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Abstract

We consider a branching random walk on the real line with a stationary and ergodic environment
(ξn) indexed by time, in which a particle of generation n gives birth to a random number of
particles of the next generation, which move on the real line; the joint distribution of the number
of children and their displacements on the real line depends on the environment ξn at time n.
Let Zn be the counting measure at time n, which counts the number of particles of generation n
situated in a Borel set of the real line. For the case where the corresponding branching process
is supercritical, we establish limit theorems such as large and moderate deviation principles,
central and local limit theorems on the counting measures Zn, convergence of the free energy,
law of large numbers on the leftmost and rightmost positions at time n, and the convergence to
infinite divisible laws. The varying environment case is also considered.

Keywords: Branching random walk, random environment, large deviation, moderate deviation,
central limit theorem, local limit theorem, law of large numbers
Mathematics Subject Classification: 60J80, 60K37, 60F10, 60F05

1. Introduction and main results

As a combination of branching processes and random walks, branching random walks have been
largely studied in the literature, see e.g. [48, 12, 13, 17] for early studies (in seventies), [15,
14, 20, 53, 58, 54] for later studies (in nineties), and [2, 3, 22, 66, 39, 46, 29, 8, 23, 45, 52] for
some developments in the last decade. Recently there is an increasing research interest to this
topic. One of the reasons is that the model has many interactions with various applied probability
settings, such as fractals and Mandelbrot’s cascades (cf. e.g. [47, 55, 9, 5, 18, 62]), perpetuities
(see e.g. [66, 19, 44]) and branching Brownian motion (cf. e.g. [49, 21, 10, 59]). For other
related works and many references, see e.g. the recent books [66, 19, 44]. Important results
such as central and local limit theorems and large deviation principles for the counting measure,
asymptotic properties of the fundamental martingale, and law of large numbers for the positions
of the extremal particles, have been established.
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In classical branching random walks, the influence of the environments is not considered.
Due to the introduction of the random environments, interesting new phenomenons and prob-
lems occur, but the study of the model becomes much more delicate. Various models, with
random environments in space or in time, have been studied. For example, Baillon, Clément,
Greven and den Hollander [6], Greven and den Hollander [36] studied a model in which the off-
spring distribution is affected by a location-dependent environment, while the displacement law
is deterministic; Comets and Popov [24, 25] dealt with the case where both the offspring distri-
bution and the displacement law are influenced by the random environment indexed by locations;
Comets and Yoshida [26], Hu and Yoshida [41], Nakashima [63] and Yoshida [73] considered
the case where the offspring distributions depend on a space-time environment.

Here we consider a branching random walk with a random environment in time (BRWRE), in
which a particle of generation n gives birth to new particles of the next generation, which move
on the real line; the joint distribution of the number of children and their displacements from
their parent depends on the environment ξn at time n; the environment sequence (ξn) indexed
by time is supposed to be stationary and ergodic. This is a natural and important extension
of both the model of a branching process in a random environment introduced by Smith and
Wilkinson [67] and Athreya and Karlin [4], and the classical branching random walk which
corresponds to the constant environment case (that is, the case where all ξn are equal to the same
constant). This model was proposed firstly by Biggins and Kyprianou [16] and Kuhlbusch [51]
who considered the fundamental martingale; it was further studied by a number of authors, see
e.g. [33, 34, 42, 60, 72, 35, 74].

Our purpose in this paper is to prove, for a BRWRE, asymptotic properties for the counting
measure Zn, which counts the number of particles of generation n situated in a given region. The
study of this measure is important because it describes the configuration of the process at time
n. Fundamental limit theorems, such as large and moderate deviation principles, convergence
theorem on the free energy, and central limit theorems, will be established for the counting mea-
sure Zn. A law of large numbers will also be proved for the positions of leftmost and rightmost
particles. In particular, we will see that the fundamental results of Kaplin and Assmussen [48]
and Biggins [13, 15] on the classical branching random walk remain valid for the random envi-
ronment case, although the model becomes much richer and the approaches become significantly
more delicate due to the existence of the random environment. The case of a branching random
walk in a varying environment and the convergence to infinite divisible laws are also considered.

The results and the methods developed in this paper open ways for the study of related topics,
such as general branching processes and multiplicative cascades in random environments; for
example some of them have already been used by Hong, Hou and Zhang [74] in the study of a
branching system of random walks with a random environment in location. Some of the results
have been announced in the proceeding [57] and the short survey [42] without detailed proofs
(only some key ideas have been mentioned therein); the complete proofs seem necessary and
desired, so that they will be given here. A preliminary version of the present paper was put in
arXiv [43], which has been cited in a number of papers (we found 27 citations in Google).

1.1. Model

Let us describe precisely the model that we consider in this paper. The random environment,
denoted by ξ = (ξn), indexed by the time n ∈ N = {0, 1, 2, · · · }, is a stationary and ergodic
sequence. The random variable ξn takes values in some measurable space (Θ,E); it represents
the random environment at time n. Without loss of generality we can suppose that ξ is defined
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on the product space (ΘN,E⊗N, τ), with τ the law of ξ. Associated to each realization of ξn, there
is a probability distribution ηn = η(ξn) on N × RN.

