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In neuroscience, time-frequency analysis is widely used to investigate brain rhythms in brain 
recordings. In event-related protocols, it is applied to quantify how the brain responds to a 
stimulation repeated over many trials. We here focus on two common measures: the power of 
the transform for each single trial averaged across trials, avgPOW; and the power of the transform 
of the average evoked potential, POWavg. We investigate the influence of additive noise on these 
two measures. We quantify the expected effect using theoretical calculations, simulated data and 
experimental brain recordings. We also consider the case of color noise. We extract the main 
factors influencing the effect of noise on POWavg and avgPOW, such as the noise variance, the 
number of trials, the sampling rate, the type of noise, the type of time-frequency transform and 
the frequency of interest. When dealing with time-frequency analysis, the impact of noise on the 
neuroscientist’s work can drastically vary depending on these factors. The present results should 
help researchers improve their understanding and interpretation of time-frequency diagrams, as 
well as optimize their experimental designs and analyses based on their neuroscientific question.

1. Introduction

In neuroscience, where one is interested in brain rhythms, time-frequency (TF) methods have extensively been used for the anal-
ysis of in-vivo brain recording techniques [65,18,37], including electroencephalography (EEG), magnetoencephalography (MEG), 
intracranial EEG (iEEG), and microelectrode recordings (measuring local field potentials, LFPs) [4,58,27,8,36,22]. A standard proce-
dure is the so-called event-related protocol, where one records how the brain responds to a given stimulation over many trials. The 
signal measured in response to one stimulation is called an event-related response. Studies have shown that time-frequency analyses 
are a powerful means to detect transient bursts of high-frequency (> 40 Hz) activity in response to sensory stimulation [23,53,14,15]. 
The origin of these activations is still a subject of discussion, as they may result from two distinct phenomena: They can either be 
tightly time-locked to the stimulus (stimulus-evoked neuronal activity) or phase-locked to the stimulus (stimulus-induced oscillations) 
[60]. Short-latency oscillations have been found in the average evoked potential within 100 ms of stimulus onset [54,42,41,17]. By 
contrast, stimulus-induced oscillations disappear in the average evoked potential because of the jitter in latency from one trial to 
the next [63]. As a consequence, they have to be extracted using methods that are able to distinguish between phase-locked and 
non-phase-locked activity.
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To be able to discriminate between stimulus-evoked and stimulus-induced oscillations, two main measures of power have been 
considered. Starting from a collection of 𝑁 signals 𝑥𝑛(𝑡), 𝑛 = 1, … , 𝑁 , acquired from 𝑁 trials, a first measure is the amplitude |𝑇𝑥𝑛 (𝑡, 𝑓 )|, or the power |𝑇𝑥𝑛 (𝑡, 𝑓 )|2, of the transform for each single trial 𝑛 averaged across trials [30, Chap. 9]

avgPOW= 1
𝑁

𝑁∑
𝑛=1

|||𝑇𝑥𝑛 (𝑡, 𝑓 )|||2 . (1)

A second measure is the power of the time-frequency transform applied to the average evoked potential [60]

POWavg = |||𝑇𝑥𝑛 (𝑡, 𝑓 )|||2 . (2)

These two measures are sensitive to different aspects of event-related responses: evoked responses for avgPOW, and phase resetting 
for POWavg [60,41]. In [5], we refined the relationship between the two measures in the absence of noise using calculations and 
simulations.

Following this work, we wondered what the influence of noise on the relationship could be. To answer this question, we first 
needed to better understand the effect of noise on avgPOW and POWavg. Indeed, signals from brain recordings are composed of a 
part that is relevant to brain activity, and another part that has other origin, and is therefore considered as noise. Experimentally, it 
has been observed that POWavg is quite robust to noise compared to avgPOW; also both measures appear to be differentially affected 
by the temporal properties of the signal. Using theoretical calculations, simulation studies, and analysis of experimental data, we 
here investigate the effect of additive white Gaussian noise (AWGN) on the expected values of avgPOW and POWavg. Using general 
calculations, we first show that this effect is additive and positive for both measures, and increases with increasing noise variance. 
By contrast, we also show that the number of trials has an effect on POWavg but not on avgPOW. We also investigate the important 
case of a noise that is wide-sense stationary with power spectral density of the form 1∕𝑓𝑐 , also known as color noise. We illustrate 
these general results in the particular case of an oscillatory signal analyzed with the S-transform [59]. We also confirm the predicted 
behaviors on simulated data as well as experimental brain recordings.

The outline of the manuscript is the following. In Section 2, we provide the general theoretical developments, which are then 
illustrated on an oscillatory signal in Section 3. We investigate synthetic data in Section 4. Section 5 is devoted to the analysis of 
experimental data. Further issues are discussed in Section 6.

2. Theoretical developments

In this section, we investigate the theoretical implications of considering noisy signals for POWavg and avgPOW. We first introduce 
time-frequency transform and the S-transform (Section 2.1). We set the model of noisy data with additive noise (Section 2.2). We 
then investigate the statistical properties of the time-frequency transform of noise (Section 2.3) and then quantify the effect of noise 
on POWavg and avgPOW (Section 2.4). We finally consider the influence of the type of noise (Section 2.5).

2.1. Time-frequency analysis and the S-transform

Time-frequency analysis is a generic approach for the analysis of signals whose frequency content are deemed meaningful but 
nonstationary [11,59,21,43,28,1]. All methods map a one-dimensional real or complex signal 𝑠(𝑡) into a two-dimensional complex-
valued function 𝑇𝑠(𝑡, 𝑓 ) that can be expressed in the following general form

𝑇𝑠(𝑡, 𝑓 ) = ∫ 𝑠(𝑢)𝜙𝑡,𝑓 (𝑢)∗ d𝑢. (3)

|𝑇𝑠(𝑡, 𝑓 )|, |𝑇𝑠(𝑡, 𝑓 )|2, and arg[𝑇𝑠(𝑡, 𝑓 )] are respectively the amplitude (or modulus), power, and phase (or argument) of the time-
frequency transform at time 𝑡 and frequency 𝑓 .

The S-transform [59] is a type of time-frequency transform that is commonly used in the analysis of brain recordings. It is a type 
of time-frequency transform that acts as a band-pass filter or a windowed Fourier transform with a Gaussian window whose width 
decreases with increasing frequency (standard deviation 1∕|𝑓 |). Since we deal with real signals, we assume that, for each signal 𝑠(𝑢), 
the S-transform is applied to the analytic signal 𝑠𝑎(𝑢). See Section II of Supplementary Material for more details. For 𝑓 > 0, this is 
tantamount to using the following formula for the transform

𝑇𝑠(𝑡, 𝑓 ) = |𝑓 |√ 2
𝜋 ∫ 𝑠(𝑢) 𝑒−

1
2 𝑓

2(𝑢−𝑡)2𝑒−2𝑖𝜋𝑓𝑢 d𝑢.

