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On quasi Pólya thinning operator

Jean Peyhardi1,a,
1IMAG, University of Montpellier, CNRS, Montpellier, France , ajean.peyhardi@umontpellier.fr

Abstract. Thinning operation is a stochastic operation that shrinks a random count vari-
able into another one. This kind of random operation has been intensively studied during
the seventies to characterize some count distributions, such as the Poisson distribution us-
ing the binomial thinning operator (also named binomial damage model). Then, the closure
under thinning operator has been studied in order to define some classes of integer valued
autoregressive (INAR) models for count time series. These two properties will be studied
in this paper for the new class of quasi Pólya thinning operators. Classical results con-
cerning the binomial thinning operator are recovered as a special case. The quasi Pólya
thinning operator is related to the new class of quasi Pólya splitting distributions, defined
for multivariate count data. The probabilistic graphical model (PGM) of these multivariate
distributions is characterized. Finally a general class of integer valued autoregressive mod-
els is introduced, including the usual cases of Poisson marginal or generalized Poisson as
a special cases and the generalized negative binomial as a new case.

1 Introduction

A splitting distribution of dimension J = 2 can be summarized by a random variable N that
is split into two random variables Y1 and Y2, i.e., such that N = Y1 + Y2. The conditional
distribution of Y1 given N = n is called thinning operator, e.g., the binomial distribution. The
variable Y1 can be viewed as damaged version of the original variable N . Two properties
of such a model have been intensively studied: the closure under thinning operation and
the characterization of the original distribution of N through the condition of independence
between Y1 and Y2.

The first property consists for a given thinning operator, to find a distribution for N such
that Y1 follows the same distribution (with modified parameter). It was initiated by Rao
(1965) which showed that binomial, Poisson and negative binomial distribution are closed
under the binomial thinning operation. It was generalized in some way by Janardan and
Rao (1986) which demonstrated the closure of generalized Pólya Eggenberger distributions
(including the Poisson distribution as a special case) under quasi Pólya thinning operation
(including the binomial thinning operator as a special case). Then Joe (1996) related the
closure under thinning operation to the closure under convolution. They used this property
to define some integer valued autoregressive models models for count time series. Indeed the
thinning operator ensures that the degradation of Xt−1 is still an integer and thus allow to
correctly build Xt; see (Scotto, Weiß and Gouveia, 2015; Davis et al., 2021) for a review.
In this framework, the binomial thinning operator is often referred to (Steutel and van Harn,
1979) that used this operation to define the discrete analogue of self decomposability. More
recently Puig and Valero (2007) characterized the distributions that are closed under the
binomial thinning operation. Then Peyhardi, Fernique and Durand (2021) highlighted some
distributions that are closed respectively under the hypergeometric, binomial or beta binomial
thinning operation.

The second property consists in the characterization of the distribution for N such that Y1
and Y2 are independent, for a given thinning operator. It was initiated by Moran (1952) that
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characterized the Poisson distribution for N through the independence between Y1 and Y2,
given a binomial thinning operator. It was generalized by Bol’shev (1965) which character-
ized the Poisson (resp. binomial and negative binomial) distribution through independence
between Y1 and Y2 given a binomial (resp. hypergeometric and negative hypergeometric)
thinning operator. Finally Rao and Janardan (1984) characterized the generalized negative
binomial distribution through the quasi hypergeometric thinning operator. Then, for the bi-
nomial thinning operator, Rao and Rubin (1964) proposed to replace the independence as-
sumption by a weaker condition, named the Rao-Rubin condition. Other authors followed
this way for the beta binomial thinning operator; see (Patil and Ratnaparkhi, 1975) for a
review. But it was shown by Shanbhag and Panaretos (1979) that the Rao-Rubin condition
is not sufficient to obtain the characterization for an hypergeometric thinning operator, be-
cause of its constrained support. More recently Peyhardi and Fernique (2017) characterized
the probabilistic graphical model of the multivariate version of splitting distribution (i.e., the
random vector (Y1, . . . , YJ) such that Y1 + · · ·+ YJ =N ) for the multinomial and Dirichlet
multinomial splitting distributions. It should be noted that the thinning operator was used,
during the seventies, as a tool for characterizing some univariate distributions whereas the
present approach focuses on the resulting multivariate distribution for count data, as in re-
cent papers of Castañer et al. (2015); Jones and Marchand (2019); Peyhardi, Fernique and
Durand (2021).

The paper is organized as follows. Section 2 introduces preliminary notations and defi-
nitions used all along the paper. Three classes of count distributions are introduced: convo-
lution, (additive) modified power series and inverse convolution distributions. They are all
characterized by a parametric sequence {aθ(n)}n∈N,θ∈Θ with Θ= R∗

+ or Θ= N. We high-
light all the assumptions concerning this parametric sequence that are necessary to obtain the
different theorems of the next section. Section 3 introduces the class of convolution thinning
operators. It is shown that the three classes of distributions, previously introduced, are closed
under the convolution thinning operation (Theorem 1). Then it is shown that the modified
power series is the only one distribution for N such that Y1, . . . , YJ are independent, more
precisely the minimal PGM of the multivariate distribution is characterized (Theorem 2).
Then some applications of these two properties are presented, in the frameworks of multi-
variate count data and count time series. Finally the continuous analogue of such distributions
is presented, verifying that both theorems hold.

2 Preliminary notations and definitions

All definitions and properties of the present paper will be based on the existence of a non-
negative parametric sequence aθ = {aθ(n)}n∈N,θ∈Θ with Θ = R∗

+ or Θ = N. All along the
paper, the four following assumptions will be made on aθ .

(A0) The support:

Supp aθ = {0,1, . . . ,Kθ}

for some Kθ ∈ N ∪ {∞}.
(A1) Additive closure under convolution:

aθ ∗ aγ = aθ+γ

for all (θ, γ) ∈Θ2

(A2) Power series convergence:
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There exists a function g(α) such that

Kθ∑
k=0

aθ(k){g(α)}k = hθ(α)

for all θ ∈ Θ and α ∈ (0,R). Note that R is the radius of convergence of the power
series when g is the identity function.

(A3) Inverse series convergence:

Kθ∑
k=0

r

k+ r

aθ(k)

aθ+γ(k+ r)
=

1

aγ(r)

for all (θ, γ) ∈Θ2 and r ∈ {0, . . . ,Kγ}.

In the following we will see that assumptions (A1), (A2) and (A3) are necessary conditions
to demonstrate the different theorems whereas assumption (A0) could certainly be relaxed
in some way. However the six examples of such parametric sequence aθ , presented in the
following, share the four assumptions. Note that the support of aθ is bounded for only one
example (Kθ = θ), whereas it is equal to N for the five others (Kθ =∞). Let now introduce
three families of univariate count distributions based on aθ .

Definition 1. A discrete non-negative variable X is said to follow a convolution distribution
if there exists a parametric sequence aθ such that (A1) holds and

P (X = k) =
aθ(k)aγ(n− k)

aθ+γ(n)
1k≤n,

for some (θ, γ) ∈Θ2 and n ∈ N. This distribution is denoted by Cn(θ, γ).

Assumption (A1) ensures that we obtain a proper distribution. This class of distributions
includes for instance the hypergeometric distribution if aθ(n) =

(
θ
n

)
, or the binomial distri-

bution if aθ(n) = θn/n!. More generally it include the family of quasi Pólya distributions
that was introduced by Janardan (1973) as urn model with predetermined strategies; see Sec-
tion 1 of the Supplementary Materials for detailed examples (Peyhardi, 2023). This family
of distributions will be used in next section to introduce the general class of convolution
thinning operators.

Definition 2. A discrete non-negative variable X is said to follow an additive modified
power series distribution if there exist a parametric sequence aθ such that (A1), (A2) hold
and a function g such that

P (X = k) =
aθ(k){g(α)}k

hθ(α)

for some θ ∈Θ and α ∈ (0,R). This distribution is denoted by APS(θ, g(α)).

