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Abstract

We consider the problem of achieving prescribed-time stability (PT-S) in a class of hybrid dynamical systems that incorporate
switching nonlinear dynamics, exogenous inputs, and resets. By “prescribed-time stability”, we refer to the property of having
the main state of the system converge to a particular compact set of interest before a given time defined a priori by the user. We
focus on hybrid systems that achieve this property via time-varying gains. For continuous-time systems, this approach has received
significant attention in recent years, with various applications in control, optimization, and estimation problems. However, its
extensions beyond continuous-time systems have been limited. This gap motivates this paper, which introduces a novel class of
switching conditions for switching systems with resets that incorporate time-varying gains, ensuring the PT-S property even in
the presence of unstable modes. The analysis leverages tools from hybrid dynamical system’s theory, and a contraction-dilation
property that is established for the hybrid time domains of the solutions of the system. We present the model and main results in
a general framework, and subsequently apply them to two different problems: (a) PT control of dynamic plants with uncertainty
and intermittent feedback; and (b) PT decision-making in non-cooperative switching games using algorithms that incorporate
momentum, resets, and dynamic gains. Numerical results are presented to illustrate all our results.
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1. INTRODUCTION

Recent advances in nonlinear control analysis and design
[1, 2, 3, 4] have reinvigorated the concept of Prescribed-Time
Stability (PT-S), leading to successful applications across var-
ious domains, including nonlinear regulation [1, 2], adaptive
control [3], systems with delays [5], partial differential equa-
tions [6], and stochastic systems [7]. In contrast to asymptotic
or exponential stability, the PT-S property guarantees that the
system’s trajectories will converge to the desired compact set
within a predetermined time, regardless of the initial conditions.
As such, achieving this property requires either time-varying or
non-Lipschitz vector fields in the dynamics of the system. Non-
Lipschitz autonomous systems that achieve convergence to the
point (or set) of interest before a fixed time have been studied
in [8, 9, 10]. The state of the art of this property, usually called
“fixed-time” (FxT) stability, was recently reviewed in [11], with
some recent applications in certain classes of hybrid systems
under homogeneity conditions [12, 13], continuous-time sys-
tems in canonical forms with switching gains [14], and non-
switching impulsive systems [15]. In contrast to this line of
research, this paper we study systems that achieve convergence
to the target before a prescribed time using the “time-varying
gain approach” introduced for ODEs in [1], usually refereed
to as “prescribe-time control”. This method has a long his-
tory in optimal control and tactical missile guidance systems
[16], and it has recently gained renewed attention due to break-

throughs in the design and analysis of nonlinear and adaptive
controllers in continuous-time systems with finite-time conver-
gence properties. For a recent survey, see [11] and recent works
on adaptive systems [1, 2, 3, 4, 17], PDEs [6, 18, 5, 19], and
systems with delays [20, 21]. Since this control approach uses
“blow-up” gains over bounded time domains, the solutions of
these systems are also defined only over finite-time intervals.
For comprehensive discussions on practical applications, strate-
gies to extend the solution domains, and the advantages and
limitations of PT control, we refer the reader to recent works
[2, 17, 1, 11, 22].

While the study of Prescribed-Time stability properties in
continuous-time systems modeled as ordinary differential equa-
tions (ODEs) has seen significant progress, PT-S tools for hy-
brid dynamical systems (HDS) have remained mostly unex-
plored. For example, switching systems with time-varying
gains were studied in [23] using a common Lyapunov function.
Similarly, stable controllers that deactivate, or ”clip,” the high
gains before the prescribed time is reached were also discussed
in [24]. However, such results consider only one vector field
during the convergence phase, and the switching rules can lead
to HDS that are not well-posed in the sense of [25]. To the best
of our knowledge, general results on PT-S for switching and
HDS, similar to those existing for asymptotic or exponential
stabilization [26], are still absent in the literature. Since switch-
ing and hybrid controllers have been shown to provide power-
ful solutions to complex control [27, 28], optimization [29, 30],
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and learning problems [31], there is a clear need for the de-
velopment of PT-S tools that enable the analysis and design of
new algorithms able to simultaneously leverage the advantages
of both PT-S and hybrid control.

In this paper, we address this problem by showing that the
PT-S property can be naturally incorporated into a class of HDS
that model nonlinear switching systems with resets, allowing
the switching signals to incorporate the dynamic effects of time-
varying gains, while preserving the structure of the hybrid arcs
associated to the solutions of the system. Specifically, the main
contributions of this paper are as follows:

(a) First, we introduce a class of switching signals that pre-
serve the Prescribed-Time Stability (PT-S) property in systems
switching between a finite number of PT-S vector fields with
exogenous inputs and state resets. To derive these conditions,
we reformulate the overall switching system as a hybrid dy-
namical system (HDS) with dynamic gains that induce appro-
priate time dilation and contraction in the hybrid time domains
of its solutions. By leveraging Lyapunov-based constructions
for a suitably normalized HDS evolving on a hybrid dilated
time-scale, we show that the original system is PT-Stable, pro-
vided the switching signal satisfies a novel “blow-up” average
dwell-time (BU-ADT) condition. This condition allows (but
does not impose) a non-linear increase in the number of jumps
and switches as the total flow time in the system approaches
the prescribed convergence time. To study the effect of ex-
ogenous inputs and/or disturbances in the system, we establish
results via ISS-like bounds “with the convergence property”,
paralleling those in the literature on PT-S for ODEs [1, Def. 2].
However, unlike the existing results for ODEs, our convergence
bounds, presented in Theorem 1, are written in “hybrid time”
and highlight the potentially (asymptotically) stabilizing effect
of the resets, as well as the order of the dynamics generating
the “blow-up” gains. To our knowledge, this is the first result
connecting the existing tools on Prescribed-Time Stability for
ODEs [1] with the setting of HDS [25].

(b) Next, we incorporate unstable modes into the switch-
ing systems, and we characterize a novel “blow-up” average-
activation-time (BU-AAT) condition on the amount of time that
the system can spend on the unstable modes while preserving
the PT-S property. In our model, the unstable modes are also al-
lowed to have “blow-up” time-varying gains with finite-escape
times, as well as exogenous inputs and/or disturbances. To
study this setting, we construct a HDS with time-ratio monitors,
similar in spirit to those considered in [31, 26, 32], but incor-
porating the blow-up gains into their dynamics, enabling faster
switching between the stable and unstable modes as the total
amount of flow time in the system approaches the prescribed
time. A Lyapunov-based construction on a dilated-time scale,
and a contraction argument on the hybrid time domains, are
used to establish in Theorem 2 a PT-ISS-like result for switched
systems with stable and unstable modes.

(c) To illustrate the applicability of our model and results,
we synthesize two different PT-Stable algorithms for the so-
lution of different control and decision-making problems with
prescribed-time convergence requirements. First, in Proposi-
tion 3 we consider the problem of PT regulation of input-affine

systems under intermittent feedback, and we propose a new
feedback law that extends the results of [1] to plants mod-
eled as switching systems. Finally, we consider the problem
of prescribed-time Nash equilibrium seeking in games with
switching payoffs via hybrid algorithms with resets. We show
in Proposition 4 that such algorithms fit into our model and can
be studied using the analytical tools presented in the paper.

The rest of this paper is organized as follows: Section 2 in-
troduces some preliminaries on dynamical systems. Sections 3
and 4 present the main analytical results and the proofs. Section
5 presents three different applications, and Section 6 ends with
the conclusions.

2. PRELIMINARIES

2.1. Notation
Given a closed set A ⊂ Rn and a vector z ∈ Rn, we use

|z|A B inf s∈A ∥z − s∥2. A set-valued mapping M : Rp ⇒ Rn is
outer semicontinuous (OSC) at z if for each sequence {zi, si} →

(z, s) ∈ Rp × Rn satisfying si ∈ M(zi) for all i ∈ Z≥0, we have
s ∈ M(z). A mapping M is locally bounded (LB) at z if there
exists an open neighborhood Nz ⊂ Rp of z such that M(Nz)
is bounded. The mapping M is OSC and LB relative to a set
K ⊂ Rp if the mapping from Rp to Rn defined by M(z) for
z ∈ K, and ∅ for z < K, is OSC and LB at each z ∈ K. A
function γ : R≥0 → R≥0 is of classK if it is continuous, strictly
increasing, and satisfies γ(0) = 0. A function β : R≥0 × R≥0 →

R≥0 is of class KL if it is nondecreasing in its first argument,
nonincreasing in its second argument, limr→0+ β(r, s) = 0 for
each s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0. A
function β̃ : R≥0 × R≥0 × R≥0 → R≥0 belongs to class KLL
if for every s ∈ R≥0, β̃(·, s, ·) and β̃(·, ·, s) belong to class KL
[33]. Throughout the paper, for two (or more) vectors u, v ∈ Rn,
we write (u, v) = [u⊤, v⊤]⊤ to denote their concatenation. We
use diag

(
{B j}

J
j=1

)
to denote the block-diagonal matrix obtained

from the set of matrices {B j}
J
j=1. Given a set O ⊂ Rn, we use

IO(·) to denote the indicator function that satisfies IO(x) = 1 if
x ∈ O, and IO(x) = 0 if x < O.

2.2. Switching Systems
In this paper, we consider switching systems with inputs,

with the general form ẋ = f̃σ(t)(x, u, t), where x0 ∈ Rn is the
initial condition, x ∈ Rn is the main state, u : R≥0 → Rm is
an exogenous input assumed to be continuous and bounded,
and σ : R≥0 → Q is a right-continuous, piecewise con-
stant, signal that maps the current time t to a finite set of
modes Q = {1, 2, . . . , q}, where q ∈ Z≥1. For each q ∈ Q,
f̃q : Rn × Rm × R≥0 → Rn is assumed to be continuous with
respect to all arguments. Following the notation of [26], we use
S to denote the set of all right-continuous, piecewise constant,
signals from R≥0 to Q, with a locally finite number of discon-
tinuities. Such functions are referred to as switching signals.
For each signal σ ∈ S, we also define the collection of switch-
ing instantsW(σ) B {t ≥ 0 : σ(t) , σ(t−)}. In this way, the
switching system of interest evolves according to

ẋ = f̃σ(t)(x, u, t), ∀ t <W(σ), (1)
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where the solutions x to (1) are understood in the Caratheodory
sense over any interval [ta, tb) where σ is constant. During
switching times t ∈ W(σ), we allow “jumps” in the state x
via mode-dependent reset maps of the form

x(t) = Rσ(t−)(x(t−)), ∀ t ∈ W(σ), (2)

where the function Rq : Rn → Rn is assumed to be continu-
ous for each q ∈ Q. Throughout the paper, we will refer to
switching systems of the form (1)-(2) as R-Switching systems.

Remark 1. By taking Rq equal to the identity map, system (1)-
(2) recovers a standard switching system [28]. However, other
choices of reset maps open the door to study PT-S results in
reset control systems [34] (such as impulsive systems by tak-
ing Q = {1}) as well as more general switched reset controllers
(when |Q| > 1), see [26]. It is also possible to consider discon-
tinuous functions f̃q,Rq by working with their corresponding
Krasovskii regularizations [25, Def. 4.13]. However, for the
sake of clarity, we focus on R-switching systems with continu-
ous maps f̃q and Rq. □

2.3. Hybrid Dynamical Systems with Inputs

Since R-Switching systems incorporate continuous-time and
discrete-time dynamics, for the purpose of analysis they are
usually modeled as hybrid dynamical systems (HDS) [26, 25].
Such systems can be modeled as

(z, u) ∈ C̃ B C × Rm, ż ∈ F(z, u), (3a)
(z, u) ∈ D̃ B D × Rm, z+ ∈ G(z), (3b)

where z ∈ Rn is the state, u ∈ Rm is an input, F : Rn×Rm ⇒ Rn

is the flow map, G : Rn ⇒ Rn is the jump map, C̃ ⊂ Rn × Rm

is the flow set, and D̃ ⊂ Rn × Rm is the jump set. We use
(C̃, F, D̃,G) to denote the data of the HDS. HDS of the form
(3) are a generalization of continuous-time systems (D̃ = ∅) and
discrete-time systems (C̃ = ∅). Time-varying systems can also
be represented as (3) via an auxiliary state τ ∈ R with dynamics
τ̇ ≥ 0 and τ+ = τ. Solutions to system (3) are parameterized
by a continuous-time index t ∈ R≥0, which increases continu-
ously during flows, and a discrete-time index j ∈ Z≥0, which
increases by one during jumps. Therefore, solutions to (3) are
defined on hybrid time domains (HTDs) [25, Ch. 2]. A set
E ⊂ R≥0×Z≥0 is called a compact HTD if E = ∪J−1

j=0 ([t j, t j+1], j)
for some finite sequence of times 0 = t0 ≤ t1 . . . ≤ tJ . The set
E is a HTD if for all (T, J) ∈ E, E ∩ ([0,T ] × {0, . . . , J}) is a
compact HTD. Given a HTD E, we use

suptE B sup {t ∈ R≥0 : ∃ j ∈ Z≥0, such that (t, j) ∈ E}

sup jE B sup { j ∈ Z≥0 : ∃ t ∈ R≥0, such that (t, j) ∈ E} .

Also, let sup E B (suptE, sup jE), and length(E) B suptE +
sup jE. The following definition is borrowed from [33].

Definition 1. A hybrid signal is a function defined on a HTD.
A hybrid signal u : dom(u) → Rm is called a hybrid input if
u(·, j) is Lebesgue measurable and locally essentially bounded

for each j. A hybrid signal z : dom(z) → Rn is called a
hybrid arc if z(·, j) is locally absolutely continuous for each j
such that the interval I j B {t : (t, j) ∈ dom(z)} has nonempty
interior. A hybrid arc z : dom(z) → Rn and a hybrid in-
put u : dom(u) → Rm form a solution pair (z, u) to (3) if
dom(z) = dom(u), (z(0, 0), u(0, 0)) ∈ C̃ ∪ D̃, and:

1. For all j ∈ Z≥0 such that I j has nonempty interior, and
for almost all t ∈ I j, (z(t, j), u(t, j)) ∈ C̃ and ż(t, j) ∈
F(z(t, j), u(t, j)).

2. For all (t, j) ∈ dom(z) such that (t, j + 1) ∈ dom(z),
(z(t, j), u(t, j)) ∈ D̃ and z(t, j + 1) ∈ G(z(t, j)). □

Remark 2. By Definition 1, solutions to (3) are required to sat-
isfy dom(z) = dom(u). To establish this correspondence, we
obtain the input u in (3) from u in (1) using (with some abuse
of notation) u(t, j) = u(t) during flows for each fixed j, and by
keeping u constant during the jumps (3b). □

A hybrid solution pair (z, u) is said to be maximal if it can-
not be further extended. A hybrid solution pair (z, u) is said to
be complete if length dom(z) = ∞. This does not necessar-
ily imply that suptdom(z) = ∞, or that sup jdom(z) = ∞, al-
though at least one of these two conditions should hold when
z is complete. To simplify notation, in this paper we use
|u|(t, j) = sup(0,0)≤(t̃, j̃)≤(t, j)

(t, j)∈dom(z)

∣∣∣u(t̃, j̃)
∣∣∣, and we use |u|∞ to denote |u|(t, j)

when t + j→ ∞.