We can express this equation as in (3) with

𝜙𝑡,𝑓 (𝑢) = |𝑓 |√ 2
𝜋
𝑒−

1
2 𝑓

2(𝑢−𝑡)2𝑒2𝑖𝜋𝑓𝑢. (4)

The time-frequency transform is linear: For any two signals 𝑠1(𝑡) and 𝑠2(𝑡), and real numbers 𝜆1 and 𝜆2, we have
2

𝑇𝜆1𝑠1+𝜆2𝑠2 (𝑡, 𝑓 ) = 𝜆1𝑇𝑠1 (𝑡, 𝑓 ) + 𝜆2𝑇𝑠2 (𝑡, 𝑓 ). (5)
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In the case of 𝑁 signals 𝑠𝑛(𝑡), 𝑛 = 1, … , 𝑁 , with average

𝑠𝑛(𝑡) =
1
𝑁

𝑁∑
𝑛=1

𝑠𝑛(𝑡), (6)

this entails

𝑇𝑠𝑛 (𝑡, 𝑓 ) =
1
𝑁

𝑁∑
𝑛=1

𝑇𝑠𝑛 (𝑡, 𝑓 ). (7)

2.2. Model of noisy data

In the following, we consider 𝑁 signals 𝑥𝑛(𝑡), 𝑛 = 1, … , 𝑁 , where each 𝑥𝑛(𝑡) can be decomposed into the sum of a signal of interest 
𝑠𝑛(𝑡) and a noise component 𝑏𝑛(𝑡),

𝑥𝑛(𝑡) = 𝑠𝑛(𝑡) + 𝑏𝑛(𝑡). (8)

In this expression, the 𝑠𝑛(𝑡)’s are assumed to be 𝑁 independent and identically distributed (i.i.d.) realizations of a signal of interest 
𝑠(𝑡), and the 𝑏𝑛(𝑡)’s are 𝑁 realizations of a noise 𝑏(𝑡) with zero mean and variance 𝜎2.

Akin to (6), we denote by 𝑥𝑛(𝑡) and 𝑏𝑛(𝑡) the average measured signal and the average noise, respectively. By averaging (8), we 
obtain

𝑥𝑛(𝑡) = 𝑠𝑛(𝑡) + 𝑏𝑛(𝑡). (9)

2.3. Time-frequency transform of noise

To investigate the effect of noise on the time-frequency transform, we need to consider the time-frequency transform of (8). 
However, this requires taking the time-frequency transform of the noise component, a step that is not mathematically straightforward, 
since time-frequency transform is defined for a continuous function while Gaussian noise (and, in particular, white Gaussian noise) is 
often assumed to be a discrete process. A potential solution would be to consider a white noise process [38], and another one would 
involve a detour into the Schwartz space of rapidly decaying smooth complex valued functions of a real variable [3].

Note however that this is only a theoretical problem. In practice, any routine for time-frequency transform takes discrete signals 
as inputs and approximates integrals with sums. In particular, we here use an approximation in terms of Riemann sums,

𝑇𝑏(𝑡, 𝑓 ) ≈ 𝑇 RS
𝑏

(𝑡, 𝑓 ) = 𝛿𝑡
∑
𝑘

𝑏(𝑢𝑘)𝜙∗
𝑡,𝑓
(𝑢𝑘), (10)

where 𝛿𝑡 is the sampling rate, and 𝑏(𝑡) is assumed to be sampled at times 𝑢𝑘 = 𝑢0 + 𝑘𝛿𝑡. From (8), we can show that the linearity of 
the time-frequency transform is valid, i.e., (see Appendix A)

𝑇𝑥𝑛 (𝑡, 𝑓 ) = 𝑇𝑠𝑛 (𝑡, 𝑓 ) + 𝑇𝑏𝑛 (𝑡, 𝑓 ) (11)

and

𝑇𝑥𝑛 (𝑡, 𝑓 ) = 𝑇𝑠𝑛 (𝑡, 𝑓 ) + 𝑇
𝑏𝑛
(𝑡, 𝑓 ). (12)

Also, since the 𝑏𝑛 ’s are i.i.d. for 𝑛 = 1, … , 𝑁 , so are their time-frequency transforms.
The statistical properties of 𝑇𝑏(𝑡, 𝑓 ) are not straightforward either. For now, we calculate E 

[
𝑇𝑏(𝑡, 𝑓 )

]
, the expectation of 𝑇𝑏(𝑡, 𝑓 ), 

which can be obtained through the Riemann approximation (see Appendix A)

E
[
𝑇𝑏(𝑡, 𝑓 )

]
= 0. (13)

Note that this value does not depend on the type of noise nor on the time-frequency transform used.

2.4. Effect of noise on POWavg and avgPOW

We are now in position to investigate the effect of noise on the time-frequency transform of 𝑥(𝑡). We first consider POWavg. 
Using its definition, (2), the linearity of the time-frequency transform, (11), the independence of the 𝑠𝑛 ’s and 𝑏𝑛 ’s, and the fact that 
E[𝑇𝑏(𝑡, 𝑓 )] = 0, (13), we show that E 

[
POWavg𝑥1∶𝑁 (𝑡, 𝑓 )

]
can be expressed as (see Appendix B)

E
[
POWavg𝑥1∶𝑁 (𝑡, 𝑓 )

]
= E

[
POWavg𝑠1∶𝑁 (𝑡, 𝑓 )

]
+ 1
𝑁

E
[||𝑇𝑏(𝑡, 𝑓 )||2] . (14)

This shows that, in the presence of noise, E[POWavg𝑥1∶𝑁 (𝑡, 𝑓 )] differs from E[POWavg𝑠1∶𝑁 (𝑡, 𝑓 )] by a quantity that is equal to 
3

E[|𝑇𝑏(𝑡, 𝑓 )|2]∕𝑁 . The two main consequences of this result are:
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• The expected effect of noise is to systematically overestimate POWavg;
• The noise is expected to have vanishing influence with an increasing number of trials.

In a similar fashion, we can investigate the influence of noise on avgPOW. Using its definition, (1), and the same properties as above, 
we can show that E 

[
avgPOW𝑥1∶𝑁

(𝑡, 𝑓 )
]

can be expressed as (see Appendix B)

E
[
avgPOW𝑥1∶𝑁

(𝑡, 𝑓 )
]
= E

[
avgPOW𝑠1∶𝑁

(𝑡, 𝑓 )
]
+ E

[||𝑇𝑏(𝑡, 𝑓 )||2] . (15)

As a consequence, we have the two following properties:

• Akin to POWavg, the expected effect of noise is to systematically overestimate avgPOW;
• Unlike POWavg, the noise has expected constant, non-vanishing influence on avgPOW, regardless of the number of trials.

