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Abstract

The Generalized Linear Autoregressive Moving Average (GLARMA) model has been used
in epidemiological studies to evaluate the impact of air pollutants on health. Due to the
nature of the data, a robust approach for the GLARMA model is proposed here based on the
robustification of the quasi-likelihood function. Outlying observations are bounded separately
by weight functions on covariates and the Huber loss function on the response variable. Some
technical issues related to the robust approach are discussed and a Monte Carlo study revealed
that the robust approach is more reliable than the classic one for contaminated data with
additive outliers. The real data analysis investigates the impact of PM10 in the number of
deaths by respiratory diseases in Vitória, Brazil.

Keywords. Count time series, GLARMA model, M-estimators, Additive outliers, Respiratory
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1 Introduction

The expansion of cities and communities in the last decades led to economic growth and urban
development. However, it also originated environmental and health problems once many activities
generate residues that affect the population quality of life. Ozone (O3), nitrogen dioxide (NO2),
sulfur dioxide (SO2), carbon monoxide (CO), and particulate matter (PM) are the main pollutants
in the atmosphere, and even at concentrations within limits established by the World Health Orga-
nization (WHO) present a risk to human health (Pope and Dockery (2018), and Lippmann (2014)).
Epidemiological studies have shown evidence of an association between concentration levels of air
pollutants and mortality, morbidity, and hospital admissions, mainly caused by respiratory and car-
diovascular diseases, see Pope et al. (1995); Dockery and Pope (1996); Ostro et al. (1999); Schwartz
(2000); Ostro et al. (2009); Chen et al. (2010), and Froes et al. (2016), among others.

Epidemiological data are frequently treated as count time series as they record the frequency of
events in successive time intervals. Count series are non-Gaussian processes formed by non-negative
integers. They naturally arise in scientific areas such as economy, medicine, agriculture, and sports,
among others. Examples are the monthly number of hospital admissions caused by a disease, car
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accidents in a city, and transactions of a given stock observed in one hour. Methodologies started to
emerge in the early 1970s. Initially, count time series were adjusted by Generalized Linear Models
(GLM), introduced by Nelder and Wedderburn (1972). This procedure expands to the exponential
family the possible distribution of the response variable, e.g. Normal, Poisson, Gamma, Negative
Binomial, etc. In addition, the relation between the mean of the dependent variable (µ) and the lin-
ear predictor (η) can be more flexible, assuming any monotonous non-linear function. Nevertheless,
the GLM can not capture the time dependency structure in the data. The earliest work considering
correlated time series can be found in Cox (1981), where models are classified into two categories:
observation and parameter-driven. The main difference between them is how the dependence struc-
ture is added to the model. Zeger and Qaqish (1988) proposed a quasi-likelihood approach to
time series regression, generalized by Benjamin et al. (2003). Davis et al. (1999) and Davis et al.
(2003) introduced the GLARMA model, which consists in adding an Autoregressive Moving Aver-
age (ARMA) structure (Box and Jenkins, 1976) to the Generalized Linear (GLM) Model, allowing
the modeling of correlated observations from the exponential family. Fokianos and Tjosthein (2011)
proposed log-linear models for time series. Other procedures can be found in the recent overview
of methodologies for count time series realized by Davis et al. (2021). Although many methods
have been developed, they all present limitations that contribute to the non-development of a uni-
fied theory. Despite this, Davis et al. (2021) argue that the GLARMA family is “one of the most
flexible and easily fit count models that balance parameter and observation-driven models”. Even
though the GLARMA model presents some limitations regarding properties for general models, this
method has been widely used in applications in distinct fields of knowledge; see, e.g. Rydberg and
Shephard (2003) in finances, Karami et al. (2017) in air pollution, Kim et al. (2018) in engineering,
Ballesteros-Cánovas et al. (2018) and Peitzsch et al. (2021) in climate changes, among others.

The statistical association between air quality variables and health effects has to consider some
factors independently of the methodology applied or the type of response variable. In the epi-
demiological context, the response variable is usually time-correlated, a data property that must
be considered in the step modeling. Furthermore, as the population under study is exposed to the
complex mixture of pollutants and chemical compounds, the dynamics of the response variable and,
therefore, the statistical functions that measure the impact of pollutants on health cannot be fully
explained by the response variable itself or by just one contaminant.

Many authors have ignored the fact that the contaminants present multicollinearity. Souza
et al. (2018) showed that if this characteristic is not treated properly, the association measures
can be significantly impacted, leading to false conclusions regarding the population’s health risk in
generalized additive models.

Here, the covariates are time-correlated and display complex behaviors such as periodicity, miss-
ing values, and extreme observations. High levels, or peaks, of pollutants, are frequently observed
in air quality variables and often ignored. However, they can affect the estimation of some data
characteristics, like the sample mean, variance, and correlation. In addition, many authors have
verified that atypical observations (outliers) can seriously deteriorate the estimates of time series
models (Reisen et al. (2017)).

Robustness indicates insensitivity to minor deviations from the assumptions (Huber (1981)).
The foundations of this statistical approach can be found in Tukey (1960), Huber (1964), and Ham-
pel (1968). Robust models have the characteristic of fitting properly to most datasets. If the data
has no abrupt observations, the robust method will behave approximately the same as the classic
model. Nevertheless, if the data has a small percentage of outliers, the robust models will show
results almost as good as the classic models applied to clean data. Usually, robust estimates depend
on a dispersion function that varies more slowly in extreme values than the quadratic functions.
Outliers in time series can seriously affect the estimation and inference of parameters (Martin and
Yohai (1985) and Bustos and Yohai (1986)). Fox (1972) appears to be the first author to consider
outliers within time series, proposing two types of classes: the additive outliers, which affect only a
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single observation, and innovation outliers, which affect succeeding observations. However, the ad-
ditive outliers deserve special attention, as they usually cause more prejudice in practical problems
in time series either with the discreet or continuous marginal distribution in different scenarios. For
example, Muler and Yohai (2008) demonstrated that additive outliers could significantly influence
GARCH models. They introduced the class of BM-estimates, which limits the propagation of the
outlier effect. Similar findings were reported by Elsaied and Fried (2021), who used an iterative
approach to derive robust estimators for the INARCH model, and by Kitromilidou and Fokianos
(2016), who investigated robust versions of the maximum likelihood estimator with different in-
terventions. Li et al. (2016) robustified the closed-form moment estimators in INGARCH(1,1)
models. Kim and Lee (2017) developed robust versions of closed-form moment estimators for IN-
GARCH(1,1) models. Bourguignon and Vasconcellos (2018) assessed the impact of additive outliers
in the INAR(1) process. Barczy et al. (2009) and Barczy et al. (2010) conducted theoretical studies
on integer-valued autoregressive models of order one contaminated with innovations and additive
outliers. In the standard linear time series, such as the ARMA model, Reisen et al. (2020) present
an overview of the robust methods and Solci et al. (2023) consider the M-periodogram estimator to
obtain confidence intervals using the local bootstrap.

