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Preventing Catastrophic Forgetting in Continuous Online Learning for
Autonomous Driving

Rui Yang1, Tao Yang2, Zhi Yan1∗, Tomas Krajnik3, Yassine Ruichek1

Abstract— Autonomous vehicles require online learning ca-
pabilities to enable long-term, unattended operation. However,
long-term online learning is accompanied by the problem of
forgetting previously learned knowledge. This paper introduces
an online learning framework that includes a catastrophic for-
getting prevention mechanism, named Long-Short-Term Online
Learning (LSTOL). The framework consists of a set of short-
term learners and a long-term controller, where the former
is based on the concept of ensemble learning and aims to
achieve rapid learning iterations, while the latter contains a
simple yet efficient probabilistic decision-making mechanism
combined with four control primitives to achieve effective
knowledge maintenance. A novel feature of the proposed
LSTOL is that it avoids forgetting while learning autonomously.
In addition, LSTOL makes no assumptions about the model
type of short-term learners and the continuity of the data.
The effectiveness of the proposed framework is demonstrated
through experiments across well-known datasets in autonomous
driving, including KITTI and Waymo. The source code for
the method implementation is publicly available at https:
//github.com/epan-utbm/lstol.

I. INTRODUCTION

As the field of mobile robotics continues to advance
rapidly, unmanned autonomous vehicles have emerged as a
promising solution within the transportation industry. The
intelligence functioning of these vehicles heavily depend on
their ability to effectively sense and learn objects, allowing
them to swiftly identify and understand various entities
in real-time, including cars, pedestrians, cyclists and other
participants in the complex road situation. Over the past
decade, machine learning has made remarkable progress in
object detection, especially with the deep learning mod-
els that outperform humans [1], [2]. However, deploying
machine learning to autonomous vehicles faces challenges
including expensive training, deployment and maintenance
costs, domain shift, long tail problem, and so forth [3].

Compared to offline training, online learning is considered
an effective solution [4], [5]. An open problem in the latter is
how autonomous vehicles can prevent catastrophic forgetting
while continuously absorbing new knowledge. While many
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Fig. 1. Illustration of the Long-Short-Term Online Learning (LSTOL)
framework which consists of two modules: short-term learning and long-
term control. Input samples are first processed by a set of short-term
learners for pre-prediction. The long-term control module collects these pre-
prediction to calculate indicators for online prediction, then passes them to
the Gate Controller to determine actions for each learner. During the learning
phase (blue line), the module calculates the online loss to update the learner
weights, which are used in the prediction phase (green line) to determine
the object category.

upstream methods have been proposed to address this prob-
lem in deep neural networks [6], [7], [8], they are inherently
rooted in offline or batch training and thus, are incompatible
with online learning by design.

Our previous work has shown that vehicles can au-
tonomously and rapidly learn road participant detection ca-
pabilities in a deployed environment, on-the-fly and without
human intervention [4], and with good online adaptability
across environments [5]. This paper builds on these foun-
dations to further investigate how to avoid the catastrophic
forgetting problem in the process of in-situ learning, by
extending online learning to online continual learning, and
still uses the detection of road participants including cars,
pedestrians, and cyclists as a downstream task.

In continual learning, catastrophic forgetting usually hap-
pens in two scenarios: an increase in classes or tasks that
need to be learned, and a shift of knowledge domains. The
method proposed in this paper addresses the challenges posed
by the latter, aiming to adapt to new data distributions with-
out forgetting knowledge from previous learned domains.
Specifically, we propose an ensemble learning framework,
named Long-Short-Term Online Learning (LSTOL), which
consists of a set of short-term learners and a long-term
control mechanism, as shown in Fig. 1. The former can be



any model but needs to be subject to the requirements of
online learning, such as fast iteration without saving learning
samples. The latter contains a gate controller that controls
whether each existing short-term learner should be updated,
kept or removed, or a new short-term learner should be
created. The design of the controller is based on primitives
rather than complex reasoning, fully considering the real-
time requirements of physical interaction of vehicles in the
real world. It is worth mentioning that, unlike the well-known
long short-term memory (LSTM) [9], LSTOL emphasizes the
learning strategy rather than the network structure, makes no
assumptions about the continuity of learning data, and allows
any short-term model in design.

The contributions of this paper are twofold.
• A novel framework to prevent catastrophic forgetting in

online learning is proposed, without assumptions on the
structure and complexity of short-term model, using a
simple yet efficient long-term control strategy.

