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Abstract—Fault attacks aim to disturb integrated circuits using
physical methods to break a security system or steal information.
Nowadays, a particular attention has been paid to fault attacks on
SoCs (System-on-Chip). A SoC is made up of numerous IPs which
are connected to each other by a communication architecture.
This work focuses on a RISC-V based SoC with a wishbone bus.
It aims to study the security of the bus against fault attacks. Using
a simulation environment, an automate-attack script, generated
by Python, targets all the registers within the bus to identify
all the vulnerabilities in the communication architecture. After
integrating some countermeasures, the resistance to several fault
models of the extended communication structure is measured and
discussed.

I. INTRODUCTION

Modern integrated circuits find applications in diverse fields,
including security, health, and transportation. However, fault
attacks—where internal signals of integrated circuits are phys-
ically manipulated to leak data or break cryptographic prop-
erty—pose a significant threat across these domains [1][2].

Fault attacks can be implemented using various methods,
including lasers [3], clock glitches [4], and electromagnetic
pulses [5]. At the RTL (Register Transfer Level), these attacks
manifest as bit-flips [6] or bit set/reset operations [7]. At
the instruction level, they involve actions such as instruction
skipping [8], instruction substitution [9], or combinations
thereof.

Most of the existing papers discuss attacks on the processor,
for example D. Karaklajić et al. [2] list fault attacks methods
targeting a processor, B. Yuce et al. [10] talk about coun-
termeasure FAME to defend embedded software against fault
attacks as an extension in processor. On the other hand, the
interconnect network has not been studied much in terms of
logical and physical attacks, even though it is a prime target
for an attack against a SoC. Therefore, this topic is the focus
of this work.

Sergei Skorobogatov investigates fault attack on NVM
memory modules integrating error correction codes, changing
the security settings by aborting the NVM write operation
through an optical or power attack [19]. In contrast, we
focus on the bus and change the timing and sequence of

memory data transfers to the CPU by corrupting the control
signals, which also prevents the detection of vulnerabilities
due to the integration of error correction codes on the memory
modules. Our work highlights existing vulnerabilities due to
control signals in a bus-based communication architecture and
evaluates several countermeasures.

Our work focuses on the communication architecture of a
RISC-V based system. All vulnerabilities have been high-
lighted by performing fault injections through simulations.
To perform this study, a deep analysis of the wishbone
communication architecture [11] obtained using the LiteX
framework [12] has been carried out. Based on this archi-
tecture, possible attack vectors have been defined. After that,
different countermeasures based on vulnerable registers have
been integrated and tested under different fault models. The
steps of our study are as follows:

1) Build the SoC system;
2) Analyze the SoC structure;
3) Automate fault injection and identify vulnerabilities;
4) Integrate countermeasures and explore faults.
The remainder of the paper is organized as follows. In

Section II, we describe the configuration of the environment
for an automated fault injection campaign. In Section III,
we explore the vulnerabilities of two important attacks and
how they propagate within the communication architecture.
In Section IV, we integrate countermeasures in the bus and
discuss their resistance to different fault models, and in Section
V, we discuss the results of an attack-change memory that
raises some interesting questions and we mathematically prove
that a double-bit attack with a duplication is better than
triplication. Finally, in Section VI, we conclude and discuss
future research directions.

II. ENVIRONMENT CONFIGURATION

We developed a SoC using the LiteX software framework.
LiteX is an open-source tool that offers a streamlined and
efficient infrastructure for creating SoCs for FPGA targets. It
enables exploration of diverse digital design architectures and
facilitates the development of complete FPGA-based systems.
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Fig. 1. Wishbone communication architecture

Specifically, we configured our architecture to align with the
Digilent Basys 3 board. For ease of analysis, we opted
for the VexRiscv processor and the wishbone bus, which
represents a straightforward choice.

Figure 1 shows a simplified representation of the wishbone
communication architecture within a SoC composed of a
processor and some peripherals. Through the bus, the CPU
and the memory modules such as ROM, RAM and CSR
exchange data signals (green lines), address signals (yellow
lines), and control signals (blue lines). One of the control
signals, builder_slave_sel_r governs memory reads by
the CPU through a multiplexer formed by combinational logic
gates. The other control signal, builder_shared_ack
interacts with the CPU to manage the timing of memory reads.