3. PT-ISS IN HYBRID DYNAMICAL SYSTEMS

Motivated by the PT-S property studied for ODEs [1, 2, 3, 4,
5], and before specializing our results to R-switching systems
of the form (1)-(2), in this section we introduce PT-S properties
for general HDS of the form (3). In particular, we consider
systems with state z = (ψ, µk) ∈ Rn × R≥1, set C given by:

C B ΨC × R≥1, (4a)

and flow-map defined as:

ż =

 ψ̇

µ̇k

 ∈ F(z, u) B

 µk · FΨ(ψ, µk, u),
k
T
µ

1+ 1
k

k

 , (4b)

where T > 0 and k ≥ 1 are tunable parameters, and FΨ : Rn ×

R≥1 × Rm ⇒ Rn is a set-valued mapping that we will specify
below. The set D is given by

D = ΨD × R≥1, (4c)

and the jump map is given by:

z+ =
(
ψ+

µ+k

)
∈ G(z) B

(
GΨ(ψ)
µk

)
, (4d)

where GΨ : Rn ⇒ Rn is also to be specified. We denote the
HDS (3) with data given by (4) as H . It is assumed that this
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system satisfies the following standad hybrid basic conditions
[25, Assumption 6.5]. These conditions are standard in the hy-
brid dynamical systems literature [33], and they will be satisfied
by construction later when we specialize the results of this sec-
tion to R-Switching systems with unstable and stable modes.

Assumption 1. The sets ΨC ,ΨD ⊂ Rn are closed. The set-
valued maps FΨ and GΨ are OSC and LB with respect to ΨC ,
and ΨD, respectively; and FΨ is convex for all (ψ, µk, u) ∈ ΨC ×

R≥1 × Rm. □

Since in (4b) the dynamics of µk are independent of ψ, sys-
tem (4) has a cascade structure. However, for system (4) the
dynamics of ψ will mostly determine the structure of the HTDs
of the solutions z, e.g., purely continuous, purely discrete, even-
tually continuous, etc. To study PT-S properties, in this paper
we consider signals µk generated by (4b), exhibiting finite es-
cape times that are “controlled” by the parameters (T, k) and by
µk(0). This property can be established for the dynamics of µk

in (4b) by direct integration, and it is formalized in Lemma 1.
The proof is presented in the Appendix.

Lemma 1. Let k ≥ 1, and consider the “blow-up” (BU)-ODE
µ̇k =

k
T µk(t)1+ 1

k with µk(0) = µ0 ∈ R≥1. Then, its unique solu-
tion satisfies:

µk(t) =
T k(

ΥT,k − t
)k ≥ 1, ∀ t ∈ [0,ΥT,k), (5)

where ΥT,k B Tµ
− 1

k
0 . □

For each k ≥ 1, µk(·) is continuous in its domain, strictly
increasing, and satisfies limt→ΥT,k µk(t) = ∞. Hence, the next
lemma follows directly by the definition of solutions to HDS.

Lemma 2 (Bounded Flow-Time). Let z be a maximal solution
toH . Then, the HTD of z satisfies supt(dom(z)) ≤ ΥT,k. □

Lemma 2 states that the total amount of flow-time of every
solution of H will be upper bounded by ΥT,k. We will refer to
this quantity as the prescribed time (PT), and we emphasize its
dependency on the initial value µ0 and the constants (T, k). In
the literature on PT-S in continuous-time, µ0 is usually equal to
one. However, we will consider any µ0 ∈ R≥1.

A useful property of the BU-ODE studied in Lemma 1, is
that, when normalized by µk, the resulting ODE has solutions
that are complete and lower bounded by 1. The following
Lemma is also proved in the Appendix.

Lemma 3. Let k ≥ 1, and consider the normalized-by-µk BU-
ODE dµ̂k

ds =
k
T µ̂k(s)

1
k with µ̂k(0) = µ0 ∈ R≥1, evolving in the

s-time scale. Then, its unique solution satisfies: (a) For k =
1: µ̂k(s) = µ0e

s
T ≥ 1 for all s ≥ 0; (b) For k > 1: µ̂k(s) =(

(k−1)
T s + µ

k−1
k

0

) k
k−1
≥ 1, for all s ≥ 0. □

3.1. Time-Scaling of Hybrid Time Domains
The signals µk generated by the dynamics (4b) will be used

to define a suitable dilation and contraction on the HTD of the
solutions to H . To do this, for each (T, k) ∈ R>0 × R≥1, and
1 ≤ a ≤ b, let the function ωk : R≥1 ×R≥1 → R≥0 be defined as

ωk(b, a) B
T
k

(
bρ(k) − aρ(k)

ρ(k)

)
, ∀ k > 1, (6)

and ω1(b, a) B limk→1+ ωk(b, a), where ρ(k) B k−1
k . The fol-

lowing proposition states some important properties of ωk(·, ·)
when evaluated along µk. The proof is presented in the Ap-
pendix.

Proposition 1. Let (T, k) ∈ R>0 × R≥1, µk be given by (5), and
let Tk : [0,ΥT,k)→ R≥0 be the function

Tk(t) B ωk(µk(t), µk(0)), ∀ t ∈ [0,ΥT,k). (7)

Then, Tk(·) satisfies the following properties:

(P1) limt→ΥT,k Tk(t) = ∞.

(P2) For any pair t2, t1 ∈ [0,ΥT,k) such that t2 ≥ t1:

Tk(t2) − Tk(t1) = ωk(µk(t2), µk(t1)).

(P3) For all t ∈ [0,ΥT,k), we have

dTk(t)
dt

= µk(t), Tk(0) = 0. (8)

(P4) For all t ∈ [0,ΥT,k), Tk has a well-defined inverse T −1
k :

R≥0 → R≥0, which is given by

T −1
k (s)=ΥT,k

1− (
1+

(k − 1)s
ΥT,kµ0

) 1
1−k

 , k > 1, (9)

and by T −1
1 (s) = limk→1+ T

−1
k (s).

(P5) For all s ∈ R≥0, T −1
k satisfies

d
ds
T −1

k (s) =
1

µk

(
T −1

k (s)
) , T −1

k (0) = 0. (10)

(P6) limT→∞ Tk(t) = µ
k−1
k2

0 t for k > 1, and limT→∞ T1(t) = µ0t
for all t ≥ 0. □

Remark 3. To contextualize Proposition 1, consider the spe-
cial case k = 1, which is commonly used in the literature on
PT-control of ODEs [1, 2]. In this case, Proposition 1 yields the
following “standard” mappings:

T −1
1 (s) = ΥT,1

(
1 − e−

1
T s

)
, ∀ s ∈ R≥0, (11a)

T1(t) = T
(
ln

(
µ1(t)
µ1(0)

))
, ∀ t ∈ [0,ΥT,1). (11b)
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Figure 1: Dilation and contraction of hybrid time domains and hybrid arcs. The structure of the hybrid time domain E in the (t, j)-time scale is preserved under the
diffeomorphism Tk × id in the (s, j)-time scale.

Indeed, note that (9) can be written as: T −1
k (s) =

ΥT,1

(
1 −

(
1 + s

n(k)T

)−n(k)
)
, with n(k) = 1

k−1 . Using e
s
T =

limn→∞

(
1 + s

nT

)n
and the fact that n → ∞ when k → 1+, we

obtain (11a). Similarly, using limρ→0
µ
ρ
1−1
ρ
= ln(µ1), and the

fact that ρ(k) → 0 if and only if k → 1, (11b) follows directly
from (6) and the definition of ω1 by applying the product law
for limits. □

The properties established in Proposition 1 are used to
derive the following result, which provides a suitable dila-
tion/contraction of the HTDs of H with data defined by (4)
when analyzed in a different hybrid time scale (s, j) induced
by the transformation s = Tk(t), see Figure 1. Note that, since
µk does not change during the jumps (4d), when evaluating (7)
along (hybrid) solutions of µk generated by (4c) we can omit
the dependence of Tk on j.

Proposition 2 (Dilation and Contraction of HTD). Let
(T, µ0, k) ∈ R>0 × R≥1 × R≥1, and Tk be given by (7). Consider
the following HDS, denoted by Ĥ , evolving on the (s, j)-hybrid
time scale, with state ẑ = (ψ̂, µ̂k) and input û:

(ẑ, û) ∈ C̃ = C × Rm, ˙̂zs ∈
1
µ̂k

F(ẑ, û). (12a)

(ẑ, û) ∈ D̃ = D × Rm, ẑ+ ∈ G(ẑ). (12b)

where (C̃, F, D̃,G) in (12) are the same as in (4), and where
˙̂zs := d

ds ẑ. Then, the following holds:

(a) If (ẑ, û) is a maximal solution pair of Ĥ from the initial
condition z0, then the pair of hybrid signals defined as
(z(t, j), u(t, j)) B (ẑ(s, j), û(s, j)), for all (s, j) ∈ dom(ẑ), is
also a maximal solution pair ofH from the initial condition
z0 via the time dilation s = Tk(t).

(b) If (z, u) is a maximal solution pair of H from the initial
condition z0, then the pair of hybrid signals defined as
(ẑ(s, j), û(s, j)) B (z(t, j), u(t, j)) for all (t, j) ∈ dom(z), is
also a maximal solution pair of Ĥ from the initial condition
z0 via the time contraction t = T −1

k (s).

Proof: We prove each item separately:

(a) Let (ẑ, û) be a maximal solution pair of Ĥ from z0. Then,
for each j ∈ Z≥0 such that the interior of Î j B {s ≥ 0 : (s, j) ∈
dom(ẑ)} is nonempty, ẑ satisfies:

d
ds

ẑ(s, j) ∈
1

µ̂k(s, j)
F(ẑ(s, j), û(s, j)), (13)

for almost all s ∈ I j. Using the chain rule, z satisfies:

d
dt

z(t, j) =
d
dt

ẑ(Tk(t), j) =
d
ds

ẑ(s, j) · Ṫk(t),

and since Ṫk(t) = µk(t, j) for all t ∈ [0,ΥT,k) due to (8), and µk

does not change during the jumps (4d), using (13) we obtain:

d
dt

z(t, j) = µk(t, j)
d
ds

ẑ(s, j) ∈
µk(t, j)
µ̂k(s, j)

F(ẑ(s, j), û(s, j)).

By construction, µk(t, j) = µ̂k(s, j), u(t, j) = û(s, j) and z(t, j) =
ẑ(s, j) via the time dilation s = Tk(t). Thereforc, substituting
in the above inclusion we obtain that ż(t, j) satisfies (4b) for
almost all t ∈ I j B {t ≥ 0 : (t, j) ∈ dom(z)}. Moreover, note
that Tk(t j) = s j and Tk(t j) = s j where t j B min I j, t j = sup I j,
s j B min Î j, s j = sup Î j. Similarly, for every (s, j) ∈ dom(ẑ)
such that (s, j+1) ∈ dom(ẑ), we have that ẑ(s, j+1) ∈ G(ẑ(s, j)),
and therefore z(t, j + 1) ∈ G(z(t, j)). Thus (z, u) is a maximal
solution toH .

(b) Let (z, u) be a maximal solution pair of H from z0. Using
again the chain rule, and the definition of ẑ, we obtain that for
each j for which the interior of I j B {t ≥ 0 : (t, j) ∈ dom(z)} is
nonempty, the signal ẑ satisfies:

d
ds

ẑ(s, j) =
dz

dT −1
k

dT −1
k

ds
=

ż(t, j)
µk(t, j)

∈
F(z(t, j), u(t, j))

µk(t, j)
,

where we used (4b) and (10). Note that by construction ẑ(s, j) =
z(t, j), µ̂k(s, j) = µk(t, j), and û(s, j) = u(t, j) via the time con-
traction t = T −1

k (s). Then, by substituting in the above ex-
pression we obtain that ẑ satisfies ˙̂zs ∈

1
µ̂k

F(ẑ, ûk) for almost
all s ∈ Î j = {s ≥ 0 : (s, j) ∈ dom(ẑ)}. Moreover, note that
T −1

k (s j) = t j and T −1
k (s j) = t j where t j B min I j, t j = sup I j,

s j B min Î j, s j = sup Î j. Since for every (t, j) ∈ dom(z) such
that (t, j + 1) ∈ dom(z), we have that z(t, j + 1) ∈ G(z(t, j)),
and therefore ẑ(s, j + 1) ∈ G(ẑ(s, j)), it follows that (ẑ, û) is a
maximal solution pair to Ĥ . ■

Remark 4. Proposition 2 establishes a relationship between
the solutions of the HDS H in the (t, j) time scale, and the
solutions of Ĥ in the (s, j) time scale via the family of k-
parameterized dilations s = Tk(t) and contractions T −1

k (s). In
particular, the function Tk : [0,ΥT,k) → R≥0 will define a dif-
feomorphism that preserves the structure of the HTD of the hy-
brid arcs of Ĥ . This observation is central to our analysis, as it
enables us to conduct the stability analysis of the original HDS
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H by first studying the qualitative behavior of the solutions of
system Ĥ . In particular, note that Ĥ has a flow map that is nor-
malized by µ̂k, which removes the finite escape times in µ̂k (c.f.,
Lemma 3). This normalized HDS can be viewed as a “target”
system that can be first designed and studied using the extensive
set of tools available in the literature on HDS [25, 27]. □

Remark 5. Using (5) with k > 1, Tk can be written as

Tk(t) =
Tµ

k−1
k

0

k − 1

 T k−1(
T − tµ

1
k
0

)k−1 − 1

 , ∀ t ∈ [0,ΥT,k), (14)

which recovers the common dilation used for ODEs when
µ0 = 1, see [1]. Other types of transformations are presented in
[4] for the study of finite-time control of ODEs. Proposition 2
provides an extension of these results to hybrid systems. □

Remark 6. Analyses of HDS based on the time scaling of the
flow map are not new, and they have been extensively explored
in the context of singular perturbations [35, 36] and averaging
theory [37, 31]. However, in contrast to (14), the time scaling
in those scenarios is usually linear. □

3.2. PT-S via Flows in HDS
Since solutions to systemH , whose data is described by (4),

can only flow for a total amount of time upper bounded by ΥT,k,
in this paper we are interested in regulating the state z to a gen-
eral closed setA, as t → ΥT,k (or before ΥT,k), where

A = Aψ × R≥1, (15)

and where Aψ is an application-dependent compact set. For
systems with inputs, the following definition aims to capture
this property, which makes use of the transformation Tk defined
in (7), and which extends [1, Def. 1] from ODEs to HDS.

Definition 2. Let A be given by (15), where Aψ ⊂ Rn is
compact. The set A is said to be Prescribed-Time Input-to-
State Stable via Flows (PT-ISSF) for the HDSH if there exists
β ∈ KLL and γ ∈ K such that for every z(0, 0) ∈ C ∪ D, all
solutions z satisfy:

|z(t, j)|A ≤ β
(
|z(0, 0)|A,Tk(t), j

)
+ γ

(
|u|(t, j)

)
, (16)

for all (t, j) ∈ dom(z). If (16) holds with u ≡ 0, the setA is said
to be Prescribed-Time Stable via Flows (PT-SF). □

In some cases, it might be possible to completely suppress
the residual effect of the input u in the bound (16) via PT feed-
back. This property, termed PT-ISS with Convergence in [1,
Def. 1], can also be obtained in hybrid systems:

Definition 3. Let A be given by (15), where Aψ ⊂ Rn is com-
pact. The set A is said to be Prescribed-Time Input-to-State
Stable with Convergence via Flows (PT-ISS-CF) for the HDS

H if there exists β ∈ KLL, γ ∈ K , and βc ∈ KL such that for
every z(0, 0) ∈ C ∪ D, all solutions z satisfy:

|z(t, j)|A ≤ βc

(
β (|z(0, 0)|A,Tk(t), j) + γ

(
|u|(t, j)

)
,Tk(t)

)
, (17)

for all (t, j) ∈ dom(z). □

Remark 7 (On the use of KLL functions). The use ofKLL
functions in Definitions 2 and 3 enable us to differentiate con-
vergence behaviors in the continuous-time domain from those
in the discrete-time domain. This type of comparison func-
tion is common in the analysis of HDS with inputs [33]. Ad-
ditionally, since by construction |z(t, j)|A = |ψ(t, j)|Aψ

for all
(t, j) ∈ dom(z) (because |µk(t, j)|R≥1 = 0), we can equivalently
express the bounds (16)-(17) with z replaced by ψ, and A re-
placed byAψ. □

Remark 8 (On the lack of uniformity with respect to µ0).
Definitions 2 and 3 extend Prescribed-Time Stability (PT-S)
notions, studied in the literature of ODEs, [1, Def. 1] to hybrid
systems. The KLL function β and the KL function βc in the
bounds (16) and (17) are independent of the initial conditions
on z = (ψ, µ). However, as defined in (7), the diffeomorphism
Tk clearly depends on the initial value of µk via (7), which
parameterizes the prescribed time ΥT,k. Yet, the bounds (16)
and (17) are uniform across the initial conditions of ψ, which is
the main state of interest in the system. □

The following example, which follows as a particular case
of the main results in the next section, illustrates the previous
discussions:

Example 1. Consider the HDS H with k = 1, T = 1, ψ =
(x, τ), FΨ = {−x + u} × {1}, GΨ = { 12 x} × {0}, ΨC = Rn × [0, 1],
ΨD = Rn × {1}, and u is continuous and bounded. Then, every
solution z = (x, τ, µ1) satisfies the following bound (see proof
of Theorem 1):

|ψ(t, j)|Aψ
≤ k1e−k2T1(t)

(
e−k3(T1(t)+ j)|ψ(0, 0)|Aψ

+ k4|u|(t, j)
)
,

where ki > 0 and Aψ = {0} × [0, 1], for all (t, j) ∈ dom(z).
Moreover, using (11b), the above bound can be written as:

|ψ(t, j)|Aψ
≤
µ1(0, 0)α1

µ1(t, j)α2

(
e−q j

µ1(t, j)α3
|ψ(0, 0)|Aψ

+ α4 · |u|(t, j)

)
,

where αi > 0, µ1(0, 0) = µ0 ≥ 1, and for all (t, j) ∈ dom(z). It
follows that lim(t, j)∈dom(z),t→Υ1,1 ψ(t, j) = 0. □

It is important to note that, unlike ODEs, for HDS the exis-
tence of bounds of the form (16)-(17) does not necessarily guar-
antee that the internal state ψ will converge to Aψ as t → ΥT,k,
for any ΥT,k > 0, even if u ≡ 0 and z is complete. The following
scalar example illustrates this scenario.