• Taking road participant detection in autonomous driving
as a downstream task, two very different datasets includ-
ing KITTI [10] and Waymo [11] are used to conduct
online continual learning experiments, and results show
that the proposed framework enables the vehicle to learn
new knowledge while avoiding catastrophic forgetting.

II. RELATED WORK

In general, catastrophic forgetting occurs when learn-
ing new tasks degrades performance on previously learned
tasks, posing challenges for long-term deployment [12].
Research on catastrophic forgetting can be traced back to the
1990s [13], [14], with approaches like memory buffer [15]
that store past data or gradients to constrain updates.

In situations where retaining information from previous
tasks is impractical due to privacy or resource constraints,
regularization-based methods [7], [16], [17] offer a solu-
tion by employing cleverly designed regularization losses
to constrain forgetting old knowledge while learning new
data. Another intuitive solution is to build a sufficiently large
model and create a subset of the model for each task. This
can be achieved by fixing the shared trunk and adding new
branches for each new task, allowing old and new knowledge
to be separated. However, this will lead to another problem
of scale explosion [8]. Moreover, replay-based approaches
are grounded on the concept of retaining or compressing the
underlying data of past tasks [18], [19], [20]. These methods
combat forgetting by reintroducing stored samples during
training when learning a new task, while the samples play a
crucial role in joint training or loss optimization, protecting
knowledge from previous tasks.

Autonomous vehicles have an essential need for agents to
be able to learn on their own and continuously [3], [21],
as they will be deployed into our daily lives for a long
time [22], [23], [24]. In response to this need, our previous
work [4], [5] proposed an online learning framework that
allows vehicles to learn the detection of road participants
in-situ and on-the-fly in the environment in which they
operate. However, continual learning across different driving

scenarios brings about catastrophic forgetting problems. This
motivates us to explore related prevention mechanisms within
the framework of online learning. A work with a similar
concept to the learning framework proposed in this paper –
to avoid forgetting when learning online – is the Lifelong
Learning for Navigation (LLfN) method introduced in [25].
This method allows the robot to not forget the navigation
experience of the old environment when exploring a new
one. However, the essential differences between LLfN and
our LSTOL is that the former aims to learn an auxiliary
planner to only help the classical planner navigate in difficult
situations, while the latter treats the model to be learned and
the model to be used as identical, and makes no assumptions
about the usage situations.

Another work related to our LSTOL is the Expert Gate
method introduced in [26], which relies on different ex-
pert networks to handle the differences in data distribution
between various tasks, and also utilizes gate control to
intelligently select appropriate experts to achieve effective
processing of different tasks. However, unlike LSTOL, which
supports parallel online learning for multiple tasks, Expert
Gate is an offline training method and learns different tasks in
a sequential manner. In addition, the gate control strategy of
Expert Gate is not like LSTOL, which can achieve differenti-
ated learning for short-term learners. Moreover, as with [26],
there has been much other work on avoiding catastrophic
forgetting in computer vision [6], [7], [8], [27], [28] which
has emerged alongside the boom in deep learning methods.
Unfortunately, these methods cannot be straightforwardly
applied to online robot learning due to their requirements
on annotated data, computational resources, and training
time. Therefore, our research goal is to establish an online
learning framework that incorporates an autonomous forget-
ting prevention mechanism to enable vehicles to maintain
stable performance on downstream tasks during long-term
operation across environments.

III. LONG-SHORT-TERM ONLINE LEARNING

As shown in Fig. 1, the LSTOL framework combines
short-term learning and long-term control modules to pre-
vent catastrophic forgetting during learning. The short-term
learning module consist of multiple short-term learners. Each
learner can be embodied as a model such as SVM, random
forest, neural network, etc., leaning from streaming data of
various modalities such as images or point clouds.

The long-term control module supervises short-term learn-
ers via a gate controller with three sub-functions.
• Information Collection gathers learners’ confidence, ac-

curacy and activity, forming the basis for decisions on
knowledge retention and new learning.

• Gate Controller decides actions like retaining, updating,
creating or deleting learners based on a joint evaluation
of collected information and the predicted probabilities.

• Weight Estimation dynamically adjusts the learner
weights based on the past performance. More accurate
learners gain more weight, and high-confidence learners
act as “experts” in final predictions.