After analyzing all the signals on the bus, we decided
to investigate potential vulnerability. A combinatorial logic
injection on the bus can be equated to a register injection
associated with it. As a result, the attack targets every bit of
all register signals on the bus. We employed a 1-bit-flip as
the fault model because it covers both bit set/reset cases and
allows for straightforward checks of bus vulnerabilities. Our
approach involved using a TCL script generated by a program
in Python[13]. This script was executed in ModelSim to au-
tomate the injection process. We logged relevant information,
including memory state at the end of the simulation, injection
time, injected registers, and the resulting outcomes.

To exploit the fault, we selected a software application
developed by the FISSC project [14]. This application con-
ducts a comparison between the user input (g_userPin)
and a stored password (g_cardPin) shown in Listing 1. If
a match is identified, the state of an authentication variable
(g_authenticated) is updated to 1 (otherwise it rests
in default as 0). We initialize the user input and password
to be different, with the authentication variable changing to

1 as the criterion for the success of the attack. There are
many versions of FISSC programs, and we chose the version
without countermeasure to avoid fault on bus to be corrected.
The application is stored in the Read-Only Memory (ROM)
and subsequently executed within the Central Processing Unit
(CPU). To optimize the experimental process and reduce the
number of trials, the window for fault injection is confined to
clock cycles during which the instructions associated with a
portion of the comparison function (denoted as verifyPIN
in the diagram) are processed by the CPU.

Listing 1. Unprotected verifyPIN function from FISSC

BOOL v e r i f y P I N ( ) {
g a u t h e n t i c a t e d = 0 ;

i f ( g p t c > 0) {
i f ( byteArrayCompare ( g u s e r P i n ,

g ca rdP in , PIN SIZE ) == 1) {
g p t c = 3 ;
g a u t h e n t i c a t e d = 1 ; / /

A u t h e n t i c a t i o n ( ) ;
re turn 1 ;

} e l s e {
g ptc − −;
re turn 0 ;

}
}

re turn 0 ;
}

III. IDENTIFIED VULNERABILITIES

As shown in Figure 2, we find four ways to change
the authentication variables: a. Attacking the address signal
sram_adr0 that stores the address of the memory module
SRAM; b. Attacking the ROM data transfer register located in
the middle of the memory ROM and the data bus rom_dat0;
c. Attacking the strobe signal builder_slave_sel_r (4
bits) with the change of one memory block in SRAM (could be
a legal write-in SRAM or an attack on SRAM); d. Attacking
the 4 acknowledge registers (each one 1 bit).

Numerous strategies have been proposed to protect data
and addresses, enabling the detection of potential attacks [15].
However, it’s important to note that encryption or redundancy
of data and addresses are not foolproof measures. They
are incapable of preventing data substitution resulting from
manipulated control signals. Consequently, our attention is
primarily directed towards the control signals ack and sel.
These signals are critical in maintaining the integrity of data
and addresses, and thus, warrant our focus.

In the subsequent section, we delve into the specifics of how
control signal attacks can successfully inject vulnerabilities.
The sel signal, which is connected to four memory units,
operates on combinational logic gates (as depicted in Equa-
tion 1). When the CPU accesses the SRAM memory, the sel
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Fig. 2. Vulnerabilities in Wishbone architecture

signal is set to 0010. If the CPU reads the password value
04030201, we can alter the sel signal to 0000 through
bit-flipping, causing the CPU to read the data as 00000000.
This vulnerability model is akin to a multi-bit reset.

data bus =(sel[0] ∧ rom) ∨ (sel[1] ∧ sram)

∨ (sel[2] ∧ main ram) ∨ (sel[3] ∧ csr)
(1)

We also observe that if we manipulate the sel signal to
0011, the CPU will read the or value in both ROM and
SRAM. This manipulation can lead to a successful attack
by causing a phase shift in the ROM and SRAM values.
If the attacker has the ability to write to certain memory
locations or exploit their existing values, and subsequently
attacks the sel signal to read the sum of the attacker’s set
values, he can achieve a specific objective. This type of attack
is undetectable by methods such as parity checking. This
highlights the importance of comprehensive security measures
beyond traditional methods.