Example 2. Consider the HDS H with k = 1, main state
ψ ∈ R, functions FΨ = {−ψ}, GΨ = 1

2ψ, and sets ΨC =

(−∞,−1] ∪ [1,∞), and ΨD = [−1, 1]. For this system, we

6



can study stability of ψ with respect to the set Aψ = {0}.
For any initial condition to H , z(0, 0) = (ψ0, µ0), satisfying
|ψ0| > 1 and µ0 = 1, the unique maximal solution to the
HDS satisfies ψ(t, 0) = ψ0

(
T−t
T

)T
, for all (t, j) ∈ [0, t′] × {0},

where t′ = T (1 − |ψ0|
− 1

T ), and ψ(t, j) =
(

1
2

) j
ψ(t′, 0), for all

(t, j) ∈
⋃

j∈Z≥1
{t′} × { j}. It follows that ψ(t, j) → Aψ only as

j → ∞. Yet, every solution of the HDS satisfies (16) with
u = 0. This follows by a direct application of item (a) of Propo-
sition 2, the result of [38, Thm. 1], and item (b) of Proposition
2, in that order. □

The previous example shows that bounds of the form (16)
or (17) only guarantee PT-S-like behaviors via the flows of
the HDS. Therefore, to emulate the existing PT-S bounds ob-
tained for ODEs [1, 2], the “target” HDS Ĥ in (12) must gen-
erate maximal solutions with hybrid time domains E satisfy-
ing suptE = ∞, such as those in Example 1. In general, this
is not possible whenever C = ∅, or whenever Ĥ has eventu-
ally discrete, Zeno, or purely discrete solutions. However, as
shown in the next section, for R-Switching systems, discrete
solutions can be ruled out by designing appropriate switching
signals generated by hybrid automatons that additionally ex-
ploit the “blow-up” nature of the functions µk.

4. PT-ISS IN R-SWITCHING SYSTEMS

In this section, we apply Proposition 2 to study a class of
R-switching systems (1)-(2) characterized by the following dy-
namics:

ẋ = µk(t) · fσ(t)(x, µk(t), u, τ), t <W(σ), (18a)
x(t) = Rσ(t−)

(
x(t−)

)
, t ∈ W(σ). (18b)

For generality, in (18a) we allow fσ to depend on µk and also on
a signal τ that is generated by the following hybrid dynamics

τ̇ ∈

[
0,
µk(t)
τd

]
, t <W(σ), (19a)

τ+ = τ − 1, t ∈ W(σ), (19b)

where µk is given by (5) and τd > 0. To contextualize this
model, some remarks are in order.

Remark 9. When µk ≡ 1, Rσ = id(·), and fσ does not depend
on τ and u, equation (18) coincides with the conventional non-
linear switching systems examined in [39, 40]. On the other
hand, when fσ depends on u, (18a) captures nonlinear switch-
ing systems with inputs, similar to those studied [41, 26]. □

Remark 10. When µk ≡ 1 and fσ depends on τ, system (18)
describes a class of τ-parameterized nonlinear switching sys-
tems. In this class, τ is not necessarily constant throughout
time, and the function t 7→ τ(t) may not be differentiable or
even continuous. Such models emerge in, for example, a class
of time-triggered reset systems [42, 43] suitable for optimiza-
tion and learning problems; see also Section 5.2 for a specific
application. □

Remark 11. In many applications, the system of interest might
not match the exact form of (18). This is often the case in PT-
regulation and feedback control of affine dynamical systems
with non-zero drift, where multiplying the entire vector fields
by the gain µk is not feasible. However, as shown later in Sec-
tion 5, appropriate feedback design or variable transformation
can reformulate these systems into the form (18). □

To have a well-posed system, we make the following regu-
larity assumption on system (18a):

Assumption 2. For each q ∈ Q, fq : Rn × R≥1 × Rm × R≥0 →

Rn is locally Lipschitz, Rq : Rn → Rn is continuous, and u :
R≥0 → Rm is continuous and bounded. □

We consider R-switching systems (18) with a mix of stable
and unstable modes. We denote the set of stable modes as Qs

and the set of unstable modes as Qu, such that Qs ∪Qu = Q and
Qu ∩ Qs = ∅. To leverage this partition and derive prescribed-
time stability results, we proceed to introduce specific stability
assumptions for our “target” HDS Ĥ defined in (12). Central
to these assumptions is the role of a function ∆(µ̂k) that char-
acterizes the effect of the time-varying gain µ̂k on the input u
in (18). In our subsequent analysis, we focus on three specific
cases: ∆(µ̂k) = 0, ∆(µ̂k) = 1, and ∆(µ̂k) = µ̂−ℓk with ℓ > 0.

Assumption 3. There exist τd ∈ R>0, N0 ∈ R≥1, smooth func-
tions Vq̂ : Rn × R≥0 → R≥0, where q̂ ∈ Q, and constants
cq̂,i > 0, i ∈ {1, 2, 3, 4, 5}, p > 0, such that:

(a) For all (x̂, τ̂, q̂) ∈ Rn × [0,N0] × Q:

cq,1|x̂|p ≤ Vq̂(x̂, τ̂) ≤ cq,2|x̂|p. (20a)

(b) For all (x̂, τ̂, q̂, µ̂k, η) ∈ Rn × [0,N0] × Qs × R≥1 × [0, τ−1
d ]

and for all u ∈ Rm, we have:〈
∇Vq̂(x̂, τ̂),

(
fq̂(x̂, µ̂k, u, τ̂)

η

)〉
≤ −cq̂,3Vq̂(x̂, τ̂) + cq̂,4∆(µ̂k)|u|p.

(20b)

(c) For all (x̂, τ̂, q̂, µ̂k, η) ∈ Rn × [0,N0] × Qu × R≥1 × [0, τ−1
d ]

and for all u ∈ Rm, we have:〈
∇Vq̂(x̂, τ̂),

(
fq̂(x̂, µ̂k, u, τ̂)

η

)〉
≤ cq,5Vq̂(x̂, τ̂) + cq̂,4∆(µ̂k)|u|p.

(20c)

(d) For all (x̂, τ̂) ∈ Rn × [1,N0] and ô, q̂ ∈ Q such that q̂ , ô:

Vq̂(Rô(x̂), τ̂ − 1) ≤ χVô(x̂, τ̂), (20d)

where χ > 0. □

Remark 12. Inequalities (20a)-(20b) are common in the con-
text of exponential stability in continuous-time and hybrid sys-
tems. For the case when the vector field fq in (18a) does not de-
pend on τ, the function Vq̂ can also be taken to be independent
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of τ̂. This is the most common situation in switching systems
and systems with resets. An example where fq does depend on
τ will be studied in Section 5.2. □

Remark 13. Inequality (20b) in item (b) gives a standard de-
crease condition on the Lyapunov functions Vq̂, for each stable
mode q̂ ∈ Qs, and up to a neighborhood of the origin, whose
size is parameterized by ∆(µ̂k)|u|p. When ∆(µ̂k) = 0, and by
[38, Thm. 1], conditions (20a)-(20b) imply that each mode
q̂ ∈ Qs renders the origin exponentially stable in the dilated
time scale s = Tk(t) (see Proposition 2). When ∆(µ̂k) = 1, and
by [33, Prop. 1], conditions (20a)-(20b) imply that each mode
q̂ ∈ Qs renders the origin ISS with exponential decay in the di-
lated time scale. The case ∆(µ̂k) = µ̂−ℓk , with ℓ > 0, will emerge
in the context of PT-regulation where convergence bounds of
the form (17) are sought-after. An example in this direction is
presented in Section 5. □

Remark 14. Inequality (20c) in item (c) rules out finite escape
times for the unstable modes q̂ ∈ Qu. Similar assumptions are
considered in the context of asymptotic/exponential stability in
switching systems [41, 31]. When Qu = ∅ (i.e., there are no
unstable modes), item (c) holds vacuously. □

Remark 15. Inequality (20d) in item (d) considers the effect
of the resets on the Lyapunov functions related to each of the
modes. Usually (e.g., in standard switching systems) Rq̂ = id(·)
and Vq̂ is independent of τ̂, and in this case, inequality (20d)
holds trivially with χ = 1. When Vq̂ is independent of τ̂ but
Rq̂ , id(·), item (d) recovers the main assumptions of [26]. □

4.1. Blow-Up Average Dwell-Time Conditions
To achieve asymptotic stability in systems switching between

a finite number of stable modes, it is common to assume that for
all times t2 ≥ t1 ≥ 0, the switching signal σ satisfies an average
dwell-time (ADT) condition of the form:

N(t2, t1) ≤
1
τd

(t2 − t1) + N0, (21)

where N(t2, t1) is the number of switches of σ in the interval
(t1, t2], τd > 0 is called the dwell-time, and N0 ≥ 1 is the chatter
bound, see [39, 40], [25, Ch. 2.4]. However, unlike asymp-
totic convergence results, PT-S properties are defined only over
the finite interval [0,ΥT,k). Therefore, we consider switching
signals defined on similar intervals, which are additionally al-
lowed to have a switching frequency that becomes unbounded
as t → ΥT,k.

Definition 4. Let µk be given by (5). A switching signal σ :
[0,ΥT,k) → Q is said to satisfy the blow-up average dwell-time
condition of order k (BUk-ADT) if there exist N0 ≥ 1 and τd >
0 such that for all t2, t1 ∈ dom(σ):

N(t2, t1) ≤
1
τd
ωk (µk(t2), µk(t1)) + N0, (22)

where ωk(·, ·) is given by (6). We use ΣBUk-ADT(τd,N0,T, µ0) to
denote the family of such signals. □

Figure 2 illustrates the BUk-ADT condition by comparing
various bounds derived from (22) (plotted on a logarithmic
scale) as functions of ∆ = t2 − t1, with t1 = 0, and for different
values of k ∈ Z≥1, with µ0 = 1 (left plot) and µ0 = 2 (right
plot). The standard ADT bound (21) is also shown in color pur-
ple. Unlike the ADT bound, the BUk-ADT bound grows to in-
finity as ∆ → ΥT,k, allowing an increasing number of switches
as t → ΥT,k. However, in any compact sub-interval of [0,ΥT,k)
the allowable number of switches is bounded. The following
lemma shows that switching signals satisfying the ADT condi-
tion (21) also satisfy the BUk-ADT condition (22) when their
domain is appropriately restricted. The implication follows di-
rectly because the right-hand side of (21) can be upper-bounded
by the right-hand side of (22). The proof is presented in the Ap-
pendix.

Lemma 4. Let T > 0, µ0 ≥ 1, and σ be a switching signal
satisfying the ADT condition (21) with τd > 0 and N0 ≥ 1.
Then, σ(t) satisfies the BUk-ADT condition (22) for all k ∈ Z≥1
and all 0 ≤ t1 ≤ t2 < ΥT,k, with the same τd,N0. □

Next, we present a lemma that provides an equivalent formu-
lation of the BUk-ADT condition, as well as its limiting behav-
ior when the prescribed-time ΥT,k goes to infinity. The proof is
presented in the Appendix.

Lemma 5. The following holds:

(a) If k = 1, then (22) is equivalent to

N(t2, t1) ≤
T
τd

ln
(
ΥT,1 − t1
ΥT,1 − t2

)
+ N0. (23)

(b) If k ∈ Z>1, then (22) is equivalent to

N(t2, t1) ≤
γk(t1, t2)
τd

(t2−t1) +
k−1∑
ℓ=2

c̃ℓ,k
(
tℓ2 − tℓ1

) + N0,

where c̃ℓ,k B (−1)ℓ+1 bk,l

k−1Υ
1−ℓ
T,k , bk,l =

(k−1)!
ℓ!(k−ℓ−1)! and

γk(t1, t2) B µ0

 Υ2
T,k(

ΥT,k − t2
) (
ΥT,k − t1

) k−1

.

(c) For all k ∈ Z≥1 and all t2 ≥ t1 ≥ 0 the bound (22) satisfies

lim
T→∞

1
τd
ωk (µk(t2), µk(t1)) + N0 =

µ0

τd
(t2 − t1) + N0,

thus recovering the ADT condition (21) when µ0 = 1. □

4.2. PT-ISS in R-Switching Systems with Stable Modes

When all the modes fq are stable, i.e., Qu = ∅ and Q = Qs,
we can study PT-S properties of (18) by considering switching
signals that satisfy the BUk-ADT bound. In this case, the R-
Switching system (18) can be analyzed by considering the HDS
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Figure 2: BUk-ADT condition (22) for k ∈ {1, 2, 3, 4}. Left: When µ0 = 1, T = 10, and t1 = 0, there exists a single common terminal time T = ΥT,k for all k. Right:
When µ0 = 2, T = 10, and t1 = 0, the dependence of ΥT,k on µ0 (see Proposition 1) leads to the emergence of three distinct terminal times.

H with data (4), state ψ = (x, τ, q) ∈ Rn+2, and

FΨ(ψ, µk, u) B { fq(x, µk, u, τ)} ×
[
0,

1
τd

]
× {0}, (24a)

GΨ(ψ, u) B {Rq(x)} × {τ − 1} × Qs\{q}, (24b)
ΨC = Rn × [0,N0] × Qs, ΨD = Rn × [1,N0] × Qs. (24c)

As established in the next lemma, there is a close connection
between the HTDs of the solutions of systemH with data (24),
and the signals σ that satisfy the BUk-ADT condition.

Lemma 6. Let (FΨ,GΨ,ΨC ,ΨD) be given by (24a)-(24c), and
consider the HDS H under Assumptions 2 and 3. Then, As-
sumption 1 holds, and:

(a) For every maximal solution z and for any pair
(t1, j1), (t2, j2) ∈ dom(z), with t2 > t1, inequality (22)
holds with N(t2, t1) = j2 − j1.