It is worth emphasizing that the proposed LSTOL framework
is learn-as-you-go, i.e., the output of the long-term control
module can also be used for downstream tasks such as road
participant detection.

IV. IMPLEMENTATION

The implementation of the LSTOL framework for point
cloud-based road participant detection is shown in Fig. 2.

A. Learning Sample

The learning samples are extracted from point clouds
generated by 3D lidar, defined as:

S = track({x,c, t}, c̄) (1)

where {x,c, t} represents a set of tracked instances (in the
form of clusters) of object x at different times t. c and
c̄ respectively represent the confidence that each instance
and the entire trajectory belong to an object class. Unlike
the usual assumption of a fixed dataset for offline training,
LSTOL processes streaming data. In practice, our previously
proposed Efficient Online Transfer Learning (EOTL) [5]
method is used for sample generation.

Specifically, as shown in Fig. 3, EOTL collects object
detection proposals (i.e. labels and probabilities) from two
different sensors and associates them spatiotemporally to
form the trajectory. Then, the label associated probabilities
of all samples on a single trajectory are fused to determine
the object category. Finally, the determined trajectory label
is assigned to all samples on the trajectory to form labeled
learning samples. This sample generation method has the
advantages of high efficiency, good reliability, and the ability
to avoid individual bias. For example, a certain sample on
a trajectory is considered more like a cyclist while other
samples on the same trajectory are considered more like a
car, the final misclassified sample can be corrected through
global awareness.

B. Short-term Learning

In the short-term learning module (denoted by stl), each
learner adopts an online random forest (ORF) [29], which
facilitates rapid multi-class model training and real-time
deployment. Boosting adjusts learner weights dynamically,
focusing on challenging samples, while bagging aggregates
multiple trees for robustness. The overall framework is
formalized as:

stl(x) = h
I

∑
i=1

wiORFi(x) (2)

where wi represents the weight of learner i, and h denotes
the fusion strategy determined by the long-term control
module. ORF’s node-splitting mechanism is driven by the
need to improve predictive accuracy and reduce uncertainty.
The motivation behind splitting a leaf node in ORF lies in
maximizing the information gain, thus enabling the model to
better distinguish between classes. The splitting criterion is
defined as:

|R j|> α ∧ ∃s ∈ S :△L(R j,s)> β (3)

where α is the minimum number of samples a node must
observe before splitting, β is the minimum gain required for
a split, R j is a decision node, and △L(R j,s) represents the
gain from test s, calculated as:

△L(R j,s) = L(R j)−
|R jls|
|R j|

L(R jls)−
|R jrs|
|R j|

L(R jrs) (4)

with R jls and R jrs being the left and right partitions based
on s. The ORF model is updated by storing the tree structure
and node information, thus retaining the learned knowledge
without needing previous training samples. This approach
ensures that the model continuously adapts while preserving
previously acquired knowledge, effectively mitigating catas-
trophic forgetting.

The number of short-term learners is closely related to
the distribution of data. In scenarios where data distributions
shift significantly, a number of learners may be necessary
to adapt to new environments and retain previously learned
knowledge. Conversely, as the data distribution stabilizes, the
contribution of adding more learners tends to diminish. This
indicates that while performance generally improves with an
increasing number of learners, the effect plateaus once the
model has sufficiently adapted to the new distribution. Dif-
ferent tasks may also demand varying numbers of short-term
learners. More complex tasks with greater class diversity or
data variations, such as 3D object detection involving cars,
pedestrians, and cyclists, benefit from a higher number of
learners to capture diverse features. Simpler tasks may not
require as many learners for optimal performance.

C. Long-term Control

1) Information Gatherer (IG): In online learning, tradi-
tional metrics like precision and recall are hard to achieve
real-time performance evaluation without a complete test
set or ground truth. Instead, we evaluate each learner using
novel metrics for real-time requirement including confidence,
accuracy, and activity. Confidence reflects the certainty of
a learner’s predictions. Accuracy measures learner’s perfor-
mance on past data, ensuring that learners with low accuracy
are prioritized for updates. Activity tracks how frequently a
learner has been updated, preventing learners from becoming
too stagnant or overly active.

