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Abstract: We consider problems pertaining to the navigation and localization of mobile mechanical
systems such as robots or crafts. We focus on the recently introduced theory of two-frame systems, within
the field of invariant Kalman filtering for state estimation of dynamical systems. We show that we can
build a two-frame group (TFG) structure not only using rotations as its basic building block, as has been
done so far, but also rotations and scalings. This then makes the TFG a generalization of the group
of similarilty transformations Sim(d). This allows for new examples to fit into the theory of two-frame
systems. Namely, we consider the localization of a car equipped with odometry based on wheels having
unknown radius, and inertial navigation where the accelerometers are affected by an unknown scale factor.

Keywords: Navigation, Localization, Nonlinear systems, Estimation and filtering, Lie groups,
Geometrical tools, Kalman filtering

1. INTRODUCTION

Lie group embeddings are now accepted as powerful tools in
navigation and mobile robotics, to estimate the position and
orientation of a system, see e.g., Chirikjian (2011); Barfoot
(2017); Sola et al. (2018). Most notably, the use of SO(3), SE(2)
and SE(3) was pioneered by several authors in robotics, e.g.
Mahony et al. (2008); Park et al. (2008); Wolfe et al. (2011); Long
et al. (2013); Barfoot and Furgale (2014). These groups allowed
designing non-linear filters with strong theoretical properties
Mahony et al. (2008); Barrau and Bonnabel (2017, 2018), relying
on the notion of autonomous error. However, practical navigation
problems usually require estimating additional parameters, and
their addition to the state usually comes at the price of loosing
some theoretical properties, but not all Lisus et al. (2023), and
very satisfactory behavior is observed in practice Barrau (2015);
van Der Laan et al. (2020); Hartley et al. (2020); Pavlasek et al.
(2021). Another recent line of research proposes new nonlinear
filters for navigation based on Lie groups, through the notion
of Equivariant Filtering van Goor et al. (2023); van Goor and
Mahony (2023).

Novel Lie groups have been introduced to broaden the class of
systems for which properties can be guaranteed, such as SE2(3)
for IMU navigation introduced in Barrau and Bonnabel (2017);
Barrau (2015), as well as the general group SEK(d) for SLAM
Barrau and Bonnabel (2015a); Barrau (2015). Recently, the first
systematic way of designing systems which fit into the invariant
framework was introduced, relying on the Two Frame Group
(TFG) structure Barrau and Bonnabel (2022). It encompasses
the previously published groups, including SE2(3) and allows
including the accelerometer bias.

This paper proposes a novel application of the TFG framework,
to encompass the presence of a scale factor in the dynamics.
In doing so, the paper starts with the problem of estimating the
attitude and position of a mobile system thanks to odometry and
position measurements, but where a scale factor on the odometry
is introduced. We show that the TFG framework encompasses the
Lie group of simililarity tranformations Sim(2), e.g., Chirikjian
(2011) and may be applied to this example. Then, we show how
the method is easily extended to accelerometer measurements
subject to an unknown scale factor. To do so, the TFG allows for

the introduction of a novel Lie group of multivector similitudes
Sim2(2), in the way we first introduced SE2(3) in Barrau (2015);
Barrau and Bonnabel (2017). Estimating a scale factor using
geometric tools was already done for the odometry in the context
of visual navigation Engel et al. (2014); Bourmaud and Megret
(2015); Mur-Artal et al. (2015), using Sim(d). A geometric filter
was also proposed to handle scaled accelerometer measurements
Martin et al. (2010). But none were shown to possess the theoret-
ical properties that the invariant filtering framework guarantees,
namely having autonomous error equations, state-independent
Jacobians, the log-linearity property, see Barrau and Bonnabel
(2018), amongst others.

The paper is structured as follows. The goal of the first sections
is to introduced in a rather tutorial way the two-frame systems
framework, before extending it. Section 2 introduces simple
preliminary estimation problems, while Section 3 recalls how
some can be shown to fit into the standard TFG framework.
Section 4 presents a new application of the TFG to handle the
scale factor, recovering Sim(2). It also contains an application
to inertial navigation with unknown accelerometer scale factor,
introducing Sim2(2). As a byproduct of having to implement
invariant extended Kalman filters, we provide a formula for the
exponential map of this novel Lie group. This allows to address
all problems of the first sections within the invariant filtering
framework. Finally, Section 5 contains numerical simulations
that illustrate the benefit of this novel group based on invariant
filtering to handle scale factors in state estimation problems.

