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breeds using whole genome SNPs and InDels
Chang‑heng Zhao1†, Dan Wang1†, Cheng Yang1, Yan Chen1, Jun Teng1, Xin‑yi Zhang1, Zhi Cao1, 
Xian‑ming Wei1, Chao Ning1, Qi‑en Yang2*, Wen‑fa Lv3* and Qin Zhang1*   

Abstract 

Background Accurate breed identification is essential for the conservation and sustainable use of indigenous farm 
animal genetic resources. In this study, we evaluated the phylogenetic relationships and genomic breed composi‑
tions of 13 sheep breeds using SNP and InDel data from whole genome sequencing. The breeds included 11 Chinese 
indigenous and 2 foreign commercial breeds. We compared different strategies for breed identification with respect 
to different marker types, i.e. SNPs, InDels, and a combination of SNPs and InDels (named SIs), different breed‑informa‑
tive marker detection methods, and different machine learning classification methods.

Results Using WGS‑based SNPs and InDels, we revealed the phylogenetic relationships between 11 Chinese indige‑
nous and two foreign sheep breeds and quantified their purities through estimated genomic breed compositions. We 
found that the optimal strategy for identifying these breeds was the combination of DFI_union for breed‑informative 
marker detection, which integrated the methods of Delta, Pairwise Wright’s FST, and Informativeness for Assignment 
(namely DFI) by merging the breed‑informative markers derived from the three methods, and KSR for breed assign‑
ment, which integrated the methods of K‑Nearest Neighbor, Support Vector Machine, and Random Forest (namely 
KSR) by intersecting their results. Using SI markers improved the identification accuracy compared to using SNPs 
or InDels alone. We achieved accuracies over 97.5% when using at least the 1000 most breed‑informative (MBI) SI 
markers and even 100% when using 5000 SI markers.

Conclusions Our results provide not only an important foundation for conservation of these Chinese local sheep 
breeds, but also general approaches for breed identification of indigenous farm animal breeds.
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Background
Sheep (Ovis aries), one of the earliest domesticated 
livestock species, have a widespread distribution in the 
world, particularly in China. The geographical features 
of China, including its vast territory, complex topogra-
phy and significant variations in altitude, contribute to 
diverse ecological conditions and climate patterns. These 
factors have had a profound impact on the formation and 
distribution of domestic animal diversity in China [1]. 
Through long-term adaptation to local environments, 
numerous distinctive attributes have been accumulated 
within local sheep populations. These characteristics 
encompass high productivity, extensive adaptability, 
early maturity, and disease resistance. However, due to 
indiscriminate crossbreeding practices and insufficient 
conservation efforts, many breeds are declining in pop-
ulation size and facing the risk of extinction. Therefore, 
there is a pressing need to investigate the existing genetic 
diversity, and to take efficient measures for better pre-
serving these indigenous sheep breeds.

Efficient and accurate identification of animals belong-
ing to a particular breed is essential for the effective con-
servation and sustainable use of these local breeds [2]. 
Up to now, animal population structure and breed iden-
tification studies have been conducted mainly based on 
SNP chip data or whole genome sequencing (WGS) data 
[3–6]. WGS has the advantage of capturing rare species-
specific polymorphisms and more informative polymor-
phisms compared to SNP chips [7, 8]. In addition, WGS 
provides the opportunity to capture various additional 
types of variants besides SNPs across the genome, such 
as Insertions/deletions (InDels), which are the second 
most common type of genomic variant, with an esti-
mated ratio of 1 InDel for every 5.3 SNPs [9]. Research 
conducted on humans has revealed that InDels play 
prominent roles in evolutionary changes [10, 11]. There-
fore, it becomes important to investigate the potential of 
InDels in the context of population structure analysis and 
breed identification.

The breed identification procedure typically includes 
three key steps: (1) establishment of a training popu-
lation consisting of purebred individuals of multiple 
breeds, (2) selection of the most breed-informative 
markers relevant to the breeds in the training popula-
tion, and (3) assignment of test individuals to a particu-
lar breed within the training population. Indigenous 
breeds have often suffered from gene introgression 
of other breeds due to unintended or intended cross-
breeding. Therefore, it is necessary to examine the 
purity of animals in the training population. This can 
be done by estimating the genomic breed composi-
tions (GBC) using genomic data. Many methods have 
been proposed to estimate GBCs of individuals, such as 

linear regression models [12, 13], supervised admixture 
models [14], and SNP-BLUP models [15]. Several stud-
ies have shown that the supervised admixture model 
gave more consistent results, even when the number of 
SNPs was small [16–18].