2.5. Case of color noise

According to (14) and (15), noise influences the expected values of avgPOW and POWavg through E[|𝑇𝑏(𝑡, 𝑓 )|2], which is the 
second order statistic of the time-frequency transform of the noise. This quantity is more complex to calculate than the first-order 
statistic (i.e., the expectation). Its value depends on the type of noise and the time-frequency transform considered. It has been 
investigated by various authors, both from a theoretical and a numerical perspective in the particular case of Gaussian white (i.e., 
i.i.d.) noise [62,24,2,67,25,3] and in the more general setting of stationary zero-mean Gaussian noise [38]. In particular, there has 
been a debate whether the sampling rate has an influence in the expression of the variance of 𝑇𝑏(𝑡, 𝑓 ) [24,67,25].

In the following, we consider wide-sense stationary noise, i.e., noise for which the mean and variance are time independent. Using 
a derivation similar to [38], it can be shown that E[|𝑇𝑏(𝑡, 𝑓 )|2] has a general expression of the form (see Section III-A of Supplementary 
Material)

E
[||𝑇𝑏(𝑡, 𝑓 )||2] = ∫ 𝑆𝑏(𝜈)

|||𝜙𝑡,𝑓 (𝜈)
|||2 d𝜈. (16)

In this expression, 𝜙𝑡,𝑓 (𝜈) is the Fourier transform of 𝜙𝑡,𝑓 as defined in (3). 𝑆𝑏(𝜈) is the power spectral density (PSD) of the noise. It 
describes the frequency content of the noise along the various frequencies.

In the case of white noise with variance 𝜎2 , the PSD is given by

𝑆𝑏(𝜈) = 𝜎2 𝛿𝑡, (17)

so that

E
[||𝑇𝑏(𝑡, 𝑓 )||2] = 𝜎2 𝛿𝑡∫

|||𝜙𝑡,𝑓 (𝜈)
|||2 d𝜈

= 𝜎2 𝛿𝑡∫
|||𝜙𝑡,𝑓 (𝑢)

|||2 d𝑢. (18)

The value of the integral depends on the type of time-frequency transform considered. In the case of the S-transform, we obtain (see 
Section III-B of Supplementary Material)

E
[||𝑇𝑏(𝑡, 𝑓 )||2] = |𝑓 |𝜎2 𝛿𝑡√

𝜋
, (19)

which is a linear function of 𝑓 . Note that, regarding the above-mentioned debate about the effect of the sampling rate, the present 
derivation supports the conclusion that it actually does have an influence.

Besides white noise, it is sometimes important to consider models of noise with temporal correlation. A usual such model is color 
noise, i.e., noise whose spectral power density 𝑆𝑏(𝜈) is approximately proportional to 1∕𝜈𝑐 for 𝜈 departing from 0.

For a color noise, E[|𝑇𝑏(𝑡, 𝑓 )|2] can be approximated as

E
[||𝑇𝑏(𝑡, 𝑓 )||2] ∝ ∫

1
𝜈𝑐

|||𝜙𝑡,𝑓 (𝜈)
|||2 d𝜈. (20)

For the S-transform, we obtain (see Section III-C of Supplementary Material)

E
[||𝑇𝑏(𝑡, 𝑓 )||2] ∝ 1

𝑓𝑐−1 . (21)

As a consequence, the variance of the noise time-frequency transform decays slower than its power spectral density (1∕𝑓𝑐−1 instead 
of 1∕𝑓𝑐 ). Note that the result obtained for white noise, (19), is compatible with this result with 𝑐 = 0 (which indeed corresponds to 
white noise). Also, the exact expression depends on the type of process used to generate the noise, i.e., on the exact expression of 
4

𝑆𝑏(𝜈).
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Table 1

Effect of noise on avgPOW and POWavg for real-valued 
oscillatory signal. Summary of results for the S-transform. 
𝑂(⋅) is the standard Bachmann–Landau notation.

Quantity Expression

𝑇𝑠𝑛 (𝑡, 𝑓 ) Ω𝑛𝑒
− 1

2 (2𝜋)
2
(
1− 𝜈0

𝑓

)2

𝑒𝑖[𝜙𝑛−2𝜋(𝑓−𝜈0)𝑡]|||𝑇𝑠𝑛 (𝑡, 𝑓 )|||2 Ω2
𝑛
𝑒
−(2𝜋)2

(
1− 𝜈0

𝑓

)2

avgPOW𝑠1∶𝑁
(𝑡, 𝑓 ) 𝑒

−(2𝜋)2
(
1− 𝜈0

𝑓

)2
1
𝑁

∑𝑁

𝑛=1 Ω
2
𝑛

E
[
avgPOW𝑠1∶𝑁

(𝑡, 𝑓 )
] (

Ω2
0 + 𝜏2Ω

)
𝑒
−(2𝜋)2

(
1− 𝜈0

𝑓

)2

POWavg𝑠1∶𝑁 (𝑡, 𝑓 ) 𝑒
−(2𝜋)2

(
1− 𝜈0

𝑓

)2 ||| 1
𝑁

∑𝑁

𝑛=1 Ω𝑛𝑒
𝑖𝜙𝑛

|||2
E
[
POWavg𝑠1∶𝑁 (𝑡, 𝑓 )

]
Ω2

0𝜌
2𝑒

−(2𝜋)2
(
1− 𝜈0

𝑓

)2

+𝑂
(

1
𝑁

)

3. Oscillatory signal

To provide a detailed illustration of the effect of noise, we consider the case of a real-valued oscillatory signal with Gaussian noise 
analyzed with the S-transform. The model is introduced in Section 3.1. The expressions for the S-transform, avgPOW and POWavg 
are given in Sections 3.2, 3.3 and 3.4, respectively. We finally give a numerical example in Section 3.5. A summary of calculated 
results is given in Table 1.

3.1. Model

We consider a model in which we observe 𝑁 repetitions of a real-valued oscillatory signal with constant frequency 𝜈0 and varying 
amplitude Ω𝑛 and phase 𝜙𝑛

𝑠𝑛(𝑡) = Ω𝑛 cos(2𝜋𝜈0𝑡+ 𝜙𝑛), 𝑛 = 1,… ,𝑁. (22)

We assume that the Ω𝑛 ’s are i.i.d. repetitions of Ω ∼ (Ω0, 𝜏2Ω), while the 𝜙𝑛 ’s are i.i.d. repetitions of 𝜙 ∼VonMises(𝜙0, 𝜅). Further-
more, Ω𝑛 and 𝜙𝑛 are assumed to be independent from each other for every 𝑛. We define the circular mean as [44, §3.4.2]

E(𝑒𝑖𝜙) = 𝜌𝑒𝑖𝜙0 , (23)

with 𝜙0 the mean direction and 𝜌 the mean resultant length. The noise 𝑏(𝑡) is assumed to be real Gaussian with 0 mean and variance 
𝜎2.