2. CONSIDERED NAVIGATION PROBLEMS

A simple class of state estimation problems in the field of
navigation aim at finding the position vector xn ∈ Rd and the
orientation matrix Rn ∈ SO(d) of a mobile system given some
sensor information. For the ease of understanding, we focus on
2D navigation, thus xn ∈ R2, and Rn is the rotation matrix of
angle θn:

Rn =

(
cos θn − sin θn
sin θn cos θn

)
. (1)

We focus here on wheeled systems, or non-holonomic car Barrau
and Bonnabel (2017), for which xn denotes the middle point of
the rear wheels axle.



2.1 Standard Non-Holonomic Model

Assuming that the robot can measure its angular increments
Ωn ∈ SO(2) (e.g. thanks to a one-axis gyroscope) and its linear
velocity un ∈ R2, its discrete-time dynamics write:

Rn+1 = RnΩn, xn+1 = xn +Rnun, (2)

Note that this model can also apply to visual odometry, where
Ωn and un would encode the relative pose between two instants.

2.2 Adding a Parameter: The Scale Factor

In practice, the linear velocity may only be known up to a scale
factor, for instance as soon as the wheel radius is unknown and
subject to slow variations over time, due to varying tire pressure
for instance. Therefore the discrete-time dynamics of such a
mobile wheeled robot then write:

Rn+1 = RnΩn, xn+1 = xn + snRnun, sn+1 = sn (3)

where the scalar sn > 0 is this scaling factor.

2.3 Replacing Odometry with Accelerometer

In many cases, the robot may be equiped with an accelerometer
instead of an odometer, leading to an inertial navigation problem.
This allows to relax the assumption that the wheels roll without
slip, that underlies the two previous models. Since acceleration
is then measured instead of velocity, inertial navigation problems
also require extended state variables, by including the speed.
Moreover, accelerometers are not perfect, due to biases (which
we do not consider herein) and a scale factor. Thus, although
seemingly unrelated to (3), the dynamical model of a 2D vehicle
equipped with bias-free gyrometers and accelerometers having an
unknown scale factor, writes:

Rn+1 = RnΩn, vn+1 = vn + snRnun + dn,

pn+1 = pn +∆t vn, sn+1 = sn
(4)

where dn is the gravity vector, see Barrau and Bonnabel (2019).

2.4 Considered Estimation Problems

For all dynamical systems considered before, we assume that the
system has access to position measurements, for instance through
GNSS in case of a car driving outdoors, and which provides the
world-fixed frame position measurements

yn = h(gn, xn) := xn ∈ R2, (5)

where we recall that gn denotes the orientation Rn or both the
orientation and the scaling sn depending on the problem. The
goal of state estimation is then to use the dynamical model and
those measurements to reconstruct the unknown (unmeasured
directly) state (Rn, xn) or (Rn, sn, xn) if there is a scale factor
to be estimated.

Although seemingly different, we show in this work that the geo-
metric tool of Two-Frame Groups allows unifying these problems
and bringing them into the invariant filtering framework. In turn,
Invariant Extended Kalman Filters (IEKF) can be automatically
derived for each case, ensuring interesting properties Bonnabel
et al. (2008); Barrau and Bonnabel (2017).

Only model (2) was known to fit into the invariant Kalman
filtering framework Bonnabel et al. (2008). While the scaled
odometry model (3) has been studied with Lie groups before
Strasdat et al. (2010); Bourmaud and Megret (2015), the scaled
accelerometer one (4) has never been shown to fit into the theory
of invariant filtering of Barrau and Bonnabel (2016). In the
followning, we recall the TFG framework of Barrau and Bonnabel
(2022), and how it applies to each case.

3. TWO-FRAME GROUPS

Invariant filtering is a framework that allows for the introduction
of a Lie group structure on the state space of a class of estimation
problems. While it can be applied to any system that lives on
a Lie group directly (and inherently accomodates the manifold
aspect of the problem, guaranteeing the estimates remain in that
space), the goal of invariant filtering is not to accomodate the fact
a state space is a Lie group (or part of it is). The goal is to find
the right Lie group that makes the problem resemble a linear
estimation problem Barrau and Bonnabel (2019). As a result,
each new problem requires designing a new group, adapted to its
dynamics and measurements.