The non-robustness of the maximum likelihood estimator in generalized linear models has been
extensively studied in the literature, see Carroll and Welsh (1986), Künsch et al. (1989), and Ruck-
stuhl and Welsh (1999), among others. Hence, robust estimation procedures have been developed,
e.g. Cantoni and Ronchetti (2001), Lo and Ronchetti (2009), and Valdora and Yohai (2014). The
work of Cantoni and Ronchetti (2001) is probably one of the most cited, which is based on the
quasi-likelihood functions. The authors proposed the Mallows quasi-likelihood estimator (MQLE)
considering the class of M-estimators of Mallows (see Mallows (1975)). Outlying observations are
bounded separately by weight functions on covariates and by a loss function on the response variable
in this method. Although proposed for independent observations, Kitromilidou and Fokianos (2016)
extended this method to count time series in the context of the log-linear Poisson model. They
found that the MQLE behaved comparably to the classic log-linear model without perturbations.
Procedures derived from M-estimators (Huber (1964)) are appropriate alternatives to modeling time
series contaminated by outliers or generated by probability distribution with heavy tails; see Bai
et al. (1992), Li (2008), and Wu (2007).

Thus, considering the previous discussion, the GLARMA model structure, and the nature of the
data application, this paper proposes a robust alternative for the GLARMA Poisson model based on
the MQLE estimator. To our best knowledge, robustified proposals for the GLARMA model using
M-estimators has never been yet suggested in the literature. Thus, this paper aims to fill this gap.
Due to the limitations regarding the asymptotic properties of the GLARMA model, we considered
the development of an asymptotic theory for the proposed robust approach beyond the scope of this
work. In fact, Davis et al. (2021) claim that theoretical properties for the classic GLARMA model
were only established for very restrictive special cases after all these years. However, although
a general asymptotic theory has not yet been developed, the finite sample size investigated here
corroborates that the estimators are asymptotic consistent. In addition, a Monte Carlo study is
realized to evaluate the impact of additive outliers in the response variable and covariates on the
classic estimation of a GLARMA model proposed by Davis et al. (2003) and on the robust proposal
under distinct scenarios and sample sizes. To show the usefulness of the methodology in real data, we
consider the study of the effect of Particulate Material (PM10) on the deaths caused by respiratory
diseases in Vitória, Brazil.

This work is organized as follows. Section 2 introduces the GLARMA model. Section 3 proposes
a robust approach for the GLARMA Poisson model. Section 4 shows a Monte Carlo empirical study
to evaluate the performance of the proposed procedure. Section 5 is devoted to a real data analysis,
which is the primary motivation of this paper. Finally, Section 6 concludes this work.
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2 The GLARMA model

The GLARMA models are a class of observation-driven non-Gaussian state space models in which
the state process is linearly correlated to the explanatory variables and is non-linearly related to
the past values of the observed process (Davis et al., 2003).

Let {Yt}, t ∈ Z, be the response series, {Xi,t}, 1 ≤ i ≤ k, be the k covariates, and Ft−1 =
σ{Ys, s ≤ t − 1;Xi,s, 1 ≤ i ≤ k, s ≤ t} be the past of the observed count time process and the
past and present of the regressor variables. We assume that the conditional distribution of Yt|Ft−1

belongs to the exponential family, with density

f(yt|wt) = exp{ytwt − b(wt) + c(yt)}, (1)

where b(·) and c(·) are known real functions, with c(·) frequently depending on yt, and {Wt}
summarizes the information in Ft−1, see (Davis and Dunsmuir, 2016; Davis et al., 2021). Based on
(1), the mean and variance of Yt|Ft−1 are, respectively, given by

µt = E(Yt|Ft−1) = b′(Wt) and σ2
t = V(Yt|Ft−1) = b′′(Wt),

where b′ and b′′ refer to the first and second derivative of b, respectively. The canonical link function
g maps µt into Wt, i.e., Wt = g(µt). Therefore, g = (b′)(−1). The specification of Wt is given by

Wt =X
T
t β + Zt, (2)

where Xt = (1, X1,t, . . . , Xk,t)
T , β = (β0, β1, . . . , βk)

T are the regression coefficients, and the noise
process {Zt}, which induces a serial dependence on the observations, is given by

Zt =
∞∑
i=1

γiet−i, (3)

where {et} is a martingale difference sequence. The parameters γi’s are the coefficients in the
following power series expansion satisfying

∑∞
i=1 |γi| <∞

∞∑
i=1

γiz
i =

θ(z)

ϕ(z)
− 1, |z| ≤ 1, (4)

where the autoregressive and moving average polynomials ϕ(z) = (1−ϕ1z− . . .−ϕpz
p) and θ(z) =

(1 + θ1z + . . .+ θqz
q) have no common zeroes and have all their zeros outside the closed unit disk.

The model specified by (1), (2), (3) and (4) is called a GLARMA(p, q) model. From (3) and (4),
Zt can be calculated recursively with the difference equation

Zt = ϕ1(Zt−1 + et−1) + · · ·+ ϕp(Zt−p + et−p) + θ1et−1 + · · ·+ θqet−q. (5)

The residuals {et} in (3) are given by

et =
Yt − µt

σt
, (6)

It is easy to show that for the Poisson case E(et|Ft−1) = 0 and E(e2t |Ft−1) = 1. For more details,
see Davis et al. (2003).

Define δ = (β0, β1, . . . , βk, ϕ1, . . . , ϕp, θ1, . . . , θq)
T as the parameter vector of model (2). The

conditional log-likelihood of {Y1, . . . , Yn} is given by

L(δ) =
n∑

t=1

{YtWt(δ)− b(Wt(δ)) + c(Yt)},
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where

Wt(δ) =X
T
t β +

∞∑
i=1

γiet−i(δ), et(δ) = (Yt − µt(δ)/σt(δ).

In the following, we assume that Yt|Ft−1 follows a Poisson distribution. Then Wt = ln(µt), σ
2
t = µt,

L(δ) is given by

L(δ) =
n∑

t=1

{YtWt(δ)− exp(Wt(δ))− ln(Yt!)}, (7)

and can be maximized using Newton-Raphson iterations or Fisher scoring procedure from suitable
initial values by computing the first and second derivatives. The conditional maximum likelihood
estimator (CMLE) of δ maximizes (7). See Davis et al. (2005) for more details about maximization
of equation (7).