(b) For every HTD satisfying property (a), there exists a solu-
tion z of the HDSH having the said HTD. □

Proof: The HDS H given by (4) has state z = (ψ, µk) ∈ Rn+3

with ψ = (x, τ, q) ∈ Rn+2, and dynamics

z ∈ C B Rn × [0,N0] × Qs × R≥1 (25a)

ż =



ẋ

τ̇

q̇

µ̇k


∈ F(z, u) B



µk · fq(x, µk, u, τ)[
0,
µk

τd

]
0

k
T
µ

1+ 1
k

k


, (25b)

z ∈ D B Rn × [1,N0] × Qs × R≥1, (25c)

z+ =


x+

τ+

q+

µ+k

 ∈ G(z) B



Rq(x)

τ − 1

Qs\{q}

µk


. (25d)

Since the function µk generated by (25) is precisely (5), any
solution z : dom(z) → Rn+3 to (25) will necessarily satisfy
lengtht(dom(z)) ≤ ΥT,k. By Proposition 2, the corresponding
HDS (12) in the (s, j)-time scale is given by:

ẑ ∈ C, ˙̂zs =



˙̂xs

˙̂τs

˙̂qs

˙̂µks


∈ F̂T (ẑ, û) B



fq̂(x̂, µ̂k, û, τ̂)[
0,

1
τd

]
0

k
T
µ̂

1
k
k


(26a)

ẑ ∈ D, ẑ+ ∈ G(ẑ), (26b)

where C, D, and G were defined in (25). Since Assumption 3
ensures that the state x̂ does not exhibit finite escape times, by
noting that the dynamics of (τ̂, q̂) are decoupled from µ̂k, and
since µ̂k remains constant during jumps, we can directly obtain
µ̂k(s, j) for any (s, j) ∈ dom(ẑ) using Proposition 3: µ̂k(s, j) =(

(k−1)
T t + µ̂(s j, j)

k−1
k

) k
k−1 , for k > 1, and µ̂k(s, j) = µ̂k(s j, j)e

s
T ,

for k = 1, where s j B min{s ≥ 0 : (s, j) ∈ dom(ẑ)}. By [25,
Ex. 2.15] it follows that every solution ẑ of (26) has a HTD that
satisfies the ADT bound in the (s, j)-time scale:

j2 − j1 ≤
1
τd

(s2 − s1) + N0, (27)

for all (s1, j1), (s2, j2) ∈ dom(ẑ), with s2 > s1 ≥ 0. Addition-
ally, by [25, Ex. 2.15], for every hybrid time domain satisfying
(27), there exists a solution to the HDS (26) having said hybrid
time domain. Thus, it remains to show that (27) is equivalent
to (22) in the original (t, j)-time scale. Using the time scal-
ing function Tk given by (7), for any solution z of (25) and
all (t1, j1), (t2, j2) ∈ dom(z) with 0 ≤ t1 < t2, we have that
(s1, j1), (s2, j2) ∈ dom(ẑ), where s1 = Tk(t1), s2 = Tk(t2), and
0 ≤ s1 < s2. Substituting in (27):

j2 − j1 ≤
1
τd

(Tk(t2) − Tk(t1)) + N0.

9



The result follows now by using (P2) in Proposition 1. ■

One of the main consequences of the equivalence established
in Lemma 6 is that analyzing the stability properties of the R-
switching system (18) under the family of switching signals
ΣBU-ADT(τd,N0,T, µ0) is equivalent to examining the stability
properties of the HDS H with (FΨ,GΨ,ΨC ,ΨD) defined by
(24a)-(24c). In this case, we can study the stability properties
of this HDS with respect to the set A given by (15), where Aψ

is the following compact set

Aψ = {0} × [0,N0] × Qs. (28)

The following Theorem is the first main result of this paper.

Theorem 1. Let N0 ≥ 1, Qs , ∅, Qu = ∅, and consider the
HDS H with (FΨ,GΨ,ΨC ,ΨD) given by (24a)-(24c). Suppose
that Assumptions 2-3 hold, and

τd >
ln(r)

minq∈Q cq,3
, (29)

where r B max{1, χ}, and χ > 0 is given in Assumption 3. For
each (T, k) ∈ R>0 × R≥1, the following holds:

(a) If ∆(µk) = 0, then the setA is PT-SF forH .

(b) If ∆(µk) = 1, then the setA is PT-ISSF forH .

(c) If ∆(µk) = µ−ℓk , then for any ℓ > 0 the set A is PT-ISS-CF

forH .

Proof: The proof has three main steps.

Step 1: Stability of the “target” HDS Ĥ in the (s, j)-Hybrid
Time Scale: The overall HDS is given by (25), which in
the (s, j)-time scale is given by (26). To study the stability
properties of system (26), we consider the Lyapunov function
W(ẑ) B Vq̂(x̂, τ̂)eln(r)τ̂. By Assumption 3, this function satisfies
c|ẑ|p
A
≤ W(ẑ) ≤ c|ẑ|p

A
, ∀ ẑ ∈ C ∪ D, with c B minp∈Q c1,p,

c B eln(r)N0 c2, and c2 B maxp∈Q c2,p. When ẑ ∈ C, for all
η ∈ [0, 1/τd], we have:

⟨∇W(ẑ), F̂T (ẑ, û)⟩ =
〈
∇Vq̂(x̂, τ̂),

(
fq̂(x̂, û, τ̂)

η

)〉
eln(r)τ̂

+ ⟨ln(r)Vq̂(x̂, τ̂)eln(r)τ̂, ˙̂τs⟩

≤ −c3

(
1 −

ln(r)
c3τd

)
W(ẑ) + c4eln(r)N0∆(µ̂k)|û|p,

where c3 B minp∈Q cp,3, c4 B maxp∈Q cp,4, and where we used
item (b) in Assumption 3. On the other hand, when ẑ ∈ D we
can use Assumption 3-(d) to obtain

W(ẑ+) = Vq̂+ (x̂+, τ̂+)eln(r)τ̂+ = Vq̂+
(
Rq̂(x̂), τ̂ − 1

)
eln(r)(τ̂−1)

≤ χVq̂(x̂, τ̂)eln(r)(τ̂−1) =
χ

r
W(ẑ).

Thus, using the definition of r, during jumps we obtain W(ẑ+)−
W(ẑ) ≤ −

(
1− χ

max{1,χ}

)
W(ẑ) ≤ 0. Using Lemma 10 in the Ap-

pendix, we conclude that every solution ẑ of system (26) satis-
fies:

|ẑ(s, j)|A ≤ κ1e−κ2(s+ j)|ẑ(0, 0)|A + κ3 · sup
0≤ζ≤s

|∆̂(ζ)|, (30)

for all (s, j) ∈ dom(ẑ), where κ1 =
(
c/c

)1/p
e

λ
2p

τd
1+τd

N0 κ2 =

λτd/(2p(1 + τd)), κ3 =
(
2c4rN0/[λc]

)1/p
, λ = c3 − ln(r)/τd,

and ∆̂(s) B ∆(µ̂k(s))û(s). Moreover, when ∆(µ̂k) = µ̂−ℓk , via
Lemma 11 in the Appendix, there exists βk ∈ KL such that
every solution ẑ of system (26) satisfies:

|ẑ(s, j)|A ≤ βk

(
κ1|ẑ(0, 0)|Ae−κ2(s+ j) + κ3|û|(s, j), s

)
, (31)

for all (s, j) ∈ dom(ẑ), with κ1 B κ1, κ2 B
κ2
2 , κ3 B 2κ3.

Step 2: PT-ISSF of the HDS in the (t, j) - Time Scale: We now
use the properties of the solutions ẑ of system (26) to estab-
lish properties for the solutions z of system (25). First, we
use Proposition 2 and let s = Tk(t), which yields e−κ2(s+ j) =

e−κ2(Tk(t)+ j), and |ẑ(Tk(t), j)|A = |z
(
T −1

k (Tk(t)), j
)
|A = |z(t, j)|A.

Then, by substituting in (30) and noting that Tk(0) = T −1
k (0) =

0, it follows that when ∆ = 0 or ∆ = 1, every solution
z = (ψ, µk) of the HDS (25) with µk(0, 0) = µ0 ≥ 1 satisfies
the bound:

|z(t, j)|A ≤ κ1e−κ2(Tk(t)+ j)|z(0, 0)|A + κ3∆|u|(t, j), (32)

for all (t, j) ∈ dom(ψ), which implies that A is PT-ISSF . Simi-
larly, when ∆(µ̂k) = µ̂−ℓk , (31) leads to:

|z(t, j)|A ≤ βk

(
κ1|z(0, 0)|Ae−κ2(Tk(t)+ j) + κ3|u|(t, j),Tk(t)

)
, (33)

for all (t, j) ∈ dom(z). Inequality (33) implies thatA is PT-ISS-
CF .

Step 3: Length of solutions in the (t, j) - Time Scale: Finally,
we show that supt(dom(z)) = ΥT,k for all solutions z of (25).
First, note that by the definition of Tk and Proposition 2, we
have supt(dom(z)) = ΥT,k if and only if sups(dom(ẑ)) = ∞. Fur-
thermore, based on the bound (27), we obtain hat j ≤ 1

τd
s + N0

for any (s, j) ∈ dom(ẑ). Since every complete solution ẑ of (26)
satisfies length(dom(ẑ)) = ∞, and noting that length(dom(ẑ)) =
sups(dom(ẑ)) + sup j(dom(ẑ)), we can infer that if j → ∞,
then s → ∞. Consequently, every complete solution of (26)
must satisfy sups(dom(ẑ)) = ∞, which in turn implies that
supt(dom(z)) = ΥT,k for such solutions. ■

The following Corollary covers the case k = 1, which is the
most common in the literature of PT-S [1, 24].

Corollary 1. Suppose that all the assumptions of Theorem 1
hold, and that k = 1. Then, for every solution z = (x, τ, q, µk)
to H , and all (t, j) ∈ dom(z), the state x satisfies the following
properties:

1. If (20b) holds with ∆(µ1) = 0 or ∆(µ1) = 1, then

|x(t, j)| ≤ κ1

(
µ0

µ1(t, j)

)κ2T

e−κ2 j|x(0, 0)| + κ3∆|u|(t, j), (34)
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where κi > 0 for i ∈ {1, 2, 3}.

2. If (20b) holds with ∆(µ1) = µ−ℓ1 , then:

|x(t, j)| ≤
α1µ

α2
0

µ1(t, j)α3

(
e−α4 j

µ1(t, j)α5
|x(0, 0)| + α6|u|(t, j)

)
, (35)

where αi > 0 for i ∈ {1, 2, . . . , 6}. □

Proof: Using (11b) and the bounds obtained in Step 2
of the proof of Theorem 1, it follows that e−κ2(Tk(t)+ j) =

e
−α ln

(
µ1(t)
µ0

)
e−κ2 j =

(
µ0
µ1(t)

)α
e−

α
T j where α = κ2T . Since |z|A = |x|

for every solution, inequality (32) becomes (34). Similarly, in-
equality (33) becomes (35) with α1 B κ1, α2 B (κ3 + κ2)T ,
α3 B κ3T , α4 B κ2, α5 B κ2T , and α6 B κ4. ■

4.3. PT-ISS in R-Switching Systems with Unstable Modes

We now consider the scenario where some of the modes fq in
(18) are unstable, i.e., Qu , ∅ and Q = Qs ∪ Qu. To study this
case, we introduce a blow-up average activation-time (BUk-
AAT) condition on the amount of time that the unstable modes
can remain active in any sub-interval of [0,ΥT,k).

Definition 5. A switching signal σ : [0,ΥT,k) → Q is said to
satisfy the blow-up average activation-time condition of order
k (BUk-AAT) if there exist T0 > 0 and τa > 1 such that for each
pair of times t2, t1 ∈ dom(σ):∫ t2

t1
µk(t) · IQu (σ(t))dt ≤

1
τa
ωk (µk(t2), µk(t1)) + T0, (36)

where µk is given by (5). We denote the family of such signals
as ΣBUk-AAT(Qu, τa,T0,T, µ0). □

Remark 16. For asymptotic and exponential stability results in
switching systems with both stable and unstable modes [41, 31,
26], it is common to restrict the family of admissible switching
signals to those that satisfy the ADT condition (27) and the
following average activation-time (AAT) condition:∫ t2

t1
IQu (σ(t))dt ≤

1
τa

(t2 − t1) + T0, (37)

where τa > 1, and T0 > 0. This bound can be recovered from
(36) by taking the limit as T → ∞ in both sides of (36) and
using µ0 = 1. Also, note that for k = 1, the BU1-AAT condition
reduces to:∫ t2

t1

IQu (σ(t))
ΥT,1 − t

dt ≤
1
τa

ln
(

T − t1µ0

T − t2µ0

)
+ T0.

Similar bounds can be obtained for k ∈ Z≥2 using (5). □
Figure 3 compares the BUk-AAT bounds and the traditional

AAT bound (37). The left plot shows the left-hand side of (36)
for different values of k, under a particular switching signal σ
that switches between one stable mode and one unstable mode.
The classic AAT bound is shown in purple color. The right plot
shows (36) for k = 1 and different values of τa.

To study the PT-S properties of the R-Switching system (18)
when Q contains unstable modes, we now consider the HDSH
with state ψ = (x, τ, ρ, q) ∈ Rn+3, set-valued mappings:

FΨ B { fq(x, µk, u, τ)}×
[
0,

1
τd

]
×

([
0,

1
τa

]
− IQu (q)

)
× {0},

(38a)

GΨ B {Rq(x)} × {τ − 1} × {ρ} × Q\{q}, (38b)

and sets:

ΨC = Rn × [0,N0] × [0,T0] × Q, (38c)
ΨD = Rn × [1,N0] × [0,T0] × Q. (38d)

There is a close connection between the hybrid time domains of
the solutions generated by the HDS H with data (38), and the
switching signals that simultaneously satisfy (22) and (36).

Lemma 7. Let (FΨ,GΨ,ΨC ,ΨD) be given by (38a)-(38c), and
consider the HDSH given by (4), under Assumption 2-3. Then,
Assumption 1 holds, and:

(a) For every maximal solution z to H and for any pair
(t1, j1), (t2, j2) ∈ dom(z), with t2 > t1, inequality (22) holds
with N(t2, t1) = j2 − j1, and inequality (36) holds with
σ(t) = q(t, j(t)), where j(t) B min{ j ∈ Z≥0 : (t, j) ∈
dom(z)}.

(b) For every HTD satisfying property (a), there exists a solu-
tion z ofH having the said HTD. □

Proof: The overall HDS has state z = (ψ, µk) ∈ Rn+4 with
ψ = (x, τ, ρ, q, ), and the following dynamics:

z ∈ C B Rn × [0,N0] × [0,T0] × Q × R≥1, (39a)

ż =



ẋ

τ̇

ρ̇

q̇

µ̇k



∈ F(z, u) B



µk · fq(x, µk, u, τ)[
0,
µk

τd

]
[
0,
µk

τa

]
− µkIQu (q)

0

k
T
µ

1+ 1
k

k



, (39b)

z ∈ D B Rn × [1,N0] × [0,T0] × Q × R≥1, (39c)

z+ =



x+

τ+

ρ+

q+

µ+k


∈ G(z, u) B



Rq(x)

τ − 1
ρ

Q \ {q}
µk


. (39d)

This system has a finite escape time at t = ΥT,k, induced by µk.
Note that, by construction, the states (τ, ρ, q) are confined to the
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Figure 3: Functions appearing in the BUk-AAT condition (36) using the switching signal σ(·) (see inset), T = 10, and µ0 = 1.

compact sets [0,N0], [0,T0], and Q respectively. Using the time
variable s = Tk(t) defined in (7), and Proposition 2, we obtain
the following HDS in the (s, j)-time scale:

ẑ ∈ C, ˙̂zs =



˙̂xs

˙̂τs

˙̂ρs

˙̂qs

˙̂µks



∈ F̂(ẑ, û) B



fq(x̂, µ̂k, û, τ̂)[
0,

1
τd

]
[
0,

1
τa

]
− IQu (q̂)

0

k
T
µ̂

1
k
k



, (40a)

ẑ ∈ D, ẑ+ ∈ G(ẑ), (40b)

where the subscript s in (40a) indicates that the time deriva-
tive is taken with respect to s. Since (40) incorporates an ADT
automaton τ̂ and a time-ratio monitor ρ̂, by [31, Lemma 7] ev-
ery solution ẑ of (40) has a hybrid time domain such that for
any pair (s1, j1), (s2, j2) ∈ dom(ẑ) the bound (27) is satisfied, as
well as the following bound:

T(s1, s2)B
∫ s2

s1

IQu (q̂(s, ȷ̂(s)))ds ≤
1
τa

(s2 − s1) + T0, (41)

where ȷ̂(s) B min { j ∈ Z≥0 : (s, j) ∈ dom(q̂)}. Moreover, by
[31, Lemma 7] every hybrid arc satisfying (41) can be generated
by the HDS (40). Using s = Tk(t), the left-hand side of (41) can
be expressed in the t-variable as:

T(Tk(t2),Tk(t1))=
∫ t2

t1

∂Tk(t)
∂t

· IQu

(
q̂
(
Tk(t), ȷ̂

(
Tk(t)

)))
dt

=

∫ t2

t1
µk(t) · IQu

(
q(t, j(t))

)
dt, (42)

where we used Proposition 1-(P3), together with the equality

q̂(Tk(t), ȷ̂ (Tk(t))) = q
(
T −1

k (Tk(t)), j
(
T −1

k (Tk(t))
))
= q(t, j(t)).

