ, γ) ∧
n
APS [c,d](θ + γ, α)

}
∗ APS [c,d](γ, α)

= APS [c,d](θ, α) ∗ APS [c,d](γ, α)

Lt = APS [c,d](θ + γ, α)

where the third and last equalities are obtained according to lemma 4 and Lemma 3
respectively.

Using Lemma 2 it is easily seen that E[Xt] =
µε

1−ρ and V(Xt) =
σ2
ε

1−ρ . Otherwise,
the covariance is given by

Cov(Xt+1, Xt) = Cov(ρ •Xt + εt+1, Xt)

= Cov(ρ •Xt, Xt) + Cov(εt+1, Xt)︸ ︷︷ ︸
=0

Cov(Xt+1, Xt) = ρV (Xt),

according to Lemma 6 and thus Corr(Xt+1, Xt) = ρ. By recursion, we obtain
Corr(Xt+h, Xt) = ρh.

Finally, to demonstrate the time reversibility of the process (Xt)t∈N, remark that
the joint distribution is symmetric

p(xt+1, xt) = p(xt)p(xt+1|xt)

=
a
[c,d]
θ+γ(xt){g(α)}xt

hθ+γ(α)

min(xt+1,xt)∑
k=0

a
[c,d]
θ (k)a

[c,d]
γ (xt − k)

a
[c,d]
θ+γ(xt)

a
[c,d]
γ (xt+1 − k){g(α)}xt+1−k

hγ(α)

p(xt+1, xt) =
{g(α)}xt+1+xt

hθ+2γ(α)

min(xt+1,xt)∑
k=0

a
[c,d]
θ (k)a[c,d]γ (xt − k)a[c,d]γ (xt+1 − k){g(α)}−k.

Models comparison

We have seen, in the previous section, that there are five distinct quasi-Pólya thinning
operators. It implies that there are five distinct classes of INAR(1) models. They can
be distinguished by their marginal distribution. Note that the number of parameters
is varying between two and four according to these five cases:

1. Binomial marginal distribution: this is the case c = −1 and d = 0 that corresponds
to the binomial INAR(1) model introduced by Al-Osh and Alzaid (1991). The
vector of parameters is ψ = (θ, γ, α) and the space of parameters is Ψ = N∗2 ×R∗

+.
This model will be denoted by B-INAR(1).
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Distribution V (v)
Binomial v(1− v)
Poisson v
Negative binomial v(1 + v)
Generalized Poisson v(1 + v)2

Generalized negative binomial v(1 + v)
(
1 + v d+1

d

)
Table 3 Unity variance function of the five additive
modified power series

2. Poisson marginal distribution: this is the case c = 0 and d = 0 that corresponds
to the usual Poisson INAR(1) model introduced by McKenzie (1985); Al-Osh and
Alzaid (1987). The vector of parameter is ψ = (ρ, α), where ρ = θ/(θ+ γ), and the
space of parameters is Ψ = (0, 1)×R∗

+. This model will be denoted by P-INAR(1).
3. Negative binomial marginal distribution: this is the case c = 1 and d = 0 that

corresponds to the negative binomial INAR(1) model discussed by Joe (1996) as a
special case of convolution-closed infinitely divisible class. The vector of parameter
is ψ = (θ, γ, α) and the space of parameters is Ψ = R∗2

+ × (0, 1). This model will be
denoted by NB-INAR(1).

4. Generalized Poisson marginal distribution: this is the case c = 0 and d > 0 that
corresponds to the generalized Poisson INAR(1) model introduced by Alzaid and
Al-Osh (1993). The vector of parameter is ψ = (ρ, α, d), where ρ = θ/(θ + γ), and
the space of parameters is Ψ = (0, 1) × R∗

+ × [0, 1]. Note that for the generalized

Poisson distribution GP [d](λ), the parameter d must be included in interval [0, 1]
to obtain a proper distribution (Consul and Famoye, 2006). This INAR(1) model
will be denoted by GP-INAR(1). It includes the P-INAR(1) model as a special case
when d = 0.

5. Generalized negative binomial marginal distribution: this is the case c = 1 and
d > −1 that corresponds to the generalized negative binomial INAR(1) model. This
is a new INAR(1) model. The vector of parameter is ψ = (θ, γ, α, d) and the space
of parameters is Ψ = R∗2

+ × (0, 1) × [0, (1 − α)/α]. Note that for the generalized

negative binomial distribution GNB[d](θ, α), the parameter d must be included in
interval [0, (1− α)/α] to obtain a proper distribution (Consul and Famoye, 2006).
This INAR(1) model will be denoted by GNB-INAR(1). It includes the B-INAR(1)
model as a special case when d = −1 and the NB-INAR(1) model when d = 0.

Since additive modified power series distributions belong to the family of dispersion
models (Jorgensen, 1997), their unity variance functions have closed form; see Table
3. As remarked by Jourdan and Kokonendji (2002) these unity variance functions are
strictly ordered as follows,

VB < VP < VNB < VGP < VGNB.