Specifically, faced with samples that constitute an object
trajectory, a learner’s confidence is formulated as:

Con f idencei = max(p j
i ) j = 1, . . . ,J (5)

where p j
i represents the predicted probability of learner i

that each sample belongs to category j. The confidence
of learner i takes the maximum value among all predicted
probabilities. However, overconfidence is common in data-
driven classifiers [30]. Therefore, one cannot rely solely on
this metric to determine primitive operations for the short-
term learners. Additionally, if a learner’s predictions differ
from what it predicts later on the entire object trajectory, it
will be penalized during weight updates (See IV-C.3).



Fig. 2. Implementation overview of the LSTOL framework. Viewed from left to right: Samples in different point cloud frames are correlated by a
multi-target tracker [5] and fed into each online classifier of the short-term learning module. The Information Gatherer (IG) in the long-term control
module collects classification data and evaluates learners based on confidence, accuracy, and activity. This evaluation informs the Dynamic Gate Controller
(DGC), which decides whether to update, retain, create, or remove classifiers. The Weight Allocator (WA) uses loss information to adjust classifier weights,
which are then used for final object classification.

Fig. 3. Illustration of sample generation based on our previously proposed
EOTL method. The rectangles represent the detection results of the point
cloud detector that requires online learning, while the circles represent
the detection results of the off-the-shelf image detector with guaranteed
performance.

Accuracy is used to evaluate the learner’s prediction
accuracy for the entire trajectory and is formulated as:

Accuracyi =
pcorrect

i

ptotal
i

(6)

where pcorrect
i represents the number of correct predictions

produced by learner i, and ptotal
i represents the total number

of predictions performed by learner i.
Activity is a measure of how often a learner updates, and

is formulated as:

Activityi =
T

∑
t=1

update(i) (7)

where T represents a time window.

2) Dynamic Gate Controller (DGC): The DGC mecha-
nism is designed based on the stability-plasticity tradeoff
theory in continual learning, to dynamically adjust the short-
term learners based on their current performance in real-time.
By integrating confidence, accuracy, and activity metrics,
the system determines whether a learner should be updated,
retained, or removed. This ensures that the model remains
efficient, preventing unnecessary expansion or updates while
maintaining high accuracy and avoiding catastrophic forget-
ting. A probabilistic decision-making process is designed in
this module, summarized as Algorithm 1, which implements
an appropriate operation based on the three metrics provided
by the IG module. Specifically, In line 3, the Pgate function
combines the learner’s confidence, accuracy, and activity to
compute the probability of updating the learner. The odds
formula is defined as:

Pgate(Y |X ,D) =
oddsX

1+oddsX
(8)

where

oddsX =
t

∏
i=1

K

∏
j=1

odds j
xi

(9)

and

odds j
xi
=

P(yi|xi,d j)

1−P(yi|xi,d j)
(10)

The inversion of confidence and activity is crucial in en-
suring that learners with low confidence or low activity are
prioritized for updates. In contrast, high accuracy is used as
a signal that the learner’s performance is satisfactory, thus
reducing the chances of unnecessary updates.

The “retain” operation represented in line-8 corresponds
to two typical situations. The first is when the learner’s
accuracy is low, indicating that the learner’s predictions for
new samples are beyond its knowledge. The second is when
the learner has both high accuracy and high confidence,



which indicates that the learner is already very familiar with
the input data and does not need to learn it anymore.

The idea behind line-16 is to remove learners, which is a
risky operation and therefore only occurs when the maximum
number of learners is reached and new learners need to
be created. Removal will inevitably lead to the forgetting
of some old knowledge, but we must find a compromise
between the former and the unlimited number of learners.
Line-26 means that if none of the existing learners have been
updated, a new one will be created.

Algorithm 1 Dynamic Gate Control
Require: N: maximum number of learners to be created

Con f idencei (Coni), Accuracyi (Acci), Activityi (Acti)
Ensure: learner i, learner j, a new learner

1: updated← 0
2: for each learner i ∈ I do
3: p← Pgate(1−Coni, Acci, 1−Acti)
4: if p > 0.5 then
5: update (learner i)
6: updated← 1
7: else
8: retain (learner i) // do nothing
9: end if

10: end for
11: if updated = 0 then
12: if I = N then
13: pmax← 0
14: j← /0
15: for each learner i ∈ I do
16: p← Pgate(1−Coni, 1−Acci, 1−Acti)
17: if p > 0.5 and p > pmax then
18: j← i // mark learner i for removal
19: pmax← p
20: end if
21: end for
22: if j ̸= /0 then
23: remove (learner j)
24: end if
25: else
26: create (learner)
27: I← I +1
28: end if
29: end if