3 Robust estimation for GLARMA models

To robustify the parameter estimation of the GLARMA model, we propose here an extension of
MQLE of Cantoni and Ronchetti (2001). Their approach is based on natural generalizations of
quasi-likelihood functions, considering a general class of M-estimators of Mallows’s type (Mallows,
1975), where the influence of deviations on response variable and covariates are bounded separately.

The MQLE of δ is defined as a solution of the estimating equations

n∑
t=1

ψ(Yt, µt(δ)) = 0, (8)

where

ψ(Yt, µt) = ν(Yt, µt)w(Xt)
∂µt(δ)

∂δ
− a(δ),

a(δ) =
1

n

n∑
t=1

E(ν(Yt, µt)|Ft−1)w(Xt)
∂µt(δ)

∂δ
.

This is an M-estimator with score function ψ(·, ·) (Huber, 1981; Hampel et al., 1986), a(δ) is a bias
correction used to ensure Fisher’s consistency. Function ν(·, ·) is chosen to control deviations in the
Y -space, and leverage points on Xt-space are down-weighted by w(·). Both functions ν(·, ·) and
w(·) are bounded to restrict outlying values on the response variable and covariates, respectively.

We consider the case where ν(Yt, µt) = ψH(et)/σt = ψH(et)/µ
1/2
t with ψH the Huber loss function

(Maronna et al. (2006), pages 26-27) defined by

ψH(x) =

{
x if |x| ≤ c,

c sign(x) if |x| > c,
(9)

The Huber function is chosen here because it satisfies assumptions (A1)-(A4) of Reisen et al. (2020),
i.e. ψH(x) is a bounded non-decreasing real-valued function on R, and λ(x) = E[ψH(x)(e1 − x)] is
well defined, strictly decreasing on R and λ(0) = 0. For a more precise definition see, e.g. Reisen
et al. (2020); Maronna et al. (2006), among others.

The constant c must be prespecified and regulates the trade-off between the efficiency and ro-
bustness of the estimator. Appropriate choices for c are in the interval [1, 2], and according to Huber
(1964), c = 1.345 provides 90% efficiency when the data is normally distributed see, for example,
pages 26 and 27, in Maronna et al. (2006). Other specific values are also used in the literature, e.g.

5



c = 1.2 Cantoni and Ronchetti (2001), c = 1.25 Streett et al. (1988); Chi (1994). The choice of
c should reflect the proportion of outliers in the data and must be adjusted according to the data
distribution. In the recent paper by Lévy-Leduc et al. (2022), the authors also explored different
values of c in stationary time series to empirically verify the effect of c on the estimation of the
autocovariance function and the spectral density of the process. As expected, for large c, the Huber
function behaves similarly to the standard non-robust estimation methods. In this context, the
Huber function becomes useless.

We deduce from (9) that

E(ψH(et)|Ft−1) = c[P(Yt ≥ j2,t + 1|Ft−1)− P(Yt ≤ j1,t|Ft−1)]

+ µ
1/2
t [P(Yt = j1,t|Ft−1)− P(Yt = j2,t|Ft−1)],

where j1,t = ⌊µt − cµ
1/2
t ⌋ and j2,t = ⌊µt + cµ

1/2
t ⌋. Moreover, since µt = exp(Wt), ∂µt(δ)/∂δ =

µt∂Wt(δ)/∂δ.
A common choice for w(·) is w(Xt) =

√
1− ht, where ht is the tth component of the diagonal

of the projection matrix H = X(XTX)−1X and X is the (n × (k + 1)) matrix defined by X =
[X1, . . . ,Xn]

T , see (Cantoni and Ronchetti, 2001). However, w(Xt) does not have high breakdown
properties and more sophisticated weights can be found in the literature.

Let Vt = (X1,t, . . . , Xk,t)
T for t = 1, . . . , n, V̄ the arithmetic mean of the vectors Vt and C their

sample covariance matrix,

V̄ =
1

n

n∑
t=1

Vt, C =
1

n− 1

n∑
t=1

(Vt − V̄ )T (Vt − V̄ ).

We assume that C is invertible and we measure how far Vt is from V̄ in the metric defined by C,
yielding

MD2
t = (Vt − V̄ )C−1(Vt − V̄ )T ,

which is called the squared Mahalanobis distance of Vt from V̄ . To robustify MD2
t , V̄ and C can

be estimated using the minimum covariance determinant (MCD) algorithm, see (Rousseeuw and
Leroy, 1987, Chapter 7.1). In this procedure, h observations out n are chosen whose classical sample
covariance matrix presents the lowest determinant. Then the MCD estimate of location V̄MCD is
the arithmetic mean of these h vectors Vt and CMCD is their sample covariance matrix. In this
paper, we use the weight function w(·) based on the MCD estimates given by

w(Xt) = min

[
1,

{
b

(Vt − V̄MCD)TC
−1
MCD(Vt − V̄MCD)

}α/2
]
, (10)

where α and b are tuning constants. Simpson et al. (1992) evaluate some values for the constant α
and claim that α = 1 is usual for the class of generalized M-estimators. In addition, the authors set
b equal to the (1− γ)-quantile of the chi-squared distribution with k− 1 degrees of freedom, where
k is the number of predictor covariates and γ = 0.1 or γ = 0.05.

4 Simulation study

We compare the performances of the CMLE and the MQLE of δ = (β0, β1, . . . , βk, ϕ1, . . . , ϕp, θ1, . . . , θq)
T

using the GLARMA(1,0) Poisson model defined by

Yt|Ft−1 ∼ Poisson(µt),

ln(µt) = β0 + β1Xt + Zt,

Xt = ξXt−1 + Ut,

(11)
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where {Ut} is a sequence of independent zero-mean, unit-variance Gaussian random variables. We
set β0 = 1, β1 = 0.5, and Xt is an autoregressive process of order 1. We consider two scenarios for
the process Xt; ξ = 0 (Gaussian white noise process) and ξ = 0.4.

The Monte Carlo simulations are repeated 1000 times with sample sizes equal to n = 100 and
n = 1000 and the results in Tables 2 to 8 refer to the sample Mean and Mean Square Error (MSE).

This section is organized as follows: Subsection 4.1 covers the selection of c value, while subsec-
tion 4.2 describes the situation in which the covariate Xt is affected by additive outliers. Subsection
4.3 evaluates the scenario in which outliers contaminate the response variable Yt. Finally, subsection
4.4 discusses the scenario in which both the covariate and the response variable are contaminated.