A number of methods have been proposed for breed-
informative SNP detection and breed assignment. In our 
previous study [6], using a training population consist-
ing of commercial cattle breeds and SNPs from WGS, we 
compared three methods for detecting breed informa-
tive SNPs, i.e., Delta [19], Pairwise Wright’s  FST [20], and 
Informativeness for Assignment (In) [21], as well as five 
machine learning classification methods for breed assign-
ment, i.e., K-Nearest Neighbor (KNN), Support Vector 
Machine (SVM), Random Forest (RF), Naïve Bayes, and 
Artificial Neural Network. Our results demonstrated that 
the optimal strategy was to use the common SNPs identi-
fied by Delta, FST, and In and to integrate KNN, SVM, and 
RF for breed assignment. However, it is not clear whether 
this strategy is also optimal for breed identification of 
indigenous breeds.

In this study, we investigated the phylogenetic rela-
tionships and genetic purities of 13 sheep breeds using 
WGS-based SNP and InDel data. The breeds included 
11 Chinese indigenous breeds, most of which were fac-
ing extinction, and 2 foreign commercial breeds. We 
compared different strategies for breed identification 
with respect to different marker types (SNPs, InDels, 
and a combination of SNPs and InDels), different 
breed-informative marker detection methods, different 
machine learning classification methods, and different 
numbers of markers. We developed an optimal strategy 
and marker panels for breed identification specific to the 
breeds involved in this study.

Methods
Animals and WGS data
The data used in this study was WGS data of 13 sheep 
breeds, including 11 Chinese indigenous breeds and 
two foreign commercial breeds. The WGS data of three 
Chinese breeds, Guide Black Fur sheep, Minxian  Black 
Fur  sheep and Hanzhong sheep were obtained by 
sequencing their blood samples with the DNBSEQ-T7 
platform. The WGS data of other breeds were down-
loaded from the National Center for Biotechnology 
Information (NCBI) databases (https:// www. ncbi. nlm. 
nih. gov/). A full description of the samples is detailed in 
Additional file 1: Table S1. The number of individuals of 
each breed ranged from 18 to 39, with a total of 349 indi-
viduals. The breed names, numbers of individuals, and 
average sequencing depths of the 13 breeds are presented 
in Table 1.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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SNPs/InDels calling and quality control
We removed adapters and trimmed low-quality ends 
from raw reads using Fastp v0.23.2 [22]. Sentieon’s 
DNASeq pipeline (https:// www. senti eon. com/ produ cts/) 
was used to call SNPs and InDels as follows: (i) the func-
tions “bwa mem”, “util sort” and “Dedup” were used to 
map clean reads to the sheep reference genome [23], sort 
bam files and remove duplicates, (ii) raw GVCFs were 
called from the bam files using the function “Haplotyper”, 
and (iii) the individual GVCFs were merged and called 
jointly to generate VCFs using the function “GVCFtyper”. 
To avoid potential false-positive calls, we used the “Vari-
antFiltration” function of GATK v4.2.6.1 [24] to filter 
SNPs with the following criteria parameters: QD (quality 
by depth) < 2.0, MQ (mapping quality) < 40.0, FS (Fisher 
strand) > 60.0, SOR (strand odds ratio) > 3.0, MQRank-
Sum (mapping quality rank sum test) < − 12.5, and Read-
PosRankSum (read position rank sum test) < − 8.0. For 
InDel filtering, the criteria were QD < 2.0, FS > 200.0, 
SOR > 10.0, MQRankSum < − 12.5, and ReadPosRank-
Sum < − 8.0. We obtained 60,554,004 SNPs and 6,995,733 
InDels.

Quality control of the three types of genotype data, 
i.e., SNPs, InDels, and SIs, were carried out using Plink 
v1.9 [25]. SNPs/InDels/SIs were removed if the following 
requirements were not met: (i) being biallelic, (ii) 100% 
genotyping rate (several methods used in this study for 
detection of breed-informative SNPs or classification do 
not allow any missing values), (iii) locating on autosomes, 

and (iv) InDels < 50 bp. After quality control, 17,623,634 
SNPs and 1,539,027 InDels were retained. Further, we 
pruned SNPs/InDels with linkage disequilibrium (LD) 
r2 ≥ 0.2 within a 500-kb window, so that SNPs/InDels 
with stronger LD than r2 ≥ 0.2 were removed. Finally, we 
obtained 822,488 SNPs and 464,035 InDels. In addition 
to using these two types of markers separately, we also 
used SI markers. After pruning SIs using the same LD 
r2 threshold of 0.2 within a 500-kb window, we obtained 
857,010 SIs (including 774,180 SNPs and 82,830 InDels).