Given the environment ξ, the process starts from an original particle ∅ of generation 0 which
lies at S ∅ = 0 ∈ R at time 0. At time 1, the ancestor ∅ dies and is replaced by N = N(∅) particles
i of generation 1 which scatter on R with locations Li = Li(∅), 1 ≤ i ≤ N, where the random
vector X(∅) = (N, L1, L2, · · · ) is of distribution η0 = η(ξ0). In general, each particle u in the nth
generation will be replaced by N(u) new particles ui of generation n+1 at time n + 1; the location
of ui satisfies

S ui = S u + Li(u), 1 ≤ i ≤ N(u),

where S u is the location of the parent particle u, Li(u) is the relative displacement of ui to its
parent u, and the random vector X(u) = (N(u), L1(u), L2(u), · · · ) has distribution ηn = η(ξn). Note
that the values Li(u) for i > N(u) do not play any role for our model; we introduce them only
for convenience. Conditioned on the environment ξ, all particles behave independently, meaning
that the random vectors X(u) indexed by all the sequences u are conditionally independent.

Denote by Pξ the quenched law, i.e. the conditional probability given the environment ξ. The
total probability can be expressed as P(dx, dξ) = Pξ(dx)τ(dξ); it is usually called the annealed
law. The expectations with respect to Pξ and P will be denoted respectively by Eξ and E.

Let U = ∪n≥0N∗n be the set of all finite sequence u = u1 · · · un, where N∗ = {1, 2, · · · } and
N∗0 = {∅} by convention. For u ∈ U, we write |u| for the length of u, and u|n for the restriction
to the first n terms of u, with the convention that |∅| = 0 and u|0 = ∅. By definition, under Pξ,
the random vectors X(u), indexed by u ∈ U, are independent of each other, and each X(u) has
distribution ηn = η(ξn) if |u| = n.

Let T be the Galton-Watson tree with defining elements {N(u)}: by definition, we have: (i)
∅ ∈ T, (ii) if u ∈ T, then for each i ∈ N∗, ui ∈ T if and only if 1 ≤ i ≤ N(u); (iii) for all u ∈ U
and i ∈ N∗, ui ∈ T implies u ∈ T. Denote by Tn = {u ∈ T : |u| = n} the set of particles in the nth
generation. We introduce the counting measure

Zn(·) =
∑
u∈Tn

δS u (·).

For a measurable subset A of R, Zn(A) denotes the number of particles of generation n located in
A. In this paper we study asymptotic properties of the sequence of measures {Zn} by establishing
limit theorems.

For u ∈ U, let

X(u)(·) =

N(u)∑
i=1

δLi(u)(·)

be the counting measure corresponding to the random vector X(u), whose increasing points are
the displacements Li(u), 1 ≤ i ≤ N(u). For a typical representation, denote

Xn(·) = X(1n)(·),

where 1n = (1, · · · , 1) ∈ N∗n is the sequence of length n whose components are all equal to
1. Thus for each u ∈ N∗n, the random element X(u) has the same distribution as Xn, given the
environment ξ. Notice that in our model, the total population of generation n, Zn(R), forms
a branching process in a random environment (BPRE), for which we refer to [67, 4] where
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fundamental results have been established. For simplicity, we introduce the following notation:

Nn = Xn(R), mn = EξNn, P0 = 1 and Pn = EξZn(R) =

n−1∏
i=0

mi for n ≥ 1.

LetF0 = σ(ξ) andFn = σ(ξ, X(u); |u| < n) (n ≥ 1) be theσ-field containing all the information of
the first n generations. It is well known that the sequence {Zn(R)/Pn} is a non-negative martingale
under Pξ for every ξ with respect to the filtration {Fn}; hence it converges almost surely (a.s.) to
a random variable denoted by W. Throughout this paper we always assume that

E log m0 ∈ (0,∞) and E
N
m0

log+ N < ∞. (1.1)

The first condition means that the BPRE Zn(R) is supercritical; the second implies that the limit
W is non-degenerate. We refer to [4, 70, 71] for more information about a BPRE. To concentrate
on the intrinsic properties, we also assume that

N ≥ 1 a.s. and E|L1| < ∞. (1.2)

Together with (1.1), this implies that Zn(R)→ ∞ and W > 0 a.s.

1.2. Convergence of the free energy, large deviation principle and law of large numbers
We first establish a large deviation principle on the sequence of measures Zn, by calculating

the limit of the free energy. Let

Z̃n(t) =

∫
etxZn(dx) =

∑
u∈Tn

etS u (t ∈ R)

be the Laplace transform of the measure Zn. It is also called partition function by physicians.
The function log Z̃n(t)

n is called free energy. We are interested in the convergence of log Z̃n(t)
n , which

will lead to a large deviation principle for Zn(n·). For n ∈ N and t ∈ R, let

mn(t) = Eξ

∫
etxXn(dx) = Eξ

N(u)∑
i=1

etLi(u) for u ∈ N∗n,

be the Laplace transform of the counting measure describing the evolution of the system at time
n. In particular, mn(0) = mn. Put

P0(t) = 1 and Pn(t) = EξZ̃n(t) =

n−1∏
i=0

mi(t) for n ≥ 1

(so that Pn(0) = Pn for all n ≥ 0). Observe that

Wn(t) :=
Z̃n(t)

EξZ̃n(t)
=

∑
u∈Tn

etS u

Pn(t)
, n ≥ 0,

is a non-negative martingale, hence the limit

W(t) := lim
n→∞

Wn(t) (1.3)
4



exists a.s. with EξW(t) ≤ 1. In the deterministic environment case, this martingale has been
studied e.g. by Kahane and Peyrière [47], Biggins [12], Durrett and Liggett [30], Guivarc’h [37],
Lyons [58], Liu [53, 54, 55, 56], Iksanov and Kabluchko [46], and Iksanov [45], in different
contexts.