The ack signal is susceptible to a bitflip attack, which
could potentially lead to successful authentication. As
depicted in Figure 3, the CPU is currently reading
the SRAM. Consequently, the ack signal of SRAM
main_basesoc_interface0_ram_bus_ack
fluctuates. Meanwhile, the other three ack signals remain at
0. The total ack signal, builder_shared_ack, is the sum
of these four ack signals. Therefore, it mirrors the behavior
of main_basesoc_interface0_ram_bus_ack.
When we alter one of the ack sig-

nals builder_basesoc_state, from
0 to 1 within a single cycle when the
main_basesoc_interface0_ram_bus_ack is in
a low level, the total ack signal builder_shared_ack
also changes from 0 to 1 within the same cycle.

This change causes the total ack signal
builder_shared_ack to transition (as shown in
Figure 4) from alternating between high and low every cycle
to remaining high for two consecutive cycles (indicated by
the red and yellow sections) before returning to its normal
state (blue section). A high ack level increases the address
from which the CPU reads data. As a result, the address
signal builder_shared_adr also increases for two
consecutive cycles (red and yellow sections), before reverting
to increasing every two cycles (blue section). Simultaneously,
the SRAM transfers data to the bus every cycle, causing
builder_shared_dat_r to change from one cycle
(SRAM[3] in red and SRAM[4] in yellow) to two cycles
(SRAM[5] in blue).

Due to a two-cycle delay between the acknowledgment
signal affecting the data received by the CPU and the data
sent to the data bus, the CPU only receives data from the bus
that is two cycles before. This data is then written to the data
cache under the label ways_0_data_symbol. On the data
bus, the lifespan of SRAM[3] and SRAM[4] is only one cycle.
As a result, the CPU stores SRAM[2] and SRAM[3] in their
place. This action causes the code stored in SRAM[4] to be
replaced with 00000000, which is the value of SRAM[3]
and coincidentally, the value of the user input. This sequence



Fig. 3. Bit-flipping attack on the ack signal: waveform of data, bus address and ack signal

of events leads to a successful attack.
In summary, the effect of the attack can be understood

in terms of control signals. The sel signal in the attack
is equivalent to a multi-bit reset of data or the mixture of
multiple data. The ack signal in the attack is associated with
the repetition and replacement of instructions.

IV. COUNTERMEASURES

Upon identifying these vulnerabilities, we implemented
countermeasures for the 4-bit sel register and the four 1-bit
ack registers. These countermeasures include simple parity,
duplication, complimentary duplication, triplication, Hamming
code[18], and Single Error Correction Double Error Detection
(SECDED). For the multiplexer composed of logic gates
associated with the sel signal, we first altered the structure
to a combination of 4 to 2 bits encoder and multiple selectors.
This change allowed us to deploy countermeasures effectively,
thereby preventing the data mixing and zero substitution that
could occur when the sel signal is attacked. In the case
of the ack signal, we aimed to minimize hardware resource
consumption. To achieve this, we applied the countermeasures
to the whole 4-bit ack. The following are, in order, the
original structure (Figure 5), the ack signal with duplication
deployed (Figure 6), and the sel signal with SECDED
deployed (Figure 7).

To evaluate the effectiveness of the countermeasures, we
automatically inject faults during the simulation phase as
before. The target of these injections includes every bit of all
registers on the bus, including the new registers introduced by
the countermeasures. The timing of these injections coincides
with the execution of the instructions corresponding to the
compare user input and password function, verifyPIN, in
the CPU. To simulate faulty injections during the experiment
(for instance, 4 laser attacks are possible [16]), we opt for
various scenarios. These include a single bit-flip (equivalent to
1 laser spot), a total of 2 bit-flips either on the same register or
across two registers (equivalent to 2 laser spots), ”manipulate
1 register” as bit-flips at any number and position on a single
register (up to 4 laser spots or 1 electromagnetic attack), and
”manipulate 2 registers” as bit-flips at any number and position
across two registers (up to 8 laser spots or 2 electromagnetic
attacks).