Population structure analysis
Based on the 822,488 SNPs, the phylogenetic tree analy-
sis was performed to estimate the phylogenetic relation-
ships among all 349 individuals. The VCF2Dis software 
(https:// github. com/ BGI- shenz hen/ VCF2D is) was used, 
and the results were then utilized as input for FastMe2.0 
[26] to generate a Neighbor-Joining (NJ) phylogenetic 
tree. The exported phylogenetic tree was visualized using 
the iTOL program (https:// itol. embl. de/). Individuals 
that were grouped in a breed other than their labeled 
breed were removed from the dataset and the remaining 
individuals were used for subsequent analyses.

Estimation of genomic breed composition
A supervised admixture analysis using Admixture v1.3 
[27] was performed to estimate GBC of each individual. 
A tenfold cross validation was carried out, in which each 
breed was randomly divided into ten subsets, of which 

Table 1 Sheep breeds involved in this study and their average sequencing depths (± SD), total numbers of animals, and numbers of 
most‑likely purebred animals

Breed name Code Average sequencing depth (X) Total number of animals Number of most-
likely purebred 
animals

Chinese indigenous breeds

 Bashbay BSB 17.63 ± 10.00 29 24

 Altay ALT 14.73 ± 8.47 26 26

 Cele Black CLB 17.41 ± 9.49 29 23

 Duolang DL 17.12 ± 9.79 34 28

 Tan sheep TAN 19.72 ± 12.11 23 19

 Hu sheep HU 15.98 ± 10.80 30 29

 Wadi sheep WD 40.48 ± 4.50 20 20

 Small‑Tailed Han STH 18.75 ± 13.24 22 22

 Minxian Black Fur MBF 46.55 ± 6.56 30 20

 Guide Black Fur GBF 42.07 ± 7.08 30 29

 Hanzhong HZ 42.14 ± 4.46 39 39

Foreign breeds

 Australian Merino AMR 21.30 ± 3.98 18 17

 Dorset DS 14.55 ± 2.60 19 18

 Total 26.07 ± 14.94 349 314

https://www.sentieon.com/products/
https://github.com/BGI-shenzhen/VCF2Dis
https://itol.embl.de/
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nine were used in turn as the reference group and the 
remaining one was treated as the test group.

Establishment of the training population
A training population for breed identification should 
consist of purebred animals of relevant breeds. Therefore, 
it is necessary to identify purebred animals of each breed. 
Based on the results of population structure analysis and 
GBC estimation, we identified an individual as most-
likely purebred of a breed if it was within the branch of 
that breed in the phylogenetic tree and had an estimated 
GBC of that breed ≥ 90%. Only individuals identified 
as most-likely purebred were included in the training 
population.

Detection of breed informative markers
We used five different strategies to detect breed-inform-
ative markers (SNPs, InDels, or SIs), namely DFI_inter, 
DFI_union, MDA, MDG, and MI.

DFI_inter and DFI_union
In our previous study, we proposed the DFI method 
[6], which is a combination of three methods, i.e., Delta 
[19], Pairwise Wright’s  FST [20] and Informativeness for 
Assignment [21], in which the common markers derived 
from the three methods are extracted as the final mark-
ers. This method is named DFI_inter in this study. An 
alternative way to combine the three methods is to select 
equal number of top breed informative markers from the 
three methods and merge them together to achieve the 
defined total number of unique markers. This method is 
named DFI_union.

MDA and MDG
The RF algorithm is a popular machine learning tech-
nique used for classification and regression tasks. It can 
rank predictors based on correlations observed within 
classification rules, providing two relevance measures: 
the mean decreased accuracy (MDA) and the mean 
decreased Gini index (MDG). These two ranking rules 
can be utilized to assess the SNPs present in the dataset, 
thereby allowing the identification of a crucial set of dis-
criminatory markers [28, 29]. The randomForest function 
of R package randomForest [30] with default parameters 
was used to obtain the breed informative markers meas-
ured by MDA and MDG.