We assume that

E| log m0(t)| < ∞ and E
∣∣∣∣∣∣m′0(t)
m0(t)

∣∣∣∣∣∣ < ∞
for all t ∈ R. These moment conditions imply that

Λ(t) = E log m0(t) and Λ′(t) = E
m′0(t)
m0(t)

are well defined as real numbers, so that Λ(t) is differentiable everywhere on R, and Λ′(t) is its
derivative (this can be easily verified by the dominated convergence theorem, using the fact that
the function t 7→ m′0(t)

m0(t) is increasing). Denote by Λ∗(x) = supt∈R{xt−Λ(t)} the Legendre transform
of Λ. Then

Λ∗(x) =

{
tΛ′(t) − Λ(t) i f x = Λ′(t) for some t ∈ R,
+∞ i f x ≥ Λ′(+∞) or x ≤ Λ′(−∞).

Since the function ρ(t) = tΛ′(t) −Λ(t) decreases on (−∞, 0] and increases on [0,∞), it attains its
minimum at 0: mint ρ(t) = ρ(0) = −Λ(0) < 0. We introduce two critical values t− and t+:

t− = inf{t ∈ R : ρ(t) ≤ 0} and t+ = sup{t ∈ R : ρ(t) ≤ 0}.

Notice that −∞ ≤ t− < 0 < t+ ≤ ∞, t− and t+ are two solutions of ρ(t) = 0 if they are finite.

Theorem 1.1 (Convergence of the free energy). Almost surely, for all t ∈ R,

lim
n→∞

log Z̃n(t)
n

= Λ̃(t) :=


Λ(t) i f t ∈ (t−, t+),
tΛ′(t+) i f t ≥ t+,
tΛ′(t−) i f t ≤ t−.

(1.4)

For the deterministic environment case, see [20, 32]; see also [5] for branching random walks
in Rd.

Combining Theorem 1.1 with the Gärtner-Ellis theorem [28, p.52, Exercise 2.3.20] leads to
the large deviation principle for Zn(n·) as stated below. Denote by Λ̃∗(x) the Legendre transform
of Λ̃(t). It can be seen that Λ̃(t) ≤ Λ(t), so that Λ̃∗(x) ≥ Λ∗(x). More precisely,

Λ̃∗(x) =

{
Λ∗(x) i f x ∈ [Λ′(t−),Λ′(t+)],
+∞ i f x < Λ′(t−) or x > Λ′(t+).

Theorem 1.2 (Large deviation principle). Almost surely, the sequence of finite measures A 7→
Zn(nA) satisfies a large deviation principle with rate function Λ̃∗: for measurable set A ⊂ R,

− inf
x∈A◦

Λ̃∗(x) ≤ lim inf
n→∞

1
n

log Zn(nA) ≤ lim sup
n→∞

1
n

log Zn(nA) ≤ − inf
x∈Ā

Λ̃∗(x),

where A◦ is the interior of A and Ā its closure.

Theorem 1.2 yields the following corollary. For deterministic branching random walks, sim-
ilar results can be found in [13, 20].
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Corollary 1.3. It is a.s. that

lim
n→∞

1
n

log Zn[nx,∞) = −Λ∗(x) > 0 if x ∈ (Λ′(0),Λ′(t+)),

lim
n→∞

1
n

log Zn(−∞, nx] = −Λ∗(x) > 0 if x ∈ (Λ′(t−),Λ′(0)).

We now present a law of large numbers for locations of the extremal particles. Let

ML
n = min

u∈Tn

S u (resp. MR
n = max

u∈Tn

S u)

be the position of leftmost (resp. rightmost) particles of generation n. The locations of the
extremal particles have been largely studied in the literature, see e.g. [1, 2, 11, 13, 17, 39, 40, 61,
64]. We will use asymptotic properties of ML

n and MR
n to prove Theorem 1.1. Meanwhile, with

the help of Theorem 1.1, we can see that ML
n (resp. MR

n ) satisfies a law of large numbers:

Theorem 1.4 (Law of large numbers for leftmost and rightmost positions). It is a.s. that

lim
n→∞

ML
n

n
= Λ′(t−) and lim

n→∞

MR
n

n
= Λ′(t+).

For deterministic branching random walks, the corresponding results can be found in [13,
20]. For a continuous-time counterpart on branching Brownian motion, see [65]. In the random
environment case (for the model that we consider here), the the second and third order asymptotic
of MR

n have recently been explored in [60] (where the previous version [43] of our present work
is cited).

Remark 1.1. In this subsection for simplicity we have assumed that the moment conditions in
(1.2) hold for all t ∈ R. However, if the moment conditions just hold for t in an interval, similar
results can also be proved by a slight modification of the argument, as observed in [74] where
the results and technics of our paper are used for the study of a branching system of a N-valued
random walk with a random environment in location. The difference is in the use of the Gärtner-
Ellis theorem: instead of the use of [28, p.52, Exercise 2.3.20], we can then use [28, Theorem
2.3.6(c)] with essentially smooth condition.

1.3. Central and local limit theorems
Our second objective is to show central limit theorems and related results associated to Zn.