The problem of fusing odometry with position measurements
has long been known to fit into that framework, modeled using
SE(2) Bonnabel et al. (2008). Being able to properly accomodate
the problem of (unbiased) inertial navigation was one of the
achievements of the invariant filtering framework Barrau and
Bonnabel (2017) thanks to the introduction of the SE2(3) group
Barrau (2015). However, the introduction of the two-frames
framework allowed for unification of them all as specific cases
of the TFG, thus unifying all previously known models and
discovering others Barrau and Bonnabel (2022). It brought a first
answer to the question of including accelerometer biases while
retaining the theoretical properties, for instance.

In this Section, we recall the construction of a simplified version
of the TFG. We then show how scale factors can be included
into this framework, which has never been done before. Finally,
we detail how an IEKF can then be designed.

3.1 Two-Frame Groups

The idea of two-frame groups is to build upon a matrix Lie
group G, which we call the underlying group of the TFG. The

second ingredient are multivectors x =
(
xT
1 · · · xT

k

)T ∈ Rk×d

which denote stacked vectors of Rd. Herein, we simply consider
a component-wise product operation as follows

Notation 1. We denote by ∗ the following function on G×Rk×d

g ∗ x =
(
(gx1)T · · · (gxk)T

)T
= diag(g, ..., g)x (6)

We may at first define the state space of a (reduced) two-frame
system to be of the form G × Rk×d. A state element is then of
the form χ := (g,x). The two-frame group (TFG) is a group
structure on the state space, that is, a way to combine state
elements. For the present state space it is defined as follows.

χ1 • χ2 =

(
g1
x1

)
•
(
g2
x2

)
=

(
g1g2

x1 + g1 ∗ x2

)
. (7)

The identity element is (Id, 0), and the inverse is given by
(g−1,−g−1 ∗ x).

3.2 Group-affine dynamical systems

Invariant filtering relies on the adequacy between the group
structure and the system dynamics.

Definition 2. A dynamics of the following form on the TFG is
called natural:(

gn+1

xn+1

)
=

(
gn

Fnxn + dn

)
•
(
Ωn

un

)
, (8)

where we assume that g ∗ (Fnx) = Fn(g ∗x) for all g ∈ G, x ∈ Rd.
Using the TFG law above (7), it rewrites(

gn+1

xn+1

)
=

(
gnΩn

Fnxn + dn + gn ∗ un

)
, (9)

If Fn = Id and dn = 0, then the dynamics are called left-
invariant. In this work, we’ll consider that Fn is made of blocks
of zero or identity matrices, guaranteeing permutation.



Such dynamics were shown in Barrau and Bonnabel (2022) to
be group-affine. Group-affine dynamical systems Barrau and
Bonnabel (2017); Barrau (2015) have a remarkable property,
that has proved key to the success of invariant filters for state
estimation. Indeed, let us define the left-invariant error between
two elements of the TFG

E = χ̂−1 • χ =

(
ĝ−1g

ĝ−1 ∗ (x− x̂)

)
:=

(
Eg

Ex

)
. (10)

E provides a measure of discrepancy between both elements
of the group, and a null error χ = χ̂ corresponds to E being
the identity element (Id,0). Let us call En = χ̂−1

n χn the error
between two solutions of the dynamical system (9) at time n.
The following proposition shows how the TFG is adapted to (9).

Proposition 3. At time n+ 1, the left-invariant error equals

En+1 = χ̂−1
n+1χn+1 =

(
Ωn

un

)−1

•
(

Eg
n

FnE
x
n

)
•
(
Ωn

un

)
(11)

=

(
Ω−1

n Eg
nΩn

Ω−1
n ∗ FnE

x
n +Ω−1

n Eg
n ∗ un − Ω−1

n ∗ un

)
,

(12)

which depends only on En and the inputs Ωn,un.

This means that the error is “autonomous”, and does not depend
explicitly on χ̂ and χ, it only depends upon their discrepancy.
This autonomy (or state-independence) of the error evolution
plays a key role in the theory of invariant filtering, and is the
basis of many of the properties of the invariant extended Kalman
filter (IEKF) of Barrau and Bonnabel (2017).