Assumption (A2) ensures that we obtain a proper distribution. This is a subclass of the mod-
ified power series distributions introduced by Gupta (1974) since the assumption (A1) is
added. It includes for instance the binomial distribution if aθ(n) =

(
θ
n

)
, or the Poisson dis-

tribution if aθ(n) = θn/n!, but not the logarithmic series distribution since a(n) = 1/n do
not share the convolution identity (A1). More generally it includes the family of generalized
Pólya Eggenberger distributions studied by Janardan and Rao (1982); see Section 2 of the
Supplementary Materials for detailed examples (Peyhardi, 2023).
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Proposition 1. An additive modified power series distribution is additively closed under
convolution, i.e., we have

APS(θ, g(α)) ∗APS(γ, g(α)) =APS(θ+ γ, g(α)),

for all (θ, γ) ∈Θ2 and α ∈ (0,R).

All proofs of the present paper are given in Appendices. The notion of closure under con-
volution, introduced by Teicher (1954), is close to those of infinite divisibility, presented
by Steutel et al. (1979), but is different. For instance the binomial distribution is additively
closed under convolution (Bθ(p) ∗ Bγ(p) = Bθ+γ(p)) but not infinite divisible since parame-
ters are integers (Θ= N).

Definition 3. A discrete non-negative variable X is said to follow an inverse convolution
distribution if there exists a parametric sequence aθ such that (A1), (A3) hold and

P (X = k) =
r

k+ r

aθ(k)aγ(r)

aθ+γ(k+ r)

for some (θ, γ) ∈Θ2, r ∈ {0, . . . ,Kγ}. This distribution is denoted by IC(r;θ, γ).

Assumption (A3) ensures that we obtain a proper distribution. This class of distributions in-
cludes for instance the negative hypergeometric distribution if aθ(n) =

(
θ
n

)
, or the negative

binomial distribution if aθ(n) = θn/n!. More generally it include the family of quasi in-
verse Pólya distributions introduced by Janardan (1975); see Section 3 of the Supplementary
Materials for detailed examples (Peyhardi, 2023).

Proposition 2. The three classes of distributions (definitions 1, 2, 3) are characterized by
the parametric sequence aθ .

The reader can easily check that the specific sequence aθ(n) = θn/n! leads to the binomial,
Poisson and negative binomial distributions, following respectively the definitions 1, 2 and
3. More generally, there exists six examples of parametric sequence aθ that are encompassed
by the general form

a
[c,d]
θ (n) =

θ(θ+ dn)(n;c)

(θ+ dn)n!
(1)

where n ∈ N, θ ∈Θ (with Θ= N when c < 0, d= 0 and Θ= R∗
+ otherwise), c ∈ R, d ∈ R+

and m(n;c) :=
∏n−1

k=0(m+ck). One can distinguish six equivalence classes according to (c, d)
with representative elements:

1. a
[−1,0]
θ (n) =

(
θ
n

)
2. a

[0,0]
θ (n) = θn/n!

3. a
[1,0]
θ (n) =

(
n+θ−1

n

)
4. a

[−1,d]
θ (n) = θ

θ+tn

(
θ+tn
n

)
with d≥ 0

5. a
[0,d]
θ (n) = θ(θ+tn)n−1

n! with d≥ 0

6. a
[1,d]
θ (n) = θ

θ+tn

(
θ+tn+n−1

n

)
with d≥−1

In fact only five representative elements are defined since a
[−1,d+1]
θ (n) = a

[1,d]
θ (n) for all

d≥−1; see Section 4 of the Supplementary Material for details about equivalences between
some distributions, related to this equality (Peyhardi, 2023). It could be shown that the para-
metric sequence a

[c,d]
θ respects the four assumptions (A0), (A1), (A2) and (A3), in the six
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Definition 1 Definition 2 Definition 3

c=−1, d≥ 0 quasi hypergeometric generalized binomial quasi beta binomial
c= 0, d≥ 0 quasi binomial generalized Poisson quasi negative binomial
c= 1, d≥−1 quasi beta binomial generalized negative binomial quasi beta negative binomial

Table 1 The three distributions obtained by definitions 1, 2, 3 (columns) according to the different values of (c, d)

(rows) for the parametric sequence a
[c,d]
θ (n) described in equation (1). The terms "quasi" and "generalized"

disapears when d= 0.

cases. For instance details are given for the case aθ(n) =
(
n+θ−1

n

)
in Section 5 of the Sup-

plementary Materials (Peyhardi, 2023). Therefore the convolution distribution (definition 1),
the additive modified power series distribution (definition 2) and the inverse convolution dis-
tribution (definition 3) are well defined; see Sections 1, 2, 3 of Supplementary Material for
detailed examples (Peyhardi, 2023). A summary of these distributions is given in Table 1.

Note that for the continuous case, only one example emerges from the parametric function

aθ(x) =
xθ−1

Γ(θ)
,

defined for x ∈ R∗
+ and θ ∈ R∗

+. It is shown in Section 5 that this parametric function also
respects the four assumptions if integers are replaced by non-negative real values and sums
by integrals, with the exception that zero does not belong to the support of aθ .

3 Thinning operator and splitting operator

A thinning operation is a probabilistic operation that shrinks a random count variable into
another one. If the original count represents the size of a population, then the thinning op-
erator randomly selects some individuals of this population. If focus is made on the number
of selected individuals then we deal with the thinned distribution. If focus is made on both
the number of selected and unselected individuals then we deal with the (bivariate) splitting
distribution. Note that the splitting distribution can be defined in the multivariate case using a
multivariate thinning operation. The first subsection studies the closure under thinning oper-
ation, i.e., is looking for original distributions that are preserved after the thinning operation.
The second subsection studies the characterization of independence between the selected and
unselected parts according to the original distribution.

3.1 Closure under convolution thinning operation

The most usual example of thinning operation is the binomial one. The binomial thinning
operation is usually defined as follows. Let X denote a random count variable with distri-
bution L and p ∈ (0,1) a given parameter, then X ′ d

= p ◦X denotes the thinned version of
X . It is defined as the random sum X ′ =

∑X
i=1Zi where Zi ∼B(p) are independent random

Bernoulli variables with parameter p. The binomial thinning operator has firstly been used by
Sprott (1965) in ecological context, to model the number of adults X ′ produced by an insect,
assuming that X is the number of eggs and p the probability for each egg to hatch (assuming
independence between eggs). It is named binomial destructive process or binomial damage
model in this framework. It has also been used in the framework of count time series to define
INAR model; see (Weiß, 2008) for a review.

Remarking that the thinned distribution of X ′ is a binomial distribution mixed by the
original distribution of X , we propose to use the notation

X ′ ∼Bn(p)∧
n
L,
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where ∧ denotes the mixing operator. This notation is more appropriate to deal with prop-
erties of distributions. It is natural to replace the binomial distribution by a more general
family that share necessary properties to define a thinning operation. We therefore introduce
the convolution thinned distribution as the mixed distribution

Cn(θ, γ)∧
n
L,

that includes the binomial thinned distribution as a special case (aθ(n) = θn/n!). If X ′ ∼
Cn(θ, γ) ∧

n
L where (pn)n∈N denotes the pmf of the original distribution L then the pmf of

the convolution thinned distribution is given by

P (X ′ = k) =
∑
n≥k

aθ(k)aγ(n− k)

aθ+γ(n)
pn.

The most general approach of such a thinning operation was proposed by Janardan and Rao
(1986) that studied the quasi Pólya thinned distribution qP [c,d]

n (θ, γ) ∧
n
L. They showed, in

their Theorem 5.1, that generalized Pólya Eggenberger distributions are closed under the
quasi Pólya thinning operation. This result is recovered by the second point of the following
theorem.