For the special branching random walk where the displacements Li(u), i = 1, 2, · · · , of the chil-
dren ui of the same particle u are i.i.d., and independent of N(u), for each fixed u, Kaplan and
Asmussen [48] proved the following central limit theorem. Assume that m = EN ∈ (1,∞) and
that EX0(·)

m has mean 0 and variance 1. If EN(log+ N)1+ε < ∞ for some ε > 0, then a.s.,

m−nZn(−∞,
√

nx]→ Φ(x)W ∀x ∈ R, (1.5)

where Φ(x) = 1
√

2π

∫ x
−∞

e−t2/2dt is the distribution function of the standard normal distribution
N(0, 1). They also gave a local version of (1.5) under the stronger moment condition that
EN(log N)γ < ∞ for some γ > 3/2. The formula (1.5), which was first conjectured by Har-
ris [38], has been studied by many authors, see e.g. [15, 48, 50, 68]. In particular, Biggins
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[15] extended the result of Kaplan and Asmussen [48] to a general branching random walk, by
removing the i.i.d. condition on the family {Li(u), i = 1, 2, · · · }, the independence between this
family and N(u), and by relaxing the moment EN(log+ N)1+ε < ∞ to E(N log+ N) < ∞. Gao et
al. [33] generalized (1.5) to a special BRWRE, assuming that all the components N(u) and Li(u)
of the vector X(u) are conditionally independent given the environment, all the displacements
Li(u) (i ≥ 1) have the same conditional law, and that EN(log N)2+ε < ∞ for some ε > 0. Here
we will extend the above cited result of Biggins [15] to the random environment case, and the
result of Gao et al. [33] to a general BRWRE without the above mentioned assumptions on the
components of X(u), while relaxing the moment condition EN(log N)2+ε < ∞ to the usual one
E(N log+ N) < ∞. Notice that, as observed by Biggins [15], for the classical branching random
walk, the case E(N log+ N) = ∞ is not interesting for (1.5), as in this case m−nZn(R) → W = 0
a.s., so that (1.5) holds evidently.

Essential properties of the BRWRE depend on the quenched intensity measures defined by

νn(·) =
EξXn(·)

mn
, n ≥ 0.

We will use the following notation about the mean and variance of νn:

µn =

∫
xνn(dx) =

1
mn

Eξ

N(u)∑
i=1

Li(u), where u ∈ N∗n,

σ2
n =

∫
(x − µn)2νn(dx) =

1
mn

Eξ

N(u)∑
i=1

(Li(u) − µn)2, where u ∈ N∗n,

`n =

n−1∑
i=0

µi and bn =

n−1∑
i=0

σ2
i


1/2

.

Throughout we assume that the conditional mean µn and variance σ2
n are well defined in R for

almost every environment ξ. The following theorem is a version of (1.5) for a BRWRE.

Theorem 1.5 (Central limit theorem). Assume Eσ2
0 ∈ (0,∞). Then a.s.,

Zn(−∞, bnx + `n]
Zn(R)

→ Φ(x) ∀x ∈ R, (1.6)

where Φ(x) = 1
√

2π

∫ x
−∞

e−t2/2dt is the distribution function of the standard normal distribution.

In the proof, we will see that Theorem 1.5 still holds when (bn, `n) is replaced by (b′n, `
′
n) ∈ R2,

provided that b′n = b′n(ξ) and `′n = `′n(ξ) satisfy b′n ∼ bn and `′n−`n

bn
→ 0. See Remark 4.2.

Remark 1.2. Notice that since Zn(R)
Pn
→ W a.s., we can rewrite (1.6) in the form similar to (1.5):

a.s.
Zn(−∞, bnx + `n]

Pn
→ WΦ(x) ∀x ∈ R. (1.7)

Just as in the classical branching random walk, the case E( N
m0

log+ N) = ∞ is not interesting for
(1.7), as in this case Zn(R)

Pn
→ W = 0 a.s., so that (1.7) holds evidently.
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Theorem 1.5 is an extension of the results of Kaplan and Asmussen [48, II, Theorem 1]
and Biggins [15] on the classical branching random walk (with constant environment). Under a
moment condition slightly stronger than the usual condition E N

m0
(log+ N) < ∞, we can obtain

a local limit theorem corresponding to Theorem 1.5, which extends the result of Biggins [15,
Theorem 7] to the random environment case.

Theorem 1.6 (Local limit theorem). Assume that ν0 is non-lattice a.s. If Eσ2
0 ∈ (0,∞) and

E N
m0

(log+ N)β < ∞ for some β > 3
2 , then for every h > 0,

sup
x∈R

∣∣∣∣∣∣bn
Zn(x, x + h)

Zn(R)
− hp

(
x − `n

bn

)∣∣∣∣∣∣→ 0 a.s.,

where p(x) = 1
√

2π
e−x2/2 is the density function of the standard normal distribution.

For the classical branching random walk, the corresponding result has been established by
Biggins [15, Theorem 7] under the usual moment condition E(N log+ N) < ∞.

From Theorem 1.6, we immediately obtain the following corollary, which extends the result
of Kaplan and Asmussen [48, Theorem 2] to the random environment case.

Corollary 1.7. Under the conditions of Theorem 1.6, we have, a.s., for all −∞ < a < b < ∞,

bn
Zn(a + `n, b + `n)

Zn(R)
→

1
√

2π
(b − a).