Therefore, according to the level of dispersion observed in the dataset, the autoregres-
sive model with the appropriate marginal distribution has to be used. The different
models could be compared using penalized criteria, like Akaike information criterion
(AIC) as proposed by Weiß (2008b).
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5 Model inference based on likelihood

Maximum likelihood estimator

The log-likelihood of a count time series x = (x0, x1, . . . , xT ) for an INAR(1) model
based on quasi Pólya thinning operator with parameter ψ = (θ, γ, α, d) is

LT (ψ) = l(x0;ψ) +

T∑
t=1

l(xt|xt−1;ψ), (4)

where l(x0;ψ) = ln p(x0;ψ), l(xt|xt−1;ψ) = ln p(xt|xt−1;ψ). Since X0 is assumed to

follow the modified power series distribution APS [c,d](θ + γ, α), then its pmf is

p(x0;ψ) =
a
[c,d]
θ+γ(x0){g(α)}x0

hθ+γ(α)
.

Note that the log-likelihood of the first observation could be omitted, since it is
asymptotically irrelevant. The right part of the log-likelihood is obtained from (3).

Let r denote the dimension of the vector of parameters ψ (note that r is varying
between 2 and 4 according to the five distinct classes of INAR(1) model). Let lu =
∂l/∂ψu denote the partial derivative with respect to the uth component of ψ for
u = 1, . . . , r. In the same way, let luv and luvw denote the partial derivatives of second
and third order (same notations hold for p). Finally, Eψ means expectation, assuming
that the true parameter value is ψ and X0 starts with a stationary distribution.
Following Joe (1997) (page 317) we introduce the following regularity conditions:

(C1) For ψ ∈ Ψ there exists a neighborhood Nψ of ψ such that for all u, v, w and x∑
y∈N

sup
ψ′∈Nψ

pu(y|x;ψ) < ∞

∑
y∈N

sup
ψ′∈Nψ

puv(y|x;ψ) < ∞

Eψ

[
sup
ψ′∈Nψ

|luvw(X1|X0;ψ)|

]
< ∞

(C2) For u = 1, . . . , r Eψ
[
|lu(X1|X0;ψ)|2

]
< ∞ and Σ(ψ) = (σuv(ψ)) is a non-singular

r × r matrix where σuv(ψ) = Eψ [lu(X1|X0;ψ)lv(X1|X0;ψ)].

Theorem 3. Let (Xt)t∈N follow an INAR(1) model based on quasi Pólya thin-
ning operator. Assume that d ̸= 0 or c ≥ 0, avoiding the case of INAR(1) model
based on hypergeometric thinning operator. Assume that the starting distribution is
L0 = APS [c,d](θ + γ, α) for some α ∈ (0, R) and the error distribution is Lε =

APS [c,d](γ, α). Under the regularity conditions (C1) and (C2), the MLE ψ̂T converges
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in probability to the true parameter ψ with asymptotic normal distribution

ψ̂T −ψ√
T

−→
T→∞

N (0,Σ−1(ψ)).

Proof. The proof follows the approach of Joe (1997), that is based on the result
of Billingsley (1961) about Markov chains of first order. Let us verify the following
regularity conditions:

• All states of the Markov chain communicate with each other.
In the proof of previous theorem, it has already been shown that there are no
transient state since p(x+ 1|x) > 0 and p(x|x+ 1) > 0 for all x ∈ N.

• The support of p(·|x;ψ) does not depend on ψ.
According to (3) it is easily seen that Supp aθ = N ⇒ Supp p(·|x;ψ) = N. Note that
this condition is not verified for the B-INAR(1) model since Supp aθ = {0, 1, . . . , θ}
in this case.

• pu, puv, puvw (u, v, w ∈ {1, . . . , r}) exist and are continuous in ψ.
According to (3), p(·|x;ψ) is a sum of ratio of functions aθ, aγ , g(α) and hγ(α).
Since the gamma, power and exponential functions are smooth, this condition is
obtained.

• p(·|x;ψ) is absolutely continuous with respect to the stationary measure µ(·;ψ).
In our case, the stationary measure of the INAR(1) model is the modified power

series distribution APS [c,d](θ + γ, α) for some α ∈ (0, R). Except for the binomial
case (c < 0 and d = 0), the support of this distribution is the entire set of non-
negative integers N.

As remarked by Joe (1997) this asymptotic result implies, as in the i.i.d. case, that

the negative inverse Hessian of LT (ψ) evaluated at the MLE ψ̂ can be used as an

estimated covariance of ψ̂. In Section Application, the MLE is performed via the optim
function contained in the stats R package. The optim argument, hessian=TRUE,
allows determining the standard errors of MLE (via the Hessian pseudo-inverse when
the Hessian is non-invertible).

Likelihood ratio test

A likelihood ratio test can also be employed, since the stationary distributions of the
five different INAR(1) models are nested; see Table 2 (they belong to the family of
additive modified power series distributions). The case c < 0 is not totally separated

from the case c > 0 since both distribution APS [−1,d] and APS [1,d−1] are equivalent.
Therefore, the case c < 0 is omitted and focus is made on the four distributions:
Poisson, negative binomial, generalized Poisson, generalized negative binomial.