4.1 The choice of c

Regarding selecting the constant c, we investigated two approaches. First, we conducted a simula-
tion study to determine the values of c that resulted in the smallest measures of MSE. We performed
1000 simulations and identified that values of the tuning parameter between 1.0 and 4.0 were the
most common. The GLARMA(1,0) model defined by equation (11) was fitted with ξ = 0, and
n = 100. We opted for this simplest case, with a small sample size, due to the computational cost
associated with this procedure and to verify the empirical properties even for small sample sizes.
Table 1 presents the ten most common values of c. The best adjustments were observed for c values
of 1.6, 4.0, and 3.5. It is important to note that the percentages of these values are not very high.
The most common value in the simulation study, c = 1.6, represents only approximately 5% of
the cases that led to the best adjustment. Additionally, the c values in Table 1 appear somewhat
random, as no clear trend is evident among them.

Table 1: Top 10 most common values of c in the simulation study - GLARMA(1,0) model with ξ = 0,
β0 = 1.0, β1 = 0.5 - n = 100
The percentage represents the proportion in which each value of c leads to the best adjustments.

c 1.6 4.0 3.5 3.4 3.3 2.7 2.4 1.4 3.6 2.5 3.2
% 4.8 4.4 4.2 4.1 4.1 4.0 3.8 3.8 3.6 3.6 3.4

In the second approach, we employed a cross-validation procedure for time series using blocks,
as described in Bergmeir and Benitez (2012), and Bergmeir et al. (2018). Cross-validation is a
resampling procedure used to evaluate machine-learning methods. In this case, the algorithm selects
the value of c that yields the smallest values of the MSE.

Table 2 summarizes the parameter estimation and the MSE for the CMLE GLARMA(1,0)
model, as well as the robust proposal (MQLE) using the approaches discussed in this subsection:
cross-validation with two blocks and a fixed constant c at values 1.6, 4.0, and 3.5 (the first three
most frequent tuning parameter values from Table 1). Additionally, we include the estimations
for c = 1.345, which, according to Huber (1981), provides 90% efficiency for normal data. We
found that in cross-validation, the MSE is similar to that of the classic method when no outliers
are present. However, with outliers, the mean of parameter β1 is underestimated, as well as in the
classic method. When examining distinct values of c, we observed that the MSE is quite similar for
clean data. For perturbed data, the mean of β1 was underestimated for c = 3.5 and c = 4.0. The
MSE and the mean of β1 were quite similar for c = 1.345 and c = 1.6. Since these values are very
close, we have decided to set c = 1.345 in equation (9), as this value has been consistently cited in
the literature and provided the smallest measures of MSE for β1 in clean and perturbed data (Table
2). Note that, for β1, the MSE of the CMLE estimates increase by almost 14% when outliers are
present, compared to the estimations without contamination. In contrast, the MSE of the robust
proposal with c = 1.345 changes by less than 1%.
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Table 2: Parameters estimation GLARMA(1,0), β0 = 1.0, β1 = 0.5, ξ = 0, ω = 5, ϕ = 0.2 - n=100

Methods for choosing c
no outlier with outlier

Mean MSE Mean MSE

CMLE
β0 0.9741 0.0070 1.0333 0.0065
β1 0.4980 0.0035 0.2797 0.0494
ϕ 0.1303 0.0085 0.0834 0.0184

Crossvalidation
2 blocks

β0 0.9695 0.0076 1.0004 0.0060
β1 0.5067 0.0039 0.4154 0.0103
ϕ 0.1484 0.0075 0.1338 0.0114

c = 1.345
β0 0.9635 0.0076 0.9847 0.0065
β1 0.5259 0.0047 0.4674 0.0041
ϕ 0.1827 0.0064 0.1779 0.0069

c = 1.6
β0 0.9639 0.0082 0.9854 0.0065
β1 0.5240 0.0049 0.4647 0.0045
ϕ 0.1778 0.0063 0.1728 0.0069

c = 4.0
β0 0.9655 0.0081 0.9878 0.0064
β1 0.5173 0.0044 0.4546 0.0049
ϕ 0.1636 0.0065 0.1574 0.0073

c = 3.5
β0 0.9740 0.0083 1.0107 0.0058
β1 0.4980 0.0046 0.3870 0.0148
ϕ 0.1302 0.0085 0.1059 0.0129

4.2 Scenario 1: Covariate contaminated by additive outliers

We compare the performances of the CMLE and the MQLE of δ using the GLARMA(1,0) Poisson
model in equation (11).

The contaminated version of Xt is defined by X∗
t = Xt + ωφt, where ω = 5 is the magnitude of

the outlier, which impacts Xt and φt indicates the presence or not of this outlier and its sign at the
time t, i.e. φt = 0 with probability 1− φ, and φt = ±1 with probability φ/2 where φ = 0.01.

Here, we focus on a GLARMA(1,0) model, as in practice, most data can be adequately modeled
with just an AR(1) process as the autocorrelation structure. Davis et al. (2003) developed appro-
priate asymptotic theory for GLARMA(0,1). The empirical study involving this model is discussed
in the Appendix.

4.2.1 GLARMA(1,0) model

The GLARMA(1,0) model is defined by (11), where {Zt} satisfies

Zt = ϕ[Zt−1 + (Yt−1 − exp(Wt−1)] exp(−Wt−1/2). (12)

We set ϕ = 0.2 because previous studies have shown that increasing the value of ϕ can impact the
parameter estimation in GLARMA models. In a still unpublished paper, the authors investigate
various values of the parameter ϕ to understand its impact in this family model.

Table 3 presents the parameter estimation results when the covariate Xt is an independent
random vector (ξ = 0). For both sample sizes, in the absence of outliers, the CMLE of β0 and β1
are close to the true values, while ϕ is underestimated. In the presence of additive outliers, the
CMLE of β1 and ϕ are underestimated and have larger MSE. Without contamination, the MQLE
is close to the CMLE, except for the estimation of ϕ, which is closer to the true value and displays
a smaller MSE. In the contaminated case, the MQLE are close to the true values, and their MSE
are comparable to the ones of the CMLE in the absence of outliers.
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Table 3: GLARMA(1,0) model with ξ = 0, β0 = 1.0, β1 = 0.5, ϕ = 0.2, and ω = 5.0

Estimation
methods

n = 100 n = 1000
no outlier with outliers no outlier with outliers

Mean MSE Mean MSE Mean MSE Mean MSE

CMLE β̂0 0.973 0.0071 1.029 0.0073 0.995 0.0006 1.020 0.0009

β̂1 0.501 0.0029 0.404 0.0139 0.505 0.0003 0.421 0.0064

ϕ̂ 0.119 0.0100 0.082 0.0166 0.127 0.0057 0.115 0.0077

MQLE β̂0 0.965 0.0082 0.972 0.0078 0.983 0.0009 0.992 0.0007

β̂1 0.536 0.0049 0.507 0.0041 0.530 0.0012 0.502 0.0003

ϕ̂ 0.169 0.0064 0.160 0.0069 0.178 0.0009 0.176 0.0011

Table 4 presents the parameter estimation results when Xt is an AR(1) process (ξ = 0.4). As
observed in Table 3, the CMLE with clean data are close to the true values, except for ϕ, which is
underestimated. In the presence of additive outliers, the CMLE of β1 and ϕ are affected. Observe
that for n = 100, the estimate of β1 is 0.299 (Table 4) in comparison with 0.404 when ξ = 0 (Table
3). Then the time correlation of the affected covariate seems to be confounding. In the absence of
outliers, the MQLE are close to the true values with MSE slightly larger than the CMLE, except
for the estimate of ϕ. In the contaminated case, the MQLE are close to the true values and have
similar MSE as the CMLE in the absence of outliers. The same behaviors are observed for n = 100
and n = 1000. As the number of observations n increases, the MSE decreases.