Mutual information
Mutual information (MI) is a filtering method that 
ranks the SNPs according to their pairwise relevance to 
the breed label. Because it assesses each feature individ-
ually, it may fail to discover important feature groups 
and choose redundantly correlated ones. Nevertheless, 

due to its low computational complexity, it is still pop-
ular when dealing with high-dimensional datasets in 
bioinformatics studies [31, 32]. The mutinformation 
function of R package infotheo [33] with default param-
eters was used to perform the MI method.

Classification methods for breed assignment
Four machine learning models (KNN, SVM, RF and 
KSR) were used to classify individuals for breed assign-
ment. We used the most breed-informative SNPs/
Indels/SIs identified from the training population to 
train the models by aligning the markers of individuals 
in the test population with the most breed-informative 
(MBI) markers of individuals in the training popula-
tion. Different numbers of MBI markers were consid-
ered: 200, 400, 600, 800, 1000, 2000, 3000, 4000, 5000, 
and 6000. The larger markers sets included the smaller 
marker sets.

K-Nearest Neighbor (KNN) is a supervised machine 
learning algorithm that classifies new samples based on 
their proximity to the training set. Specifically, for an 
unclassified sample, KNN identifies its closest neigh-
bors k in the training set and assigns a class label by 
taking the majority vote of the class labels among these 
neighbors [34]. The knn function of R package class 
[35] with default parameters was used to perform KNN 
classification.

Support Vector Machine (SVM) achieves classifica-
tion by maximizing the margin between the optimal 
hyperplane (the decision boundary for breed classifica-
tion) and the nearest samples of different classes, while 
minimizing the classification error on the training set 
[36]. The svm function of R package e1071 [37] (with 
the option type = C-classification, kernel = linear) was 
used to perform SVM classification.

Random Forest (RF) achieves classification by build-
ing an ensemble of decision trees, where each tree is 
constructed using a random subset of features and a 
bootstrapped sample from the training set. The final 
class label is determined by aggregating the predic-
tions of all individual trees through majority voting or 
weighted voting [38]. The randomForest function of 
R package randomForest [30] with default parameters 
was used to perform RF classification.

KSR integrates the three methods (KNN, SVM and 
RF) by taking the intersection of their results, i.e., the 
intersection of at least two of the three methods. If 
there was no intersection at all, we took the result of 
KNN [6].

For each of these methods, 50 replicates were carried 
out with different random sampling procedures within 
the machine learning framework.
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Breed identification
Breed identification was performed using the aformen-
tioned breed-informative marker detection methods, 
machine learning classification methods with different 
MBI markers, and marker types. A tenfold cross validation 
was carried out to evaluate the accuracy of breed identifi-
cation under different scenarios. Each breed in the estab-
lished training population was divided into 10 subsets of 
the same size, one of which in turn was used as validation 
set and the remaining nine as training sets.

The accuracy of breed identification was defined as 
follows:

Accuracy =
1

50

50∑

i=1

NT

NT + NF
× 100%

where NT is number of individuals which were correctly 
assigned to the breeds they belong to and NF is the num-
ber of individuals which were wrongly assigned.

Results
Population structure
The phylogenetic tree showed the relationships 
between the 13 breeds as well as between individuals 
within each breed. The 349 individuals were grouped 
into 13 branches corresponding to the 13 breeds 
(Fig.  1). However, two individuals, which had breed 
labels DS and GBF, were grouped in branches AMR and 
HZ, respectively. These two individuals were removed 
from the dataset.

Fig. 1 Phylogenetic relationships between 13 sheep breeds revealed using 822,488 SNPs. The breed names represented by the codes for different 
colors are presented in Table 1
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GBC estimation
The GBC estimates of all individuals obtained using a 
supervised admixture analysis with 822,488 SNPs are 
illustrated in Fig. 2. In breeds BSB, CLB, DL, HU, MBF, 
and TAN there were some individuals that had small 
GBCs for two or more other breeds. For each breed, the 
average GBCs of the 13 breeds are presented in Table 2.

We treated individuals with ≥ 90% GBC of their cor-
responding breed as most-likely purebred animals. These 
individuals (314 in total, Table  1) were included in the 
training population for breed identification.