Theorem 1. The convolution, the modified power series and the inverse convolution distri-
butions are closed under the convolution thinning operation when their parameter respects
the additive constraint. More precisely we have the following distributions equalities:

1. Convolution
Cn(θ, γ)∧

n
Cm(θ+ γ,λ) = Cm(θ, γ + λ),

2. Additive modified power series
Cn(θ, γ)∧

n
APS(θ+ γ, g(α)) =APS(θ, g(α)),

3. Inverse convolution
Cn(θ, γ)∧

n
IC(r;θ+ γ,λ) = IC(r;θ,λ),

for all (θ, γ,λ) ∈Θ3, α ∈ (0,R) and r ∈ (0,∞).

As corollary of Theorem 1, based on specific case aθ(n) = θn/n!, the result of Rao (1965)
is recovered.

Corollary 1 ((Rao, 1965)). The binomial, Poisson and negative binomial distribution are
closed under the binomial thinning operation.

1. binomial
Bn(π)∧

n
Bm(p) = Bm(p′) where p′ = πp ∈ (0,1),

2. Poisson
Bn(π)∧

n
P(λ) =P(λ′) where λ′ = πλ ∈ (0,∞),

3. negative binomial
Bn(π)∧

n
NB(r, p) =NB(r, p′) where p′ := πp

πp+1−p ∈ (0,1).

Remark that the additive constraint on parameters does not appear in this example since the
sum θ+ γ is not identifiable and only the proportion p= θ/(θ+ γ) is identifiable. The same
kind of corollary holds for the five other examples characterized by a

[c,d]
θ defined in equation

(1). For instance, based on aθ(n) =
(
n+θ−1

n

)
, we obtain the following result.

Corollary 2. The beta-binomial, the negative binomial and the beta negative binomial dis-
tributions are closed under the beta binomial thinning operation.



On quasi Pólya thinning operator 7

1. beta binomial
βBn(θ, γ)∧

n
βBm(θ+ γ,λ) = βBm(θ, γ + λ),

2. negative binomial
βBn(θ, γ)∧

n
NB(θ+ γ, p) =NB(θ, p),

3. beta negative binomial
βBn(θ, γ)∧

n
βNB(r;θ+ γ,λ) = βNB(r;θ,λ),

for all (θ, γ,λ) ∈ R∗3
+ , p ∈ (0,1) and r ∈ (0,∞).

Remark. Puig and Valero (2007) showed that a distribution L is closed under binomial
thinning operation if and only if it satisfies one of the following assertions

• L=P(λ)∧
λ
L′ where L′ denotes a distribution supported on (0,∞),

• L= Bn(p)∧
n
L∗ where L∗ is not closed under the binomial thinning operation.

A conjecture would be to generalize this result to any convolution thinning operation and
state that a distribution L is closed under any convolution thinning operation if and only if it
satisfies one of the following assertions

• L=APS(θ+ γ, g(α))∧
α
L′ where L′ denotes a distribution supported on (0,R),

• L= Cn(θ+γ,λ)∧
n
L∗ where L∗ is not closed under the convolution thinning operation.

This conjecture is consistent with Theorem 1, remarking that the inverse quasi Pólya distri-
bution turns out to be a mixed modified power series distribution (for instance NB(r, p) =
P(λ)∧

λ
Γ(r, p

1−p)).

3.2 Characterization of independence for convolution splitting distributions

In this subsection, the original observation n is not thinned but split into J ≥ 2 variables
Y1, . . . , YJ , i.e., such that Y1+ · · ·+YJ = n. In the following the random vector (Y1, . . . , YJ)
will be denoted by Y and its sum by |Y |. The convolution distribution (definition1) has to
be defined in a multivariate way, as introduced by Peyhardi and Fernique (2017).

Definition 4. The random vector Y is said to follow the convolution distribution denoted by
C∆n

(θ) with θ = (θ1, . . . , θJ) ∈ ΘJ if its conditional pmf, given the sum |Y | = n, has the
form

P|Y |=n(Y = y) =

∏J
j=1 aθj (yj)

a|θ|(n)

for all n ∈ N and y ∈∆n = {y ∈ NJ : |y|= n} (∆n denotes the discrete simplex).

All known examples of such distributions are multivariate quasi Pólya distributions. They
are obtained from the parametric sequence a

[c,d]
θ (n) of equation (1) and their characteristics

and notations are summarized in Section 6 of the Supplementary Materials (Peyhardi, 2023).
Such a distribution is not a sensu stricto multivariate distribution since the dimension of its
support is J − 1 instead of J ; see (Peyhardi, Fernique and Durand, 2021) for details. This
problem disappears if the parameter n is assumed to be a random variable. In this case we
obtain a mixed distribution denoted by

C∆n
(θ)∧

n
L
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which is called convolution splitting distribution. The pmf of such a distribution is given by

P (Y = y) =
p(|y|)
a|θ|(|y|)

J∏
j=1

aθj (yj), (2)

for all y ∈ Supp aθ1 × · · ·×Supp aθJ and zero otherwise, where p(n) denotes the pmf of the
distribution L. Note that thinning and splitting operations are closely related but not similar
since the first reduces the original quantity whereas the second conserves it in the different
components. It will be shown that the choice of the original distribution L implies specific
properties about the resulting mixed distribution.

Remark. Using the specific parametric sequence aθ(n) =
(
n+θ−1

n

)
we obtain the Dirichlet

multinomial splitting distribution DM∆n
(θ) ∧

n
L. The specific Dirichlet multinomial split-

ting negative binomial distribution DM∆n
(θ)∧

n
NB(r, p) has recently been studied in depth

by Jones and Marchand (2019).

First recall the definition of the PGM for a given multivariate distribution. According to
Lauritzen (1996), the global Markov properties enable to derive the independence assertions
that hold in a multivariate distribution by simply examining a graph (undirected, directed or
mixed graph). A PGM is defined by a distribution and a graph such that all independence
assertions, derived from the graph using the global Markov properties, hold in the distribu-
tion. A PGM is said to be minimal if any edge removal in the graph induces an independence
assertion that is not held in the distribution. Before to characterize the minimal PGM of
a convolution splitting distribution C∆n

(θ) ∧
n
L, it is easier to show that a specific choice

for the sum distribution L implies independence between Y1, . . . , YJ . The demonstrations of
following lemma and theorem are given in Appendices D and E.

Lemma 1. Let Y ∼ C∆n
(θ) ∧

n
APS(|θ|, g(α)) for some α ∈ (0,R), assuming (A1), (A2)

for the associated parametric sequence aθ . Then all variables Yj are independent and Yj ∼
APS(θj , g(α)). This property can be summarized by the formula

C∆n
(θ)∧

n
APS(|θ|, α) =

J⊗
j=1

APS(θj , g(α)).

where the notation Y ∼
⊗J

j=1Lj indicates that Yj ∼ Lj for all j = 1, . . . , J with mutual
independence between Y1, . . . , YJ .

The independence between all variables corresponds to the empty PGM. Now we are inter-
esting in the uniqueness of the sum distribution L such that the PGM is empty. The following
theorem characterizes the PGM of a convolution splitting distribution according to the sum
distribution.

Theorem 2. Let Y ∼ C∆n
(θ) ∧

n
L, assuming (A0), (A1), (A2) for the associated parametric

sequence aθ . Then the minimal PGM for Y is

• empty if L=APS(|θ|, g(α)) for some α ∈ (0,R),
• complete otherwise.