• The NB-INAR(1) model can be compared with the P-INAR(1) model through the
null hypothesis H0 : c = 0 against H1 : c > 0 (assuming d = 0). The log-likelihood
test statistic 2(LNB − LP) follows a chi-square distribution χ2(1) with one degree
of freedom, under the null hypothesis.
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• The GP-INAR(1) model can be compared with the P-INAR(1) through the null
hypothesis H ′

0 : d = 0 against H ′
1 : d > 0 (assuming c = 0). The log-likelihood

test statistic 2(LGP − LP) follows a chi-square distribution χ2(1) with one degree
of freedom, under the null hypothesis.

• The GNB-INAR(1) model can be compared with the P-INAR(1) through the null
hypothesis H ′′

0 : (c, d) = (0, 0) against H ′′
1 : (c, d) ̸= (0, 0). The log-likelihood test

statistic 2(LGNB − LP) follows a chi-square distribution χ2(2) with two degree of
freedom, under the null hypothesis.

Model validation

The standardized Pearson residuals are given by

et :=
E[Xt|xt−1]− xt√

V(Xt|xt−1)
.

For an adequate model, these residuals should have a null mean and a unit variance,
according to Harvey and Fernandes (1989). In our context of INAR(1) model based
on quasi Pólya thinning operator, if we denote Yt := ρ •Xt−1, we have E[Xt|xt−1] =

E[Yt|xt−1] + E[εt] and V(Xt|xt−1) = V(Yt|xt−1) +V(εt) where Yt|xt−1 ∼ qP [c,d]
xt−1(θ, γ)

and εt ∼ APS [c,d](γ, α) are independent variables. According to the result of Janardan
and Schaeffer (1977) (given in Lemma 1) we have

E[Yt|xt−1] =
θ

θ + γ
xt−1,

V(Yt|xt−1) =
θγ

θ + γ

[
x2
t−1

θ + γ
−

xt−1−1∑
j=1

x
(j+1;−1)
t−1 (d+ c)j−1

{θ + γ + dxt−1 + (xt−1 − j + 2)c}(j;c)

]
.

Moreover, according to Gupta (1974) we have

µ = E[εt] =
g(α)

g′(α)

h′
γ(α)

hγ(α)
and V(εt) =

g(α)

g′(α)
µ′(α).

Appendix B details the computation for the five different INAR(1) models.

6 Application

In this section we will compare the five INAR(1) models based on quasi Pólya thin-
ning operator, described in Section 4: the B-INAR(1), P-INAR(1), NB-INAR(1),
GP-INAR(1) and the GNB-INAR(1) models. The MLEs have been computed using
the optim sa function, available in the R-package optimization.

6.1 Simulated data

The five kinds of INAR(1) models have been simulated with a length of time series
T = 50 and auto correlation ρ = 0.3, ρ = 0.6 and ρ = 0.9. For each of the five models,
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three values of parameters ψ have been simulated, n = 1000 times, in order to obtain
different mean values: µ = 5, µ = 20 and µ = 50. The variance has also been calibrated
from under dispersion σ2 = µ/2 with the B-INAR(1) model to huge over dispersion
σ2 = 8µ with the GNB-INAR(1) model. Finally, 5 × 3 × 3 = 45 scenarios have been
simulated n = 1000 times.

For instance, focusing on the B-INAR(1) model, the parameters are given by θ =
2µρ, γ = 2µ(1 − ρ) and α = 1. Following Theorem 2 the first value is simulated
according to the binomial distribution X0 ∼ Bθ+γ(p) where p = α/(1 + α) and thus
the process is stationary with Xt ∼ Bθ+γ(p) for all t = 1, . . . , T . Therefore, we have
E[Xt] = (θ+γ)p = µ and V(Xt) = (θ+γ)p(1− p) = µ/2. For instance, with µ = 5 we
have ψ = (θ, γ, α) = (6, 4, 1). The parameters ψ of other INAR(1) models have been
determined following the same way.

Then for each of the 45 scenarios, the five INAR(1) models have been inferred using
the MLE on the n = 1000 simulated time series. The estimated marginal distributions
have been compared with the true marginal distribution using the Kullback-Leibler
(KL) divergence. It was computed as

∑
i p(i) ln {p(i)/p̂(i)} for i between minimum and

maximum observed values, where p (resp. p̂) denotes the true (resp. estimated) pmf.
The results have been summarized in Table 4 (resp. Tables C3 and C4 in Appendix
C) for times series of length T = 50 with autocorrelation ρ = 0.6 (resp. ρ = 0.3 and
ρ = 0.9). For each scenario, the mean (and standard deviations) of the n = 1000 KL
divergences are given, and the smaller (among the five models) appears in bold.