We also estimated GBCs using different numbers of the 
most breed-informative SNPs, InDels, or SIs based on 
the previously described selection methods and looked 
at their accuracies in GBC estimation, measured as cor-
relations between these GBCs and those from using all 
822,488 SNPs. Overall, the accuracies were very high 
with correlations over 0.95 (Fig. 3a) and the three marker 
types performed very similar. In particular, for the 

most- likely purebred individuals defined above, the cor-
relations were all > 0.96 (Fig. 3b). However, for the other 
individuals, which were likely non-purebred animals, the 
accuracies were much lower with correlations ranging 
from 0.73 to 0.93 for different number of SNPs or InDels 
and ranging from 0.76 to 0.96 for different number of SIs 
(Fig. 3c). SI markers performed better in this context.

Accuracies of breed identification using SNPs
Figure 4 shows the breed identification accuracies of five 
breed-informative marker detection methods (MDA, 
MDG, MI, DFI_inter, and DFI_union), different machine 
learning classification methods (KNN, RF, SVM, and 
KSR), and different numbers of most breed-informative 
SNPs (200–6000). When the number of SNPs exceeded 
1000, the accuracies were over 90% in all scenarios. The 
KSR classification method performed the best with accu-
racies over 95% when the numbers of SNPs were over 
1000 and over 99% when the numbers of SNPs were over 

Fig. 2 Genomic breed compositions estimated using supervised admixture analysis. The breed names represented by the codes for different colors 
are presented in Table 1

Table 2 Average GBCs (%) of different breeds in each breed (in rows) estimated using 822,488 SNPs

*  The breed names represented by these codes are presented in Table 1

Italic values are the average GBC of the breed for individuals which were labeled as that breed

Breed* ALT BSB CLB DL TAN STH HZ MBF GBF WD HU AMR DS

ALT 99.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BSB 3.66 94.06 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 1.92 0.08

CLB 0.34 0.24 95.74 1.61 0.00 0.00 0.85 1.04 0.00 0.00 0.00 0.00 0.18

DL 2.98 0.00 0.43 96.07 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.12

TAN 2.79 0.00 0.08 0.00 91.80 3.95 0.44 0.04 0.55 0.00 0.02 0.14 0.19

STH 0.00 0.00 0.00 0.00 0.00 99.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HZ 0.00 0.00 0.00 0.00 0.00 0.00 99.84 0.00 0.15 0.00 0.00 0.00 0.00

MBF 0.00 0.25 0.85 0.33 0.37 6.71 0.73 88.73 1.53 0.16 0.03 0.16 0.16

GBF 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 99.81 0.00 0.00 0.00 0.01

WD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.99 0.00 0.00 0.00

HU 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 99.22 0.00 0.57

AMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.48 1.51

DS 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.16 99.73
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2000. The method was very robust with respect to differ-
ent breed-informative marker detection methods and dif-
ferent numbers of SNPs. The performances of the other 
three classification methods were significantly affected by 
the marker detection methods and the number of SNPs, 
with no priority of one over the other method. In gen-
eral, the accuracies increased with the increase of the 
number of SNPs, but became stable when the number of 
SNPs was greater than 4000. Different breed-informative 
marker detection methods performed differently in dif-
ferent classification methods, e.g., for the RF method, 
MDG performed best, while for the KNN method, MDG 
was the worst. DFI_union performed better in most cases 
although it was not the best for the RF method.

Comparison of breed identification accuracies using SNPs, 
InDels, or SIs
Figure 5 shows the breed identification accuracies using 
the three marker types under four different classifica-
tion methods. Here, only the DFI_union method was uti-
lized to detect breed-informative markers. In most cases, 
using SIs yielded better accuracies than using SNPs or 
InDels, and achieved nearly accuracies of 100% in some 
cases. For KNN, using SNPs was generally better than 
using InDels, while for the other methods, there was no 
priority between using SNPs and InDels. Again, KSR per-
formed best and gave accuracies over 97.5% when the 
number of SNPs was greater than 600, and was robust to 
marker types.

Table  3 presents the detailed accuracies for each 
breed by different classification methods using 5000 SIs 
revealed by DFI_union. For seven breeds, namely CLB, 
DL, GBF, HU, HZ, AMR, and DS, accuracies of 100% 
were obtained by all classification algorithms. For the 
other breeds, KNN and KSR still yielded all accuracies of 
100% except for MBF with an accuracy of 95.3% by KSR. 
RF and SVM yielded all accuracies over 95%, except for 
breeds MBF and TAN, where accuracies lower than 85% 
were obtained. Further detailed analysis revealed that, 
for MBF, the misclassified individuals were primarily 
assigned to breeds STH or GBF, and for TAN, the mis-
classified individuals were primarily assigned to ALT 
(Additional file 1 Table S2 and Table S3).