This theorem generalizes the result of Bol’shev (1965) and those of Rao and Janardan (1984)
that concerns the bivariate case (J = 2) only for some thinning operators. It also includes
results obtained by Peyhardi and Fernique (2017) that characterized the PGM only for two
multivariate operators: multinomial and Dirichlet multinomial. Indeed this theorem holds



On quasi Pólya thinning operator 9

for any convolution thinning operator assuming (A0), (A1), (A2) and (A3), i.e., for the five
(multivariate) quasi Pólya thinning operators (hypergeometic, multinomial, Dirichlet multi-
nomial, quasi-hypergeometric and quasi-multinomial) and the demonstration is unique; see
Appendix E.

Remark. The fact that zero belongs to the support of aθ is included in assumption (A0) and
used in the proof of Theorem 2. The connectivity of the support, also included in assumption
(A0), may be relaxed in some way. However, all examples of parametric sequence aθ given
in equation (1) have a connected support. For the continuous case it is different since zero
does not belong to the support. An additional assumption on aθ is needed to demonstrate
Theorem 2; see Appendix E for details.

Otherwise, for extension of Theorem 2 using the weaker Rao-Rubin condition instead of
independence, it is necessary to modify assumption (A0) into (A0′) Supp aθ = N (or (0,∞)
for the continuous case). Such an extension holds for all the quasi-Pólya splitting models
except the hypergeometric splitting distribution with aθ(n) =

(
θ
n

)
such that Supp aθ = J0, θK

is bounded. Let us note that the Rao-Rubin condition can be viewed as a context specific con-
ditional independence, defined by Koller and Friedman (2009), allowing the determination
of local PGM but not necessary to determine the global properties of PGM.

4 Applications of Theorems 1 and 2

4.1 Applications of Theorems 1

Since the eighties, the closure property under thinning operation is studied to demonstrate the
stationary of INAR models for count time series; see (Scotto, Weiß and Gouveia, 2015) for a
review. This property is here used to studied the closure under marginalization of some mul-
tivariate distributions. Using Theorem 1 it is easy to define the natural multivariate extension
of the three classes of distributions (definitions 1, 2, 3), using the convolution splitting as an
operator from the space of univariate distributions to the space of multivariate distributions.

Corollary 3. The following distributions are closed under marginalization.

1. Multivariate convolution (non-singular)
C∆n

(θ)∧
n
Cm(|θ|, γ) = C▲m

(θ, γ)

2. Multivariate additive modified power series
C∆n

(θ)∧
n
APS(|θ|, g(α)) =

⊗J
j=1APS(θj , g(α))

3. Multivariate inverse convolution
C∆n

(θ)∧
n
IC(r; |θ|, γ) =MIC(r;θ, γ)

Note that the three previous distributions can be viewed as natural multivariate extension of
their univariate sum distribution. Let us give some details about these multivariate extensions:

1. The vector Y is said to follow a non-singular convolution distribution, denoted
by C▲m

(θ, γ), if the completed vector (Y ,m − |Y |) follows the singular version
C∆n

(θ, γ). This non-singular version is supported on ▲m of dimension J instead of ∆n

of dimension J − 1. As explained by Peyhardi, Fernique and Durand (2021), the natu-
ral multivariate extension of the univariate convolution distribution Cm(θ, γ) turns out
to be the non-singular version. Moreover we have the following distributions equality

C∆n
(θ)∧

n
Cm(|θ|, γ) = C▲m

(θ, γ).
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For instance, the multinomial distribution M∆n
(π) is not the multivariate extension

of the binomial distribution Bn(π), as usually presented. The natural multivariate ex-
tension is the non-singular version

M▲m
(p ·π) =M∆n

(π)∧
n
Bm(p).

The non-singular version is detailed for the five other quasi Pólya distributions are
summarized in Section 7 of the Supplementary Materials (Peyhardi, 2023).

2. The second point of Corollary 3 allows us to define multivariate extension of the addi-
tive modified power series APS(θ, g(α)) but with independence between components
(see Lemma 1). In this sense they are not viewed as sensu stricto multivariate dis-
tributions but as J univariate distributions. For instance, using aθ(n) =

(
n+θ−1

n

)
we

obtain

DM∆n
(θ)∧

n
NB(|θ|, p) =

J⊗
j=1

NB(θj , p).

In this case all marginals are independent and follow negative binomial distributions.
The five other cases of independence are summarized in Section 7 of the Supplemen-
tary Materials (Peyhardi, 2023).

3. The third point allows us to define a sensu stricto multivariate extension of the in-
verse convolution distribution since the PGM is complete according to Theorem 2. For
instance the negative multinomial distribution is obtained as

NM(r, p ·π) :=M∆n
(π)∧

n
NB(r, p),

or the multivariate generalized waring distribution, introduced by Xekalaki (1986), can
also be obtained as

MGWD(r,θ, γ) :=DM∆n
(θ)∧

n
βNB(r, |θ|, γ).

In the same way it is thus possible to define two new multivariate extensions. The
multivariate extension of the quasi negative binomial distribution is given by

qNM[d](r, p ·π) := qM[d]
∆n

(π)∧
n
qNB[d](r, p),

and is named the quasi negative multinomial distribution. The multivariate extension
of the quasi beta negative binomial distribution is given by

qMGWD[d](r,θ, γ) := qDM[d]
∆n

(θ)∧
n
qβNB[d](r, |θ|, γ),

and is named the quasi multivariate generalized waring distribution. Other examples
are given in Section 7 of the Supplementary Materials (Peyhardi, 2023).

Moreover the parameters of these distributions are easily estimated since the log-likelihood
can be decomposed in two parts: the log-likelihood of the convolution splitting distribution
and the log-likelihood of the sum distribution (Peyhardi, Fernique and Durand, 2021). Other-
wise, in the case of Pólya splitting distributions (d= 0 and c ∈ {−1,0,1}), Corollary 3 leads
to nine remarkable multivariate distributions; see Section 7 of the Supplementary Materials
for details (Peyhardi, 2023). Peyhardi, Laroche and Mortier (2022) showed that these distri-
butions are stationary solutions of multivariate birth-death processes under extended neutral
theory with simple parametric birth-death rates. These new models contribute to the class of
joint species distribution models (JSDMs) that are among the most important statistical tools
in community ecology; see (Ovaskainen and Abrego, 2020) for a review.
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4.2 Application of Theorem 2

Theorem 2 characterizes the independence between variables through the original distribu-
tion of the sum. It is thus possible to write a test of independence as a test of distribution
adequacy since

H0 :N1, . . . ,NJ are independent ⇔H0 : L=APS(|θ|, g(α)) for some α ∈ (0,R).

Moreover if the sum distribution is assumed to belong to the family of additive modified
power series distribution, i.e., L = APS(γ, g(α)) for some γ ∈ Θ and α ∈ (0,R) then H0

becomes an equality of parameters

H0 : γ = |θ|.
The null distribution is thus nested into the alternative distribution and the likelihood ratio
test can be applied.

This result holds for generalized negative binomial marginal distributions. Assume for in-
stance that the vector (Y1, Y2, Y3) follows a quasi Dirichlet multinomial splitting generalized
negative binomial qDM[d]

∆n
(θ1, θ2, θ3) ∧

n
GNB[d](r, p). Then Y1, Y2 and Y3 are mutually in-

dependent if and only if r = θ1 + θ2 + θ3. The alternative distribution is easier to estimate
since parameters (θ1, θ2, θ3) of the convolution distribution and (r, p) of the sum distribu-
tion are not related. They can thus be estimated by separately maximizing the likelihood; see
(Peyhardi, Fernique and Durand, 2021) for details. For the null distribution these parameters
are constrained and thus likelihood could be maximized iteratively. Finally the likelihood
ratio test asymptotically follows, under the null hypothesis, a chi square distribution with
one degree of freedom. Note that this result is true for d > −1 and in particular for d = 0,
i.e., we obtain the case of independent negative binomial distributed variables, under the null
hypothesis.