The results can be interpreted according to the three kinds of dispersion: under
dispersion (binomial), equi dispersion (Poisson) and over dispersion (negative bino-
mial, generalized Poisson and generalized negative binomial). When the time series
are simulated according to a B-INAR(1) model with small or middle auto correlation
(ρ = 0.3 or 0.6), the smallest KL divergence is obtained with the B-INAR(1) model.
The other models are more divergent except the GNB-INAR(1) model when the auto
correlation is small (ρ = 0.3). When the auto correlation is high (ρ = 0.9), the smallest
KL divergence is obtained with the P-INAR(1) model but the results are very close
between the five models. When the time series are simulated according to a P-INAR(1)
model, the KL divergence is smaller with the P-INAR(1) model but is approximately
the same with the GP-INAR(1) models. When the time series are simulated according
to an over dispersed INAR(1) model (with NB, GP or GNB margins), the KL diver-
gence is huge for the B-INAR(1) model or P-INAR(1) model. On the contrary, the KL
divergence is small for the three other INAR(1) models, particularly with the GP and
GNB-INAR(1) models. More precisely, when the time series are simulated according
to a NB-INAR(1) model, the KL divergence is smaller with the GP-INAR(1) model
or GNB-INAR(1) model but never with the NB-INAR(1) model. Performances of GP-
INAR(1) model and GNB-INAR(1) model are very similar. Nevertheless, it should be
kept in mind that the GNB-INAR(1) model has four parameters, whereas its competi-
tor only has three. Penalized criteria could thus be used when comparing the different
INAR(1) models on real data. The results are globally similar for the different mean
values (µ = 5, µ = 20 or µ = 50) except when the mean and the variance are high
together (µ = 50 and σ2 = 8µ). In this case, the GP-INAR(1) model gives very poor
results and is outperformed by both NB and GNB-INAR(1) models that are stable.
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Fig. 1 Summary of soap dataset about sales counts. Plot of the count time series in top row and
plots of sample probability mass function and (partial) autocorrelation function in bottom.

Finally, the results are impact by the auto correlation values. The KL divergences
are globally smaller for small auto correlation (ρ = 0.3) and higher for high auto
correlation (ρ = 0.9).

6.2 Real data

As an example, let us use the dataset of soap product sales presented by MacDonald
and Zucchini (2016). This is a count time series of length T = 242 about the weekly
number of sales of a soap product in a supermarket. The counts exhibit an important
over dispersion, which is also remarkable from the plot of the sample pmf in Figure 1.
The partial ACF (PACF) has a significant value only at lag 1 (ρ̂(1) ≃ 0.39). It is thus
natural to use INAR(1) models on this dataset. The sample mean is equal to 5.44 and
the variance is equal to 15.40.

The five INAR(1) models based on quasi Pólya thinning operator have been
inferred with the MLE. Summarized results are given in Table 5, allowing the com-
parison of these models. Using the AIC for model selection, the GP-INAR(1) model
is preferred; see Figure 2 for the adjusted pmf and ACFs using this model. Note that
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Marginal Mean Variance B P NB GP GNB

µ = 5 7.73e-02 1.15e-01 1.22e-01 1.27e-01 1.48e-01
(9.28e-02) (3.10e-02) (3.66e-02) (4.09e-02) (6.16e-02)

B µ = 20 σ2 = µ/2 7.14e-02 1.11e-01 1.23e-01 1.28e-01 1.63e-01
(7.26e-02) (3.20e-02) (4.22e-02) (4.48e-02) (6.49e-02)

µ = 50 7.37e-02 1.12e-01 1.23e-01 1.36e-01 1.93e-01
(1.13e-01) (3.41e-02) (3.91e-02) (6.07e-02) (9.72e-02)

µ = 5 6.11e-02 3.87e-02 4.20e-02 4.14e-02 5.80e-02
(8.06e-02) (6.04e-02) (6.15e-02) (5.84e-02) (8.04e-02)

P µ = 20 σ2 = µ 6.89e-02 3.56e-02 3.93e-02 3.92e-02 5.58e-02
(1.71e-01) (5.01e-02) (5.43e-02) (5.07e-02) (7.04e-02)

µ = 50 7.06e-02 3.64e-02 3.99e-02 4.08e-02 5.10e-02
(2.73e-01) (4.86e-02) (5.19e-02) (5.18e-02) (6.02e-02)

µ = 5 2.35e-01 2.19e-01 7.06e-02 6.36e-02 6.56e-02
(1.27e-01) (1.18e-01) (8.09e-02) (7.09e-02) (7.37e-02)

NB µ = 20 σ2 = 2µ 2.52e-01 2.29e-01 7.05e-02 6.52e-02 6.55e-02
(1.35e-01) (1.27e-01) (7.80e-02) (7.26e-02) (7.31e-02)

µ = 50 2.66e-01 2.34e-01 7.01e-02 6.83e-02 6.87e-02
(1.48e-01) (1.26e-01) (7.97e-02) (7.41e-02) (7.49e-02)

µ = 5 7.28e-01 6.99e-01 7.85e-02 6.51e-02 6.73e-02
(2.22e-01) (2.18e-01) (8.88e-02) (7.34e-02) (7.84e-02)

GP µ = 20 σ2 = 4µ 8.29e-01 7.91e-01 7.12e-02 6.45e-02 6.37e-02
(2.13e-01) (2.07e-01) (8.95e-02) (7.95e-02) (7.82e-02)

µ = 50 8.82e-01 8.32e-01 7.75e-02 6.93e-02 6.91e-02
(2.06e-01) (2.02e-01) (8.88e-02) (7.69e-02) (7.62e-02)

µ = 5 1.67e+00 1.62e+00 8.87e-02 6.56e-02 6.99e-02
(5.76e-01) (5.18e-01) (1.09e-01) (8.64e-02) (9.92e-02)