3.2. S-transform

The analytic signal associated with our model is given by [43, Example 4.8]

𝑠𝑛,𝑎(𝑡) = Ω𝑛𝑒
𝑖(2𝜋𝜈0𝑡+𝜙𝑛), 𝑛 = 1,… ,𝑁. (24)

The S-transform of such a signal is given by (see Appendix C)

𝑇𝑠𝑛 (𝑡, 𝑓 ) = Ω𝑛𝑒
− 1

2 (2𝜋)
2
(
1− 𝜈0

𝑓

)2
𝑒𝑖
[
𝜙𝑛−2𝜋(𝑓−𝜈0)𝑡

]
. (25)

The power is given by

|||𝑇𝑠𝑛 (𝑡, 𝑓 )|||2 = Ω2
𝑛𝑒

−(2𝜋)2
(
1− 𝜈0

𝑓

)2
. (26)

Its maximum is reached for 𝑓 = 𝜈0, with value equal to Ω2
𝑛. Note that, had we defined the S-transform as the time-frequency transform 

of the real-valued signal instead of the analytic signal (as done, e.g., in [5]), 𝑇𝑠𝑛 (𝑡, 𝑓 ) would have had a more complicated expression 
equal to about half the value found in (25), and the maximum of |𝑇𝑠𝑛 (𝑡, 𝑓 )|2 would be approximately equal to Ω2

𝑛∕4.

3.3. avgPOW

Incorporating (26) into (1) yields

avgPOW𝑠1∶𝑁
(𝑡, 𝑓 ) = 𝑒

−(2𝜋)2
(
1− 𝜈0

𝑓

)2
1
𝑁

𝑁∑
𝑛=1

Ω2
𝑛, (27)
5

whose expectation is given by
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E
[
avgPOW𝑠1∶𝑁

(𝑡, 𝑓 )
]
=
(
Ω2
0 + 𝜏2Ω

)
𝑒
−(2𝜋)2

(
1− 𝜈0

𝑓

)2
. (28)

This quantity reaches its maximum for 𝑓 = 𝜈0, with value equal to Ω2
0 + 𝜏2Ω.

3.4. POWavg

From linearity of the time-frequency transform, 𝑇𝑠𝑛 (𝑡, 𝑓 ) is equal to the average of the 𝑇𝑠𝑛 (𝑡, 𝑓 )’s, that is,

𝑇𝑠𝑛 (𝑡, 𝑓 ) = 𝑒
− 1

2 (2𝜋)
2
(
1− 𝜈0

𝑓

)2
𝑒−2𝑖𝜋(𝑓−𝜈0)𝑡

1
𝑁

𝑁∑
𝑛=1

Ω𝑛 𝑒
𝑖𝜙𝑛 . (29)

Incorporating (29) into (2), we are led to

POWavg𝑠1∶𝑁 (𝑡, 𝑓 ) = 𝑒
−(2𝜋)2

(
1− 𝜈0

𝑓

)2 |||||| 1𝑁
𝑁∑
𝑛=1

Ω𝑛𝑒
𝑖𝜙𝑛

||||||
2

(30)

and corresponding expectation

E
[
POWavg𝑠1∶𝑁 (𝑡, 𝑓 )

]
= 𝑒

−(2𝜋)2
(
1− 𝜈0

𝑓

)2
E
⎡⎢⎢⎣
|||||| 1𝑁

𝑁∑
𝑛=1

Ω𝑛𝑒
𝑖𝜙𝑛

||||||
2⎤⎥⎥⎦ . (31)

For large 𝑁 , this quantity can be approximated by (see Appendix C)

E
[
POWavg𝑠1∶𝑁 (𝑡, 𝑓 )

]
=Ω2

0𝜌
2𝑒

−(2𝜋)2
(
1− 𝜈0

𝑓

)2
+𝑂

( 1
𝑁

)
, (32)

where 𝑂(⋅) is the standard Bachmann–Landau notation. Note that we have the following relationship between avgPOW and POWavg:

E
[
POWavg𝑠1∶𝑁 (𝑡, 𝑓 )

]
≈

Ω2
0𝜌

2

Ω2
0 + 𝜏2Ω

E
[
avgPOW𝑠1∶𝑁

(𝑡, 𝑓 )
]
, (33)

which is reminiscent of the relation found in [5], with the difference originating from the fact that we work with avgPOW instead of 
the average amplitude (avgAMP).

3.5. Numerical example

We illustrate these results with the example of an oscillatory signal with frequency 𝜈0 ∈ {10, 40, 100, 500} Hz, amplitude Ω𝑛 with 
mean Ω0 = 1 and standard deviation 𝜏Ω = 0.1, mean resultant length 𝜌 = 0.25, sampling interval 𝛿𝑡 = 0.5 ms, and 𝑁 = 300 trials. 
For noise, we considered two types of color Gaussian noise [35,34,61,68]: white (corresponding to 𝑐 = 0) and red (corresponding 
to 𝑐 = 2). For each type of noise, we generated 1000 samples [68], computed the time-frequency transform of each sample, and 
approximated E[|𝑇𝑏(𝑡, 𝑓 )|2] by averaging the time-frequency transforms. We also used two levels of noise: moderate (𝜎2 = 1) and 
high (𝜎2 = 10). Results are summarized in Fig. 1 for avgPOW. Noise had no visible effect on the expectation of POWavg.

4. Simulation study

Time-frequency analysis of brain recordings from event-related protocols involving sensory stimulation has evidenced the presence 
of high-frequency oscillations (HFOs) ranging from 400 to 800 Hz in addition to the usual somatosensory evoked potential (SEP) 
[14,15,51,63]. In the present section, we investigate the effect of noise on POWavg and avgPOW by generating synthetic data in this 
context.

4.1. Data generation

We generated signals on a time window of [−100, 100] ms at a sampling rate of 𝑓𝑠 = 2 kHz (corresponding to a recording every 
𝛿𝑡 = 0.5 ms). Signals corresponding to the different trials were generated independently. For each trial 𝑛, we simulated an induced 
response in the [20, 30] ms time window, and ongoing activity the rest of the time. Both the ongoing and the induced activities were 
generated using (22) with the same amplitude Ω𝑛 and frequency 𝜈𝑛, but with different phase: 𝜙(𝑜)

𝑛 for the ongoing activity, and 𝜙(𝑖)
𝑛

for the induced activity. The exact values of parameters were sampled according to specific distributions (see Table 2). We added 
either white or red Gaussian noise with variance 𝜎2 ∈ {1, 2, 5, 10} [68]. The signals were analyzed using the S-transform.