1.4. Moderate deviation principle

Finally, we consider the moderate deviations associated to Zn. Recently, Wang and Huang
[72, Theorem 1.7] established a moderate deviation principle under the assumptions

µ0 = 0 a.s. and ess sup
1

m0
Eξ Σ

u∈T1

eδ|S u | < ∞ for some δ > 0. (1.8)

The following theorem completes their result by relaxing the boundedness assumption in (1.8)
to a moment condition. Also, we consider the more general case without the centering condition
µ0 = 0. Let (an) be a sequence of positive numbers satisfying

lim
n→∞

an
√

n
= ∞ and lim

n→∞

an

n
(log n)3 = 0. (1.9)

Theorem 1.8 (Moderate deviation principle). If E 1
m0

∑
u∈T1

eδ|S u−µ0 | < ∞ for some δ > 0 and
E log+ Eξ[(

∑
u∈T1

eδ|S u−µ0 |)γ] < ∞ for some γ > 1, then almost surely, the sequence of probabili-
ties A 7→ Zn(anA + `n)/Zn(R) satisfies a moderate deviation principle with rate function x2

2σ2 and

speed a2
n

n : for measurable set A ⊂ R,

−
1

2σ2 inf
x∈A◦

x2 ≤ lim inf
n→∞

n
a2

n
log

Zn(anA + `n)
Zn(R)

≤ lim sup
n→∞

n
a2

n
log

Zn(anA + `n)
Zn(R)

≤ −
1

2σ2 inf
x∈Ā

x2,

where σ2 = Eσ2
0, A◦ is the interior of A and Ā its closure.
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When the second condition in (1.9) is replaced by the usual condition that limn→∞ an/n = 0,
the moderate deviation principle was proved in [72] under the stronger condition (1.8).

The remainder of the paper is organized as follows. In Section 2, after giving a large deviation
principle for the quenched mean EξZn, we prove Theorem 1.1 about the convergence of free
energy (which implies Theorem 1.2 and Corollary 1.3 on large deviations) and Theorem 1.4, the
law of large numbers for leftmost and rightmost positions. Sections 3 and 4 are devoted to central
limit theorems: in Section 3, we consider a branching random walk with a varying environment
in time and prove the corresponding central limit theorem and local limit theorem; in Section 4
we return to the random environment case and give the proofs of Theorems 1.5 and 1.6. Finally,
in Section 5, we deal with moderate deviations and prove Theorem 1.8.

2. Proofs of Theorems 1.1 and 1.4

At first, we establish a large deviation principle for the quenched means EξZn(n·).

Theorem 2.1. For almost every ξ, the sequence of finite measures A 7→ EξZn(nA) satisfies a
large deviation principle with rate function Λ∗: for measurable set A ⊂ R,

− inf
x∈A◦

Λ∗(x) ≤ lim inf
n→∞

1
n

logEξZn(nA) ≤ lim sup
n→∞

1
n

logEξZn(nA) ≤ − inf
x∈Ā

Λ∗(x).

Proof. We consider the sequence of probability measures EξZn(n·)/EξZn(R). Notice that by the
ergodic theorem,

lim
n→∞

1
n

log
∫

etxEξZn(dx) = lim
n→∞

1
n

log Pn(t) = lim
n→∞

1
n

n−1∑
i=0

log mi(t) = Λ(t) a.s.,

lim
n→∞

1
n

logEξZn(R) = lim
n→∞

1
n

log Pn(0) = lim
n→∞

1
n

n−1∑
i=0

log mi = Λ(0) a.s.

Using the Gärtner-Ellis theorem [28, p.52, Exercise 2.3.20] to the sequence of probability mea-
sures EξZn(n·)/EξZn(R), and after scaling, we get the desired result.

Now let us give the proofs of Theorems 1.1 and 1.4 which are composed by several lemmas.
Similar arguments have been used in [20, 32] in the constant environment case. Recall that W(t)
is defined in (1.3), as the a.s. limit of the fundamental martingale Wn(t). Using a result of Biggins
and Kyprianou [16] on a BRWRE, or that of Kuhlbusch [51] on weighted branching processes in
random environment, we obtain the following lemma.

Lemma 2.1. If t ∈ (t−, t+) and EW1(t) log+ W1(t) < ∞, then W(t) > 0 a.s.; if t ≤ t− or t ≥ t+,
then W(t) = 0 a.s.

Lemma 2.2. For t ∈ (t−, t+), we have

lim
n→∞

1
n

log Z̃n(t) = Λ(t) a.s. (2.1)

Proof. If EW1(t) log+ W1(t) < ∞, then by Lemma 2.1, W(t) > 0 a.s. Consequently,

1
n

log Z̃n(t) =
1
n

log Wn(t) +
1
n

log Pn(t)→ Λ(t) a.s.
9



Now we consider the general case where EW1(t) log+ W1(t) may be infinite. Let c > 0. We
construct a new BRWRE in which the point process for a particle u is

Xc(u) = (Nc(u), L1(u), L2(u), · · · ) with Nc(u) = N(u) ∧ c,

where and throughout we write a ∧ b = min(a, b).
We shall apply Lemma 2.1 to the new BRWRE. To this end, we will prove that for c > 0

large enough, the new BRWRE satisfies the two conditions of Lemma 2.1.
We first observe that with mc

0(t) = Eξ
∑N∧c

i=1 etLi for c > 0, we have

Λc(t) := E log mc
0(t) ↑ Λ(t) as c ↑ ∞. (2.2)

In fact, on the one hand, by the monotone convergence theorem, mc
0(t) = Eξ

∑N∧c
i=1 etLi ↑ m0(t)

as c ↑ ∞, which leads to E log+ mc
0(t) ↑ E log+ m0(t). On the other hand, by (1.2), we have

log− mc
0(t) ≤ |t|Eξ |L1|, so that E log− mc

0(t) ↓ E log− m0(t) by the dominated convergence theorem,
since E|L1| < ∞. This ends the proof of (2.2).