Discussion
Establishing a training population is fundamental for 
developing methods and a marker panel for breed iden-
tification. The training population should consist of pure-
bred individuals of relevant breeds. To achieve this, we 
first conducted a phylogenetic tree analysis. The results 
show that the studied individuals from 13 breeds were 
well grouped into 13 branches corresponding to the 13 
breeds with only two individuals that were grouped into 
branches different from their labeled breeds. The most 
likely reason is a wrong breed labelling. The phyloge-
netic relationships between these breeds are consistent 
with their origins. The 11 Chinese indigenous breeds 
have three different origins. The breeds BSB, ALT, CLB, 

Fig. 3 Accuracies of genomic breed composition (GBC) estimation using different numbers of most breed‑information SNPs, InDels, and SIs 
revealed by DFI_union. a Overall correlations between GBCs using different numbers of most breed‑information markers and GBCs using 822,488 
SNPs for all of the 347 individuals. b Correlations for the 314 most‑likely purebred individuals. c Correlations for the rest 33 individuals
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and DL originated from the Kazakh sheep; TAN, HU, 
WD, and STH originated from the Mongolian sheep; and 
MBF, GBF, and HZ originated from the Tibetan sheep 
[1, 39]. The two foreign breeds, AMR and DS, originated 
from Australia. All breeds of the same origin were adja-
cent to each other in the phylogenetic tree. Then, we 
evaluated the breed purity of each individual by estimat-
ing its GBCs using a supervised admixture analysis. In 
some studies, an unsupervised admixture analysis was 
used for GBC estimation. However, several studies have 
shown that using a supervised admixture analysis is more 
appropriate for labeled data [14, 40], which is the case in 
our study. In addition, it was shown that an unsupervised 
analysis was not suitable for the case where the sample 
sizes of different breeds in the training population are 
unbalanced [40], which is also the case for our study, 
i.e., the sample sizes ranged from 17 to 39. We also tried 
using an unsupervised analysis, and it turned out that 
the optimal K value was not 13 (number of breeds), but 
rather 3. This is unreasonable. Therefore, we did not use 
an unsupervised admixture analysis to estimate GBCs.

Breed identification has been conducted overwhelm-
ingly using SNPs genotyped with a SNP chip or sequenc-
ing [3–6, 41]. Whole genome sequencing has the 
advantage of providing not only SNP genotypes but also 
other types of genomic variants, such as InDels, which 
are the second most common type of genomic variants 
following SNPs [9]. We were interested in whether InDels 
are better markers than SNPs for breed identification, or 
using SNPs and InDels together can improve the accu-
racy of breed identification compared to just using SNPs 
or InDels. We observed that when using KNN as the clas-
sification method, SNPs performed consistently better 
than InDels, while there was no difference between using 
SNPs and InDels when using the other classification 
methods. However, the differences were generally small. 
Using SNPs and InDels together (i.e., SIs) could improve 
the accuracies in most cases, although the improvement 
was small, because the accuracies from SNPs or InDels 
were already very high. In addition, the SI markers have 
an advantage in GBC estimation for the likely non-pure-
bred individuals (Fig. 3c).

Fig. 4 Breed identification accuracies using different numbers of most breed‑informative SNPs under different scenarios. a–c and d refer 
to machine learning classification methods KNN, RF, SVM and KSR, respectively. KNN K‑Nearest Neighbor; RF Random Forest; SVM Support Vector 
Machine; KSR an integration of KNN, SVM and RF
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The accuracy of breed identification is contingent upon 
not only the marker selection methods and classifica-
tion methods, but also the training population, i.e., breed 
purity, genetic relatedness between breeds, and sample 
size of each breed within the training set. In this study, 
all the identification errors occurred in breeds that all 
had relatively small sample sizes (less than 25), and/or 
close phylogenetic relationships with breed(s) to which 
the wrongly identified individual(s) were assigned. This 
is particularly the case for MBF, which had the highest 
identification error rate. MBF had a sample size of 20 
(Table 1) and very close phylogenetic relationships with 
GBF and STH (Fig. 1), and almost all misclassified indi-
viduals were assigned to breeds STH or GBF. We noticed 
that the two foreign breeds (AMR and DS) had the small-
est sample sizes (17 and 18, respectively), but no identifi-
cation error occurred for them. This is most likely due to 
their distant phylogenetic relationships with other breeds 
in this dataset.