3.3 Compatible Output Maps

The main role of a filter is to update its estimate given some
measurement, in order to reduce its estimation error. The general
theory of the TFG relies on the notion of compatible output
maps, first introduced in Bonnabel et al. (2008). For the purpose
of this work, we focus on a simple case of component extrac-
tion. Consider an output map that extracts one of the vectors
contained in χ

y = h(χ) = xi. (13)

To process this measurement in the framework of the TFG we
need to define how it acts on Rd. Similarly to (6), the following
function denotes a group action.

Notation 4. We denote by ∗y the following function on TFG×Rd

χ ∗y y = xi + gy (14)

where gy is the standard matrix vector product, and xi is a fixed
component of x.

The reason that the TFG structure is adapted to the measure-
ment h stems from the following result

Lemma 5. If ∗y of (14) and h of (13) consider the same compo-
nent xi, we have

h(χ1 • χ2) = χ1 ∗y h(χ2). (15)

Proof. On the one hand, we have using (7) and (13)

h(χ1 • χ2) = h(g1g2,x1 + g1 ∗ x2) = xi
1 + g1x

i
2,

and on the other

χ1 ∗y h(χ2) = χ1 ∗y xi
2 = xi

1 + g1x
i
2,

proving the result.

Note that, in Lie group theory, Lemma 5 indicates that h is
equivariant. The main interest of this property is to replace the
standard output error, also called innovation in the context of
filtering, with a more adapted one. Indeed, given a state estimate

χ̂ and a measured output y the standard innovation is Z = y −
h(χ̂). Within the TFG we rather consider

Z := χ̂−1 ∗y y. (16)

Indeed, the update is then carried out using the exponential map
of the Lie group, e.g., Chirikjian (2011), and an arbitrary gain
matrix K

χ̂+
n+1 = χ̂n+1 • exp(KZ) (17)

Owing to the compatibility property, this choice of innovation
and update helps maintaining the “autonomous” behavior of the
error during the update step, as the following result shows

Proposition 6. The error E+
n+1 = (χ̂+

n+1)
−1χn+1 depends only on

En+1, K and Z.

Proof. Replacing Z by (16) and using (15), we have

Z = χ̂−1 ∗y h(χ) = h(χ̂−1 • χ) = h(E) = Exi

. (18)

Therefore, the error becomes

E+
n+1 = (χ̂+

n+1)
−1χn+1 = exp(KZ)−1 • En+1 (19)

= exp(KExi

)−1 • En+1 (20)

This behavior comes with many properties regarding the state
estimation problem, and may be considered a very desirable
property, see for instance Barrau and Bonnabel (2018).

4. INTRODUCING THE GROUP Simk(d) AS A
TWO-FRAME GROUP

It has long been known the problem of state estimation for the
non-holonomic car with position measurements fits into the in-
variant framework Bonnabel et al. (2008). The next achievement
of the invariant filtering framework was to introduce the groups
SEk(d), so as to include the problem of unbiased inertial naviga-
tion Barrau and Bonnabel (2017) and simultaneous localisation
and mapping Barrau and Bonnabel (2015b). It turns out that all
these groups are special cases of the TFG, but all built upon an
underlying group G that exclusively consists of rotations.

However, to our knowledge, no problem involving a scale factor,
such as the scaled odometry problem, has been shown to fit
into the invariant filtering framework. If we are to include the
scaling factor in the model, and to estimate it online, having G =
SO(d) as underlying group is insufficient. It turns out though,
that we can use the theory of two-frame systems developed in
Section 3 once again, but changing the underlying group G. This
is interesting, as it is to our best knowledge the first application
of two-frame systems where G is not a rotation matrix group.

Note that including a scale factor using geometric tools was
already done in the context of visual navigation Strasdat et al.
(2010); Bourmaud and Megret (2015), based on the group
of similitudes Sim(d) Chirikjian (2011), but never from the
invariant filtering point of view.

4.1 Definition of the group structure

We let G be the direct product between SO(d) and R>0 endowed
with standard product of scalars. Hence, an element of G now
writes g = (R, s) with R a rotation and s > 0, and the group
composition law writes (R1, s1) · (R2, s2) = (R1R2, s1s2).