GNB µ = 20 σ2 = 8µ 2.14e+00 2.07e+00 7.76e-02 6.28e-02 6.45e-02
(4.52e-01) (4.36e-01) (8.44e-02) (7.67e-02) (7.48e-02)

µ = 50 2.39e+00 9.97e+00 7.89e-02 7.99e+00 6.98e-02
(5.24e-01) (2.94e+01) (8.88e-02) (2.99e+01) (7.92e-02)

Table 4 Means (and standard deviations) of KL divergences for different INAR(1) models based
on quasi Pólya thinning operator for integer valued time series of length T = 50 and autocorrelation
ρ = 0.6. The rows indicate the marginal distribution of the simulated INAR(1) model whereas the
columns indicate the marginal distribution of the estimated INAR(1) model. Means of KL
divergences (and standard deviations) have been computed for the 5 different estimated models, on
n = 1000 simulations for each of the 15 scenarios. The minimal value of each scenario is written in
bold.
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ACF at lag Pearson residuals
L AIC Mean Var 1 2 3 4 Mean Var

Sample 5.442 15.401 0.392 0.250 0.178 0.136
B-INAR(1) -682.73 1371.46 5.693 5.636 0.2604 0.0678 0.0177 0.0046 0.08653 2.448
P-INAR(1) -680.12 1364.25 5.340 5.340 0.2300 0.0529 0.0122 0.0028 -0.02728 2.528
NB-INAR(1) -614.69 1235.39 5.408 12.578 0.3235 0.1047 0.0339 0.0110 -0.00257 1.107
GP-INAR(1) -614.55 1235.10 5.328 13.008 0.3700 0.1369 0.0507 0.0187 -0.02426 1.120
GNB-INAR(1) -614.26 1236.51 5.542 14.856 0.3050 0.093 0.0284 0.0087 0.02626 0.943

Table 5 Summarized results for the five INAR(1) models based on quasi Pólya thinning operator,
inferred on the soap products dataset. For each model, the log-likelihood, the AIC are given. Then
the estimations of the mean, variance and autocorrelation (lag from 1 to 4) of the stationary
distribution are given. Finally the mean and variance of the estimated standardized Pearson
residuals are given. For each column, the best value is written in bold.
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Fig. 2 Plot of the pmf and partial autocorrelation function (for Pearson residuals) for the GP-
INAR(1) model.

NB, GP and GNB-INAR(1) models have very closed values of log-likelihood, contrar-
ily to the B and P-INAR(1) models that obtained a poor fit. That could be explained
by the high over dispersion observed in the dataset. The variance is clearly under-
estimated with these two models. On the contrary the variance is well estimated for
the three other models, with ordered values 12.578 < 13.008 < 14.856 as expected,
closed to the observed variance of 15.401. The autocorrelation of first order is well
captured by the GP-INAR(1) model with ρ̂ = 0.37 compared with the observed value
of 0.39. For the model adequacy, we can check the mean and variance of the standard-
ized Pearson residuals. The NB-INAR(1) model obtained the mean closest to 0 and
the GNB-INAR(1) model obtained the variance closest to 1. Finally, regarding the
different criteria of model adequacy, the NB, GP and GNB-INAR(1) models cannot
really be distinguished.

7 Conclusion

The unifying class of INAR(1) models based on quasi Pólya thinning operator has
been introduced. It includes two well-known INAR(1) models, based on binomial and
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quasi binomial thinning operators. It also includes two less usual INAR(1) models,
based on hypergeometric and beta binomial thinning operators. Finally, it includes
a new INAR(1) model based on quasi beta binomial thinning operator. This unified
framework allowed us to derive the different properties of these models in one way.
For instance, the class of additive modified power series distributions emerges as the
natural choice for the error distribution. The asymptotic normality of the MLE for
such a class of models has been shown under usual regularity conditions. Finally, the
proposed class of INAR(1) models have been applied on simulated and real datasets.

The huge range of variability of this class allows taking into account different
situations: under dispersion with B-INAR(1) model, equi dispersion with P-INAR(1)
model and over dispersion with NB, GP and GNB-INAR(1) models. In real situations,
the data are often over dispersed and the GP-INAR(1) model and GNB-INAR(1)
model well perform, regarding the simulations results. In the example of real dataset,
the NB, GP and GNB-INAR(1) models give very similar results regarding the different
criteria. The GNB-INAR(1) model is more flexible since it includes the NB-INAR(1)
model as a special case and has four parameters. But the additional parameter d seems
not sufficient to clearly distinguish it from NB or GP-INAR(1) models. It may be due
to the small order of the Markov chain. Therefore, it could be interesting to compare
the performances of different integer-valued autoregressive models (INAR models),
with a higher order. A natural perspective is thus to define INAR(p) models based on
quasi Pólya thinning operator and finally INARMA(p, q) models. Until now, INAR(p)
models with closure property (i.e., same distribution for margin and residual), has
been defined only for the case of Poisson margin (Alzaid and Al-Osh, 1990; Weiß,
2008a) that do not take into account under and over dispersed data. The extension to
CINAR(p) models based on quasi Pólya thinning operator will use the properties of
such an operator (Lemmas 4 and 3). The extension of the INAR(p) model of Alzaid
and Al-Osh (1990) to non-Poisson margins will need the multivariate version of the
quasi Pólya thinning operator introduced by Peyhardi (2023). The stationarity of such
extensions will use the same closure properties, under thinning operator and under
convolution.
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Appendix A Characteristics of quasi Pólya and
additive modified power series
distributions