3) Weight Allocator (WA): The Weight Allocator (WA) is
inspired by weighted voting strategies in ensemble learning.
For each learner, a dynamic expert weights (DEW) table is
constructed, by dynamically adjusting the weight of each
learner based on their classification performance, the system
amplifies the influence of more accurate learners while
diminishing the impact of less reliable ones. This prevents
the model from being overly biased towards newly learned
data, which is crucial for avoiding forgetting. Specifically,
assume that a new set of samples S is input at time step
t + 1, where the confidence that s ∈ S belongs to a certain
class k ∈ K is very high, Kronecker delta is used to measure
the sample’s predicted class and actual class k, denoted as
ys. Learner i’s predicted probability that sample s belongs
to class k is denoted as ps,k. Then the loss of sample s is
calculated by log-loss:

Ls,k = yslog(ps,k)+(1− ys)log(1− ps,k) (11)

Next, the current weights w(t) are updated using an expo-
nentially weighted moving average (EWMA), designed to
reward accurate predictions and penalize incorrect ones:

wk(t +1) = λwk(t)+(1−λ )Ltotal (12)

where

Ltotal =−
1
S
(

S

∑
s=1

Ls,k) (13)

where Ls,k represents the loss of sample s of class k. λ is
determined according to the update speed of weights, used to
balance the learner’s past and present accuracy judgements.

The final prediction stage uses an intuitive voting strategy
known as the hand-raised as expert (HRE):

pk =
I

∑
i,(ps,k>θc)

(ps,k ·wi,k) (14)

where wi,k is the weight of learner i for class k, θc represents
the minimum weight required by the learner to predict, which
is set to 0.5 in our experiments. Essentially, this strategy
prioritizes learners’ predictions based on their degree of
influence in the final prediction. This allows the long-term
control module to pay more attention to the predictions of
modules with higher weights.

V. EXPERIMENTAL EVALUATION

A. Experimental Setups

Our experiments aim to evaluate whether the proposed
LSTOL can effectively prevent catastrophic forgetting when
learning across environments. To this end, two very different
datasets in autonomous driving including KITTI [10] and
Waymo [11] are used. Theoretically, the more different the
data learned before and after, the greater the challenge in
preventing catastrophic forgetting. In practice, an instance
is designed to simulate an autonomous vehicle transitioning
between two different environments.

Specifically, the system first performs online learning on
the KITTI dataset, then switches to Waymo for continual
learning, causing a domain shift. Our previous research [5]
demonstrated that performance drops when models trained
on KITTI are deployed on Waymo, but by online continual
learning on the latter, the model performance will rebound.
Finally, the system returns to KITTI to assess if learning on
Waymo caused catastrophic forgetting.

1) Datasets: Learning is initiated using randomly sam-
pled segments from the raw data (without any annotations)
of the “City”, “Residential”, and “Campus” scenes in KITTI.
These three scene categories were selected because they
contain a relatively large number of road participants, while
the other two scenes, “Road” and “Person”, are relatively
monotonous thus unsuitable for online learning of our down-
stream task. The system iterates the model every time it
learns 100 samples and evaluates the model performance
on the test set. The latter is built from randomly selected
samples from the annotated training set of KITTI’s 3D object
detection task, containing 5347 cars, 668 pedestrians and 271
cyclists.



In the second step, we deploy the system trained on KITTI
to the Waymo dataset. We randomly selected 15 segments
from the latter, for a total of 2970 images and 2970 lidar
scans. These segments are dominated by daytime and clear
weather conditions, and the driving scenes include cars,
pedestrians and cyclists, corresponding to the three classes
learned by the system on the KITTI dataset. We deliberately
avoid adverse weather conditions (e.g. foggy days [31], [32])
and scenes with poor lighting conditions (e.g. evenings [33],
[34]) to ensure a fair comparison of model performance
on the two datasets. The system continues learning online
on these segments. It iterates the model every 100 learned
samples and evaluates its performance on the KITTI test set.

2) Comparison Models: We compare our proposed
LSTOL with the following methods:
• PointNet-STD: Each dataset is independently trained

based on the baseline PointNet [35]. After training on
the KITTI dataset, the model parameters are further
trained on the Waymo dataset to update new parameters.

• PointNet-MIX: The baseline PointNet is jointly trained
on the mixed data from KITTI and Waymo. The result-
ing model is evaluated on the KITTI validation set.