4.3 Application of Theorems 1 and 2

4.3.1 Application in multivariate count data modelling As consequence of Theorems 1 and
2 we can build multivariate count distribution with non-canonical PGM. Indeed Theorem 2
states that the PGM of a convolution splitting distribution is necessary empty or complete,
the two most simple structures (see Figure 1 (A) and (B)). To obtain more interesting struc-
ture it would be possible to use convolution splitting models with a recursive structure. For
instance with J = 3 components, assume that (y1 + y2, y3) ∼ M∆n

(π,1 − π) ∧
n
NB(r, p)

and (y1, y2)|y1 + y2 = m ∼ DM∆m
(θ1, θ2). The multivariate distribution of the vector

(y1, y2, y3) is then fully specified. It could be shown, according to Theorems 1 and 2, that the
pmf can be factorized as follows

p(y1, y2, y3) = p(y3|y1 + y2)p(y1)p(y2),

if r = θ1 + θ2 and thus we obtain a V-structure as in Figure 1 (C); see (Lauritzen, 1996)
for details about PGM deduction from the pmf factorization. To understand this result, first
note that y1 + y2 ∼Bn(π)∧

n
NB(r, p), i.e., y1 + y2 ∼NB(r, p′) with p′ = πp/(πp+ 1− p)

according to the third point of Theorem 1 using parametric sequence aθ(n) = θn/n!. Then
remark that (y1, y2)∼DM∆m

(θ1, θ2) ∧
m
NB(r, p′), i.e., (y1, y2)∼

⊗2
j=1NB(θj , p′) if and

only if r = θ1 + θ2 according to Theorem 2 with the parametric sequence aθ(n) =
(
n+θ−1

n

)
.

To conclude this paragraph, closure under convolution thinning operation (Theorem 1) and
characterization of independence (Theorem 2) can be used as building blocks to construct
complex PGM for discrete data. Note that study of PGM for count variables stays an open
issue. Moreover, recall that such a model for multivariate count data could easily been ex-
tended to the regression framework using the decomposition of the log-likelihood; see (Pey-
hardi, Fernique and Durand, 2021) for details.
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Figure 1 Minimal PGM of (A) a convolution splitting distribution such that L = APS(|θ|, g(α)) (B) a con-
volution splitting distribution such that L ≠ APS(|θ|, g(α)) (C) a specific hierarchical convolution splitting
distribution.

4.3.2 Application in count time series Let (Xt)t∈N denote a discrete time process with
discrete state space. A quasi Pólya autoregressive INAR(1) model is defined as follows:

Xt = ρ ◦Xt−1 + εt

where εt ∼Lε are independent and identically distributed random variables and ρ ◦ denotes
a quasi Pólya thinning operation independent of (εt)t∈N. Denoting by Lt the distribution of
Xt we have

Lt =
{
qP [c,d]

n (θ, γ)∧
n
Lt−1

}
∗ Lε,

As consequence of Theorems 1 and 2 we obtain the stationary distribution of such a process.

Theorem 3. Let (Xt)t∈N follow a quasi Pólya INAR(1) model with residual distribution
Lε = APS [c,d](γ, g(α)) for some α ∈ (0,R). Then the process (Xt)t∈N is an ergodic time
reversible Markov chain with stationary distribution APS [c,d](θ+ γ, g(α)).

This class of INAR(1) models includes several known examples. We have seen that there
is five distinct quasi-Pólya thinning operators and thus five classes of INAR(1) processes.
They can be distinguished by their marginal distribution:

1. The binomial INAR(1) model introduced by Al-Osh and Alzaid (1991) corresponds to
the case c=−1 and d= 0.

2. The Poisson INAR(1) model introduced by McKenzie (1985) corresponds to the case
c= 0 and d= 0.

3. The negative binomial INAR(1) model presented by Joe (1996) corresponds to the case
c= 1 and d= 0.

4. The generalized Poisson INAR(1) model introduced by Alzaid and Al-Osh (1993)
corresponds to the case c= 0 and d > 0.

5. The generalized negative binomial INAR(1) model, corresponding to the case c = 1
and d >−1, is here introduced.

As member of the family of dispersion models (Jorgensen, 1997), the unity variance func-
tions of the additive modified power series have closed form; see Table 2. As remarked by
Jourdan and Kokonendji (2002), these unity variance functions are strictly ordered as follows

VB < VP < VNB < VGP < VGNB.

According to the level of dispersion observed in the data, the autoregressive model with the
appropriate marginal distribution has to be used.
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Distribution V (v)

Binomial v(1− v)
Poisson v
Negative binomial v(1 + v)

Generalized Poisson v(1 + v)2

Generalized negative binomial v(1 + v)
(
1 + v d+1

d

)
Table 2 Unity variance function of the five additive modified power series distributions

5 The continuous analogue

Convolution distributions can also be defined for non negative real values y ∈ RJ
+. The dis-

crete simplex ∆n becomes the continuous simplex ∆x = {y ∈ RJ
+ : |y| = x} defined for

x ∈ R+ (by convention ∆=∆1). A distribution supported on ∆x, is said to be a continuous
convolution distribution if its probability density function (pdf) has the form:

f(y) =

∏J
j=1 aθj (yj)

a|θ|(x)
,

where aθ respects the continuous analogue of assumption (A1), (A2) and (A3). The assump-
tion (A0) becomes Supp aθ = (0,Kθ) for some Kθ ∈ R+ ∪ {∞} and note that 0 /∈ Supp aθ .
To our knowledge, only one such a parametric function exists:

aθ(y) =
yθ−1

Γ(θ)
,

for which the four assumptions hold:

(A0) Supp aθ = (0,∞)
(A1) convolution identity

(aθ ∗ aγ)(x) =
∫ x

0
aθ(y)aγ(x− y)dy,

=
1

Γ(θ)Γ(γ)

∫ x

0
yθ−1(x− y)γ−1dy,

=
xθ+γ−2

Γ(θ)Γ(γ)

∫ x

0

(y
x

)θ−1
(
x− y

x

)γ−1

dy,

=
xθ+γ−1

Γ(θ)Γ(γ)

∫ 1

0
tθ−1(1− t)γ−1dt︸ ︷︷ ︸

=Γ(θ)Γ(γ)

Γ(θ+γ)

,

=
xθ+γ−1

Γ(θ+ γ)
,

(aθ ∗ aγ)(x) = aθ+γ(x).

with integration by substitution t= y/x.
(A2) Laplace transform (Euler integral of the second kind)∫ ∞

0
aθ(t)α

tdt=
1

Γ(θ)

∫ ∞

0
tθ−1e−btdt

=
1

Γ(θ)

∫ ∞

0

(
t

b

)θ−1

e−t 1

b
dt
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=
1

bθ
1

Γ(θ)

∫ ∞

0
tθ−1e−tdt︸ ︷︷ ︸
=Γ(θ)∫ ∞

0
aθ(t)α

t =
1

bθ

where b=− lnα.
(A3) Euler integral of the first kind∫ ∞

0

r

t+ r

aθ(t)

aθ+γ(t+ r)
dt=

∫ ∞

0

r

t+ r

tθ−1

(t+ r)θ+γ−1

Γ(θ+ γ)

Γ(θ)
dt

= r1−γ Γ(θ+ γ)

Γ(θ)

∫ ∞

0
xθ−1(1 + x)θ+γ−1dx︸ ︷︷ ︸

=B(θ,γ)

=
Γ(γ)

rγ−1∫ ∞

0

r

t+ r

aθ(t)

aθ+γ(t+ r)
dt=

1

aγ(r)

with integration by substitution x= t/r.

Following the continuous analogue of definitions 1, 2 and 3, this parametric function allows
us to define three distributions.

1. The convolution distribution Cx(θ, γ) is the beta distribution βx(θ, γ) (dilated by the
parameter x) with pdf

f(y) =
1

B(θ, γ)

yθ−1(x− y)γ−1

xθ+γ−1
,

with (x, θ, γ) ∈ R∗3
+ .