Using (41)-(42), together with Proposition 1-(P2), the AAT
condition in the (t, j)-time scale becomes∫ t2

t1
µk(t) · IQu (q(t, j(t)))dt ≤

1
τa
ωk (µk(t2), µk(t1)) + T0,

which is precisely (36). The fact that inequality (22) holds fol-
lows by Lemma 6. ■

Similar to Lemma 6, the result of Lemma 7 enables the study
of the stability properties of the R-Switching system (18), under
switching signals σ satisfying (22) and (36), by studying the
stability properties of the HDS (39). In this case, we consider
the setA given by (15), whereAψ is now given by

Aψ = {0} × [0,N0] × [0,T0] × Q. (43)

The next theorem is the second main result of this paper.

Theorem 2. Let N0 ≥ 1, T0 > 0, Qu , ∅, Qs , ∅, and consider
the HDSH given by (4) with (FΨ,GΨ,ΨC ,ΨD) given by (38a)-
(38c). Suppose that Assumptions 2-3 hold, and that

1 >
1

c3τd
ln(r) +

1
τa

(
1 +

c5

c3

)
, (44)

where r = max{1, χ}, χ > 0 is given in Assumption 3, c3 =

minp∈Q cq,3, and c5 = maxp∈Q cq,5. For each (T, k) ∈ R>0 × R≥1
the following holds:

(a) If ∆(µk) ≜ 0, then the setA is PT-SF.

(b) If ∆(µk) ≜ 1, then the setA is PT-ISSF.

(c) If ∆(µk) ≜ µ−ℓk , ℓ > 0, then the setA is PT-ISS-CF. □

Proof: The proof follows the same three steps as in the proof
of Theorem 1. We start by using the time dilation T −1

k and
Proposition 2. Hence, we consider the HDS (40) in the (s, j)-
time scale, with state ẑ = (x̂, τ̂, ρ̂, q̂, µ̂k). To study the stabil-
ity properties of this system, let ξ̂ B ln(r)τ̂ + (c3 + c5)ρ̂, and
consider the Lyapunov function W2(ẑ) = Vq̂(x̂, τ̂)eξ̂, which,
by Assumption 3-(a), satisfies φ|ẑ|2

A
≤ W2(ẑ) ≤ φ|ẑ|2

A
, with
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φ = minp∈Q cp,1, φ = maxp∈Q cp,2eln(r)N0+(c3+c5)T0 . When ẑ ∈ C,
the time derivative of ξ̂ with respect to s satisfies:

˙̂ξs = ln(r) ˙̂τs + (c3 + c5) ˙̂ρs ∈ [0, δ] − (c3 + c5)IQu (q̂),

where δ B 1
τd

ln(r) + 1
τa

(c3 + c5). Using the above expression
together with Assumption 3, we evaluate the change of W2 dur-
ing the flows of stable and unstable modes. In particular, when
ẑ ∈ C and q̂ ∈ Qs, we have

⟨∇W2(ẑ), ˙̂zs⟩ = eξ̂
〈
∇Vq̂(x̂, τ̂), ˙̂xs

〉
+ eξ̂Vq̂(x̂, τ̂) ˙̂ξs

≤ −(c3 − δ)W2(ẑ) +
c4

c2
φ∆̂(s)|û|p, (45)

where ∆̂(s) B ∆(µ̂k(s))û(s), c2 B maxp∈Q c2,p and c4 =

maxp∈Q c4,p, and where c3 − δ > 0 since (44) is satisfied by
assumption. On the other hand, when ẑ ∈ C and q̂ ∈ Qu:

⟨∇W2(ẑ), ˙̂zs⟩ ≤
(
c5Vq̂(x̂, τ̂) + c4∆̂(s)|û|

)
eξ̂ + Vq̂(x̂, τ̂)eξ̂ ˙̂ξs

≤
(
δ − c3

)
W2(ẑ) + c4∆̂(s)|û|eξ̂

≤ −
(
c3 − δ

)
W2(ẑ) +

c4

c2
φ∆̂(s)|û|p,

which is the same bound as (45).
During jumps, it follows that ξ̂+ = ln(r)τ̂+ + (c3 + c4)ρ̂+ =

ξ̂− ln(r) for all ẑ ∈ D. Then, using Assumption 3, the Lyapunov
function satisfies:

W2(ẑ+) = Vq̂+ (x̂+, τ̂+)eξ̂
+

= Vq̂+
(
Rq̂(x̂), τ̂ − 1

)
eξ̂−ln(r)

≤ χVq̂(x̂, τ̂)eξ̂−ln(r) =
χ

max{1, χ}
W2(ẑ) ≤ W2(x̂).

It follows that W2(ẑ+) −W2(ẑ) ≤ 0 for all ẑ ∈ D. Using Lemma
10 in the Appendix, we conclude that every solution ẑ satisfies
the bound

|ẑ(s, j)|A ≤ κ1|ẑ(0, 0)|Ae−κ2(s+ j) + κ3∆̂(s)|û|(s, j),

for all (s, j) ∈ dom(ẑ), where κ1 =
(
φ/φ

)1/p
e

λ
2p

τd
1+τd

N0 κ2 =

λτd/(2p(1 + τd)), κ3 =
(
2c4φ/[c2λφ]

)1/p
, λ = c3 − δ, and

∆̂(s) B ∆(µ̂k(s))û(s). From here, the bounds (16)-(17) are ob-
tained following the exact same arguments used in Steps 2 and
3 of the proof of Theorem 1. ■

Remark 17 (Switching with Non-PT Unstable Modes). It is
reasonable to consider a situation where the unstable modes in
(18a) do not have time-varying gains, i.e., µk ≡ 1 when q ∈ Qu.
In particular, consider a system switching between the follow-
ing two families of systems:

ẋ = µk fq(x), q ∈ Qs, and ẋ = fp(x), p ∈ Qu,

where the modes in Qs satisfy (20b), and the modes in Qu sat-
isfy (20c) with u ≡ 0. Following the same approach of Theorem
2, and operating in the s-time scale for the flows, we now obtain

the following two type of modes:

˙̂xs = fq(x̂), q ∈ Qs, and ˙̂xs =
1
µ̂k

fp(x), p ∈ Qu.

For this system, the same Lyapunov-based analysis can be ap-
plied as in the proof of Theorem 2 to obtain the bound (45)
for all q ∈ Qs. On the other hand, for q ∈ Qu, we now ob-
tain ⟨∇W2(ẑ), ˙̂zs⟩ ≤ −

(
c3 − δ

)
W2(ẑ) − c5

(
1 − 1

µ̂k

)
W2(ẑ). Note

that 1 − 1
µ̂k
≥ 0 since µ̂k ≥ 1 by Lemma 3. This implies that

⟨∇W2(ẑ), ˙̂zs⟩ ≤ −
(
c3 − δ

)
W2(ẑ). From here, the proofs follow

the same steps as in the proof of Theorem 2. □

Remark 18. While all our results assumed that the resets (18b)
were stabilizing, or at least, not destabilizing, it is possible to
extend Theorems 1-2 to cases where the resets are destabilizing,
provided the flows of the HDS are “sufficiently” frequent com-
pared to the jumps. In this case, stability can be established by
a simple modification of the Lyapunov functions used to study
the target systems Ĥ as in [25, Prop. 3.29]. □

We conclude this section by noting that, with some additional
effort, the stability results of Theorems 1-2 could be extended to
systems for which Lyapunov functions with monomial bounds
do not exist. While this represents an interesting research direc-
tion, such characterizations are beyond the scope of this paper
and could be more appropriately studied in the future within the
context of integral-ISS, as described in [26]. For our applica-
tions of interest, discussed in the next section, as well as oth-
ers not detailed here due to space constraints (e.g., concurrent
learning [44], extremum seeking [17], feedback-optimization),
Assumption 3 is typically satisfied.

5. APPLICATIONS TO PT-CONTROL AND PT-
DECISION MAKING

This section presents two applications that illustrate our main
results. Throughout this section, the state q and the blow-up
gain µk are assumed to follow the hybrid dynamics H defined
in (4), with data given by (24) or (38). Since practical imple-
mentations of PT-Stable algorithms typically involve early ter-
minations to avoid numerical instabilities, as well as techniques
such as clipping and saturation [2, 17, 11], for all our numeri-
cal simulations we employ a fourth-order Runge-Kutta method
with fixed time step δt = 10−6 and we saturate the blow-up gain
µk at 1 × 103.

5.1. PT-Regulation with Intermittent Feedback

Consider a switched input-affine system with intermittent
feedback, of the form:

ẋ = dq(x) + IQs (q) bq(x)uq(x, µk), (46)

where x ∈ Rn, q ∈ Q = Qs ∪ Qu is a logic state and Qu , ∅.
The blow-up gain µk is as defined in (5), dq(x) ∈ Rn and
bq(x) ∈ Rn×n denote mode-dependent drift and input vector
fields, respectively, uq : Rn × R≥1 → Rn is the control input,
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and IQs (q), is an indicator function representing the intermittent
nature of the feedback. Such input-affine switching systems
model diverse phenomena, ranging from gene regulatory net-
works in biology [45] to hybrid locomotion in robotics [46].
Incorporating intermittent feedback enhances the practical rel-
evance of these models by addressing challenges such as lim-
ited sensor availability, and adversarial operating environments.
The implementation of prescribed time controllers proves cru-
cial in scenarios demanding strict time constraints thereby ex-
tending the applicability of these models to time-sensitive ap-
plications.

We assume that bq(·) and dq(·) are unknown locally Lipschitz
functions, which satisfy the following properties:

|dq(x)| ≤ dq(x), ∀ q ∈ Q, x ∈ Rn,

bq(x) + bq(x)⊤ ⪰ ϵIn, ∀ q ∈ Qs, x ∈ Rn,

where ϵ > 0, and dq(x) > 0 is a known scalar-valued function
assumed to be continuous for all x ∈ Rn and all q ∈ Q. We
also assume that dq(x) is ℓq-globally Lipschitz for all q ∈ Qu.
To regulate the state x to the origin in a prescribed time, we
consider the following switching feedback-law:

uq(x, µk) = −µk

(
ηq + δqdq(x)2

)
x, (47)

with δq > 0 and ηq > 0 and k ≥ 2. The closed-loop system
has the form of the HDSH with data (38) and continuous-time
dynamics of x given by:

ẋ = µk(t) fσ(t)(x, µk), (48)

where, for every q ∈ Q, f q : Rn × R≥1 → Rn
≥0 is given by

fq(x, µk) B −IQs (q)
(
ηq + δqψq(x)2

)
bq(x)x +

1
µk

dq(x).

The following proposition extends the results of [1, Sec. 3] to
the scenario where the system switches between multiple stable
and unstable modes:

Proposition 3. There exists τd > 0 and τa > 0 such that the set
Aψ × R≥1 is PT-ISS-CF for the closed-loop system, where Aψ

is as given in (43). Additionally, the switching feedback-law
uq is bounded over the continuous-time interval [0,ΥT,k) and
converges to 0 as t → ΥT,k. □

Proof: We show that under Assumption 4 a suitable Lyapunov
function can be used to show that Assumption 3 is satisfied.
Let Vq̂(x̂) = 1

2σq̂
|x̂|2 for every q̂ ∈ Qs. By employing Young’s

inequality, we obtain〈
∇Vq̂(x̂), fq̂(x̂, µ̂k)

〉
≤ −2σq̂ηq̂Vq̂(x̂) +

1
µ̂2

k

1
4σ2

q̂δq̂
, (49)

for all q̂ ∈ Qs. Similarly, for all q̂ ∈ Qu let Vq̂(x̂) = |x̂|
2

2 . Using

this function, we obtain

〈
∇Vq̂(x̂), fq̂(x̂, µ̂k)

〉
≤ Vq̂(x̂) +

1
µ̂2

k

d̄2
q̂

2
, (50)

for all q̂ ∈ Qu. Using cq̂,1 = cq̂,2 = 1/2σq̂, cq̂,3 = 2σq̂ηq̂, cq̂,4 =

1/4σ2
q̂δq̂, when q̂ ∈ Qs, and cq̂,1 = cq̂,2 = 1/2, cq̂,5 = 1, cq̂,4 =

d̄2
q̂/2 when q̂ ∈ Qu, together with the set of smooth functions
{Vq̂}q̂∈Q, Assumption 3 is satisfied. Thus, we can always pick
τa > 1 and τd > 0 large enough to satisfy the stability condition
(44). Additionally, Assumption 2 is satisfied by the Lipschitz
properties of both dq(·) and bq(·). Assumption 1 is met by the
same Lipschitz property and the construction of the HDS H
with data (38). It follow that Aψ × R≥1 is PT-ISS-CF for the
closed-loop system via Theorem 2-c).