Table 4: GLARMA(1,0) model with ξ = 0.4, β0 = 1.0, β1 = 0.5, ϕ = 0.2, and ω = 5.0

Estimation
methods

n = 100 n = 1000
no outlier with outliers no outlier with outliers

Mean MSE Mean MSE Mean MSE Mean MSE

CMLE β̂0 0.981 0.0069 1.005 0.0059 0.997 0.0006 1.041 0.0022

β̂1 0.511 0.0042 0.299 0.0414 0.503 0.0003 0.376 0.0153

ϕ̂ 0.117 0.0099 0.135 0.0081 0.119 0.0068 0.108 0.0088

MQLE β̂0 0.967 0.0079 0.983 0.0068 0.982 0.0009 0.993 0.0006

β̂1 0.549 0.0072 0.482 0.0038 0.528 0.0012 0.499 0.0003

ϕ̂ 0.169 0.0059 0.168 0.0066 0.167 0.0015 0.166 0.0016

4.3 Scenario 2: Response variable contaminated by additive outliers

Now, the response variable {Yt} is impacted by additive outliers. The contaminated version of Yt
is defined by Y ∗

t = Yt + ωφt, where ω = 30 is the magnitude of the outlier which impacts Yt and
φt indicates the presence or not of this outlier at time t, i.e. φt = 0 with probability 1 − φ, and
φt = 1 with probability φ where φ = 0.01. Note that the magnitude of ω varies across scenarios. In
the Gaussian process, ω = 5 is large enough to contaminate the covariate. However, the response
variable follows the Poisson distribution, where the mean equals the variance. In this case, the
variability is much larger than the variance of the process Xt, and the magnitude of 5 becomes too
small to contaminate Yt.

The simulation study related to the GLARMA(0,1) model is in the Appendix.

4.3.1 GLARMA(1,0) model

Now, we take model (11) where {Zt} is defined by (12) with ϕ = 0.2.
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Table 5 presents the parameter estimation results when ξ = 0. Without outlier, the CMLE of β0
and β1 are close to the true values, and θ is underestimated for both sample sizes. In the presence
of additive outliers on {Yt}, all the CMLE are impacted for n = 100 and n = 1000. Without
outlier, the MQLE is globally less efficient than the CMLE. In the contaminated case, the MQLE
are globally unaffected and close to the true values. These results apply for n = 100 and n = 1000.

Table 5: GLARMA(1,0) model with ξ = 0, β0 = 1.0, β1 = 0.5, ϕ = 0.2, and ω = 30.0

Estimation
methods

n = 100 n = 1000
no outlier with outliers no outlier with outliers

Mean MSE Mean MSE Mean MSE Mean MSE

CMLE β̂0 0.975 0.0068 1.229 0.0565 0.996 0.0006 1.183 0.0340

β̂1 0.506 0.0024 0.423 0.0076 0.503 0.0002 0.431 0.0049

ϕ̂ 0.121 0.0093 0.111 0.0080 0.127 0.0056 0.010 0.0359

MQLE β̂0 0.963 0.0081 1.004 0.0065 0.985 0.0008 1.000 0.0005

β̂1 0.527 0.0036 0.509 0.0028 0.528 0.0011 0.525 0.0009

ϕ̂ 0.167 0.0059 0.170 0.0050 0.176 0.0010 0.168 0.0014

Table 6 presents the parameter estimation results when ξ = 0.4. As observed in Table 5, without
perturbation, the CMLE is close to the true values, except for ϕ which is underestimated. In the
presence of outliers, all CMLE are affected. In the absence of outliers, the MQLE are close to
the true values, with the MSE slightly larger than the MSE of the CMLE, except for ϕ. In the
presence of outliers, the MQLE are close to the true values and have similar MSE as the CMLE in
the absence of outliers. Similar results are observed for n = 100 and n = 1000.

Table 6: GLARMA(1,0) model with ξ = 0.4, β0 = 1.0, β1 = 0.5, ϕ = 0.2, and ω = 30.0

Estimation
methods

n = 100 n = 1000
no outlier with outliers no outlier with outliers

Mean MSE Mean MSE Mean MSE Mean MSE

CMLE β̂0 0.975 0.0067 1.28 0.0824 0.997 0.0006 1.118 0.0146

β̂1 0.501 0.0032 0.413 0.0097 0.501 0.0003 0.448 0.0029

ϕ̂ 0.116 0.0105 -0.007 0.0439 0.117 0.0071 0.021 0.0319

MQLE β̂0 0.966 0.0077 0.988 0.0063 0.982 0.0010 0.993 0.0007

β̂1 0.525 0.0043 0.530 0.0048 0.525 0.0009 0.523 0.0009

ϕ̂ 0.160 0.0069 0.166 0.0076 0.165 0.0016 0.162 0.0018

4.4 Scenario 3: Covariate and Response variable contaminated by ad-
ditive outliers

In this subsection, both the covariate and the response variable Yt are affected by additive outliers.
As described in section 4.2, the contaminated version of Xt is defined by X∗

t = Xt + ω1φt, where
ω1 = 5 represents the magnitude of the outlier impacting Xt, and φt indicates the presence or
absence of this outlier and its sign at time t. Specifically, φt = 0 with probability 1−φ, and φt = ±1
with probability φ/2, where φ = 0.01. The contaminated version of Yt is defined by Y ∗

t = Yt+ω2φt,
where ω2 = 30 represents the magnitude of the outlier impacting Yt, and φt indicates the presence
or absence of this outlier at time t. In this context, we consider the GLARMA(1,0) model defined
by (11) where {Zt} is defined by (12) with ϕ = 0.2.
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Table 7 presents the parameter estimation results when ξ = 0. For n = 100 and no outlier, the
CMLE of β0 and β1 are close to the true values, and ϕ is underestimated. With additive outliers
on (Yt), all CMLE are impacted: β0 is overestimated, β1 and ϕ are underestimated, and all MSE
increase. Without additive outliers on {Yt}, the MQLE of β0 and β1 are close to the CMLE, and
the estimate of ϕ is closer to the true value with a smaller MSE. For n = 100 and additive outliers,
contrarily to the CMLE, and the MQLE are unaffected and provide estimates close to the true
parameters. Similar conclusions are observed for n = 1000. As the n increases, the MSE decreases.