In this context, an element of the TFG is thus of the form
χ = (g,x) = ((R, s),x). Moreover, function ∗ requires a matrix
form for g = (R, s), which is simply given by the scaled rotation
matrix sR. This defines a TFG group law following (7), which
herein particularizes to

χ1 • χ2 =

(
(R1R2, s1s2)

x1 + (s1, R1) ∗ x2

)
=

(
(R1R2, s1s2)
x1 + s1R1 ∗ x2

)
. (21)

The inverse element is given by χ−1 = ((R, s),x)−1 =
((R−1, 1

s ),−
1
sR

−1 ∗ x).



In the case where multivector x consists of one vector, that is,
x ∈ Rd, the TFG coincides with the group of similitudes Sim(d).
Since this construction mimics that of SEk(d), we denote this
new family of groups Simk(d), k being the number of vector
stacked in x.

In this case, similarly to ∗, function ∗y becomes

χ ∗y y =

(
g
x

)
∗y y := xi + sRy. (22)

4.2 The Exponential Map on Sim2(d)

We now propose to derive the exponential of the group we
have introduced. The exponential map on Sim2(d) can be easily
derived thanks to the existing results on Sim(2) Gallier and
Quaintance (2020) and using the same approach as for the group
SE2(d) Barrau and Bonnabel (2017).

Lemma 7. (Gallier and Quaintance (2020)). The exponential on
Sim(2) is given by

exp(θ, s, x) = (θ, es, V (θ, s)x) , where, (23)

V (s, θ) = (αI + βJ), J =

(
0 −1
1 0

)
(24)

α =
s(es cos(θ)− 1) + esθ sin(θ)

s2 + θ2
(25)

β =
θ(1− es cos(θ)) + ess sin(θ)

s2 + θ2
(26)

Theorem 8. The exponential on Sim2(2) is given by

exp(θ, s,x) = (θ, es, V (θ, s) ∗ x) (27)

where V (θ, s) is given in Lemma 7

Proof. We just have to show that on Simk(2), the exponential
takes a similar form as on Sim(2), with the same matrix being
applied to all components x1, ..., xk of x. We will show this in
matrix form.

The matrix form of the Lie algebra element (θ, s,x) is Ω =(
θJ + sI x1 · · ·xk

0 0

)
. One can then check that

Ωk =

(
(θJ + sI)k (θJ + sI)k−1x1 · · · (θJ + sI)k−1xk

0 0

)
.

Therefore, we have

expm

(
θJ + sI x

0 0

)
=

(∑
k

(θJ+sI)k

k! V (θ, s)x1 · · · V (θ, s)xk

Ik

)
where V (θ, s) =

∑
k

(θJ+sI)k

(k+1! . This matrix is the same as for

Sim(2), hence the result.

4.3 Application to Scaled Odometry

The scaled odometry problem aims at estimating the orientation
Rn, scale sn and position xn. Therefore, we can model it using
the TFG with underlying group SO(2)×R>0 and a multivector
of one component, i.e. Sim1(2) = Sim(2). This allows casting
the problem into the invariant filtering framework, as we have

Proposition 9. Dynamics (3) are group-affine dynamics on Sim(2),
as they are of the form (9).

Proof. Using the definitions of G and ∗, (3) rewrites(
(Rn+1, sn+1)

xn+1

)
=

(
(RnΩn, sn)

xn +Rnsnun

)
=

(
gn · (Ωn, 1)
xn + gn ∗ un

)
, (28)

which is in the form of (9) indeed with Fn = Id and dn = 0.

The proposition shows the theory of invariant filtering can be
readily applied. In particular one can design an IEKF and it will
come with the strong theoretical properties of invariant filtering.

4.4 Handling Scaled Accelerometer with Sim2(2)

While including unbiased inertial navigation in the invariant
filtering framework relied on the SE2(d) group, the inclusion of
biases remained a problem. The two-frames framework brought a
first answer to it Barrau and Bonnabel (2022). However, unknown
scale factors are also present in accelerometer measurements in
inertial navigation, although often ignored in academic papers.
While such scale may need to be added to the estimation problem
Ouyang et al. (2021); Nemiroff et al. (2023), they were not taken
into account in the TFG framework until now. Early work in
geometric filtering proposed a method to estimate them Martin
et al. (2010), but without particular theoretical properties (such
as autonomous error equations). Herein we propose to leverage
the group Sim2(d) we have introduced to include the scaled
inertial navigation problem into the TFG framework.