Since we are interested in oscillations in the high frequency range, we expected from previous calculations—see in particular (14), 
(15) and (21)—that the influence of noise would be (i) larger on avgPOW than on POWavg; and (ii) larger for white noise than for 
6

red noise.
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 original signal 𝑠(𝑡) (solid black line) or the noisy signal 𝑥(𝑡) (solid 
d and the black lines are superimposed.
Fig. 1. Oscillatory signal. Effect of noise on E(avgPOW) using the S-transform. We represented E[|𝑇𝑏(𝑡, 𝑓 )|2] (dashed lines) as well as E(avgPOW), either for the
colored lines) for color noise, either white (top) or red (bottom), and variance equal to either 𝜎2 = 1 (blue) or 𝜎2 = 10 (red). For red noise and 𝜈 = 500 Hz, the re
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Table 2

Simulation study. Values of parameters for data generation.

Parameter Distribution Parameters

Ω𝑛  (Ω0 , 𝜏
2
Ω) Ω0 = 1 𝜏Ω = 0.1

𝜈𝑛  (𝜈0, 𝜏2𝜈 ) 𝜈0 = 500 𝜏𝜈 = 0
𝜙(𝑜)
𝑛

vonMises[𝜙0 , 𝜅
(𝑜)] 𝜙0 = 0 𝜅(𝑜) = 0

𝜙(𝑖)
𝑛

vonMises[𝜙0 , 𝜅
(𝑖)] 𝜙0 = 0 𝜅(𝑖) = 10

4.2. Results

Results are illustrated on Fig. 2 for avgPOW and on Fig. 3 for POWavg. Without noise, avgPOW was able to visually enhance the 
presence of an oscillation around 500 Hz and POWavg the presence of a phase resetting. The effect of noise strongly depended on the 
type of noise and on the measure. Regarding the type of noise, white noise (corresponding to a linear increase in the time-frequency 
transform) was more visible than red noise (corresponding to a 1∕𝑓 decrease in the time-frequency transform). This effect was all 
the more important that we were interested in a high-frequency phenomenon. Regarding the measure under consideration, we found 
that the effect of noise on POWavg was rather limited regardless of the type of noise and noise level. By contrast, avgPOW was more 
affected by noise than POWavg, and by white noise than by red noise.

5. Analysis of experimental data

We here investigate the effect of noise on EEG brain recordings acquired during an event-related protocol designed to generate 
somatosensory evoked potentials following median nerve stimulations in a healthy subject. To this end, we used the same dataset as 
in [5].

5.1. Data

Brain responses were acquired using multichannel EEG with a sampling frequency of 3 kHz. Electrical median nerve stimulation of 
1 ms duration was applied to median nerve at the wrist level to elicit a burst of high-frequency oscillations (HFOs) in the 400–800 Hz 
frequency range superimposed onto the cortical N20 potential. The stimulus was applied 300 times, with a 500-ms inter-trial interval. 
Following previous recommendations [30], we studied the fronto-central channels (CP3–Fz). Data acquisition was performed at the 
Center for Neuroimaging Research (CENIR) of the Brain and Spine Institute (ICM, Paris, France). The experimental protocol was 
approved by the CNRS Ethics Committee (study #1402) and by the national ethical authorities (CPP Île-de-France, Paris 6 – Pitié-
Salpêtrière and ANSM; ID-RCB 2015-A00462-47).

5.2. Analysis

The data was analyzed in two distinct time windows: [−200, −10] ms (before stimulus) and [10, 200] ms (after stimulation). The 
peristimulus signal (in the window [−10, 10] ms) was discarded to avoid stimulation-induced artifacts.

We first estimated both the prestimulus and poststimulus power spectral densities (PSDs) for each of the 300 trials using Welch’s 
method [66]. Using the assumption that there was no structured and reproducible oscillations in the prestimulus window, we used 
the prestimulus data as a reference to assess the noise structure. For each prestimulus PSD, we performed a linear regression of its 
log over the frequency range 40–1000 Hz to estimate the type of color noise. The average of all estimated 𝑐’s over the 300 trials, 
denoted 𝑐PSDprestim, was taken as a reference for all other cases (post-stimulus PSD as well as pre- and post-stimulus time-frequency 
transform).

As a second series of analyses, we applied time-frequency transform to both the prestimulus and poststimulus signals using the 
S-transform. We then computed avgPOW and POWavg. We also performed linear regression of the log of the measures as a function 
of the log of frequency in 40–1000 Hz, assuming a 1∕𝑓𝑐−1 profile with 𝑐 = 𝑐PSDprestim.

Finally, we focused on the HFOs in the [15, 30] ms (poststimulus) time range and [600, 1000] Hz frequency range. We compared 
various profiles with the expected 1∕𝑓𝑐−1 profile with 𝑐 = 𝑐PSDprestim.

5.3. Results

Results regarding the PSD are summarized in Fig. 4. Using the prestimulus data, we found that the signal exhibited a PSD that 
roughly decayed as 1∕𝑓𝑐 , with 𝑐 ≈ 1.610 ±0.117 (mean ± standard deviation over the 300 estimates), median of 1.61. Such range of 
values for 𝑐 corresponds to color noise between pink noise (𝑐 = 1) and red noise (𝑐 = 2). The prestimulus PSD seemed to follow the 
1∕𝑓𝑐 trend with 𝑐 = 1.61 quite well, except for lower frequencies where larger than expected power density was found.

The value of 𝑐PSDprestim = 1.61 was used as a reference for both the poststimulus PSD as well as the pre- and poststimulus time-
frequency transforms.

We observed that the poststimulus PSD behaved in fashion very similar to the prestimulus PSD. In particular, its profile also 
8

followed quite well a 1∕𝑓𝑐 trend with 𝑐 = 𝑐PSDprestim for larger frequency values.
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10. The color scales differ for all plots.
Fig. 2. Simulated data. avgPOW for a 500 Hz oscillatory signal with white noise (top) or red noise (bottom), and 𝜎2 ranging from 1 to
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. The color scales are identical for all plots.
Fig. 3. Simulated data. POWavg for a 500 Hz oscillatory signal with white noise (top) or red noise (bottom), and 𝜎2 ranging from 1 to 10
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Fig. 4. Real data. PSD analysis. Boxplot (median and [25%, 75%] percentile interval) of prestimulus (left) and poststimulus (right) PSD corresponding to the signals 
of all trials together with expected profile of 1∕𝑓𝑐 color noise with 𝑐 = 1.61 (red line).