We now prove the boundedness and convergence to 0 of the
switching feedback-law uq given in (47). By applying (33) from
the proof of Theorem 2-c), for any (x0, µ0) ∈ Rn × R≥1 and any
solution z = (x, τ, ρ, q, µk) to the closed-loop system satisfying
x(0, 0) = x0 and µk(0, 0) = µ0 we obtain:

|x(t, j)| ≤ βk(κ1e−κ2(Tk(t)+ j)|x(0, 0)| + κ3u,Tk(t)), (51)

for all (t, j) ∈ dom(z), where κ1, κ2, κ3 > 0,

u B max
{

maxq∈Qs
1

4σ2
qδq
, maxq∈Qu

d
2
q

2

}
, and βk(r, s) =

r · max{κ1e−κ2 s, ξ−2
k (s)} C r · αk(s), with ξk(s) =

(
k−1
T s + 1

) k
k−1 ,

is the same KL function obtained in Lemma 11. Then, from
(51) we obtain:

|x(t, j)| ≤
(
κ1e−κ2(Tk(t)+ j)|x(0, 0)| + κ3u

)
αk(T (t)),

for all (t, j) ∈ dom(z). Hence, uq satisfies:∣∣∣uq(x(t, j), µk(t))
∣∣∣ ≤ r̃k(t, j)

∣∣∣∣ηq+δqd
2
q(x(t, j))

∣∣∣∣ µk(t)αk(Tk(t)),

for all (t, j) ∈ dom(z) and all q ∈ Q, where r̃k(t, j) =(
κ1e−κ2(Tk(t)+ j)|x(0, 0)| + κ3u

)
. Since dq(·) is assumed to be

continuous for all x ∈ Rn, it is locally bounded. Then,
r̃k(t, j)

∣∣∣∣ηq + δqd
2
q(x(t, j))

∣∣∣∣ is bounded as r̃(t, j) is bounded by

definition. Now, note that αk(s) = max{κ1e−κ2 s, ξ−2
k (s)} =

ξ−2
k (s) for s sufficiently large since the inverse exponen-

tial decays faster than any proper rational function. Ad-
ditionally, by leveraging the result of Proposition 2 it

follows that µk(t) = µ̂k(Tk(t)) =

(
k−1
T Tk(t) + µ

k−1
k

0

) k
k−1

for k ≥ 2. Then, as t → ΥT,k we have that

µk(t)αk(Tk(t)) =
[(

k−1
T Tk(t) + µ

k−1
k

0

)
/
(

k−1
T Tk(t) + 1

)2
] k

k−1
which

implies that µk(t)αk(Tk(t)) → 0. Using this fact, to-
gether with the inequality above and the boundedness of
r̃k(t, j)

∣∣∣∣ηq + δqd
2
q(x(t, j))

∣∣∣∣, allows us to conclude that uq → 0

as t → ΥT,k. ■

To illustrate Proposition 3 with a numerical example, con-
sider Qs = {1, 2}, Qu = {3}, and x ∈ R. Let dq(x) =
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No Feedback

Prescribed-Time

Exponential

Figure 4: Comparison between controller with Exponential convergences and PT-Regulation with intermittent feedback. Left: Trajectory of system’s state norm
plotted in logarithmic scale. Center: Trajectories of the switching feedback law uq. Right: Trajectories of the switching signal σ (top), the dwell-time state τ
(middle), and the monitor state ρ (bottom) for the PT-Regulation mechanism with intermittent feedback.

q tanh(x), bq(x) = 1, ∀q ∈ Q, and consider the control-
law uq(x, t) = −µ2(t)(1 + q|x|2)x. Then, all the conditions
to apply Proposition 3 are satisfied. We numerically ver-
ify the PT-ISS-CF property by using a switching signal σ ∈
ΣBU-ADT(τd,N0,T, µ0) ∩ ΣBU-AAT(Qu, τa,T0,T, µ0) with τa = 2,
τd = 1, T = 10, T0 = 2, and N0 = 1.5. Figure 4 displays
the trajectories of the norm of the state x plotted in logarithmic
scale, the switching feedback-law uq, the switching signal σ,
and the associated average dwell-time and average activation
time states τ and ρ. As shown in the figure, the state x and the
switching feedback-law uq rapidly approach zero as t → ΥT,1
and converge faster than using a switching feedback with static
gains (for exponential convergence). The overshoot occur when
the system is in one of the modes without feedback.

5.2. PT-Decision-Making in Switching Games
Consider a non-cooperative game with n ∈ Z≥2 players

[10], where the cost functions defining the game are allowed
to switch in time. Specifically, for each i ∈ V = {1, 2, · · · , n},
the ith player has an associated mode-dependent and continu-
ously differentiable cost function ϕi

q : Rn → R, where q ∈ Q.
We refer to the qth game as the game with the set of cost
functions

{
ϕi

q

}
i∈V

. The action of the ith player is denoted by
xi

1 ∈ R, and the action profile of the game is given by the vec-
tor x1 B

(
x1

1, x
2
1, . . . , x

n
1

)
∈ Rn. The goal of the players is to

converge to the unique common Nash equilibrium (NE) of the
games [47, 10], defined as the vector x̃ ∈ Rn that satisfies:

ϕi
q

(
x̃i, x̃−i

)
= inf

xi
1∈R

ϕi
q

(
xi

1, x̃−i
)
, ∀i ∈ V,

for all q ∈ Q, where x−i
1 ∈ R

n−1 denotes the vector that contains
all actions except those of player i. To study this problem, let
Gq : Rn → Rn denote the pseudo-gradient of the qth game,
which is given by:

Gq(x1) B

∂ϕ1
q

∂x1
1

,
∂ϕ2

q

∂x2
1

, . . . ,
∂ϕn

q

∂xn
1
,

 .
For all q ∈ Q, we assume that there exists κq > 0 and ℓq > 0
such that Gq is a κq-strongly monotone and ℓq-globally Lips-

chitz mapping. These properties are common in NE seeking
problems and they guarantee the existence and uniqueness of
the NE x̃ [10]. To efficiently achieve convergence to the NE in
a prescribed time, we introduce PT high-order NE-seeking dy-
namics with momentum and resets (PT-NESmr). The proposed
algorithm is modeled as a HDS H with data (24) and maps fq
and Rq defined as follows:

fq(x, τ) =


2
η(τ)

(x2−x1)

−2η(τ)Gq(x1)

 , Rq(x) =
(
x1

x1

)
, (52)

where x B (x1, x2) ∈ R2n, and x2 B (x1
2, x

2
2, . . . , x

n
2) ∈ Rn, and

where η : [0,N0]→ [η, η] is an affine bounded mapping defined
as:

η(τ) B τ

(
η − η

)
N0

+ η (53)

with η > η > 0 being tunable parameters. In the context of
asymptotic convergence, mappings of the form (52), which in-
corporate momentum (via the state x2) and resets (via the up-
date x+2 = x1), have been recently shown to improve the tran-
sient performance of NE-seeking dynamics in (stable) strongly
monotone games [43]. To further make the convergence time
independent of both the initial conditions and of the monotonic-
ity properties of the game, we study convergence to the NE in
prescribed-time.

For every q ∈ Q, let σq > 0 be such that σmax

(
I − ∂Gq(x)

)
≤

σq for all x ∈ R, with σmax(·) denoting the maximum singular
value of its argument. Such σq always exists since the pseudo-
gradient Gq is assumed to be globally Lipschitz for all q ∈ Q.
We make the following assumption on the parameters of the
game and the selection of the tunable parameters in (52)-(53).

Assumption 4 (Tuning Guidelines). There exist 0 ≤ η ≤ η,
δη > 0, and δd > 0 satisfying δη + δd B δ ∈ (0, 1) and:

η2
≤ δη

minq∈Q ζq(
maxq∈Q σq

)2 ,
1
τd
≤ δd

N0

η − η
min
q∈Q

ζq, (54)

for some τd > 0 and N0 ≥ 1, where ζq B κq/ℓ
2
q. □
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PT-NESmr
PT-PSG

Exponential-PSG

not strongly monotone

Figure 5: Comparison between Pseudo-Gradient Flow (PSG) with exponential convergence and PT Nash-Equilibrium Seeking in a Switching Game. Left: Trajectory
of the errors to the NE generated by the PT-NESmr, the PT-PSG, and the Exponential PSG dynamics. Right: Trajectories of the switching signal σ(t) (top), the
dwell-time state τ (middle), and the monitor state ρ(t) (bottom) for the PT-NESmr dynamics.

The stability properties of the states x1, x2 are studied with
respect to the following set

Ax B {x̃} × {x̃} ⊂ Rn × Rn. (55)

The following proposition establishes PT-SF of the set Ax un-
der the PT-NESmr dynamics.

Proposition 4. Suppose that Assumption 4 is satisfied. Then,
the PT-NESmr dynamics render the setAx × [0,N0] × Q × R≥1
PT-SF, provided

τd >
max

{
3, 2

(
1
κ2 + η

2
)}

ln (r)

4ην
, (56)

where ν = (1−δd−δη)σ2

δη(1−δd)ζ+σ2 , σ B maxq∈Q σq, ζ B minq∈Q ζq, and

r = max
{
1, ℓ

2

κ2
η(N0−1)2

η(1)2 +
1

2κ2η(1)2

}
. □

Proof: We show that, under Assumption 4, a suitable Lya-
punov function for the “target” system Ĥ can be used to show
that Assumption 3 is satisfied. Indeed, for every q̂ ∈ Q consider
the Lyapunov function

Vq̂(x̂, τ̂) =
1
4
|x̂2 − x∗|2 +

1
4
|x̂2 − x̂1|

2 +
η(τ̂)2

2

∣∣∣Gq̂(x̂1)
∣∣∣2 ,

which in the flow set and jump set satisfies: vq̂,1|x̂|2Ax
≤

Vq̂(x̂, τ̂) ≤ vq̂,2|x̂|2Ax
, with vq̂,1 B 0.25 min

{
1, 2κ2

q̂η
2
}
, and vq̂,2 B

0.25 max
{
3, 2 + 2ℓ2

q̂η
2
}
. Let

L( fq̂,ρ)Vq̂(x̂, τ̂) B
〈
∇Vq̂(x̂, τ̂),

(
fq̂(x̂, τ̂)
ρ

)〉
(57)

Since Gq̂(·) is κq̂-strongly-monotone and ℓq̂−Lipschitz, we have
that

〈
x1 − x̃, Gq̂(x̂1)

〉
≥ ζq̂

∣∣∣Gq̂(x̂1)
∣∣∣2, where ζq̂ = κ

2
q̂/ℓq̂. During

flows:

L( fq̂,ρ)Vq̂(x̂, τ̂) = −
1
η(τ̂)
|x̂2 − x̂1|

2

− 2η(τ̂)
〈
Gq̂(x̂1),

[
I − ∂Gq̂(x̂1)

]
(x̂2 − x̂1)

〉
− η(τ̂)

[〈
x̂1 − x∗, Gq̂(x̂1)

〉
− ρη′(τ̂)|Gq̂(x̂1)|2

]
≤ −η(τ̂)

〈
χq̂, Mζq̂ (x̂1, τ̂)χq̂

〉
, (58)

for all (x̂, τ̂, ρ) ∈ R2n × [0,N0] × [0, τ−1
d ], where χq̂ B(

x̂2 − x̂1,Gq̂(x̂1)
)
∈ R2n, and Mζq̂ is given by

Mζq̂ (x̂1, τ̂) B
( 1

η(τ̂)2 I I − ∂Gq̂(x̂1)⊤

I − ∂Gq̂(x̂1) (ζq̂ − ρη
′(τ̂))I

)
.

Using Lemma 8 in the Appendix, we conclude that
L( fq̂,ρ)Vq̂(x̂, τ̂) ≤ −ηνM |χq̂|

2 for all (x̂1, x̂2, τ̂) ∈ R2n × [0,N0].

Hence, by noting that Vq̂(x̂, τ̂) ≤ 1
4 max

{
3, 2

(
1
κ2

q̂
+ η2

)}
|χq̂|

2 we

obtain:

L( fq̂,ρ)Vq̂(x̂, τ̂) ≤ −
4ηνM

max
{
3, 2

(
1
κ2

q̂
+ η2

)}Vq̂(x̂, τ̂). (59)

Now, for all p̂, q̂ ∈ Q, let

∆V q̂
p̂(x̂, τ̂) B Vq̂

(
Rp̂(x̂), τ̂ − 1

)
− Vp̂(x̂, τ̂), τ̂ ∈ [1,N0].

During jumps:

∆V q̂
p̂(x̂, τ̂) = Vq̂ ((x̂1, x̂1), τ̂ − 1) − Vp̂(x, τ̂) (60)

≤ −
1
4
|x̂1 − x∗|2 −

1
4
|x̂1 − x̂2|

2 +
1

4κ2
p̂

|Gp̂(x̂1)|2

+
1
2

η(N0 − 1)2
ℓ2

q̂

κ2
p̂

− η(1)2

 ∣∣∣G p̂(x̂1)
∣∣∣2

≤ −
(
1 − γq̂

p̂

)
Vp̂(x̂, τ̂),
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where γq̂
p̂ B

2η(N0−1)2ℓ2
q̂+1

2κ2
p̂η(1)2 . The above inequality implies that

Vq̂

(
Rp̂(x̂), τ̂ − 1

)
≤ γ

q̂
p̂Vp̂(x̂, τ̂). where ℓ B minq̂∈Q ℓq̂, κ B

maxq̂∈Q κq̂, and κ B minq̂∈Q κq̂. Thus, noting that γq̂
p̂ ≤

ℓ
2

κ2
η(N0−1)2

η(1)2 +
1

2κ2η(1)2 C γ, we obtain:

Vq̂

(
Rp̂(x̂), τ̂ − 1

)
≤ γVp̂(x̂, τ̂), (61)

for all τ ∈ [1,N0], p, q ∈ Q. By the smoothness properties of
Gq(·) and the differentiability of η(·), we obtain that fq(x, τ) is
locally Lipschitz and, thus, that Assumption 2 also holds. On
the other hand, note that via a simple change of coordinates,
and without loss of generality, the results of Theorem 1 hold
for A as defined in (28) but with the set {0} replaced by the set
Ax in (55). Therefore, the quadratic bounds on the Lyapunov
function, together with condition (56), (59), and (61), imply PT-
SF ofAx × [0,N0] × Q × R≥1 via Theorem 1-a). ■

Remark 19 (PT-NESmr with non-monotone Gq). Unlike
[43], the results of Proposition 4 can be directly extended to
switching games where some modes lack strong monotonicity
in their pseudo-gradients. In this case, we can use the HDS
H with data (38) and leverage Theorem 2, paralleling the ap-
proach followed in Section V.A to study unstable plants. In this
case, we obtain conditions on τd and τa in H , characterizing
admissible switching signals under which PT-NESmr dynamics
attain prescribed-time stability. This broadens PT-NESmr’s
applicability to switching games with temporary loss of strong
monotonicity. □

To illustrate the previous discussion, let Q = {1, 2, 3} and
Gq(x1) = ϑAq(x1 − x̃), with x̃ = (1, 1), A1 = [6,−1.5;−1.5, 6],
A2 = [8,−2; 2, 8], A3 = [4, 6; 5; 2], and ϑ = 5 × 10−2. The
pseudo-gradient Gq(·) is κq-strongly monotone only for q ∈
{1, 2} C Qs and ℓq-globally Lipschitz for all q ∈ Q. Using k =
1, τd = τa = 2.5, N0 = 1.75, T0 = 2 we simulate the system us-
ing a switching signal σ ∈ ΣBU-ADT(τd,N0,T, µ0) with T = 10.
We compare our results with the continuous-time prescribed-
time pseudo-gradient-flows (PT-PSG), recently introduced in
[48], and given by ẋ1 = µ1(t)Gσ(t)(x1). The resulting trajec-
tories are shown in Figure 5. As shown in the figure, under the
PT-NESmr and the PT-PSG dynamics, the state x1 rapidly ap-
proaches zero as t → ΥT,1 and converges faster than using the
standard pseudo-gradient flows with exponential convergence
guarantees (Exponential-PSG). Also, note that the synergistic
incorporation of momentum, resets, and PT techniques leads
to an improvement compared to the continuous-time PT-PSG
algorithm under the same switching signal. The overshoots oc-
cur when the Nash-equilibrium seeking algorithms operate with
a pseudo-gradient that is not κ-strongly monotone, or equiva-
lently when q ∈ Qu = Q \ Qs.

6. CONCLUSIONS

The property of prescribed-time stability was studied and ex-
tended for a class of hybrid dynamical systems incorporating

switching nonlinear vector fields with time-varying increasing
gains, exogenous inputs, and resets. Novel switching condi-
tions that preserve the prescribed-time stability properties of the
system were derived using tools from hybrid dynamical systems
theory and under a suitable contraction/dilation of the hybrid
time domains. The switching conditions allow the incorpora-
tion of unstable modes. The results were illustrated in two ap-
plications in the context of control and decision-making. Future
applications will include prescribed-time concurrent learning
and prescribed-time switching extremum seeking. Future work
will also include studying the synergies between non-smooth
and prescribed-time tools, as well as consistent discretization
mechanisms for HDS, similar to [49].
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7. Appendix

We present detailed proofs of all the auxiliary lemmas and
propositions used in the paper.

7.1. Proofs of Section 3
The results below follow directly by computations and/or

straightforward extensions or specializations of existing results
in the literature.
Proof of Lemma 1: By direct integration, we have that:∫ µk(t)

µ0

dµk

µ
1+ 1

k
k

=

∫ t

0

k
T

dt =⇒ − kµ
−1
k

k

∣∣∣∣µk(t)

µ0
=

k
T

t.