We next prove that for c > 0 large enough, the new BRWRE satisfies the first condition of
Lemma 2.1. Let t ∈ (t−, t+). We need to prove that t ∈ (tc

−, t
c
+) for c large enough. Notice that

t ∈ (t−, t+) is equivalent to tΛ′(t) − Λ(t) < 0, and t ∈ (tc
−, t

c
+) is equivalent to tΛ′c(t) − Λc(t) < 0.

We shall show that the latter holds for c large enough. Assume that t > 0. By the definition of
Λ′(t), there exists a h > 0 such that

t
Λ(t + h) − Λ(t)

h
− Λ(t) < 0.

Since Λc ↑ Λ as c ↑ ∞ (cf. (2.2)), this implies that for c large enough,

t
Λc(t + h) − Λc(t)

h
− Λc(t) < 0. (2.3)

The convexity of Λc(t) shows that

Λ′c(t) ≤
Λc(t + h) − Λc(t)

h
. (2.4)

Combining (2.4) with (2.3) we obtain that for c large enough,

tΛ′c(t) − Λc(t) < 0. (2.5)

If t < 0, we can also obtain (2.5) by a similar argument. So we have proved that t ∈ (t−, t+)
implies that t ∈ (tc

−, t
c
+) for c large enough.

We now prove that the second condition in Lemma 2.1 is also satisfied for the new BRWRE,
that is, EWc

1(t) log+ Wc
1(t) < ∞, when c is large enough. Let Y = Wc

1(t). We define a random vari-
able X whose distribution is determined by Eξg(X) = EξYg(Y) for all bounded and measurable
function g. For x ∈ R+ = [0,∞), let

l(x) =

{
x/e if x < e,
log x if x ≥ e.

It is clear that l is concave and log+ x ≤ l(x) ≤ 1 + log+ x for all x ∈ R+. Thus

EξY log+ Y = Eξ log+ X ≤ Eξl(X) ≤ l(EξX) ≤ 1 + log+ EξY2 ≤ 1 + log+

(
cmc

0(2t)
mc

0(t)2

)
.

10



Taking the expectation in the above inequality, we get

EWc
1(t) log+ Wc

1(t) ≤ 1 + E log+

(
cmc

0(2t)
mc

0(t)2

)
≤ 1 + log c + E log+ m0(2t) + 2|t|E|L1| < ∞.

Therefore for c > 0 large enough, the new BRWRE satisfies the two conditions of Lemma
2.1. So Lemma 2.1 implies that

lim
n→∞

1
n

log Z̃c
n(t) = E log mc

0(t) = Λc(t) a.s. (2.6)

Finally, we will deduce (2.1) from (2.6). For the lower bound, since Z̃n(t) ≥ Z̃c
n(t), it follows

that
lim inf

n→∞

1
n

log Z̃n(t) ≥ Λc(t) a.s.

Letting c ↑ ∞, we obtain

lim inf
n→∞

1
n

log Z̃n(t) ≥ Λ(t) a.s.

For the upper bound, from the decomposition 1
n log Z̃n(t) = 1

n log Wn(t) + 1
n log Pn(t), we get

lim sup
n→∞

1
n

log Z̃n(t) ≤ lim sup
n→∞

1
n

log+ Wn(t) + lim sup
n→∞

1
n

log Pn(t) = Λ(t) a.s.

This completes the proof of (2.1).

Lemma 2.3. It is a.s. that lim supn→∞ MR
n /n ≤ Λ′(t+).

Proof. For c > Λ′(t+), we have Λ∗(c) > 0. By Theorem 2.1,

lim
n→∞

1
n

logEξZn[cn,∞) = −Λ∗(c) < 0 a.s.

This leads to
∑

n Pξ(Zn[cn,∞) ≥ 1) < ∞ a.s. It follows by Borel-Cantelli’s lemma that, Pξ-a.s.,
Zn[cn,∞) = 0 for n large enough, so that MR

n < cn, which implies that a.s. lim supn
MR

n
n ≤ c.

Letting c ↓ Λ′(t+) yields the result.

Lemma 2.4. If t ≥ t+, then a.s.,

lim
n→∞

log Z̃n(t)
n

= tΛ′(t+).

Proof. Since t ∈ R and t ≥ t+, we have t+ < ∞. We first consider the upper bound. Choose
0 < t0 < t+ ≤ t. Since S u ≤ MR

n for u ∈ Tn, we have Z̃n(t) ≤ Z̃n(t0)e(t−t0)MR
n . Thus

log Z̃n(t)
n

≤
log Z̃n(t0)

n
+ (t − t0)

MR
n

n
.

Letting n→ ∞ and using Lemma 2.3, we get that a.s.,

lim sup
n→∞

log Z̃n(t)
n

≤ Λ(t0) + (t − t0)Λ′(t+).