Name Notation Space parameter Support a
[c,d]
θ pmf

quasi Pólya qP [c,d]
n (θ, γ) n ∈ N∗, (θ, γ) ∈ Θ2

c
θ(θ+dn)(n;c)

(θ+dn)n!

a
[c,d]
θ (k)a

[c,d]
γ (n− k)

a
[c,d]
θ+γ(n)

(c ∈ R, t ∈ R)

1. hypergeometric Hn(θ, γ) n ∈ N∗, (θ, γ) ∈ N∗2 {0, . . . , n} ∩ {n− γ, . . . , θ}
(θ
n

) (θ
k

)( γ
n−k

)(θ+γ
n

)
(c = −1, d = 0)

2. binomial Bn(p) n ∈ N∗, p ∈ (0, 1) {0, . . . , n} θn

n!

(n
k

)
pk(1− p)n−k

(c = 0, d = 0) p = θ/(θ + γ)

3. beta binomial βBn(θ, γ) n ∈ N∗, (θ, γ) ∈ R∗2
+ {0, . . . , n}

(n+θ−1
n

) (k+θ−1
k

)(n−k+γ−1
n−k

)(n+θ+γ−1
n

)
(c = 1, d = 0)

quasi hypergeometric qH[d]
n (θ, γ) n ∈ N∗, (θ, γ) ∈ R∗2

+ {0, . . . , n} θ
θ+dn

(θ+dn
n

) θ
θ+dk

(θ+dk
k

) γ
γ+d(n−k)

(γ+d(n−k)
n−k

)
θ+γ

θ+γ+dn

(θ+γ+dn
n

)
(c = −1, d ̸= 0) d ∈ (0,∞)

4. quasi binomial qB[d′]
n (p) n ∈ N∗ {0, . . . , n} θ(θ+dn)n−1

n!

(n
k

)p(1− p)

1 + d′n

(
p+ d′k

1 + d′n

)k−1 (1− p+ d′(n− k)

1 + d′n

)n−k−1

(c = 0, d ̸= 0) p = θ/(θ + γ) ∈ (0, 1)
d′ = d/(θ + γ) ∈ (0,∞)

5. quasi beta binomial qβB[d]
n (θ, γ) n ∈ N∗, (θ, γ) ∈ R∗2

+ {0, . . . , n} θ
θ+dn

(θ+dn+n−1
n

) θ
θ+dk

(θ+dk+k−1
k

) γ
γ+t(n−k)

(γ+d(n−k)+n−k−1
n−k

)
θ+γ

θ+γ+dn

(θ+γ+dn+n−1
n

)
(c = 1, d ̸= 0) d ∈ (−1,∞), d ̸= 0

Table A1 Notations and pmf of quasi Pólya distributions. The cell with quasi hypergeometric

distribution qH[d]
n (θ, γ) is greyed out since it is equivalent to the quasi beta binomial distribution

qβB[d−1]
n (θ, γ).
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Name Notation Parameters space Supp g(α) hθ(α) pmf

additive modified power series APS[c,d](θ, α) θ ∈ Θc, α ∈ (0, Rc)
a
[c,d]
θ (k){g(α)}k

hθ(α)

(c ∈ Z, d ∈ R)

1. binomial Bθ(p) θ ∈ N∗, α ∈ (0,∞) {0, . . . , θ} α (1 + α)θ
(θ
n

)
( α
1+α

)n( 1
1+α

)θ−n

(c = −1, d = 0) p = α
1+α

∈ (0, 1)

2. Poisson P(αθ) θ ∈ R∗
+ N α eαθ θn

n!
αne−αθ

(c = 0, d = 0) α ∈ (0,∞)

3. Negative binomial NB(θ, p) θ ∈ R∗
+ N α (1− α)−θ

(n+θ−1
n

)
αn(1− α)θ

(c = 1, d = 0) p = α ∈ (0, 1)

generalized binomial GB[d](θ, p) θ ∈ R∗
+, α ∈ (0,∞) N α(1 + α)−d (1 + α)θ θ

θ+dn

(θ+dn
n

)
( α
1+α

)n( 1
1+α

)θ+dn−n

(c = −1, 1 < d ≤ 1+α
α

) p = α
1+α

∈ (0, 1)

4. generalized Poisson GP [d](αθ) θ ∈ R∗
+, α ∈ (0,∞) N αe−dα eαθ θ(θ+dn)n−1

n!
(αe−dα)n

eαθ

(c = 0, 0 < d ≤ 1)

5. generalized negative binomial GNB[d](θ, p) θ ∈ R∗
+, p = α ∈ (0, 1) N α(1− α)d (1− α)−θ θ

θ+dn

(θ+dn+n−1
n

)
αn(1− α)θ+dn

(c = 1, 0 < d ≤ 1−α
α

)

Table A2 Notations and pmf of additive modified power series distributions. The cell generalized

binomial distribution GB[d](θ, p) is greyed out since it is equivalent to the generalized negative
binomial distribution GNB[d−1](θ, p). After identifiability our generalized Poisson distribution

GP [d](αθ) becomes those introduced by Consul and Jain (1973) denoted by GP [d∗](λ) with λ = θα
and d∗ = dα.