Table 7: GLARMA(0,1) model with ξ = 0, β0 = 1.0, β1 = 0.5, ϕ = 0.2, ω1 = 5.0, ω2 = 30.0

Estimation
methods

n = 100 n = 1000
no outlier with outliers no outlier with outliers

Mean MSE Mean MSE Mean MSE Mean MSE

CMLE β̂0 0.977 0.0071 1.121 0.0194 0.996 0.0006 1.137 0.0193

β̂1 0.526 0.0047 0.388 0.0153 0.504 0.0003 0.468 0.0012

ϕ̂ 0.120 0.0099 0.009 0.0371 0.125 0.0058 0.031 0.028

MQLE β̂0 0.968 0.0077 0.977 0.0071 0.982 0.0009 0.997 0.0006

β̂1 0.539 0.0053 0.526 0.0047 0.533 0.0014 0.531 0.0013

ϕ̂ 0.171 0.0073 0.168 0.0060 0.172 0.0012 0.165 0.0017

Table 8 presents the parameter estimation results when ξ = 0.4 Similar to the previous scenarios,
without perturbation, for n = 100 the CMLEs are close to the true values, except for ϕ, which is
underestimated. For n = 1000 the CMLE of β0 and β1 are very close to the true values but ϕ is
still underestimated. When additive outliers are present, the CMLE parameters are affected for
n = 100 and n = 1000. In the absence of outliers, the MQLEs provide good results, with the MSE
slightly larger than that of the CMLEs, except for ϕ. In the presence of outliers, the MQLEs give
almost the same results as the CMLE in the absence of outliers.

Table 8: GLARMA(1,0) model with ξ = 0.4, β0 = 1.0, β1 = 0.5, ϕ = 0.2, ω1 = 5.0, and ω2 = 30.0

Estimation
methods

n = 100 n = 1000
no outlier with outliers no outlier with outliers

Mean MSE Mean MSE Mean MSE Mean MSE

CMLE β̂0 0.979 0.0062 1.081 0.011 0.999 0.0007 1.15 0.0231

β̂1 0.499 0.0046 0.155 0.121 0.501 0.0003 0.363 0.0189

ϕ̂ 0.13 0.0085 0.017 0.035 0.115 0.0074 0.022 0.0319

MQLE β̂0 0.973 0.0067 0.974 0.0067 0.983 0.0009 1.003 0.0007

β̂1 0.471 0.0058 0.471 0.0059 0.528 0.0011 0.504 0.0004

ϕ̂ 0.183 0.0069 0.203 0.0039 0.162 0.0018 0.154 0.002

This empirical study shows that the CMLE are impacted by additive outliers, both in the
covariates and in the response variable. The MQLE are similar to the CMLE in the absence of
additive outliers. With contaminated data, the MQLE outperform the CMLE, providing parameter
estimates closer to the true values with smaller MSE. In all scenarios analyzed, the MSE decreases
as the sample size increases.

5 Real data analysis

We evaluate the impact of particulate matter (PM10) on the monthly number of deaths by res-
piratory diseases between 2011 to 2018 (n = 96) in Greater Vitória, Brazil, which is a port and
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industrialized region, densely populated in the state of Esṕırito Santo, with approximately 1,900,000
inhabitants. Although the atmosphere is composed of many gases and particulate matter, only PM10

is considered because the data quality of other contaminants during the period of study is too poor.
PM10 are microscopic solid particles and liquid droplets suspended in the air, with a diameter of
10 micrometers or less. This particle pollution mainly comes from motor vehicles, wood-burning
heaters, and industry. It has been associated with premature mortality, increased hospital ad-
missions for heart or lung causes, acute and chronic bronchitis, asthma attacks, and respiratory
symptoms (Schwartz, 2000).

The correlation between the number of deaths and the maximum monthly concentrations of
PM10 in the atmosphere is ρ = 0.45, which is significant. Before fitting the model, some data were
imputed to handle the missing observations in the PM10 series. We have used the multivariate
imputation by chained equation method proposed by van Buuren and Oudshoorn (2000). Using
imputation-based procedures can have several implications. van Buuren and Oudshoorn (2011) out-
lines the primary issues related to imputing missing data in multivariate contexts. In a review of
imputation methods for time series in epidemiological studies, Junger and De Leon (2015) empha-
sizes the necessity of these procedures when faults in air quality measurement devices render them
inoperable. Gaps in data can lead to distortions in quantifying exposure. However, a key draw-
back of imputation-based procedures is that they generally do not account for imputation-related
imprecision in the analysis, leading to an underestimation of the variance of the estimators.

Figure 1 presents the deaths caused by respiratory diseases and PM10 concentrations. The
number of deaths shows a positive trend and seasonal behavior. The PM10 concentration also
presents a positive trend and three peaks. These aberrant observations can be considered additive
outliers. The peaks in the data are associated with specific characteristics. As noted in Huebnerova
and Michalek (2014) among others, dust aerosol levels can be influenced by various factors like the
weekday, the heating season, cloud cover, and wind speed. Atypical values may stem from very
localized sources, such as a small fire or a truck idling near a monitoring station, or from unusual
weather conditions like low mixing height and high atmospheric stability, which can lead to poor
dispersion of emitted pollutants (zan Zoest et al. (2018)).

Our GLARMA Poisson model includes a trend in the number of deaths, and sine and cosine
functions are incorporated to handle the annual seasonality. The model is written as

Wt = β0 + β1Xt + β2t+ β3 sin(2πt/12) + β4 cos(2πt/12) + Zt, (13)

where t is the month number, Xt is the PM10 concentration, and Zt is the time-correlated noise
defined by (5). Table 9 presents the value of the Bayesian information criterium (BIC) for each
GLARMA(p, q) Poisson model for 0 ≤ p, q ≤ 4 with p ̸= q. When p = q, the estimators’ identi-
fiability problems and lack of convergence are known (Dunsmuir and Scott, 2015). The minimum
value is obtained for (p, q) = (1, 0) for both estimation methods.

Tables 10 and 11 present the CMLE andMQLE of (β0, . . . , β4), respectively, for the GLARMA(1, 0)
model. The Wald test was used to evaluate whether individual coefficients are zero.In Table 10,
all the estimates are significant at the 5% level of significance, except the coefficient β̂1 related to
the PM10 levels in the atmosphere. In Table 11, all the estimates are significant at the 5% level
of significance. Although there is a significant correlation between the monthly number of deaths
in the period and PM10, the CMLE of β1 is not significant at 5% level of significance. However,
the MQLE of β1 is significant, which means that PM10 contributes significantly to the increase in
deaths caused by respiratory diseases. Observe that the value of β1 seems to be underestimated by
CMLE (β̂1 = 0.0003) since the robust estimate is three times this value (β̂1 = 0.0009).