Fig. 5. Real data. Time-frequency analysis of prestimulus (left) and poststimulus (right) signals. Boxplot (median and [25%, 75%] interval) of avgPOW (top) and 
POWavg (bottom) together with expected profile 1∕𝑓𝑐−1 profile (red line) with 𝑐 = 1.61.

Results regarding the time-frequency transforms are illustrated in Fig. 5. While we observed no obvious structure in the prestimulus 
time-frequency transform with either avgPOW or POWavg, both poststimulus measures exhibited areas in the time-frequency domain 
with larger values before 50 ms, which are to be related to the somatosensory evoked response. This difference could also be seen in the 
boxplot of values across pre- and poststimulus windows, where both measures exhibited more variability in the lower frequency range 
poststimulus than prestimulus; also, values of POWavg were larger poststimulus than prestimulus. In all cases, we again observed a 
11

decent fit with the expected 1∕𝑓𝑐−1 behavior, with 𝑐 = 𝑐PSDprestim, in agreement with (21).
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Fig. 6. Real data. Analysis of HFO as observed by avgPOW (top) and POWavg (bottom). Left: Zoom of time-frequency transform for time in [15, 30] ms and frequency 
in [600, 1000] Hz window. Right: Mean frequency profile over [15, 17] ms (dotted line), [20, 22] ms (solid line), and [28, 30] ms (dashed line) together with expected 
1∕𝑓𝑐−1 noise profile with 𝑐 = 1.61 (red solid line).

A focus on the HFO is illustrated in Fig. 6. Compared to the expected profile of 1∕𝑓𝑐−1 with 𝑐 = 𝑐PSDprestim, both avgPOW and 
POWavg exhibited larger values in the 20–22 ms time range compared to the 15–17 ms and 28–30 ms time ranges. This effect was 
even more noticeable with POWavg than with avgPOW.

6. Discussion

In the present manuscript, we investigated the effect of noise on POWavg and avgPOW. More precisely, we assumed a model 
where additive Gaussian noise was added to the signal of interest and we compared the expected values of avgPOW and POWavg 
calculated either with or without noise. We showed that noise had an additive and positive effect on the expectations of the two 
measures. We also showed that the number of trials 𝑁 had a different effect on POWavg and avgPOW: an influence on POWavg that 
decreased in 1∕𝑁 , and an influence on avgPOW that did not depend on 𝑁 . Since the influence of noise depends on its temporal 
structure (autocorrelation) and on the type of time-frequency transform used, we considered color noise (i.e., noise with a power 
spectral density proportional to 1∕𝑓𝑐 ) analyzed with the S-transform. In that case, we showed that for both avgPOW and POWavg the 
expected effect of noise was on average proportional to 1∕𝑓𝑐−1 . We confirmed these general results in the case of a pure oscillatory 
signal with color noise, in the case of simulated data, as well as on experimental data.

The approach expounded in the present manuscript heavily relies on the time-frequency features of noise. As mentioned above, 
what is meant by the time-frequency transform of noise is not obvious. We circumvented this issue by taking a discrete perspective 
on noise, which allowed us to approximate integrals with Riemann sums. Since we deal with real-life signals, which are discrete by 
nature, this perspective does not lead to practical restrictions.

In this study, we also made different assumptions regarding the type of noise considered. In all cases, we focused on additive noise, 
as modeled in (8). The type of noise has a large impact on the global appearance of the time-frequency transform. We considered wide-
sense stationary noise and investigated consequences of having color noise. In the case of color noise with a PSD of the form 1∕𝑓𝑐 , 
we showed that this 1∕𝑓 structure could also be observed directly on the time-frequency diagrams. For instance, the expected profile 
for both avgPOW and POWavg in the case of the S-transform was in 1∕𝑓𝑐−1 . This key result entailed that the effect of noise on these 
two measures (i) increased with increasing frequencies for 𝑐 < 1; (ii) did not depend on frequency for 𝑐 = 1; and (iii) decreased with 
increasing frequencies for 𝑐 > 1. This effect was clearly visible on our calculations as well as on the simulation study and the analysis 
12

of experimental data. As a consequence, the effect of noise on our analyses critically depended on the frequency range of interest. 
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For instance, in the case of HFOs, dealing with 𝑐 < 1 means that noise can potentially have a large impact on the measures. This 
effect globally remains the same in the case of time-frequency transform based on the continuous wavelet transform (see Section IV 
of Supplementary Material).

Signals with 1∕𝑓 temporal autocorrelation structure have commonly been reported in EEG signal analysis [39,40,48,6,52,55]. 
While the term “1∕𝑓 noise” is quite common in the literature, the origin of the signal with 1∕𝑓 power spectrum is more likely a 
signature of irregular and asynchronous neuronal activity, to be distinguished from rhythmic, oscillatory neural activity [47,32,31,
46,19,20,26]. This non-oscillatory activity has been shown to be influenced by several factors, including age, sex, state, and task 
[9,56,16,13,50,19,10,45,49].

In the experimental data, we estimated the color (the value of 𝑐 in 1∕𝑓𝑐 ) from the prestimulus PSD. An alternative approach would 
be to use wavelet filtering [39]. This value of 𝑐, denoted 𝑐PSDprestim, was found to be also a rather good indicator of the profile of 
the poststimulus PSD as well as the pre- and poststimulus values of avgPOW and POWavg—in particular for larger frequency values. 
This result gives weight to the underlying assumption of limited synchronized oscillatory activity in the experimental data.

In the present manuscript, we focused on the S-transform as a way to perform time-frequency analyses of brain signals for two 
reasons. First, it is a time-frequency transform that is commonly used in MEG/EEG data analysis. Furthermore, it has the advantage of 
rendering our calculations tractable. Another usual approach for time-frequency transform is the use of continuous wavelet transform 
[43]. A major difference between the S-transform and a continuous wavelet transform is that the S-transform uses a function whose 
𝐿1-norm is normalized (i.e., set to 1), while the continuous wavelet transform uses a function that is 𝐿2-normalized. The consequences 
of this difference are twofold, depending on whether we focus on the signal of interest or the noise. From the perspective of the signal, 
the S-transform of a pure oscillatory signal of amplitude Ω0 and frequency 𝜈0 yields a time-frequency transform whose maximum 
amplitude does not depend on 𝜈0 and is equal to Ω0 at 𝑓 = 𝜈0 according to (25). By contrast, using the continuous wavelet transform 
would lead to a maximum amplitude that would be a decreasing function of amplitude (e.g., roughly in 1∕

√
𝑓 for the Morlet wavelet). 