• Expert Gate [26]: To better suit our downstream tasks
while staying true to the original algorithm, we switched
the neural network-based Expert Gate to an Online
Expert Gate (OEG) using ORF. Still, the core idea
remains unchanged: selecting the most relevant expert
to handle new data based on task relevance through
comparison.

• Dynamic Expandable Network (DEN, the latest imple-
mentation is 3D-DEN) [28] can perform point cloud
object classification tasks end-to-end and has the capa-
bility to dynamically expand the network, thus having
online adaptability.

Moreover, we simplified the Autoencoder Gate within the
Expert Gate. Instead of comparing task relevance based on
validation sets of incoming data, as done in the original
algorithm, we directly test the predictions of new data against
the ground truth to determine task relevance. Once we find
the expert with the highest task relevance, if the relevance
exceeds a threshold (set to 0.85), we conduct online training
on the existing expert (corresponding to Learning without
Forgetting (LwF) [8]). Otherwise, we build a new expert to
train the new data (corresponding to fine-tuning).

B. Evaluation across Datasets

The procedure for cross-dataset evaluation is as follows.
First, the model is trained on the KITTI training set and
then tested on the KITTI validation set. Second, the model
is further trained on the Waymo dataset and the updated
model is tested on the same KITTI validation set used in
the first step. Table I illustrates the performance difference
between ours and the aforementioned four methods. It is
worth pointing out that, due to the sequential requirements
of the tasks to be learned by the compared methods (i.e.,
learning the classification tasks of cars, pedestrians, and
cyclists one by one), – different from LSTOL, which supports

multi-task parallel learning – it forces us to manually sort
the input samples. However, in real-world deployments of
autonomous vehicles, it would be more beneficial for the
vehicle to learn multiple tasks in parallel.

As can be seen from Table I, PointNet-STD shows superior
performance under the data from the same distribution.
However, its shortcomings are also obvious, as its classi-
fication performance dropped significantly for all three road
participant categories once trained on the Waymo dataset. On
the other hand, although PointNet-MIX maintains consistent
performance on mixed datasets, as tasks and data increase,
this advantage will not persist, and the training cost will
also increase significantly. Expert Gate and 3D-DEN show
competitive results in avoiding forgetting, but our proposed
LSTOL maintains the overall performance advantage (i.e.
the classification performance of three categories of road
participants) after training on the Waymo dataset. Moreover,
compared to the other two methods, LSTOL also shows
the most balanced performance degradation and the least
forgetfulness of pedestrians and cyclists.

C. LSTOL vs. EOTL

After comparing with other methods, we performed exper-
iments to compare with our own EOTL method to demon-
strate the advancement of LSTOL. We first evaluate the
learning results of both. The upper part of Fig. 4 shows
the classification performance results of EOTL and LSTOL
after ten learning iterations on the KITTI dataset respec-
tively, while its lower part shows the performance after ten
more iterations on the Waymo dataset. It can be seen that
compared with our previous EOTL method that does not
include a catastrophic forgetting prevention mechanism, the
effect of LSTOL is obvious. Specifically, the degradation in
classification performance for cars, pedestrians, and cyclists
dropped from 0.05, 0.09, and 0.15 to 0.03, 0.05, and 0.07,
respectively. Furthermore, it can be seen that LSTOL sur-
passes EOTL in its ability to distinguish cars and cyclists
from pedestrians.

Secondly we are interested in the details of the learning
process of the two methods. Fig. 5 shows the changes in
classification performance of different online learning models
after each iteration. There are a total of 20 iterations, of
which the first ten occur on KITTI and the last ten occur on
Waymo. The evaluation metric used is “recall”. In multi-class
classification tasks, recall is a metric that evaluates a model’s
ability to correctly identify all examples of each class. It
is calculated as the ratio of the number of true positive
predictions to the total number of actual positive examples in
the class. It can be seen that the anti-forgetting mechanism
of LSTOL has a clear role in mitigating the performance
degradation of the model caused by environmental changes,
especially for pedestrians and cyclists, two types of road
participants that are more difficult to detect than cars. The
reason is attributed to the fact that LSTOL uses ensemble
learning (a set of learners), which allows examples of each
class to be better preserved independently. This is different
from the single powerful learner we designed previously



TABLE I
EVALUATION OF THE CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS ON THE KITTI DATASET BEFORE AND AFTER TRAINING ON THE