It turns out that, following the same reasoning as in Section 4.3,
it is fairly easy to include the scaled accelerometer problem into
the framework. Indeed, we consider the same underlying group
SO(2)×R>0, but this time with multivectors of two components

x =
(
vT pT

)T ∈ R4. We are thus using Sim2(2), whose group
law and inverse are given by

χ1 • χ2 =

(
(R1R2, s1s2)
v1 + s1R1v2
p1 + s1R1p2

)
, χ−1 =

 (R−1, 1
s

− 1
sR

−1v
− 1

sR
−1p

 . (29)

The scaled accelerometer problem then directly fits into the
framework of invariant filtering, as we have

Proposition 10. Dynamics (4) are of the form of the group-affine
dynamics (9) for Sim2(2).

Proof. Using the definitions of Sim2(2) and ∗, (4) rewrites(
(Rn+1, sn+1)

vn+1

pn+1

)
=

(
(RnΩn, sn)
vn +Rnsnun

pn +∆t vn

)
, (30)

=

 gn · (Ωn, 1)(
Id 0

∆t Id Id

)
xn +

(
dn
0

)
+ gn ∗

(
un

0

) ,

(31)

which is in the form of (9) indeed, and we can check that Fn(g ∗
x) = g ∗ (Fnx).

5. NUMERICAL EXPERIMENT

We start by recalling how to implement an (invariant) EKF.

5.1 Designing an IEKF in practice: The 2D Case

Designing a Kalman filter is expliciting how, given an estimate
χ̂

n and an associated covariance Pn, one obtains χ̂
+

n+1 and P+
n+1

given inputs Ωn,un, output yn+1, and noise covariances Qn and
Nn+1. This requires four steps. Let us compare how the EKF and
IEKF carry them out:

(1) Propagating the estimate χ̂n to get χ̂n+1. Both use χ̂n+1 =

fn(χ̂n), with fn the dynamical model
(2) Propagation the covariance Pn to get Pn+1. Both use

Pn+1 = AnPnA
T
n +Qn,

but with different Jacobian An

(3) Updating the estimate to get χ̂
+

n+1. The EKF uses χ̂
+

n+1 =
χ̂

n+1 +Kn+1Z, while the IEKF uses (17) (with a different
innovation Z). Both use a gain

Kn+1 = Pn+1H
T
n+1(Hn+1Pn+1Hn+1 +Nn+1)

−1,

with the same Jacobian Hn+1.



(4) Updating the covariance to get P+
n+1. Both use

P+
n+1 = (I −Kn+1Hn+1)Pn+1.

Hence, the only difference between an EKF and an IEKF is
Jacobian An, and the computation of the updated estimate with
the Lie group exponential. The procedure to derive Jacobians in
general is described in Barrau and Bonnabel (2022, 2017). The
main issue is that one is looking for matrices, while En is a group
element. Being a Lie group, the TFG is linked with a Lie algebra
which is a vector space of dimension dTFG = dG + kd, where dG
is the dimension of G. For instance, dG = 1 for SO(2). Thus,
An ∈ RdTFG×dTFG and Hn+1 ∈ Rd×dTFG .

Deriving Jacobian Hn+1 is a good illustration, as it is easy in our
case, and we can check that it coincides with that of the EKF.

Since Z = h(Exi

), we have

Hn+1 = [0 Id 0]

where the identity block is located at the i-th component of x.
It is clear that the EKF uses the same Jacobian.

Deriving Jacobian An is more intricate in general form. In the 2D
case, all underlying groups G considered herein are commutative,
hence Eg

n+1 = Eg
n. we can thus simplify the first component of

(12). For the second, we use that Ω−1
n Eg

n ∗ un = Ω−1
n ∗ Eg

n ∗ un,
and we have

En+1 =

(
Eg

n

Ω−1
n ∗ FnE

x
n +Ω−1

n ∗ (Eg
n ∗ un − un)

)
(32)

Since G is a matrix Lie group, one can approximate the matrix
Eg ≈ Id + (e)∧, where e ∈ RdG is a vector and (·)∧ linear
Barfoot (2017). Since ∗ is a component-wise product, we can
further simplify(

IdG
+ (en+1)

∧

Ex
n+1

)
=

(
IdG

+ (en)
∧

Ω−1
n ∗ FnE

x
n +Ω−1

n ∗ (en)∧ ∗ un

)
(33)

Since (e)∧ ∗ un is linear in e, there exists (un)∗ such that (e)∧ ∗
un = (un)∗e, but which depends on the considered TFG. Given
this matrix, we have

An =

(
IdG

D(Ω−1
n )(un)∗ D(Ω−1

n )Fn

)
(34)

where D(Ω−1
n ) = diag(Ω−1

n , ...,Ω−1
n ).