If we rather focus on the noise, the time-frequency transform of color noise was found to be of the order 1∕𝑓𝑐−1, see (21). By contrast, 
it would be of order 1∕𝑓𝑐 for a continuous wavelet transform. Altogether, both methods for time-frequency transform end up with 
the same signal-to-noise ratio. Still, what has been presented above as a prototypical behavior of the continuous wavelet transform 
might be undesirable, and some publications (such as [38]) and softwares (such as Matlab) use continuous wavelet transforms with 
𝐿1 normalization. In that case, the Morlet wavelet becomes very similar to the S-transform. See Section IV of Supplementary Material 
for more details on this issue.

We derived results regarding the expectations of avgPOW and POWavg. Using these results as indications regarding the behavior 
of the measures themselves amounts to neglecting their intrinsic variability. The validity of such an assumption depends on the 
measure. For POWavg, noise seemed to have a vanishing influence when the number of trials increases; neglecting variability might 
arguably make sense. By contrast, we observed that the influence of noise on avgPOW did not vanish, and avgPOW𝑥1∶𝑁

(𝑡, 𝑓 ) did not 
become similar to avgPOW𝑠1∶𝑁

(𝑡, 𝑓 ) as 𝑁 increased. It might therefore be harder to do away with the residual variability in that case. 
A more precise quantification of the effect of noise on the variability of avgPOW and POWavg would involve the calculation of the 
variance of these measures.

In [5], we investigated the relationship between three measures from time-frequency transform, namely avgAMP, AMPavg, and 
inter-trial coherence (ITC) defined as [41]

ITC =
|||||| 1𝑁

𝑁∑
𝑛=1

𝑒
𝑖 arg

[
𝑇𝑥𝑛 (𝑡,𝑓 )

]|||||| . (34)

Instead of working with avgAMP and AMPavg, we here rather considered avgPOW and POWavg, respectively. Obviously, both 
measures are related, but they are not equal: POWavg is equal to AMPavg2, while the relationship between avgPOW and avgAMP is 
more complex. The reason for the present choice of measures is that the effect of noise on avgPOW is easier to quantify on avgPOW 
and POWavg than it is on avgAMP and AMPavg.

Correction of 1∕𝑓 noise has been deemed an important step in some analyses of brain recordings [19,50,20]. The fact that color 
noise with a 1∕𝑓 structure translates into a time-frequency transform with a similar profile could be used to provide an efficient 
thresholding of the time-frequency diagram. Methods have been proposed for statistical hypothesis testing [57]. However, caution 
has to be exerted [7,29], and the development of such a thresholding approach goes beyond the scope of the present manuscript.

Finally, we here considered the effect of noise on avgPOW and POWavg. We did not consider its effect on ITC. The reason for this 
choice is that noise has an effect on ITC that is qualitatively quite different from both avgPOW and POWavg. Determining the effect 
of noise on ITC is a research question in itself. While Cohen [12, §19.3] argues that noise should tend to increase ITC, van Diepen 
and Mazaheri [64] show evidence of a decrease of ITC with decreasing signal-to-noise. We would like to validate these statements 
and provide a derivation for ITC similar to what has been done for avgPOW and POWavg in the present manuscript. Only then can 
we start considering the effect of noise on the relationship obtained in [5].

7. Conclusion

In the present manuscript, we showed that additive noise tends on average to increase both avgPOW and POWavg. We quantified 
the main factors of influence for both measures, such as the noise variance, the number of trials, the sampling rate, the type of noise, 
13

and the frequency of interest. In particular:
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• An increasing number of trials reduces the influence of noise on POWavg but not on avgPOW.
• The type of time-frequency transform (e.g., S-transform or continuous wavelet transform) has an influence on the way the time-

frequency transforms for both the signal and the noise behave as a function of frequency.
• In the case of a color noise with PSD of the form 1∕𝑓𝑐 analyzed with the S-transform, the relative effect of noise (i) increases 

with increasing frequency for 𝑐 < 1; (ii) does not depend on frequency for 𝑐 = 1; and (iii) decreases with increasing frequency 
for 𝑐 > 1.

These effects were established using theoretical calculations, simulation studies and analysis of experimental data. They can poten-
tially have a large impact on the neuroscientist’s work when dealing with time-frequency analysis. We hope the present results will 
help researchers improve their understanding and interpretation of time-frequency diagrams, as well as optimize their experimental 
setting based on their neuroscientific question. We specifically expect these results to hold relevance for non-invasive brain-computer 
interface (BCI) experiments using time-frequency analysis of event-related tasks. Maintaining an adequate signal-to-noise ratio is 
crucial in such contexts, as recordings may include not only brain signals such as EEG but also electromyogram (EMG) and other 
non-EEG artifacts. Our research should contribute to an improved quantification of the overall impact of these various forms of noise, 
which can significantly hinder BCI performance.
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Appendix A. Time-frequency transform of noise

We have

𝑇 RS
𝑥 (𝑡, 𝑓 ) = 𝛿𝑡

∑
𝑘

𝑠(𝑢𝑘)𝜙∗
𝑡,𝑓
(𝑢𝑘) + 𝛿𝑡

∑
𝑘

𝑏(𝑢𝑘)𝜙∗
𝑡,𝑓
(𝑢𝑘)

= 𝑇 RS
𝑠 (𝑡, 𝑓 ) + 𝑇 RS

𝑏
(𝑡, 𝑓 ).

This is true for any 𝛿𝑡. Taking the limit 𝛿𝑡 → 0, we obtain in particular

𝑇𝑥(𝑡, 𝑓 ) = 𝑇𝑠(𝑡, 𝑓 ) + 𝑇𝑏(𝑡, 𝑓 ). (35)

By taking the expectation of 𝑇 RS
𝑏

(𝑡, 𝑓 ) from its definition, (10), and using the linearity of the expectation and the fact that the noise 
is of zero mean, we obtain

E
[
𝑇 RS
𝑏

(𝑡, 𝑓 )
]
= 𝛿𝑡

∑
𝑘

E
[
𝑏(𝑢𝑘)

]
𝜙∗
𝑡,𝑓
(𝑢𝑘) = 0. (36)

Again, this is true for any 𝛿𝑡; taking the limit 𝛿𝑡 → 0, we obtain

E
[
𝑇𝑏(𝑡, 𝑓 )

]
= 0. (37)

Appendix B. Effect of noise on avgPOW and POWavg

From (1), we have

E
[
avgPOW𝑥1∶𝑁

(𝑡, 𝑓 )
]
= E

[||𝑇𝑥(𝑡, 𝑓 )||2] , (38)

with E 
[||𝑇𝑥(𝑡, 𝑓 )||2] given by[ ] [ ] [ ] { [ ]}
14

E ||𝑇𝑥(𝑡, 𝑓 )||2 = E ||𝑇𝑠(𝑡, 𝑓 )||2 + E ||𝑇𝑏(𝑡, 𝑓 )||2 + 2ℜ E 𝑇𝑠(𝑡, 𝑓 )𝑇𝑏(𝑡, 𝑓 ) . (39)
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Since 𝑠(𝑡) and 𝑏(𝑡) are independent, so are their time-frequency transforms. The expectation of their product is therefore equal to the 
product of their expectations,