WAYMO DATASET

Method Only KITTI + Waymo
Cars(%) Pedestrians(%) Cyclists(%) Cars(%) Pedestrians(%) Cyclists(%)

PointNet-STD [35] 99.17 83.51 77.25 93.45 -5.72 73.79 -9.72 61.80 -15.45
PointNet-MIX [35] 95.63 78.28 67.38 95.63 - 78.28 - 67.38 -
Expert Gate [26] 96.60 78.14 74.54 93.40 -2.97 71.26 -6.88 63.10 -11.44

· 3D-DEN [28] 95.43 75.24 69.45 91.90 -3.53 69.47 -5.77 59.33 -10.12
Ours 97.31 78.74 75.28 93.90 -3.41 73.50 -5.24 68.27 -7.01

Fig. 4. Confusion matrices for performance comparison of EOTL and
LSTOL. For each matrix, the ordinate represents the true label while the
abscissa represents the predicted result. The darker the colour, the higher
the proportion of correct classifications.

in EOTL, whose performance is often dominated by object
classes (such as cars) that are easy to detect and have a larger
number of learning examples than other classes. It can also
be seen that during the learning process on the KITTI dataset,
LSTOL shows better stability than EOTL. This reveals that
the former can be used not only for cross-environment
deployment of autonomous vehicles, but may also be suitable
for long-term deployment in changing environments [12].

D. Short-term Learner Assessment

At the micro level, we focus on the performance and
knowledge acquisition of each short-term learner. The
LSTOL model in our experiments contains ten short-term
learners, chosen to balance real-time performance and accu-
racy. Our experiment revealed a generally positive correlation
between the number of short-term learners and performance.
However, as the distribution of data stabilizes, the perfor-
mance gains from adding more learners become less signifi-
cant. Each learner uses ORF with consistent parameters, i.e.,
trees = 100,depth = 50,epochs = 20,split threshold = 50.
After 20 iterations, each learner’s predictions on the KITTI
test set were evaluated, shown in Fig. 6. After filtering by the
HRE mechanism, some learners’ predictions are considered
as expert opinions in the final determination. The darker the
color of the square in the heatmap, the higher the frequency

Fig. 5. Recall curves for cars, pedestrians, and cyclists during the system
transfer from KITTI to Waymo.

Fig. 6. Heatmap of “expert” opinions of each learner. Each column
represents the distribution of high-confidence predictions for one learner
across the test samples, while each row represents high-confidence results
produced by different learners for the same class.

of participating in the final prediction of that class, and vice
versa. For example, Learner 1 was more involved in cars,
but also contributed to the pedestrians and cyclists.

It can be seen from Fig. 6 that each learner has a different
focus on the knowledge they learn. The predictions of the
first few learners show a dispersed distribution. As more
new samples, such as previously unseen pedestrians and
cyclists, appear in the scene, the learning goals of the learners
begin to differentiate, e.g., the 2nd and 4th learners begin
to focus more on pedestrians and cyclists. Starting with the
7th learner, we can see that the dataset changes, as the
learner starts learning more from new examples of cars and
subsequently new pedestrians and cyclists. It can also be seen
that the learner trained in Waymo provides lower confidence
predictions for samples in the KITTI test set than the one
trained in KITTI.



VI. CONCLUSION

This paper introduced the Long-Short-Term Online Learn-
ing (LSTOL) framework, designed to prevent catastrophic
forgetting and maintain stable performance for autonomous
vehicles across environments during long-term operation.
The framework’s effectiveness is demonstrated through ex-
periments on the KITTI and Waymo datasets for road par-
ticipant classification.

Despite the promising results, the framework still has
several limitations. One potential issue is that the need for
priors (e.g., the number of short-term learners) to adapt to
data distribution changes. In cases with new object categories
or drastic changes in sensor data (e.g., weather or sensor
failures), the framework may struggle to adapt without
forgetting prior knowledge. Furthermore, the framework’s
adaptability can be improved, as it may not fully capture sub-
tle differences in data distributions and could be optimized
for dynamic environments.

Future work will involve isolating or replacing various
components of the LSTOL framework to gain a clearer
understanding of their sensitivity in preventing catastrophic
forgetting. Additionally, we will explore mechanisms to dy-
namically control the number of short-term learners and test
the framework on other downstream tasks, such as human-
aware navigation [22], [36], to demonstrate its generality.
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