2. The additive power series (or member of exponential family) distribution APS(θ, g(α))
is the gamma distribution Γ(θ, b) with b=− lnα and pdf

f(y) =
bθ

Γ(θ)
yθ−1e−by

with (θ, b) ∈ R∗2
+ .

3. The inverse convolution distribution IC(r;θ, γ) is the inverse beta (or beta prime)
distribution Iβ(r;θ, γ) with pdf

f(y) =
1

B(θ, γ)

yθ−1rγ

(y+ r)θ+γ
,

with (r, θ, γ) ∈ R∗3
+ .

As corollary of Theorem 1 we obtain the closure property under the beta thinning operation.

Corollary 4. The beta, gamma and inverse beta distributions are closed under the beta
thinning operation, more precisely we have

1. βx(θ, γ)∧
x
βz(θ+ γ,λ) = βz(θ, γ + λ),

2. βx(θ, γ)∧
x
Γ(θ+ γ, b) = Γ(θ, b),
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3. βx(θ, γ)∧
x
Iβ(r;θ+ γ,λ) = Iβ(r;θ,λ).

Note that points 1 and 3 of Corollary 4 have respectively been obtained by Rao (1949) and
Jambunathan (1954). As consequence of this corollary, we obtain the three natural multivari-
ate extensions:

1. The non-singular Dirichlet distribution

D∆x
(θ)∧

x
βz (|θ|, γ) =D▲z

(θ, γ)

which is supported on ▲z := {y ∈ (0,1)J : |y|< z}, the interior of the simplex ∆z =
{y ∈ (0,1)J : |y| = z} (that has dimension J instead of J − 1), where θ ∈ R∗J

+ and
γ ∈ R∗

+.
2. The multivariate (independent) gamma distribution

D∆x
(θ)∧

x
Γ(|θ|, b) =

J⊗
j=1

Γ(θj , b)

with θ ∈ R∗J
+ and b ∈ R∗

+. This distribution is supported on R∗J
+ .

3. The inverse Dirichlet distribution

D∆x
(θ)∧

x
Iβ(|θ|, b) = ID(θ, b)

with θ ∈ R∗J
+ and b ∈ R∗

+. This distribution is supported on R∗J
+ .

Note that ∆x is a dilatation since ∆x = x ·∆= {x · π : π ∈∆}. The Dirichlet thinning
operation D∆x

(θ) ∧
x
L can thus be viewed as an external product of independent variables

X · π where X ∼L and π = (π1, . . . , πJ)∼D∆. This property is used in demonstration of
Theorem 2 by adding the following assumption.
(A∗) Dilatation:

aθ(x)aγ(t− x)

aθ+γ(t)
=

aθ(x/t)aγ(1− x/t)

taθ+γ(1)

for all t ∈ R∗
+ and 0< x< t.

This assumption is equivalent to state that the convolution distribution Cx(θ, γ) is a dilatation
of C1(θ, γ), i.e., Cx(θ, γ) = x · C1(θ, γ). In this case the continuous analogue of Theorem 2
turns out to be equivalent to the Lukacs’s proportion sum independence theorem (Lukacs,
1955); see the proof in Appendix E for details. Finally, note that the dilatation property
implies that the parameter r of the inverse beta Iβ(r;θ, γ) becomes non-identifiable and
is replaced by the representative element r = 1 resulting in the inverted beta distribution
Iβ(θ, γ); see Section 3 of the Supplementary Materials for details on this distribution (Pey-
hardi, 2023).

Remark. Let us note that assumption (A*) is may be not necessary to demonstrate Theorem
2 but, to our knowledge, the only one parametric function aθ verifying the continuous ana-
logue of assumptions (A1), (A2), (A3) is aθ(x) = xθ−1/Γ(θ) and also verifies the additional
assumption (A*).

Discussion

The present paper introduced the class of quasi Pólya thinning operator that encompasses the
hypergeometric, binomial, beta binomial, quasi binomial and quasi beta binomial thinning
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operators. Additionally the two classes of (additive) modified power series and inverse quasi
Pólya distributions are introduced. It is shown that these three classes of distributions are
characterized by a unique parametric sequence. It allows us to highlight four assumptions
about this sequence that are sufficient to obtain the two main theorems. The first Theorem
states that the three classes of distributions are closed under the quasi Pólya thinning op-
eration. The second theorem states that the (additive) modified power series is the unique
distribution such that the PGM of the resulting quasi Pólya splitting distribution is empty.

Several applications of these two theorems have been discussed. Multivariate extensions of
several count distributions have been easily obtained, using the quasi Pólya splitting operator
as an operator from the space of univariate distribution to the space of multivariate distribu-
tions. They constitute natural multivariate extensions since they are closed under marginal-
ization. Otherwise, the characterization of independence could be used to propose some tests
of independence. Finally using both theorems it is possible to build PGM with more complex
structure that the basic empty or complete graph.

In a modeling approach of multivariate count data, the family of quasi Pólya splitting dis-
tributions offers several perspectives. They can be easily extended to the regression frame-
work by assuming a univariate regression model for the sum distribution (original distri-
bution) and another one for the quasi Pólya distribution. Since the pmf is a product of the
two models (see equation (2)), the log-likelihood is split into two parts that can be separately
maximized; see (Peyhardi, Fernique and Durand, 2021) for details. The family of quasi Pólya
splitting distributions allows the generalization of modeling approach recently proposed by
Wang and Zhao (2017) or Tang and Chen (2019) that used Dirichlet multinomial regression
to study microbiome data. Finally the quasi Pólya thinning operator could naturally be used
to define new INAR(p) and INMA(q) models for count time series.
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Appendix A: Proof of Proposition 1

Let X ∼APS(θ, g(α)) and Y ∼APS(γ, g(α)) be independent variables, then we have

P (X + Y = n) =

n∑
k=0

P (X = k)P (Y = n− k)

=

n∑
k=0

aθ(k){g(α)}k

hθ(α)

aγ(n− k){g(α)}n−k

hγ(α)

=
{g(α)}n

hθ(α)hγ(α)

n∑
k=0

aθ(k)aγ(n− k)︸ ︷︷ ︸
=(aθ∗aγ)(n)
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P (X + Y = n) =
aθ+γ(n){g(α)}n

hθ(α)hγ(α)

Otherwise, using the Cauchy product we obtain

hθ(α)hγ(α) =

(∑
n∈N

aθ(n){g(α)}n
)(∑

n∈N

aγ(n){g(α)}n
)

=
∑
n∈N

n∑
k=0

aθ(k){g(α)}kaγ(n− k){g(α)}n−k

=
∑
n∈N

{g(α)}n
n∑

k=0

aθ(k)aγ(n− k)︸ ︷︷ ︸
=(aθ∗aγ)(n)

=
∑
n∈N

aθ+γ(n){g(α)}n

hθ(α)hγ(α) = hθ+γ(α),

and thus the desired result.

Appendix B: Proof of Proposition 2

Assume that there exists another parametric sequence bθ such that (A1), (A2), (A3) hold and
lead to the same three distributions. Based on assumption (A2) it means that

aθ(k){g(α)}k

hθ(α)
=

bθ(k){g(α)}k

fθ(α)
,

for all k ∈ N, where hθ and fθ are normalizing constant. Therefore there exists c > 0 such
that hθ = c · fθ and thus aθ = c · bθ . Replace aθ by c · bθ in (A1) and obtain

c2 · bθ(n)bγ(n− k)

c · bθ+γ(n)
=

bθ(n)bγ(n− k)

bθ+γ(n)
,

for all k = 0, . . . , n and n ∈ Supp bθ+γ . It means that c= 1 and thus bθ = aθ .

Appendix C: Proof of Theorem 1

The proof is given point by point.