5.2 Experimental Setup: 2D wheeled robot with gyrometer and
scaled accelerometer

The proposed TFG-EKF is compared in a filtering framework
with the imperfect IEKF and the EKF formulations.

The experiment lasts 20 seconds. A wheeled vehicle was modeled
to stand still for 5 seconds, accelerate in a straight line at 1m/s2

for 5 seconds, and then keep a constant speed.

The vehicle/robot is equipped with scaled accelerometers and
gyrometers, leading to the dynamical model (4).

Inertial increments were received at 50Hz, and position measure-
ments at 1Hz. They were polluted by noise of respective standard
deviations σω = 1e−4rad/s, σu = 1e−4m/s2 and σy = 1m. The
initial attitude error was sampled given σ0

att = 100◦ on 20 Monte
Carlo runs each.

5.3 Compared Filters

Three different filters were compared.

First filter First, the IEKF derived using the TFG Sim2(2)
is denoted as TFG-EKF. The exponential map being given in
Theorem 8, in order to design an IEKF, one then only needs to
compute An.

From (31), we obtain Fn =

(
Id 0

∆t Id Id

)
. Moreover, one obtains(

un

0

)
∗
=

[
Jun un

0 0

]
(35)

Hence, one has

An =

 I2
Ω−1

n Jun Ω−1
n un Ω−1

n

∆t Ω−1
n Ω−1

n

 (36)

Second filter The second one is based on an IEKF on SE2(2)
that would be used in the unscaled case Barrau and Bonnabel
(2017), with an additional linear parameter for the scale. It
is called Imperfect IEKF. Its differences with the TFG-EKF
are how the update is carried out, and the matrix An it uses.
Let us write the state χ = (s, χ̃) where χ̃ = (R, v, p). Let
δ = (δs, δχ̃) = KZ.The update writes

χ+ =

(
s+

χ̃+

)
=

(
s+ δs

χ̃+ expSE2(2)(δχ̃)

)
An is given for the imperfect IEKF by

AImp. IEKF
n =

 I2
snΩ

−1
n Jun Ω−1

n un Ω−1
n

∆t Ω−1
n Ω−1

n


Third filter Finally, for the EKF, the update writes χ+ = χ+
KZ, and the propagation Jacobian is

AEKF
n =

(
I2

snRnJun Rnun I2
∆t I2 I2

)
We can verify that, contrary to (36) fpr the TFG-EKF, the
imperfect IEKF and EKF involve Jacobians An which include
elements of the estimated state: sn and Rn. Thus, their associated
errors cannot be autonomous.

5.4 Results

Figure 1 displays the yaw, position and scale RMSEs. Two
conclusions can be drawn. First, only the TFG-EKF manages
to converge at each run. Indeed, the EKF can diverge, and the
imperfect IEKF sometimes converge to wrong values of the scale
and yaw. This hints to a second conclusion: The TFG-EKF is
the only one to escape local minima. Indeed, the imperfect IEKF
exhibits position RMSE similar to the TFG-EKF, meaning that
erroneous yaw and scale values it can converge to actually balance
themselves. This is problematic for practical use, since the yaw
can be used for other purposes (e.g. relative positioning of objects
using vision).

6. CONCLUSION

This paper focuses on the impact of the underlying group upon
which the two-frame group (TFG) is built, through simple yet
instructive examples. By considering a scale factor to be esti-
mated in the state, we have introduced the first TFG where the
underlying group is not limited to rotations. This led to a novel
Lie group (in the context of state estimation) we called Sim2(2),
and highlights the versatility of the TFG approach. Numerical
experiments confirmed that the proposed filter performs better
in hard problems involving a large initial error than the imperfect
IEKF approach (when applied to this particular problem treating
the scale factor linearly), and the standard EKF.
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