Exploring the most effective strategies for detect-
ing breed-informative markers and machine learning 

classification methods holds significant value for breed 
identification. In our previous study on commercial cattle 
breeds [6], we found that the breed-informative marker 
detection method DFI (named DFI_inter in this study), 
combined with the classification method KSR, was the 
optimal strategy because it produced the best accuracy 
in most cases and was very robust to various conditions, 
e.g., training population size, and number of SNPs. In this 
study, we further compared additional breed-informative 
marker detection methods, DFI_union, MDA, MDG, and 
MI. Unlike DFI_inter, DFI_union selects breed-inform-
ative markers by merging the markers from the three 
methods, instead of taking the common markers from 
the three methods. For DFI_inter, we needed more mark-
ers from each method to obtain a common panel with the 
required number of markers. For example, we found that 
to obtain a certain number of common SNPs, we needed 
more than twice that number of SNPs from each method. 
Thus, the final marker panel may contain many less 
informative markers of each method. This may decrease 
the accuracy of breed identification. Indeed, our results 

Fig. 5 Breed identification accuracies using three different types of most breed‑informative markers revealed using DFI_union. a–d refer 
to machine learning classification methods KNN, RF, SVM and KSR, respectively. KNN K‑Nearest Neighbor; RF Random Forest; SVM Support Vector 
Machine; KSR an integration of KNN, SVM and RF
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showed that DFI_union performed better than DFI_inter 
in almost all scenarios, and also the best among all meth-
ods in most scenarios, with different machine learning 
classification methods and number of markers. The same 
as in our previous study, we found that the KSR classifica-
tion method was very robust and performed best with an 
identification accuracy over 97.5% when the number of 
SNPs was greater than 1000 (Figs. 4 and 5).

One of the goals of this study is to develop a panel of 
markers that can be used for breed identification spe-
cifically for the Chinese sheep breeds investigated in this 
study. It should be noted that breed identification can 
also be conducted using an existing commercial SNP 
chip. The advantages of using the panel (with 1000–5000 
markers) we developed over using a commercial SNP 
chip (with over 50,000 markers) are (1) these markers 
were selected from the sequence data of the relevant 
breeds and thus are more breed-informative specifically 
for these breeds. Using these markers would achieve 
higher accuracy of breed identification than using a com-
mercial ship which was developed based on sequence 
data of some commercial breeds; (2) it is much cheaper 
for genotyping; and (3) it is computationally much easier.

Conclusions
By comparing different breed-informative marker detec-
tion methods and machine learning classification meth-
ods, we proposed an efficient general approach for breed 

identification. Based on this approach, we developed a 
marker panel consisting of ~ 1000 to 5000 of the most 
breed-informative markers specifically for the sheep breeds 
investigated in this study. Compared to a commercial SNP 
chip, this panel provides a more cost-effective and accu-
rate tool for breed identification, which will contribute to 
improving the effective conservation and sustainable utili-
zation of Chinese indigenous sheep breeds.
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Table 3 Average identification accuracies (%) in different breeds 
by different machine learning methods using 5000 most breed‑
informative SIs revealed by DFI_union

a The breed names represented by these codes are presented in Table 1
b KNN K-Nearest Neighbor; RF Random Forest; SVM Support Vector Machine; KSR 
an integration of KNN, SVM, and RF

Breeda No Anim Classification  methodsb

KNN RF SVM KSR

ALT 26 100.00 99.38 99.85 100.00

BSB 24 100.00 97.50 99.00 100.00

CLB 23 100.00 100.00 100.00 100.00

DL 28 100.00 100.00 100.00 100.00

GBF 29 100.00 100.00 100.00 100.00

HU 29 100.00 100.00 100.00 100.00

HZ 39 100.00 100.00 100.00 100.00

MBF 20 100.00 83.00 73.50 95.30

STH 22 100.00 96.64 97.27 100.00

TAN 19 100.00 98.95 81.58 100.00

WD 20 100.00 95.20 99.70 100.00

AMR 17 100.00 100.00 100.00 100.00

DS 18 100.00 100.00 100.00 100.00

Total 314 100.00 98.07 96.90 99.70
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