1. Assume X ∼ Cn(θ, γ)∧
n
Cm(θ+ γ,λ). We have for k ∈ J0;mK

P (X = k) = aθ(k)

m−k∑
n=0

aγ(n)

aθ+γ(n+ k)

aθ+γ(n+ k)aλ(m− n− k)

aθ+γ+λ(m)

P (X = k) =
aθ(k)

aθ+γ+λ(m)

m−k∑
n=0

aγ(n)aλ(m− k− n)︸ ︷︷ ︸
=aγ+λ(m−k)

and zero otherwise, i.e., X ∼ Cm(θ, γ + λ). The last equality is due to assumption
(A1).
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2. Assume X ∼ Cn(θ, γ)∧
n
APS(θ+ γ, g(α)). We have for k ∈ N

P (X = k) = aθ(k)
∑
n≥0

aγ(n)

aθ+γ(n+ k)

aθ+γ(n+ k){g(α)}n+k

hθ+γ(α)

P (X = k) =
aθ(k)

hθ+γ(α)
{g(α)}k

∑
n≥0

aγ(n){g(α)}n︸ ︷︷ ︸
=hγ(α)

,

The last equality is due to assumption (A2). As demonstrated in proof of Proposition
1 we have hθ+γ = hθhγ and thus X ∼APS(θ, g(α)).

3. Assume X ∼ Cn(θ, γ)∧
n
IC(θ+ γ,λ; r). We have for k ∈ N

P (X = k) = aθ(k)
∑
n≥0

aγ(n)

aθ+γ(n+ k)

r

r+ n+ k

aθ+γ(n+ k)aλ(r)

aθ+γ+λ(n+ k+ r)

P (X = k) =
r

r+ k
aθ(k)aλ(r)

∑
n≥0

r+ k

r+ k+ n

aγ(n)

aθ+γ+λ(n+ k+ r)︸ ︷︷ ︸
= 1

aθ+λ(k+r)

,

i.e., X ∼ IC(r;θ,λ). The last equality is due to assumption (A3).

Appendix D: Proof of Lemma 1

According to equation (2) we have for y ∈ Supp aθ1 × · · · × Supp aθJ

P(Y = y) =
a|θ|(|y|){g(α)}|y|

h|θ|(α)

1

a|θ|(|y|)

J∏
j=1

aθj (yj)

P(Y = y) =
1

h|θ|(α)

J∏
j=1

aθj (yj){g(α)}yj

As demonstrated in proof of Proposition 1 we have hθ1+θ2 = hθ1hθ2 . By induction on J we
obtain h|θ|(α) =

∏J
j=1 hθj (α) and thus

P(Y = y) =

J∏
j=1

aθj (yj){g(α)}yj

hθj (α)
,

i.e., the desired result.

Appendix E: Proof of Theorem 2

To demonstrate Theorem 2 several results are necessary. Let first remark that the pmf (2) can
be written as

P (N =n) = b(n1 + · · ·+ nJ)

J∏
j=1

aθj (nj), (3)
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where b(n) := p(n)
a|θ|(n)

for all n ∈ Supp a|θ|. Since the support of C∆n
(θ) ∧

n
L is included

in the Cartesian product Supp aθ1 × · · · × Supp aθJ , the possible factorization of the pmf
is studied only on this set. Indeed, outside of this set, the factorization of P (N = n) into∏J

j=1P (Nj = nj) holds since for all n /∈ Supp aθ1 × · · · × Supp aθJ we have on one hand
P (N = n) = 0 by definition and on the other hand at least one component j0 such that
P (Nj0 = nj0) = 0. In the following the pmf will thus be studied only on the Cartesian product
Supp aθ1 × · · · × Supp aθJ .

Lemma 2. The minimal PGM of a convolution splitting distribution is necessary empty or
complete.

Proof. Since the right part of the pmf given by (3) is already totally factorized, study the
factorization of P (N =n) is equivalent to study the factorization of b(n1+ · · ·+nJ). How-
ever, the sum being commutative, the function b is invariant under any permutation of values
n1, . . . , nJ . Therefore if there exists a factorization of b then it necessary concerns all the
variables; i.e., there exist functions bj such that b(n1+ · · ·+nJ) =

∏J
j=1 bj(nj). In this case

the minimal PGM is empty, otherwise it is complete.

Using this lemma, it is now sufficient to show the equivalence

L=APS(|θ|, g(α)) for some α ∈ (0,R)⇔ empty PGM (4)

to obtain the following equivalence

L ̸=APS(|θ|, g(α)) for all α ∈ (0,R)⇔ complete PGM

Existence of additive power series distribution is a consequence of assumption (A2). The first
implication in (4) is the easier to show, as a consequence of assumption (A1); see Lemma 1.

Now focus on the second implication of (4). Assume that the PGM is empty, i.e., the
variables N1, . . . ,NJ are all mutually independent. We need the following lemma about the
support of the distribution.

Lemma 3. Let N ∼ C∆n
(θ) ∧

n
L follow an additive convolution splitting distribution. As-

sume that the minimal PGM is empty. Then the support of the sum distribution L is Supp a|θ|
and the support of the convolution splitting distribution is the entire Cartesian product
Supp aθ1 × · · · × Supp aθJ .

Proof. Without additional assumption on the convolution splitting distribution, we can see
that the support of the sum distribution Supp L is included in Supp a|θ| by truncation. Re-
mark that Supp a|θ| = Supp aθ1 + · · ·+ Supp aθJ = {|n| : n ∈ Supp aθ1 × · · · × Supp aθJ}.
Now if we assume that there exists a non-empty set N such that Supp L = Supp a|θ| \ N
then we will see that the independence assumption between N1, . . . ,NJ cannot hold. Indeed
the support of the multivariate distribution becomes the Cartesian product Supp aθ1 × · · · ×
Supp aθJ minus the union of simplex ∪n∈N∆n. This cannot take a form of a Cartesian prod-
uct (except if N = Supp a|θ|, i.e., Supp L = ∅) and thus we obtain a contradiction. Recall
that for any multivariate distribution, a necessary condition to have an empty PGM is that its
support must be equal to the Cartesian product of their marginal supports.

Now the empty PGM assumption is equivalent to the factorization of the non-negative pmf
among Supp aθ1 × · · · × Supp aθJ . In other words, there exists J functions b1, . . . , bj such
that

P (N =n) =

J∏
j=1

bj(nj)aθj (nj),
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for all n ∈ Supp aθ1 ×· · ·×Supp aθJ , where each bj is a positive function on Supp aθj . This
is equivalent to

b(n1 + · · ·+ nJ) =

J∏
j=1

bj(nj), (5)

since aθj (nj)> 0. To simplify the proof, we will need this lemma about the distribution of
merged vector (N1 +N2,N3, . . . ,NJ).

Lemma 4. Let N ∼ C∆n
(θ) ∧

n
L follow an additive convolution splitting distribution with

at least J ≥ 3 variables. Then if the first two variables are merged, the distribution is stable,
i.e., we have

(N1 +N2,N3, . . . ,NJ)∼ C∆n
(θ1 + θ2, θ3, . . . , θJ)∧

n
L.