Standardized Pearson residuals (Harvey and Fernandes (1989)) are commonly used to assess the
adequacy of a model. An adequate model should have uncorrelated Pearson residuals with a mean
close to 0 and a sample variance close to 1 (Weiss (2018)). Figure 2 displays the behavior of the
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Figure 1: Monthly number of deaths by respiratory diseases and maximum monthly concentrations of
PM10 in the Greater Vitória, Brazil.

Table 9: BIC values for the GLARMA(p, q) Poisson model (13).

(p, q) (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (1, 0) (1, 2)
CMLE 808,132 811,644 812,132 812,503 812,004 793,206 795,716
MQLE 827,829 827,865 827,933 829,685 835,549 806,466 809,496
(p, q) (1, 3) (1, 4) (2, 0) (2, 1) (2, 3) (2, 4) (3, 0)
CMLE 796,709 797,953 812,12 795,50 815,97 815,89 812,50
MQLE 811,376 814,399 827,91 809,67 831,86 834,30 829,63
(p, q) (3, 1) (3, 2) (3, 4) (4, 0) (4, 1) (4, 2) (4, 3)
CMLE 796,18 815,96 816,52 812,00 797,08 815,89 816,52
MQLE 810,12 831,83 837,90 835,51 813,07 834,27 837,98

Table 10: CMLE of model (13).

β̂0 β̂1 β̂2 β̂3 β̂4
Estimate 4.0571 0.0003 0.0034 -0.0573 -0.0954
Standard error 0.0383 0.0002 0.0006 0.0228 0.0228
p value <2e-16 0.0706 <1.9e-06 0.0121 2e-05

sample ACF and PACF functions of the Pearson residuals of the fitted models, considering CMLE
and MQLE estimation methods.Table 12 presents the sample means and variances of the adjusted
models. Although the sample variance of the model estimated using CLME is slightly higher than
that of the MQLE residual, we can see that both fitted models satisfactorily capture the statistical
association between pollutants and health effects, as the residuals are not correlated, i.e. they can
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Table 11: MQLE of Model (13).

β̂0 β̂1 β̂2 β̂3 β̂4
Estimate 4.0097 0.0009 0.0030 -0.0495 -0.0824
Standard error 0.0311 0.0001 0.0004 0.0177 0.0180
p value <2e-16 2e-07 1e-10 0.0053 4e-06

be seen as an approximate white noise process.

Figure 2: Sample ACF and PACF of the Pearson residuals from model (13).

(a) CMLE (b) MQLE

Table 12: Sample mean and variance of the Pearson residuals from model (13)

CMLE MQLE
Mean -0.0099 -0.0693
Variance 1.9219 1.0126

Figure 3 presents the estimated probability integral transform (PIT) of the model (13), based
on the conditional cumulative distribution function (Czado et al. (2009)). If the chosen distribu-
tion for the model is accurate, the histogram should resemble those obtained when sampling from
the uniform distribution on the interval [0, 1]. Both graphs in Figure 3 suggest deviations from
uniformity, indicating that the Poisson model may not adequately capture the data dispersion.
Contrary to this finding, the residual analysis indicates that the chosen model is appropriate for
estimating the data dynamics. Therefore, the feature in Figure 3 may be attributed to random
sampling fluctuations. However, this suggests the need for further investigation. One idea is to
compare different loss functions in future works. In addition, we can extend this robust approach
to GLARMA models using other distributions, such as the negative binomial, which may better
account for data dispersion in this real data set.

As an example in the real scenario to show the effectiveness of the proposed method, the abrupt
measurements of the PM10 concentration series were replaced by the mean of the data. As can
be seen from Table 13, all CMLE estimates are significant at the 5% level of significance and are
very close to the MQLE, i.e. the modified data provides estimates similar to the robust ones of
the original data. This simple example demonstrated the importance of using the robust method
proposed here when additive outliers are suspected in the data.
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Figure 3: Histograms of probability integral transform (PIT) based on Model (13).

(a) CMLE (b) MQLE

Table 13: CMLE of Model (13) fitted to modified PM10 concentrations.

β̂0 β̂1 β̂2 β̂3 β̂4
Estimate 4.0196 0.0008 0.0033 -0.0540 -0.0874
Standard error 0.0447 0.0003 0.0005 0.0220 0.0225
p value <2e-16 0.0274 2e-08 0.0143 0.0001

In the epidemiology context, the impact of air pollutants on human health is evaluated by their
relative risk (RR). The RR of a variable Xi = {Xi,t} is the change in the expected count of the
response variable per ζ-unit change in Xi, keeping the other covariates fixed. For Poisson regression,
the RR of Xi is RRXi

(ζ) = exp(βiζ), where βi is the coefficient associated to the regressor Xi. An
estimate of RRXi

(ζ) is

R̂RXi
(ζ)} = exp(β̂iζ), (14)

where β̂i is an estimator of βi. An estimated asymptotic confidence interval (CI) at an α significance
level of RRXi

(ζ) is

ĈI{RRXi
(ζ)} =

(
exp{ζ(β̂i − zα/2 σ̂(β̂i))}, exp{ζ(β̂i + zα/2 σ̂(β̂i))}

)
, (15)

where σ̂(β̂i) is the estimated standard deviation of β̂i and zα/2 denotes the (1 − α/2)-quantile of
the standard normal distribution. Table 14 presents the estimated RR and CI for PM10 calculated
from (14) and (15) with α = 5%. The CMLE and MQLE provide significant estimates of the RR
since the value one does not belong to the CI.

Table 14: Estimated RR and 95% CI for PM10 in Model (13).

PM10 CMLE MQLE

R̂R 1.0187 1.0497

ĈI [1.0001;1.0376] [1.0305;1.0692]

6 Conclusion

This work proposed a robust approach for the GLARMA model. This methodology is based on the
robustification of the quasi-likelihood function using M-estimators to control deviations on response
variable and weight functions to limit leverage points on covariates.
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The simulation showed that additive outliers could widely affect the CMLE. The robust estimates
behave approximately like the CMLE in the absence of outliers. For contaminated data, the robust
parameter estimation was almost as good as the CMLE in the case of clean observations.

The robust model was applied to the monthly number of deaths caused by respiratory diseases
in Vitória, Brazil, to evaluate the impact of PM10 on the population’s health. The observed RR
indicated that PM10 contributed significantly to the increase of deaths by respiratory disease in the
region. This analysis also showed that the CMLE underestimated the RR by at least 3%.