Thus, it follows that k
(
−µk(t)

−1
k + µk(0)

−1
k

)
= k

T t, and:

1

µk(t)
1
k

=
1

µk(0)
1
k

−
t
T
=

T − tµk(0)
1
k

Tµk(0)
1
k

,

from which we obtain the result. ■

Proof of Lemma 3: By direct integration, we have that:∫ µ̂k(t)

µ0

dµ̂k

µ̂
1
k
k

=

∫ t

0

k
T

dt =⇒
1

1 − 1
k

µ̂
1− 1

. k
k

∣∣∣∣µ̂k(t)

µ0
=

k
T

t.

Therefore, we obtain k
k−1

(
µ̂

1− 1
k

k (t) − µ1− 1
k

0

)
= k

T t, and:

µ̂k(t) =
(

k − 1
T

t + µ
k−1

k
0

) k
k−1

.

This obtains the result. ■
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Proof of Proposition 1:
(P1) Follows by the monotonicity ofωk(·, ·) in its first argument,
combined with the limit limt→ΥT,k µk(t) = ∞.

(P2) For k > 1, the result follows by direct computation. For
k = 1, the result is obtained by the properties of the logarithm.

(P3) By definition, the equality Tk(0) = 0 holds for all k ∈ R≥1.
For k = 1, by direct computation, we have: dT1(t)

dt =
T

µ1(t) µ̇1(t) =
µ1(t). For k > 1, by the chain rule, we obtain:

dTk(t)
dt

=
∂ωk(b, µk(0))

∂b

∣∣∣∣∣
b=µk(t)

µ̇k = µk(t).

(P4) For k = 1, we have that µ1(t) = µ0T
T−µ0t . It then fol-

lows that s =
(
T1 ◦ T

−1
1

)
(s) = T ln

(
µ1(T −1(s))

µ0

)
. Solving for

T −1
1 (s) leads to T −1

1 (s) = ΥT,1

(
1 − e−

s
T

)
. For k > 1, let

yk B T
−1
k . By using (5), and the inverse function theorem,

we obtain that dyk
ds =

(ΥT,k−y)k

T k . Then, by direct integration and
using the fact that yk(0) = 0, we obtain the following equality

ΥT,k − yk(s) =
(

(k−1)s
T k + Υ

1−k
T,k

) 1
1−k . Solving for T −1

k (s), we obtain

that T −1
k (s) = ΥT,k − ΥT,k

(
1 + (k−1)s

ΥT,kµ0

) 1
1−k .

(P5) Follows directly by the inverse function theorem.

(P6) For k = 1, using the equality ln(1− x) =
∑∞

l=1
−1
l xl, |x| < 1,

we obtain that T1(t) = µ0t +
∑∞

l=2
1
l µ

l
0tlT 1−l, for all tµ0 < T .

Letting T → ∞, the second term in this expression vanishes,
and we obtain that the equality limT→∞ T1(t) = µ0t holds for all
(t, µ0) ∈ R≥0 × R≥1. For k > 1, from Remark 5 it follows that

Tk(t) =
Tµ

k−1
k

0

k − 1


1 − tµ

1
k
0

T


1−k

− 1

 . (62)

Now, using the binomial theorem we have that1 − tµ
1
k
0

T


1−k

− 1 =
(k − 1)tµ

1
k
0

T
+

∞∑
l=2

gk,l

 tµ
1
k
0

T


l

,

for all tµ
1
k
0 < T , and where gk,l =

(k−1)k(k+1)···(k+l−2)
l! . Thus,

for all tµ
1
k
0 < T , equality (62) can be written as Tk(t) =

µ
k−1
k2

0 t +
∑∞

l=2
gk,l

k−1 tlµ
(k−1)l

k2

0 T 1−l. Letting T → ∞, the second term
in this expression vanishes. Thus, it follows that the limit

limT→∞ Tk(t) = µ
k−1
k2

0 t holds for all (t, µ0) ∈ R≥0 × R≥1. ■

7.2. Proofs of Section 4

In this section, we present the proofs of Section 4.

Proof of Lemma 4. Let τd > 0, N0 ≥ 1, and σ(t) ∈
ΣADT(τd,N0). Then, it follows that

N(t2, t1) ≤
1
τd

(t2 − t1) + N0, (63)

for all t1 ≤ t2. We prove that expression (63) can be upper
bounded by the right-hand side of (22).

Case k = 1: Assume that t1, t2 ∈ [0,ΥT,k) and define X =
ΥT,k−t1
ΥT,k−t2

, where ΥT,1 = Tµ−1
0 and µ0 ≥ 1 fixed. Then, X ≥ 1 and:

t2 − t1 = (ΥT,1 − t1)
(
1 −

1
X

)
.

Now, fix t1 and define f (X) = ln(X) − T−1(ΥT,1 − t1)
(
1 − 1

X

)
.

Since t1 satisfies t1 ≤ ΥT,1 ≤ T by assumption, it follows that
there exists δt1 ∈ [0, 1] such that:

f (X) = ln(X) − δt1

(
1 −

1
X

)
.

By noting that f (1) = 0, and since X ≥ 1, it follows that the
derivative of f satisfies:

f ′(X) =
1
X

(
1 −

δt1

X

)
≥ 0,

for all δt1 ∈ [0, 1]. Thus, f (X) ≥ 0 for all X ≥ 1 and t1 ≤ ΥT,1.
Equivalently, by using the definition of X, it follows that:

T ln
(
ΥT,1 − t1
ΥT,1 − t2

)
− (t2 − t1) ≥ 0,

for all 0 ≤ t1 ≤ t2 < ΥT,1, where we have used the definition of
X. Using this bound in (63) yields:

N(t2, t1) ≤
T
τd

ln
(
ΥT,1 − t1
ΥT,1 − t2

)
+ N0,

for all 0 ≤ t1 ≤ t2 < ΥT,1, which implies that σ(t), when re-
stricted to [0,ΥT,1), satisfies the bound (22) for k = 1.

Case k > 1: Assume that t1, t2 ∈ [0,ΥT,k), with ΥT,k = Tµ
− 1

k
0 ,

T > 0 and µ0 ≥ 1. Let ∆ = t2 − t1, and define

f (∆) = Tk(t1 + ∆) − Tk(t1) − ∆, ∆ ∈ [0,ΥT,k).

Then, by using the result of Proposition 1-(P3) the derivative of
f satisfies:

f ′(∆) = µk(t1 + ∆) − 1,

for all t1,∆ ∈ [0,ΥT,k). Since µk(t) ≥ 1 for all t ∈ R≥0, the
previous equality implies that f ′(∆) ≥ 0. This result, together
with the fact that f (0) = 0, implies that f (∆) ≥ 0 for all t1,∆ ∈
[0,ΥT,k). Equivalently, by using the definition of ∆ we obtain:

0 ≤ Tk(t2) − Tk(t1) − (t1 − t2)
=⇒ (t1 − t2) ≤ ωk(µk(t2), µk(t1)),

where the implication follows from the result of Proposition 1-
(P2). Using this bound in (63) yields:

N(t2, t1) ≤
1
τd
ωk(µk(t2), µk(t1)) + N0,
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for all 0 ≤ t1 ≤ t2 < ΥT,1, which implies that σ(t), when re-
stricted to [0,ΥT,1), satisfies the bound (22) for k ∈ Z≥1. ■

Proof of Lemma 5: The case k = 1 follows directly by the
definition of T1 and Remark 3. For k > 1, consider expanding
the right-hand side of (22):

N(t2, t1) ≤
T
τd

µk(t2)
k−1

k

k − 1
−
µk(t1)

k−1
k

k − 1

 + N0

=
T k

τd(k − 1)

 (ΥT,k − t1
)k−1
−

(
ΥT,k − t2

)k−1((
ΥT,k − t2

) (
ΥT,k − t1

))k−1

 + N0.

Taking the limit as k → 1, one obtains (23), see also Remark 3.
On the other hand, when k ∈ Z>1, the Binomial theorem can be
used to write (ΥT,k − ti)k−1 =

∑k−1
ℓ=0 bk,lΥ

k−1−ℓ
T,k (−ti)ℓ, for i ∈ {1, 2},

where bk,l B
(k−1)!

ℓ!(k−ℓ−1)! are the so-called Binomial coefficients.
Let

S B
k−1∑
ℓ=0

bk,lΥ
k−1−ℓ
T,k (−t1)ℓ −

k−1∑
ℓ=0

bk,lΥ
k−1−ℓ
T,k (−t2)ℓ

=

k−1∑
ℓ=1

bk,lΥ
k−1−ℓ
T,k (−t1)ℓ −

k−1∑
ℓ=1

bk,lΥ
k−1−ℓ
T,k (−t2)ℓ

= bk,1Υ
k−2
T,k (t2 − t1) +

k−1∑
ℓ=2

bk,lΥ
k−1−ℓ
T,k

(
(−t1)ℓ − (−t2)ℓ

)
= bk,1Υ

k−2
T,k (t2 − t1) +

k−1∑
ℓ=2

(−1)ℓ+1bk,lΥ
k−1−ℓ
T,k

(
tℓ2 − tℓ1

)
.

Therefore, the BUk-ADT bound can be written as

N(t2, t1) ≤
T k

τd(k − 1)

 S(
(ΥT,k − t2)(ΥT,k − t1)

)k−1

 + N0

=
γk(t1, t2)
τd

(t2 − t1) +
k−1∑
ℓ=2

c̃ℓ,k
(
tℓ2 − tℓ1

) + N0,

where

c̃ℓ,k = (−1)ℓ+1bk,lΥ
k−1−ℓ
T,k

(
bk,1Υ

k−2
T,k

)−1
= (−1)ℓ+1 bk,l

bk,1
Υ1−ℓ

T,k ,

and

γk(t1, t2) =
bk,1T kΥk−2

T,k

(k − 1)

(
1

(ΥT,k − t2)(ΥT,k − t1)

)k−1

=
T k

ΥT,k

[
ΥT,k(

ΥT,k − t2
) (
ΥT,k − t1

) ]k−1

= µ0

 Υ2
T,k(

ΥT,k − t2
) (
ΥT,k − t1

) k−1

where we have used the fact that bk,1 = k − 1. ■

7.3. Auxiliary results of Section 5
The following Lemma is instrumental in studying the stabil-

ity properties of the HDS with data (52).

Lemma 8. Consider the matrix

Mζq (x1, τ) B
( 1

η(τ)2 I I − ∂Gq(x1)⊤

I − ∂Gq(x1) (ζq − ρη
′(τ))I

)
, (64)

where q ∈ Q, τ ∈ [0,N0], η(τ) ∈ [η, η], ρ ∈ [0, 1/τd], and

η′(τ) B dη
dτ (τ), Gq(·), and ζq are as introduced in Section 5.2.

Suppose that Assumption 4 is satisfied. Then,

Mζq (x1, τ) ⪰ νM I, ∀ τ ∈ [0,N0], x1 ∈ Rn (65)

where νMB
(1−δd−δη)σ2

δη(1−δd)ζ+σ2 , with ζ B minq∈Q ζq and σ B

maxq∈Q σq. □

Proof: First we show that matrix-valued function Mζq (·, ·) is
positive-definite uniformly over ρ ∈ [0, τ−1

d ], x1 ∈ Rn, and τ ∈
[0,N0]. To this end, we decompose the matrix Mζq (x1, τ) as
follows:

Mζq (x1, τ) = Uq(x1, τ)Wq(τ, x1)Uq(x1, τ)⊤, (66a)

Wq(τ, x1) B
( I
η(τ)2 0
0 ϱq(τ)I − η2(τ)Σq(x1)Σq(x1)⊤

)
, (66b)

ϱq(τ) B ζq − ρη
′(τ), Σq(x1) B I − ∂Gq(x1), (66c)

Uq(x1, τ) B
(

I 0
η2(τ)Σq(x1) I

)
. (66d)

By the fact that η(τ) ∈ [η, η] for all τ ∈ [0,N0] it follows that

1
η(τ)2 I ⪰

1

η2 I. (67)

Also, by Assumptions 4, we have that

ϱq(τ)I − η(τ)2Σq(x1)Σq(x1) ⪰
(
ϱq(τ) − η2σ2

q

)
I

⪰

ζq −
η − η

τdN0
− η2σ2

q

 I

⪰ δ̃I, (68)

where δ̃ B (1 − δ)ζ, with ζ B minq∈Q ζq. Therefore, via [50,
Theorem 7.7.7], the matrix Mζq (x1, τ) is positive definite for
all x1 ∈ Rn and τ ∈ [0,N0]. Now, we establish the matrix
inequality (65). To do so, we use (67) and (68) in (66a) to
obtain that

Mζq (x1, τ) ⪰ Uq(x1, τ)
( 1
η2 I 0
0 δ̃I

)
U⊤q (x1, τ)

⪰ Zq(x1, τ)Zq(x1, τ)⊤, (69)

where Zq(x1, τ)⊤ is the upper block triangular matrix

Zq(x1, τ)⊤ B

 1
η
I η(τ)2

η
Σq(x1, τ)⊤

0
√
δ̃I

 .
By applying [51, Lemma 9], and using (69) together with
the fact that Zq(x1, τ) has full column rank for all x1 ∈ Rn
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and τ ∈ [0,N0] and thus that σmin(Zq(x1, τ)Zq(x1, τ)⊤) ≥
σmin(Zq(x1, τ))σmin(Zq(x1, τ)⊤) = σ2

min(Zq(x1, τ)⊤), we obtain

Mζq (x1, τ) ⪰
1

η2
(
1 + η2

δ̃
∥Σq(x1)2∥

)
+ 1

δ̃

I

⪰
(1 − δd − δη)σ2

δη(1 − δd)ζ + σ2 I,

where in the last two steps we used Assumption 4. This com-
pletes the proof. ■

7.4. Lyapunov Conditions for Exponential-ISS of Hybrid Dy-
namical Systems

The following lemma is a specialization of [33, Prop. 2.7]
for the case when the system is exponentially ISS. We present
the complete proof here only for the purpose of completeness.

Lemma 9. Consider the HDS (3), and a closed set A ⊂ Rm.
Suppose there exist constants α, α, ρ, p > 0, λ ∈ (0, 1), and a
smooth function V : C ∪ D → R≥0, such that the following
inequalities hold:

α|z|p
A
≤ V(z) ≤ α|z|p

A
, ∀ z ∈ C ∪ D ∪G(D),

⟨∇V(z), F(z, u)⟩ ≤ −λV(z) + ρ|u|p, ∀ (z, u) ∈ C × Rm,

V(G(z)) − V(z) ≤ −λV(z) + ρ|u|p, ∀ (z, u) ∈ D × Rm.