E
[
𝑇𝑠(𝑡, 𝑓 )𝑇𝑏(𝑡, 𝑓 )

]
= E

[
𝑇𝑠(𝑡, 𝑓 )

]
E
[
𝑇𝑏(𝑡, 𝑓 )

]
, (40)

which is equal to 0 from (13). We therefore obtain

E
[||𝑇𝑥(𝑡, 𝑓 )||2] = E

[||𝑇𝑠(𝑡, 𝑓 )||2]+ E
[||𝑇𝑏(𝑡, 𝑓 )||2] , (41)

and

E
[
avgPOW𝑥1∶𝑁

(𝑡, 𝑓 )
]
= E

[||𝑇𝑠(𝑡, 𝑓 )||2]+ E
[||𝑇𝑏(𝑡, 𝑓 )||2] . (42)

From (1), we see that the first expectation of the right-hand side of the equation is equal to avgPOW𝑠1∶𝑁
(𝑡, 𝑓 ). In the end, 

E 
[
avgPOW𝑥1∶𝑁

(𝑡, 𝑓 )
]

yields

E
[
avgPOW𝑥1∶𝑁

(𝑡, 𝑓 )
]
= E

[
avgPOW𝑠1∶𝑁

(𝑡, 𝑓 )
]
+ E

[||𝑇𝑏(𝑡, 𝑓 )||2] . (43)

By an argument similar to the one used for avgPOW, we obtain that E 
[
POWavg𝑥1∶𝑁 (𝑡, 𝑓 )

]
can be expressed as

E
[
POWavg𝑥1∶𝑁 (𝑡, 𝑓 )

]
= E

[
POWavg𝑠1∶𝑁 (𝑡, 𝑓 )

]
+ E

[|||𝑇𝑏𝑛 (𝑡, 𝑓 )|||2
]
. (44)

We now need to explicitly calculate E[|𝑇
𝑏𝑛
(𝑡, 𝑓 )|2]. We use the linearity of the time-frequency transform and of the expectation, the 

fact that the 𝑇𝑏𝑛 (𝑡, 𝑓 )’s are independent (because the 𝑏𝑛 ’s are), as well as E[𝑇𝑏𝑛 (𝑡, 𝑓 )] = 0. We finally obtain

E
[|||𝑇𝑏𝑛 (𝑡, 𝑓 )|||2

]
= 1
𝑁

E
[||𝑇𝑏(𝑡, 𝑓 )||2] . (45)

Putting this result into Equation (44) finally yields for E 
[
POWavg𝑥1∶𝑁 (𝑡, 𝑓 )

]
E
[
POWavg𝑥1∶𝑁 (𝑡, 𝑓 )

]
= E

[
POWavg𝑠1∶𝑁 (𝑡, 𝑓 )

]
+ 1
𝑁

E
[||𝑇𝑏(𝑡, 𝑓 )||2] . (46)

Appendix C. Oscillatory signal

The S-transform of the complex oscillatory signal 𝑠(𝑡) = Ω𝑒𝑖(2𝜋𝜈𝑡+𝜙) with amplitude Ω, frequency 𝜈 and phase 𝜙 is given by

𝑇𝑠(𝑡, 𝑓 ) =
Ω|𝑓 |√
2𝜋

𝑒𝑖𝜙 ∫ 𝑒−
1
2 𝑓

2(𝑢−𝑡)2𝑒2𝑖𝜋(𝜈−𝑓 )𝑢 d𝑢. (47)

The integral is proportional to the value of the characteristic function of a Gaussian distribution with mean 𝑡 and variance 1∕𝑓 2 taken 
at value 2𝜋(𝜈 − 𝑓 ), which is equal to [33, Eq. (13.13)]

𝑒
2𝑖𝜋(𝜈−𝑓 )𝑡− [2𝜋(𝜈−𝑓 )]2

2𝑓2 . (48)

The time-frequency transform is then given by

𝑇𝑠(𝑡, 𝑓 ) = Ω𝑒−
1
2 (2𝜋)

2
(
1− 𝜈

𝑓

)2
𝑒𝑖[2𝜋(𝜈−𝑓 )𝑡+𝜙] (49)

and its power by

||𝑇𝑠(𝑡, 𝑓 )||2 = Ω2𝑒
−(2𝜋)2

(
1− 𝜈

𝑓

)2
. (50)

Its maximum is reached for 𝑓 = 𝜈, with value equal to Ω2.
We have

E
⎡⎢⎢⎣
|||||| 1𝑁

𝑁∑
𝑛=1

Ω𝑛𝑒
𝑖𝜙𝑛

||||||
2⎤⎥⎥⎦ = 1

𝑁2

[
𝑁∑
𝑛=1

E
(
Ω2
𝑛

)
+
∑
𝑛≠𝑚

E
(
Ω𝑛Ω𝑚𝑒

𝑖𝜙𝑛𝑒−𝑖𝜙𝑚
)]

. (51)

Independence of the Ω𝑛 ’s and 𝜙𝑛 ’s leads to

E
(
Ω𝑛Ω𝑚𝑒

𝑖𝜙𝑛𝑒−𝑖𝜙𝑚
)
= E(Ω𝑛)E(Ω𝑚)E

(
𝑒𝑖𝜙𝑛

)
E
(
𝑒−𝑖𝜙𝑚

)
= E(Ω)2 |||E(𝑒𝑖𝜙)|||2 , (52)
15

so that
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𝑛≠𝑚

E
(
Ω𝑛Ω𝑚𝑒

𝑖𝜙𝑛𝑒−𝑖𝜙𝑚
)
=𝑁(𝑁 − 1)E(Ω)2 |||E(

𝑒𝑖𝜙
)|||2 (53)

and, from (51),

E
⎡⎢⎢⎣
|||||| 1𝑁

𝑁∑
𝑛=1

Ω𝑛𝑒
𝑖𝜙𝑛

||||||
2⎤⎥⎥⎦

= E(Ω)2 |||E(
𝑒𝑖𝜙

)|||2 + 1
𝑁

[
E
(
Ω2)− E(Ω)2 |||E(

𝑒𝑖𝜙
)|||2

]
= E(Ω)2 |||E(

𝑒𝑖𝜙
)|||2 +𝑂

( 1
𝑁

)
.

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .heliyon .2024 .e35310.
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