We categorize the results into six distinct groups. Crash
occurs when the exception detection signals in the CPU are
enabled, or when the emulation time surpasses our estimated
maximum; Detect includes cases where at least one of the

attacked signals is detected; Correct refers to instances
where all attacked signals are corrected; Success includes
cases where there are attacked signals that are neither detected
nor corrected, and the authentication signal is changed to
success; Silence refers to instances where an attacked signal
is not detected or corrected, and no changes are made to the
memory; Change includes cases where an attacked signal is
not detected or corrected, and some changes are made to the
memory.

We utilized automated fault injection to test the robustness
of various countermeasures, whose structures were synthesized
using Vivado. The statistical results, presented in Table I, led
us to several conclusions. Firstly, an attack targeting multiple
bits of the ack or sel signal, or both the signal and its
replica (such as its complement or parity), can still result
in successful authentication, indicating a successful attack.
Secondly, even without impacting the authentication signal,
an attack on the ack or sel signal can alter the memory
content. Thirdly, the deployment of countermeasures, despite
enlarging the attack surface due to the involvement of more
logic, effectively reduces the success rate of an attack. Lastly,
correction strategies, while more resource-intensive than detec-
tion, are more vulnerable to successful attacks. These findings
underscore the complexity of securing digital systems and the
trade-offs involved in implementing countermeasures.

V. DISCUSSION

In this section we are interested in the case of change.
By reproducing the injections corresponding to the change
case, we found that the cause is still an attack on the ack
and sel registers, which causes the CPU to read incorrect
data and then write the incorrect data to SRAM, resulting in a
small amount of memory changes; or the cause is an attack on
the ack and sel registers, which directly results in a small
amount of memory changes. There are other cases where the
CPU reads the wrong instruction and the memory module is
not written, resulting in a large amount of memory remaining
at the initial value.

Another interesting item is that duplication resists 2-bit
flip-flop attacks better than triplication, which we can prove
mathematically. Assuming that the protected register is n bits,
which can be attacked by 1 bit, and the other registers without
weaknesses are x bits, the total number of bits after duplication
is 2n+x, the total number of bits after triplication is 3n+x,



Fig. 4. Effect of the total ack signal builder_shared_ack to transition from alternating between high and low every cycle to remaining high for two
consecutive cycles (indicated by the red and yellow sections) before returning to its normal state (blue section).
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the probability of success after randomly attacking the 2 bits
respectively is:

P (duplication) =
n(

2n+x
2

) =
2n

(2n+ x)(2n+ x− 1)

P (triplication) =
3n(

3n+x
2

) =
6n

(3n+ x)(3n+ x− 1)

P (triplication)− P (duplication) =
6n

(3n+ x)(3n+ x− 1)

− 2n

(2n+ x)(2n+ x− 1)

=
(2n)(3n2 − 3n+ 2x2 − 2x+ 6nx)

(3n+ x)(3n+ x− 1)(2n+ x)(2n+ x− 1)

Since n and x are both numbers greater than 0, the calculation
shows that P(triplication) is always greater than P(duplication).

VI. CONCLUSION

In this paper, we constructed a SoC based on the RISC-
V processor and a wishbone bus. We analyzed all structures
within the SoC bus. We implemented automated fault injection
on all registers on the bus, identifying vulnerabilities and in-
vestigating their impact on program operation. Unlike the work
of Skorobogatov[19], who implements the countermeasure on
the memory block vulnerable to attack on control signals
as we find, our countermeasures were then deployed on the
vulnerable registers on the bus, and the resilience of different
countermeasures was tested and analyzed using different fault
models. We also analyzed changes in memory under special
circumstances and performed theoretical calculations on the
resistance of duplication and triplication to 2-bit attacks.

For future work, we plan to test programs that have already
deployed countermeasures to compare the effectiveness of
software and hardware countermeasures. We will also switch

to other well-known programs to explore whether the dis-
covered vulnerabilities differ. We will choose protocols that
have deployed peer-to-peer self-verification, such as AXI [17],
and attack them to obtain an overall vulnerability of the bus.
Finally, we will provide a guide for designers on how to avoid
vulnerabilities in the design of communication architecture at
the RTL level. This guide will serve as a reference to prevent
easy attacks on the circuits.
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