11



Letting t0 ↑ t+ and using Λ(t+) − t+Λ′(t+) = 0, we obtain that a.s.,

lim sup
n→∞

log Z̃n(t)
n

≤ tΛ′(t+).

We next consider the lower bound. As log Z̃n(t) is a convex function of t, for t0 < t1 < t+, we
have

log Z̃n(t) − log Z̃n(t0)
t − t0

≥
log Z̃n(t1) − log Z̃n(t0)

t1 − t0
.

Applying Lemma 2.2 to t0 and t1, we deduce that a.s.,

lim inf
n→∞

log Z̃n(t)
n

≥ Λ(t0) +
t − t0
t1 − t0

(Λ(t1) − Λ(t0)).

Letting t1 ↓ t0, we get that a.s.

lim inf
n→∞

log Z̃n(t)
n

≥ Λ(t0) + (t − t0)Λ′(t0).

Letting t0 ↑ t+ and using Λ(t+) − t+Λ′(t+) = 0, we obtain that a.s.,

lim inf
n→∞

log Z̃n(t)
n

≥ tΛ′(t+).

This completes the proof of Lemma 2.4.

Lemma 2.5. It is a.s. that lim infn→∞
MR

n
n ≥ Λ′(t+).

Proof. Notice that S u ≤ MR
n for u ∈ Tn, we have Z̃n(t) ≤ Zn(R)etMR

n , so that for each 0 < t < ∞,

log Z̃n(t)
n

≤
log Zn(R)

n
+ t

MR
n

n
. (2.7)

If t+ < ∞, then by Lemma 2.4, the above inequality gives for t > t+, a.s.,

Λ′(t+) ≤
1
t
E log m0 + lim inf

n→∞

MR
n

n
.

Letting t ↑ ∞, we obtain the desired result.
If t+ = ∞, then by Lemma 2.2 and inequality (2.7), we see that for t > 0, a.s.,

Λ(t)
t
≤

1
t
E log m0 + lim inf

n→∞

MR
n

n
.

Letting t ↑ ∞, we get that lim infn
MR

n
n ≥ Λ′(∞) = Λ′(t+) a.s..

The conclusions for t ≤ t− and ML
n can be obtained in a similar way, or by applying the

obtained results for t ≥ t+ and MR
n to the opposite branching random walk −S u. Hence Theorem

1.4 holds, and (1.4) holds a.s. for each fixed t ∈ R. So a.s. (1.4) holds for all rational t, and
therefore for all real t by the convexity of log Z̃n(t). This ends the proof of Theorem 1.1.
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3. Limit theorems for a branching random walk in a varying environment

In this section we consider a branching random walk in varying environment (BRWVE),
and prove that with a suitable norming, the counting measure converges to a non-degenerate
law, when the intensity measures satisfy a suitable norming condition and when some moment
conditions are also satisfied.

3.1. Branching random walk in varying environment

To prove limit theorems for random walks in random environments, we first establish corre-
sponding results for a branching random walk with a varying environment (BRWVE), which is
of independent interest. When the environment ξ is given, a BRWRE is a BRWVE. Therefore,
we can apply the results for a BRWVE to a BRWRE for a given environment ξ.

A BRWVE is defined in the same way as a BRWRE when the environment is given. For
completeness let us give its precise definition as below, with an abuse of the notation already in-
troduced (there will be no confusion according to the context). At time 0, there is a unique ances-
tor particle ∅ of generation 0, which lies at S ∅ = 0; at time 1, it will be replaced by N(∅) particles
of generation 1, located at Li(∅), 1 ≤ i ≤ N; the random vector X(∅) = (N(∅), L1(∅), L2(∅), · · · )
takes values on N × RN. In general, each particle u = u1 · · · un in the nth generation (at time n),
which lies at S u, will be replaced at time n + 1 by some new particles ui of generation n + 1 with
locations

S ui = S u + Li(u), 1 ≤ i ≤ N(u);

the random vectors X(u) = (N(u), L1(u), L2(u), · · · ), formulated by the number of offspring and
their displacements, indexed by all finite sequences u ∈ U, are independent (which interprets
the hypothesis that all particles behave independently); all X(u) with u ∈ Nn have the same
distribution as the random vector X(1n) = (N(1n), L1(1n), L2(1n), · · · ) with values in N×R×R×
· · · . Recall that 1n = (1, · · · , 1) is the sequence of length n whose components are all equal to
1; by convention 10 = ∅. By definition, a BRWRE with random environment ξ is just a class of
BRWVE indexed by ξ.

As in the random environment case, we also use the following notation. Let

Zn =
∑
u∈Tn

δS u

be the counting measure on R, so that Zn(B) counts the number of particles of generation n
situated in a Borel set B of R. Let

Xn =

N(1n)∑
i=1

δLi(1n)

be the counting measure whose atoms are the displacements Li(1n) of the children of 1n. Set

Nn = N(1n) = Xn(R), mn = ENn, P0 = 1 and Pn = EZn(R) =

n−1∏
i=0

mi.