Acknowledgements

The authors thank the Brazilian Federal Agency for the Support and Evaluation of Graduate Edu-
cation (Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior—CAPES), National Council
for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico - CNPq), Minas Gerais State Research Foundation (Fundação de Amparo à Pesquisa do
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de Amparo à Pesquisa do Esṕırito Santo — FAPES). This research was also supported by DATAIA
convergence institute as part of the “Programme d’Investissement d’Avenir”, (ANR-17-CONV-
0003) operated by CentraleSupélec.
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7 Appendix

7.1 Covariate contaminated by additive outliers

7.1.1 GLARMA(0,1) model

The GLARMA(0,1) model is defined by (11), where {Zt} satisfies

Zt = θet−1 = θ(Yt−1 − exp(Wt−1) exp(−Wt−1/2), (16)

where we set θ = 0.2.
Table 15 presents the parameter estimation results when ξ = 0. For n = 100 and no outlier,

the CMLE of β0 and β1 are close to the true values, while the estimator of θ underestimates θ. For
n = 100 and additive outliers, the CMLE seriously underestimate β1 and θ. The mean squared
error (MSE) increases in the presence of outliers for all parameters. For n = 100 and no outlier,
the MQLE of β0 and β1 are close to the CMLE, and the estimator of θ is closer to the true value
of θ. For n = 100 and additive outliers, contrarily to the CMLE, the MQLE are close to the true
values. Similar conclusions are observed for n = 1000, but the values of the MSE are smaller.

Table 16 displays the parameter estimation results when ξ = 0.4. Similarly to Table 15, the
CMLE in the absence of contamination are close to the true values, except for θ, which is underes-
timated. The CMLE underestimate β1 and θ when additive outliers exist. Note that the impact of
outliers on the estimation of β1 is more prominent than in Table 15, which suggests that the pres-
ence of perturbations in a time-correlated covariate must be carefully treated. Without outliers, the
MQLE are close to the true values with MSE slightly larger than the CMLE, except for the estimate
of θ. In the presence of outliers, the MQLE are close to the true values and have similar MSE as
the CMLE in the absence of outliers. The same observations hold for n = 100 and n = 1000.
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Table 15: GLARMA(0,1) model with ξ = 0

n = 100 n = 1000
no outlier with outliers no outlier with outliers

Mean MSE Mean MSE Mean MSE Mean MSE

CMLE β̂0 0.986 0.0057 1.055 0.0084 0.997 0.0006 1.029 0.0014

β̂1 0.509 0.0036 0.403 0.0139 0.503 0.0003 0.403 0.0095

θ̂ 0.121 0.0096 0.079 0.0171 0.126 0.0057 0.094 0.0114

MQLE β̂0 0.968 0.0069 0.979 0.0066 0.984 0.0009 0.988 0.0008

β̂1 0.539 0.0054 0.514 0.0049 0.533 0.0014 0.514 0.0005

θ̂ 0.168 0.0063 0.158 0.0069 0.175 0.0011 0.171 0.0013

Table 16: GLARMA(0,1) model with ξ = 0.4

n = 100 n = 1000
no outlier with outliers no outlier with outliers

Mean MSE Mean MSE Mean MSE Mean MSE

CMLE β̂0 0.980 0.0064 1.000 0.0055 0.997 0.0005 1.019 0.0009

β̂1 0.493 0.0044 0.338 0.0281 0.501 0.0003 0.424 0.0060

θ̂ 0.111 0.0117 0.112 0.0124 0.120 0.0065 0.108 0.0087

MQLE β̂0 0.964 0.0078 0.977 0.0066 0.982 0.0009 0.987 0.0007

β̂1 0.532 0.0063 0.479 0.0047 0.532 0.0014 0.517 0.0006

θ̂ 0.161 0.0072 0.160 0.0077 0.168 0.0015 0.166 0.0016

7.2 Response variable contaminated by additive outliers

7.2.1 GLARMA(0,1) model

We consider model (11) where {Zt} is defined by (16) with θ = 0.2.
Table 17 presents the parameter estimation results when ξ = 0. For n = 100 and no outlier, the

CMLE of β0 and β1 close to the true values, and θ is underestimated. With additive outliers on (Yt),
all CMLE are impacted: β0 is overestimated, β1 and θ are underestimated, and all MSE increase.
Without additive outliers on {Yt}, the MQLE of β0 and β1 are close to the CMLE, and the estimate
of θ is closer to the true value with a smaller MSE. For n = 100 and additive outliers, contrarily to
the CMLE, the MQLE are not affected and provide estimates close to the true parameters. Similar
conclusions are observed for n = 1000.

Table 17: GLARMA(0,1) model with ξ = 0

n = 100 n = 1000
no outlier with outliers no outlier with outliers

Mean MSE Mean MSE Mean MSE Mean MSE

CMLE β̂0 0.977 0.0071 1.121 0.0194 0.996 0.0006 1.137 0.0193

β̂1 0.526 0.0047 0.388 0.0153 0.504 0.0003 0.468 0.0012

θ̂ 0.120 0.0099 0.009 0.0371 0.125 0.0058 0.031 0.028

MQLE β̂0 0.968 0.0077 0.977 0.0071 0.982 0.0009 0.997 0.0006

β̂1 0.539 0.0053 0.526 0.0047 0.533 0.0014 0.531 0.0013

θ̂ 0.171 0.0073 0.168 0.0060 0.172 0.0012 0.165 0.0017

Table 18 presents the parameter estimation results when ξ = 0.4. For n = 100, in the absence of

21



contamination on {Yt}, the CMLE of β0 and β1 are close to the true values, and θ is underestimated.
For n = 1000, the CMLE of β0 and β1 are very close to the true values and θ is still underestimated.
In the presence of outliers, all CMLE are affected for n = 100 and n = 1000. For both sample sizes,
without outliers, the MQLE gives good results. In the presence of outliers, the MQLE give almost
the same results as the CMLE in the absence of outliers, with similar MSE.

Table 18: GLARMA(0,1) model with ξ = 0.4

n = 100 n = 1000
no outlier with outliers no outlier with outliers

Mean MSE Mean MSE Mean MSE Mean MSE

CMLE β̂0 0.993 0.0056 1.117 0.0184 0.998 0.0005 1.303 0.0921

β̂1 0.447 0.0059 0.396 0.0134 0.502 0.0003 0.318 0.0331

θ̂ 0.116 0.0104 0.013 0.0351 0.125 0.0058 -0.005 0.0425

MQLE β̂0 0.982 0.0064 0.992 0.0066 0.983 0.0008 1.043 0.0024

β̂1 0.505 0.0040 0.492 0.0037 0.536 0.0017 0.507 0.0004

θ̂ 0.167 0.0061 0.154 0.0067 0.172 0.0012 0.141 0.0039
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