Appendix B Standardized Pearson residuals

The standardized Pearson residuals are given by

et :=
E[Xt|xt−1]− xt√

V(Xt|xt−1)
.

Let us describe the specific value of E[Xt|xt−1] and V(Xt|xt−1) in the five cases of
INAR(1) models based on quasi Pólya thinning operator.

1. For the B-INAR(1) model with parameters ψ = (θ, γ, α) we have

E[Xt|xt−1] =
θ

θ + γ
xt−1 + γ

α

1 + α
,

V(Xt|xt−1) =
θγ(θ + γ − xt−1)xt−1

(θ + γ)2(θ + γ − 1)
+ γ

α

(1 + α)2
.

2. For the P-INAR(1) model with parameters ψ = (ρ, α) we have

E[Xt|xt−1] = ρxt−1 + (1− ρ)λ,
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V(Xt|xt−1) = ρ(1− ρ)xt−1 + (1− ρ)λ.

3. For the NB-INAR(1) model with parameters ψ = (θ, γ, α) we have

E[Xt|xt−1] =
θ

θ + γ
xt−1 + γ

α

1− α
,

V(Xt|xt−1) =
θγ(θ + γ + xt−1)xt−1

(θ + γ)2(θ + γ + 1)
+ γ

α

(1− α)2
.

4. For the GP-INAR(1) model with parameters ψ = (ρ, λ, d) we have

E[Xt|xt−1] = ρxt−1 + (1− ρ)
λ

1− d
,

V(Xt|xt−1) = ρ(1− ρ)

[
x2
t−1 −

xt−1−1∑
j=1

x
(j+1;−1)
t−1 d′j−1

(1 + d′xt−1)j

]
+ (1− ρ)

λ

(1− d)3
.

5. For the GNB-INAR(1) model with parameters ψ = (θ, γ, α, d) we have

E[Xt|xt−1] =
θ

θ + γ
xt−1 + γ

α

1− α(1 + d)
,

V(Xt|xt−1) =
θγ

θ + γ

[
x2
t−1

θ + γ
−

xt−1−1∑
j=1

x
(j+1;−1)
t−1 (d+ 1)j−1

{θ + γ + (d+ 1)xt−1 − j + 2}(j;1)

]
+ γ

α(1− α)

{1− α(1 + d)}3
.
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Appendix C Summarized results on simulated
datasets

Marginal Mean Variance B P NB GP GNB

µ = 5 4.17e-02 1.05e-01 1.10e-01 1.05e-01 6.11e-02
(4.45e-02) (1.46e-02) (1.71e-02) (1.59e-02) (6.14e-02)

B µ = 20 σ2 = µ/2 3.58e-02 1.01e-01 1.08e-01 1.01e-01 6.49e-02
(3.59e-02) (1.44e-02) (1.95e-02) (1.44e-02) (4.66e-02)

µ = 50 3.47e-02 1.00e-01 1.10e-01 1.00e-01 5.86e-02
(3.77e-02) (1.47e-02) (1.90e-02) (1.48e-02) (4.32e-02)

µ = 5 2.49e-02 1.59e-02 1.85e-02 1.85e-02 2.64e-02
(3.14e-02) (2.19e-02) (2.34e-02) (2.25e-02) (3.36e-0)

P µ = 20 σ2 = µ 2.73e-02 1.64e-02 1.98e-02 1.93e-02 2.62e-02
(3.62e-02) (2.46e-02) (2.62e-02) (2.49e-02) (3.30e-02)

µ = 50 2.75e-02 1.64e-02 1.89e-02 1.89e-02 2.62e-02
(3.36e-02) (2.23e-02) (2.34e-02) (2.28e-02) (3.48e-02)

µ = 5 1.99e-01 1.86e-01 4.08e-02 3.82e-02 3.81e-02
(7.52e-02) (6.53e-02) (4.32e-02) (3.85e-02) (3.84e-02)

NB µ = 20 σ2 = 2µ 2.08e-01 1.91e-01 4.35e-02 4.42e-02 4.28e-02
(7.05e-02) (6.49e-02) (3.98e-02) (3.94e-02) (3.78e-02)

µ = 50 2.13e-01 1.92e-01 4.35e-02 4.48e-02 4.27e-02
(6.66e-02) (6.11e-02) (3.84e-02) (3.79e-02) (3.60e-02)

µ = 5 6.91e-01 6.65e-01 4.27e-02 3.58e-02 3.83e-02
(1.19e-01) (1.09e-01) (4.95e-02) (4.09e-02) (4.16e-02)

GP µ = 20 σ2 = 4µ 7.85e-01 7.52e-01 3.61e-02 3.33e-02 3.33e-02
(1.23e-01) (1.08e-01) (3.79e-02) (3.53e-02) (3.56e-02)