Then, every solution of (3) satisfies

|z(s, j)|A ≤ κ1e−κ2(s+ j)|z(0, 0)|A + κ3 sup
0≤τ≤s

|u(τ)|, (70)

for all (s, j) ∈ dom(z), and where κ1 =
(
α/α

)p
, κ2 = λ/2p, and

κ3 =
(

2ρ
λα

)1/p
. □

Proof: We follow similar ideas as in the proof of [33, Prop.
2.7], but considering set-valued flow and jump maps. The proof
has four main steps:
Step 1: First, note that for all (z, u) ∈ (C ∪ D) × Rm:

−λV(z) + ρ|u|p ≤ −
λ

2
V(z), if V(z) ≥

2ρ
λ
|u|p. (71)

Therefore, whenever V(z) ≥ 2ρ
λ
|u|p we have that

⟨∇V(z), F(z, u)⟩ ≤ −λ̃V(z), ∀(z, u) ∈ C × Rm,

V(G(z)) − V(z) ≤ −λ̃V(z), ∀(z, u) ∈ D × Rm,

where λ̃ B λ/2.
Step 2: For any r ≥ 0, define γc4 (r, s, j) = e−λ̃(s+ j)r. We first
show that when V(z) ≥ 2ρ

λ
|u|p, the function V evaluated along

the solutions of (3) satisfies

V(z(s, j)) ≤ γλ(V(z(0, 0)), s, j), ∀ (s, j) ∈ dom(z). (72)

To establish this property, note that since V(z(·, ·)) is not in-
creasing during flows and jumps, if there is (s′, j′) ∈ dom(z)

with 0 < s′ + j′ < t + j and such that V(z(s′, j′)) = 0, then
we necessarily must have V(z(s̃, j̃)) = 0 for all (s̃, j̃) ∈ dom(z)
such that s′ + j′ ≤ s̃ + j̃ ≤ s + j, and (72) would hold for
such times (s̃, j̃). Suppose there is no (s′, j′) ∈ dom(z) with
0 < s′ + j′ < t + j such that V(z(s′, j′)) = 0. For each
(s, j) ∈ dom(z), we partition the hybrid time domain of z up
to time (s, j) as dom(z) =

⋃ j
n=0[sn, sn+1] × {n}, with s0 = 0 and

s j+1 = s. For any n ∈ {0, 1, . . . , j}, V satisfies

∫ sn+1

sn

˙︷     ︸︸     ︷
V(z(τ, n))
λ̃V(z(τ, n))

dτ ≤ −
∫ sn+1

sn

dτ = −(sn+1 − sn).

Using the new variable ϱ = V(z(τ, n)), we obtain dϱ = V̇dτ and
the above integral can be written as∫ V(z(sn+1,n))

V(z(sn,n))

dϱ
λ̃ϱ
≤ −(sn+1 − sn). (73)

Similarly, note that∫ V(z(sn+1,n+1))

V(z(sn+1,n))

dϱ
λ̃ϱ
≤

∫ V(z(sn+1,n+1))

V(z(sn+1,n))

dϱ
λ̃V(z(sn+1, n))

≤ −1,

where the last inequality follows by the inequality V(z(s, j +
1)) − V(z(s, j)) ≤ −λ̃V(z(s, j)). Combining the above two in-
equalities, we obtain∫ V(z(s, j))

V(z(0,0))

dρ
λ̃ϱ
=

j∑
n=0

∫ V(z(sn+1,n))

V(z(sn,n))

dϱ
λ̃ϱ

+

j∑
n=1

∫ V(z(sn+1,n+1))

V(z(sn+1,n))

dϱ
λ̃ϱ

≤ −

 j∑
n=0

(sn+1 − sn) +
j∑

n=1

1


= −(s j+1 − s0 + j) = −(s + j). (74)

Integrating the left-hand side, we obtain 1
λ̃

ln
(

V(z(s, j))
V(z(0,0))

)
≤ −(s +

j), from which we directly get

V(z(s, j)) ≤ V(z(0, 0))e−
λ
2 (s+ j) (75)

Step 3: Let (z, u) be a maximal solution pair of (3). Define the
set

Ω B

{
z ∈ Rn : V(z) ≤

2ρ
λ
|u|p∞

}
. (76)

For each z0 ∈ Rn, let

Tz,u,z0 B sup
{
τ ∈ R≥0 : z(s, j) < Ω, z(0, 0) = z0,

∀ (s, j) ∈ dom(z), 0 ≤ s + j ≤ τ
}
.

It follows that for all solutions of (3) with z(0, 0) = z0 and
(s, j) ∈ dom(z) such that 0 ≤ s + j < Tz,u,z0 we have that
V(z) > 2ρ

λ
|u|p∞, which, by Step 2, implies that V satisfies (75).
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Using the quadratic upper and lower bounds on V , we obtain:

|z(s, j)|A ≤
(
α

α

) 1
p

|z(0, 0)|Ae−
λ

2p (s+ j), (77)

which holds for all (s, j) ∈ dom(z) such that 0 ≤ s + j < Tz,u,z0 .
Step 4: The last step is to prove forward invariance of Ω.

Suppose there exist (s′, j′) ∈ dom(z) such that z(s′, j′) ∈ Ω and
(s′, j′ + 1) ∈ dom(z). Since λ̃ < λ, V satisfies

V(z(s′, j′ + 1)) ≤ (1 − λ̃)V(z(s′, j′)) + ρ|u|p∞,

≤

(
1 −

λ

2

) 2ρ
λ
|u|p∞ + ρ|u|

p
∞ =

2ρ
λ
|u|p∞.

Moreover, if (s′, j′ + 1) ∈ dom(z), then z cannot leave Ω via
flows because V̇ ≤ 0 if V(z) ≥ 2ρ

λ
|u|p∞. It follows that for all

(s, j) ∈ dom(z) such that s + j ≥ Tz,u,z0 the solution z satisfies:

α|z(s, j)|p
A
≤ V(z(s, j)) ≤

2ρ
λ
|u|p∞, (78)

that is, |z(s, j)|A ≤
(

2ρ
λα

) 1
p
|u|∞, for all s + j ≥ Tz,u,z0 . Combining

this bound with (77) we obtain

|z(s, j)|A ≤ max


(
α

α

) 1
p

|z(0, 0)|e−
λ

2p (s+ j),

(
2ρ
λα

) 1
p

|u|∞

 , (79)

for all (s, j) ∈ dom(z). Since max{a, b} ≤ a + b, we obtain

|z(s, j)|A ≤ κ1|z(0, 0)|e−κ2(s+ j) + κ3|u|∞, (80)

with κ1 =
(
α
α

) 1
p , κ2 =

λ
2p and κ3 =

(
2ρ
λα

) 1
p . The result follows

from the above inequality by time-invariance and causality. ■
The following result relaxes the third condition in Lemma 9

under a standard average dwell-time condition on the jumps.

Lemma 10. Consider the HDS (3), and suppose that: (a) ev-
ery solution satisfies the ADT constraint (21); (b) there exist
constants α, α, ρ, p > 0, λ ∈ (0, 1), and a smooth function
V : C ∪ D→ R≥0, such that the following inequalities hold:

α|z|p
A
≤ V(z) ≤ α|z|p

A
, ∀ z ∈ C ∪ D ∪G(D),

⟨∇V(z), F(z, u)⟩ ≤ −λV(z) + ρ|u|p, ∀ (z, u) ∈ C × Rm,

V(G(z)) − V(z) ≤ 0, ∀ z ∈ D.

Then, every solution of (3) satisfies

|z(s, j)|A ≤ κ1e−κ2(s+ j)|z(0, 0)|A + κ3 sup
0≤τ≤s

|u(τ)|, (81)

for all (s, j) ∈ dom(z), where κi > 0, for i ∈ {1, 2, 3}. □

Proof: The proof follows similar steps as the proof of Lemma
9. In particular, inequality (73) still holds. On the other hand,
during jumps, we now have

V(z(sn+1, n + 1)) − V(z(sn+1, n)) ≤ 0 (82)

Dividing both sides by λ̃V(z(sn+1, n)), we obtain

0 ≥
V(z(sn+1, n + 1)) − V(z(sn+1, n))

λ̃V(z(sn+1, n))

=

∫ V(z(sn+1,n+1))

V(z(sn+1,n))

dϱ
λ̃V(z(sn+1, n))

.

It follows that inequality (74) now becomes
∫ V(z(s, j))

V(z(0,0))
dρ
λ̃ϱ
≤ −s,

from which we obtain after integration:

V(z(s, j)) ≤ V(z(0, 0))e−
λ
2 s (83)

Finally, the ADT condition (27) guarantees that j ≤ 1
τd

s+N0 for
any (s, j) ∈ dom(ẑ), which implies that s+ j ≤ ( 1

τd
+1)s+N0. In

turn, this inequality can be written as s ≥ τd
1+τd

(s + j) − τd
1+τd

N0,
so that (83) can be upper-bounded as follows:

V(z(s, j)) ≤ κ7e−κ8(s+ j)V(z(0, 0)), (84)

where κ7 B e
λ
2

τd
1+τd

N0 and κ8 B
λ
2

τd
1+τd

. From here the proof
follows the same Steps 3-4 from the proof of Lemma 9. In
particular, the inequality (80) now becomes

|z(s, j)|A ≤ κ̃1|z(0, 0)|e−κ̃2(s+ j) + κ̃3|u|∞,

with κ̃1 B
(
α
α

) 1
p e

λ
2p

τd
1+τd

N0 , κ̃2 B
λ

2p
τd

1+τd
, and κ3 =

(
2ρ
λα

) 1
p . ■

Corollary 2. Consider the normalized-by-µk BU-ODE of

Lemma 3, dµ̂k
ds =

k
T µ̂

1
k
k . Then, for any ℓ > 0 and any solution

µ̂k to the ODE satisfying µk(0) = µ0 ≥ 1 the following bound
holds:

µ−ℓ1 (s) ≤ e−ℓ
s
T , ∀s ∈ R≥1,

when k = 1, and

µ−ℓk (s) ≤
(

k − 1
T

s + 1
)−ℓ k

k−1

, ∀s ∈ R≥1,

when k ∈ Z≥2. □

Proof: We divide the proof into two cases.
Case k = 1: From Lemma 3, for k = 1, the solution to the

normalized-by-µk BU-ODE is given by:

µ̂k(s) = µ0e
s
T .

It follows that µ−ℓk (s) = µ−ℓ0 e−
ℓ
T s ≤ e−

ℓ
T s for all s ≥ 0, where

we have used the fact that µ−ℓ0 ≤ 1 since µ0 ≥ 1 and ℓ > 0 by
assumption.

Case k > 1: From Lemma 3, for k > 1, the solution to the
normalized-by-µk BU-ODE is given by:

µ̂k(s) =
(

k − 1
T

s + µ
k−1

k
0

) k
k−1

.

Using the fact that µ0 ≥ 1 and that (·)
k

k−1 is monotonically in-
creasing in R≥0 for any k > 1, and thus preserves the order in
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R≥0, it follows that µ̂k(s) ≥
(

k−1
T s + 1

) k
k−1 . Therefore, we obtain:

µ̂−ℓk (s) ≤
(

k−1
T s + 1

)−ℓ k
k−1 for all s ≥ 0. ■

Lemma 11. Suppose that every solution pair (ẑ, û) of the HDS
(26) satisfies the bound (30) for all (s, j) ∈ dom(ẑ). Assume that
∆(µ̂k) = µ̂−ℓk , where ℓ > 0. Then, (ẑ, û) satisfies the inequality

|ẑ(s, j)|A ≤ βk

(
κ̄1|ẑ(0, 0)|Ae−κ̄2(s+ j) + κ̄3|û|(s, j), s

)
,

for all (s, j) ∈ dom(ẑ), where κ̄1 B κ1, κ2 B
κ2
2 , κ̄3 B 2κ3. Here

βk(r, s) ∈ KL is defined as βk(r, s) = r · max{κ1e−κ2 s, ξ−ℓk (s)},

ξk(s) =
(

k−1
T s + 1

) k
k−1 for all k > 1, and ξ1(s) = e

s
T . □

Proof: Consider a complete solution pair (ẑ, û) of the HDS (26)
satisfying the bound (30). Then, we have that

|ẑ(s, j)|A ≤ κ1e−κ2(s+ j)|ẑ(0, 0)|A + κ3 · sup
0≤ζ≤s

|∆̂(ζ)|, (85)

for all (s, j) ∈ dom(ẑ), and where ∆̂(s) B ∆(µ−ℓk (s))û(s). Next,
pick an arbitrary time (s̄, j̄) ∈ dom(ẑ), and let ŷ(r, k) B ẑ(r +
s̄, k + j̄), and v(r, k) B µ−ℓk (s̄ + r). Since ŷ is also a hybrid arc
that is a solution to (26), using the above bound and by time-
invariance, it satisfies:

|ŷ(r, k)|A ≤ κ1|ŷ(0, 0)|e−κ2(r+k) + κ3|û|(r,k)|v|(r,k)

= κ1|ẑ(s̄, j̄)|e−κ2(r+k) + κ3|û|(r,k) sup
0≤τ≤r

µ̂−ℓ(s̄ + τ)

≤ κ1|ẑ(s̄, j̄)|e−κ2(r+k) + κ3|û|(r,k)µ̂
−ℓ
k (s̄). (86)

Now, using (85) with s = s̄ and j = j̄, we obtain:

|ẑ(s̄, j̄)|A ≤ κ1|ẑ(0, 0)|Ae−κ2(s̄+ j̄) + κ3|û|(s̄, j̄) sup
0≤τ≤r

µ̂−ℓk (τ). (87)

Combining (86) and (87), and using Remark 2, we have

|ŷ(r, k)|A ≤ κ1

(
κ1|ẑ(0, 0)|Ae−κ2(s̄+ j̄)

+ κ3 sup
0≤τ≤r

|û(τ)| sup
0≤τ≤r

µ̂−ℓk (τ)
)
e−κ2(r+k)

+ κ3 sup
0≤τ≤r

|û(τ)|µ̂−ℓk (s̄).

Evaluating the above bound at r = s̄ and j̃ ∈ Z≥0 such that

(s̄, j̃) ∈ dom(y), we obtain:

|ŷ(s̄, j̃)|A ≤ κ1

(
κ1|ẑ(0, 0)|Ae−κ2(s̄+ j̄)

+ κ3 sup
0≤τ≤s̄

|û(τ)| sup
0≤τ≤s̄

µ̂−ℓk (τ)
)
e−κ2(s̄+ j̃)

+ κ3 sup
0≤τ≤s̄

|û(τ)|µ̂−ℓk (s̄)

≤ κ1

(
κ1|ẑ(0, 0)|Ae−κ2(s̄+ j̄) + κ3 sup

0≤τ≤s̄
|û(τ)|

)
e−κ2(s̄+ j̃)

+ κ3 sup
0≤τ≤s̄

|û(τ)|µ̂−ℓk (s̄)

≤
(
κ1|ẑ(0, 0)|Ae−κ2(s̄+ j̄+ j̃)

+ 2κ3 sup
0≤τ≤s̄

|û(τ)|
)

max
{
κ1e−κ2 s̄, µ̂−ℓk (s)

}
,

where we used the fact that e−κ2 j̃ ≤ 1, and sup0≤τ≤s µ̂
−ℓ
k (τ) ≤

µ−ℓ0 ≤ 1 since µ0 ≥ 1 and ℓ > 0. Using the result of Corollary 2
it then follows that

|ŷ(s̄, j̃)|A ≤
(
κ1|ẑ(0, 0)|Ae−κ2(s̄+ j̄+ j̃) + 2κ3 sup

0≤τ≤s̄
|û(τ)|

)
ηk(s)

where ηk(s) B max{κ1e−κ2 s, ξ−ℓk (s)}, ξk(s) =
(

k−1
T s + 1

)− k
k−1 for

all k > 1 and ξ1(s) = e−
s
T . Note that ηk is continuous and

satisfies ηk(s) → 0 as s → ∞ since κ1e−κ2 s → 0 and ξk(s) → 0
as s → ∞. Now, using the definition of ŷ, and letting λ B 2s̄,
i B j̃ + j̄:

|ẑ(λ, i)|A ≤
(
κ1|ẑ(0, 0)|Ae−κ2( λ2+i) + 2κ3 sup

0≤τ≤s̄
|û(τ)|

)
ηk(λ/2)

Since the choice of (s̄, j̄) ∈ dom(z) was arbitrary, z is com-
plete, and the previous inequality holds for all j̃ ∈ Z≥0, in
particular we can use s = 2s̄, j = j̄, and j̃ = 0 such that
(s, j) ∈ dom(z). Thus, from the above inequality and using
Remark 2, we obtain that there exists βk(r, s) B r · ηk(s) ∈ KL
such that

|ẑ(s, j)|A ≤ βk

(
κ̄1|ẑ(0, 0)|Ae−κ̄2(s+ j) + κ̄3|û|(s, j), s

)
,

with κ̄1 B κ1, κ2 B
κ2
2 , κ̄3 B 2κ3. ■
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