Proof. This property is a direct consequence of assumption (A1). First note that the vec-
tors N and (N1 +N2,N3, . . . ,NJ) have the same sum. Therefore it is sufficient to reason
conditionally on the sum. Let J = 3 for convenience but the demonstration holds for any
J ≥ 3. Assume that (N1,N2,N3)|N1 + N2 + N3 = n + m ∼ C∆n+m

(θ1, θ2, θ3) for some
n ∈ Supp aθ1+θ2 and m ∈ Supp aθ3 , then we have

P|N |=n+m(N1 +N2 = n,N3 =m) =
∑

(n1+n2)∈∆n

P(N1 = n1,N2 = n2,N3 =m)

=
∑

(n1+n2)∈∆n

aθ1(n1)aθ2(n2)aθ3(m)

aθ1+θ2+θ3(n+m)

=
aθ3(m)

aθ1+θ2+θ3(n+m)

∑
(n1+n2)∈∆n

aθ1(n1)aθ2(n2)︸ ︷︷ ︸
=aθ1+θ2(n)

P|N |=n+m(N1 +N2 = n,N3 =m) =
aθ1+θ2(n)aθ3(m)

aθ1+θ2+θ3(n+m)

If N1, . . . ,NJ are mutually independent then N1 is independent of the partial sum N2 +
· · ·+NJ . According to lemma 4 the vector of two variables (N1,N2+ · · ·+NJ) follows the
additive convolution splitting distribution C∆n

(θ1, θ2 + · · ·+ θJ)∧
n
L. Therefore if the result

(that we want to demonstrate) is true for J = 2 then L=APS (θ1 + (θ2 + · · ·+ θJ), g(α)) =
APS(|θ|, g(α)) and the result stays true for any number of variables J > 2. Now let split the
demonstration in two cases: discrete and continuous case.

The discrete case

In the binary case J = 2, the equation (5) becomes:

b(n+m) = c(n)d(m), (6)

for all n ∈ Supp aθ1 , m ∈ Supp aθ2 , where c and d are positive for these values. Taking
n= 0 we obtain b(m) = c(0)d(m) for all m ∈ Supp aθ2 . Since c is positive we have d(m) =
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c(0)−1b(m) for all m ∈ Supp aθ2 . With similar argument we obtain c(n) = d(0)−1b(n) for
all n ∈ Supp aθ1 . Replacing in the first equation we obtain

b(n+m) = {c(0)d(0)}−1b(n)b(m),

for all n ∈ Supp aθ1 and m ∈ Supp aθ2 . Using assumption (A1) we know that 0 ∈ Supp aθ1
and 0 ∈ Supp aθ2 , thus we have b(0) = c(0)d(0) > 0. We then multiply by b(0)−1 on each
side and obtain

B(n+m) =B(n)B(m), (7)

for all (n,m) ∈ Supp aθ1 × Supp aθ2 , where B(n) := b(0)−1b(n) for all n ∈ Supp aθ1+θ2 .
This is the Cauchy exponential equation over a subset of non-negative integers of the form
{0,1, . . . , k} for some k ∈ N∗ ∪ {∞}, according to assumption (A1). Taking m = 1 we
obtain B(n + 1) = B(n)B(1) for all n ∈ {0,1, . . . , k − 1} and thus recursively B(n) =
B(1)m for all n ∈ {0,1, . . . , k}. Finally b(n) = b(0)xn for all n ∈ {0,1, . . . , k}, with x =
b(1)/b(0) > 0. Back to the sum distribution we obtain p(n) = a|θ|(n)b(n), i.e., p(n) = is
proportional to a|θ|(n)x

n. Therefore this is an additive modified power series distribution
APS(|θ|, g(α)) for some α ∈ (0,R) (if x is independent of aθ(n) then this is an additive
power series distribution).

The continuous case

In the continuous case we cannot make the assumption (A0) that Supp aθ = [0,w) for some
w ∈ R∗ ∪ {∞}. Indeed the only known example of parametric function aθ is such that
Supp aθ = (0,∞). Since 0 /∈ Supp aθ we cannot obtain the Cauchy exponential equation
(7) from the equation (6). We thus use another way to demonstrate the desired result. As-
sume that X = (X1, . . . ,XJ)∼ C∆x

(θ)∧
x
L and that X1, . . . ,XJ are mutually independent.

We aim at showing that L=APS(|θ|, g(α)) for some α > 0 (note that power series distri-
butions are also known as member of exponential family of distributions). We need to add an
assumption (A∗) on the parametric function aθ

aθ(y)aγ(t− y)

aθ+γ(t)
=

aθ(y/t)aγ(1− y/t)

taθ+γ(1)

which is equivalent to state that Cx(θ, γ) can be viewed as a dilatation of C1(θ, γ), i.e., Y ∼
C1(θ, γ) is equivalent to x ·Y ∼ Cx(θ, γ) for all x ∈ R∗

+. In this case the convolution splitting
distribution can be viewed as an external independent product

C∆x
(θ)∧

x
L= C∆(θ)⊛L,

i.e., X ∼ C∆x
(θ)∧

x
L is equivalent to X/|X| ∼ C∆(θ) and |X| ∼ L independently. Now we

can use the Lukacs’s proportion sum independence theorem (more precisely its generaliza-
tion from J = 2 to J > 2).

Theorem 4 ((Lukacs, 1955)). Let J ≥ 2 and X1, . . . ,XJ be mutually independent non-
negative continuous random variables. Then the random sum |X| and the random normal-
ized vector X/|X| are independent if and only if there exists some (θ1, . . . , θJ) ∈ R∗J

+ and
b ∈ R∗

+ such that Xj ∼ Γ(θj , b) for all j = 1, . . . , J .

In such a situation it is well known that |X| ∼ Γ(|θ|, b). We have already seen that this
distribution is exactly an additive power series distribution APS(|θ|, g(α)) with aθ(x) =
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xθ−1/Γ(θ) and α= e−b ∈ (0,1). We have also already checked that assumptions (A1), (A2)
and (A3) hold. Then, Lemma 1 implies that in the situation of Lukacs’s Theorem we have

X ∼D∆x
(θ)∧

x
Γ(|θ|, b) =

J⊗
j=1

Γ(θj , b).

Finally, the uniqueness of the sum distribution (such that the PGM of X is empty) is obtained
by the Lukacs’s Theorem, replacing the assumption (A0) by (A*). We also obtain that the
only one parametric function aθ(x) that respects assumption (A*), (A1), (A2) and (A3) is
aθ(x) = xθ−1/Γ(θ).

Appendix F: Proof of Theorem 3

The conditional distribution of Xt+1 given Xt = xt is

p(xt+1|xt) =
min(xt+1,xt)∑

k=0

a
[c,d]
θ (k)a

[c,d]
γ (xt − k)

a
[c,d]
θ+γ(xt)

a
[c,d]
γ (xt+1 − k){g(α)}xt+1−k

hγ(α)

The support of p(·|x) is related to the support of a[c,d]θ (·). For the special case (c, d) = (−1,0),
we have Supp a

[−1,0]
θ = {0, . . . , θ}. In this case, let show that p(x + 1|x) > 0 for all x ∈

{0, . . . , θ + γ}. It is sufficient to show that there exists k ≤ x such that k ≤ θ and k + γ ≥
x+ 1. Remark that k =min(x, θ) is a good candidate. In the same way it can be shown that
p(x|x+ 1) > 0. For other cases of (c, d) values the demonstration is straightforward since
Supp a

[c,d]
θ = N. The Markov chain (Xt)t∈N is thus ergodic.

Now let us show that the stationary distribution is APS [c,d](θ + γ, g(α)). Asumme that
Xt ∼APS [c,d](θ+ γ, g(α)) and remark that the distribution of Xt+1 is

Lt+1 =
{
qP [c,d]

n (θ, γ)∧
n
APS [c,d](θ+ γ, g(α))

}
∗APS [c,d](γ, g(α))

=APS [c,d](θ, g(α)) ∗APS [c,d](γ, g(α))

Lt+1 =APS [c,d](θ+ γ, g(α))

where the second and third equalities are obtain according to Theorem 1 and Proposition 1
respectively.

Finally, to demonstrate the time reversibility of the process (Xt)t∈N, remark that the joint
distribution is given by

p(xt+1, xt) =

min(xt+1,xt)∑
k=0

a
[c,d]
θ (k)a

[c,d]
γ (xt − k)a

[c,d]
γ (xt+1 − k){g(α)}xt+1+xt−k

hθ+2γ(α)

which is symmetric.
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