µ = 50 8.33e-01 9.15e-01 3.96e-02 1.63e-01 3.56e-02
(1.18e-01) (4.00e+00) (4.61e-02) (4.02e+00) (3.92e-02)

µ = 5 1.60e+00 1.56e+00 4.97e-02 3.61e-02 4.00e-02
(2.93e-01) (2.65e-01) (5.16e-02) (4.28e-02) (4.46e-02)

GNB µ = 20 σ2 = 8µ 2.07e+00 2.01e+00 3.73e-02 3.16e-02 3.31e-02
(2.68e-01) (2.53e-01) (3.80e-02) (3.31e-02) (3.41e-02)

µ = 50 2.29e+00 1.07e+01 3.75e-02 8.73e+00 3.53e-02
(2.97e-01) (2.98e+01) (3.86e-02) (3.04e+01) (3.63e-02)

Table C3 Means (and standard deviations) of KL divergences for different INAR(1) models based
on quasi Pólya thinning operator for time series of length T = 50 and autocorrelation ρ = 0.3. The
rows indicate the marginal distribution of the simulated INAR(1) model whereas the columns
indicate the marginal distribution of the estimated INAR(1) model. Means of KL divergences (and
standard deviations) have been computed for the 5 different estimated models, on n = 1000
simulations for each of the 15 scenarios. The minimal value of each scenario is written in bold.
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Marginal Mean Variance B P NB GP GNB
µ = 5 1.30e+03 1.70e-01 1.84e-01 1.70e-01 3.30e-01

(1.31e+04) (1.38e-01) (1.50e-01) (1.38e-01) (5.07e-01)

B µ = 20 σ2 = µ/2 2.73e-01 1.75e-01 1.87e-01 1.77e-01 2.10e-01
(3.58e-01) (1.66e-01) (1.74e-01) (1.64e-01) (2.68e-01)

µ = 50 3.37e-01 1.83e-01 2.05e-01 1.95e-01 2.36e-01
(5.53e-01) (1.70e-01) (2.04e-01) (1.87e-01) (2.80e-01)

µ = 5 2.19e-01 1.40e-01 1.47e-01 1.38e-01 1.89e-01
(3.12e-01) (2.03e-01) (2.12e-01) (1.97e-01) (5.23e-01)

P µ = 20 σ2 = µ 2.77e-01 1.26e-01 1.33e-01 1.27e-01 1.89e-01
(4.42e-01) (1.89e-01) (1.96e-01) (1.82e-01) (2.99e-01)

µ = 50 2.92e-01 1.26e-01 1.35e-01 1.31e-01 2.05e-01
(4.50e-01) (1.83e-01) (1.91e-01) (1.71e-01) (3.58e-01)

µ = 5 5.25e-01 3.22e-01 1.98e-01 1.62e-01 1.71e-01
(4.61e+00) (3.16e-01) (2.88e-01) (2.31e-01) (2.44e-01)

NB µ = 20 σ2 = 2µ 4.71e-01 3.70e-01 2.49e-01 2.03e-01 2.25e-01
(6.70e-01) (3.70e-01) (2.83e-01) (2.44e-01) (2.74e-01)

µ = 50 5.00e-01 3.80e-01 2.75e-01 2.35e-01 2.58e-01
(5.84e-01) (3.51e-01) (2.88e-01) (2.59e-01) (2.80e-01)

µ = 5 5.74e+00 8.87e-01 2.50e-01 1.95e-01 2.00e-01
(1.44e+02) (6.93e-01) (3.49e-01) (2.77e-01) (2.88e-01)

GP µ = 20 σ2 = 4µ 1.02e+00 9.34e-01 2.50e-01 1.86e-01 1.98e-01
(7.72e-01) (6.28e-01) (3.08e-01) (2.39e-01) (3.30e-01)

µ = 50 1.10e+00 1.13e+00 3.44e-01 3.95e-01 2.44e-01
(8.67e-01) (4.93e+00) (3.32e-01) (4.93e+00) (2.96e-01)

µ = 5 5.47e+01 1.83e+00 6.52e+00 2.39e-01 1.23e+00
(7.57e+02) (1.96e+00) (1.83e+02) (4.48e-01) (2.09e+01)

GNB µ = 20 σ2 = 8µ 2.26e+00 2.13e+00 2.26e-01 1.54e-01 1.65e-01
(1.70e+00) (1.15e+00) (3.14e-01) (2.13e-01) (2.56e-01)

µ = 50 2.40e+00 7.10e+00 2.72e-01 5.18e+00 2.25e-01
(1.11e+00) (2.96e+01) (3.16e-01) (2.99e+01) (1.19e+00)

Table C4 Means (and standard deviations) of KL divergences for different INAR(1) models based
on quasi Pólya thinning operator for time series of length T = 50 and autocorrelation ρ = 0.9. The
rows indicate the marginal distribution of the simulated INAR(1) model whereas the columns
indicate the marginal distribution of the estimated INAR(1) model. Means of KL divergences (and
standard deviations) have been computed for the 5 different estimated models, on n = 1000
simulations for each of the 15 scenarios. The minimal value of each scenario is written in bold.
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