Assume that

0 < mn < ∞ (∀n ≥ 0), lim inf
n→∞

1
n

log Pn > 0 and lim inf
n→∞

1
n

log mn = 0. (3.1)
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Thus for some c > 1, there exists an integer n0 which may depend on c such that

Pn > cn for all n > n0. (3.2)

Denote by Γ the probability space under which the process is defined. Let F0 = {∅,Γ} and
Fn = σ((N(u), L1(u), L2(u), · · · ); |u| < n) (n ≥ 1) be the σ-field containing all the information of
the first n generations. Then the sequence

Wn :=
Zn(R)

Pn
, n ≥ 0,

forms a non-negative martingale with respect to the filtration {Fn} and converges a.s. to a random
variable W with values in [0,∞). Let

νn(·) = E
Xn(·)
mn

be the intensity measure (on R) at time n, and let φn be its characteristic function:

φn(t) =

∫
eitxνn(dx) =

1
mn

E
∫

eitxXn(dx), t ∈ R.

The characteristic function of the random normalized probability measure Zn
Pn

is denoted by

Ψn(t) =
1
Pn

∫
eitxZn(dx) =

1
Pn

∑
u∈Tn

eitS u , t ∈ R.

It is not difficult to see that {φn} and {Ψn} have the following relation:

EΨn(t) =

n−1∏
i=0

φi(t), t ∈ R.

As in Klebaner [50] and Biggins [15], we will use the following normalization condition on
the family of intensity measures {νn}.

Condition (A). There are constants {bn, cn} with bn → ∞ and a non-degenerate probability
distribution L such that as n→ ∞, for all t ∈ R,

e−itcn

n−1∏
i=0

φi(
t

bn
)→ g(t) =

∫
eitxL(dx). (3.3)

Notice that the expression of the left-hand side is the characteristic function of the normalized
probability measure Ḡn defined by

Ḡn(B) = Gn(bn(B + cn)), where Gn = ν0 ∗ · · · ∗ νn−1,

for any Borel set B of R. Therefore by Levy’s theorem, (3.3) holds if and only if the normalized
sequence {Ḡn} converges weakly to L, which is equivalent to the convergence of Gn(bn(x + cn))
to L(x) for any continuity point x of the distribution function L(x) := L(−∞, x] of L, where
Gn(x) = Gn((−∞, x]) is the distribution function of Gn. If additionally bn+1/bn → 1, then the limit
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distribution is called in the class L according to Feller [31], also known as a self-decomposable
distribution. If {νn} satisfies the condition of Lindeberg (see (4.13)) or Liapounoff, writing

`n =

n−1∑
i=0

µi and bn = (
n−1∑
i=0

σ2
i )1/2, with µn =

∫
xνn(dx) and σ2

n =

∫
|x − µn|

2νn(dx),

we have Gn(bnx + `n)→ Φ(x) = 1
√

2π

∫ x
−∞

e−t2/2dt for any x ∈ R, so that condition (A) holds with
b′n = bn, c′n = `n/bn and L = N(0, 1). See Section 4 for a discussion on this point.

Throughout we use the following usual notation:

xn = o(yn), xn = O(yn) and xn ∼ yn

to signify that limn→∞ xn/yn = 0, lim supn→∞ |xn|/|yn| < ∞ and limn→∞ xn/yn = 1, respectively.
The same notation are used when n is replaced by t ∈ R+ = [0,∞). We use the symbol C to
denote a positive constant whose value may change from line to line. Denote for n ≥ 1 and
ε > 0,

υn(ε) =

n−1∑
i=0

∫
|x|ενi(dx).

The following theorem states that when the intensity measures E Xi
mi

satisfy the normalizing
condition (A), then the counting measures Zn with a suitable norming converges, under some
moment conditions.

Theorem 3.1 (Convergence of Zn with a suitable norming). For a BRWVE satisfying (3.1), as-
sume that: (a) for some δ > 0,

∞∑
n=2

1
mnn(log n)1+δ

ENn log+ Nn(log+ log+ Nn)1+δ < ∞; (3.4)

(b) for some ε > 0 and γ1 < ∞,
υn(ε) = o(nγ1 ); (3.5)

(c) for some γ2 > 0,
b−1

n = o(n−γ2 ). (3.6)

Then it is a.s. that for all t ∈ R,

Ψn(
t

bn
) −W

n−1∏
i=0

φi(
t

bn
)→ 0. (3.7)

If additionally the characteristic functions φi of the intensity measures E Xi
mi

satisfy the normaliz-
ing condition (A), then it is a.s. that for all t ∈ R,

e−itcnΨn(
t

bn
)→ g(t)W, (3.8)

and that for any continuity point x of the distribution function L(x) = L(−∞, x] of L,

P−1
n Zn(−∞, bn(x + cn)]→ L(x)W. (3.9)
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Remark 3.1. The above conclusions were obtained by Biggins [15, Theorems 1 and 2] while
condition (3.4) is replaced by

∫
x log x F(dx) < ∞, where F is the measure on [0,∞) whose

distribution function is F(x) :=
∑[x]

k=0 supn P(Nn = k). In the homogeneous case where all the Nn

have the same law, F is simply the offspring distribution. But for the general varying environment
case, F does not have such a simple expression. We will see that conditions (3.4), (3.5) and (3.6)
are well adapted for our purpose in the application to the random environment case, since in this
case these conditions hold for almost every environment under simple moment conditions.

Remark 3.2. From the proof of Theorem 3.1, we will see that the condition (3.4) can be relaxed
to the following two ones:

∞∑
n=1

1
mnn1+δ1

ENn log+ Nn < ∞ (3.10)

for some δ1 > 0, and
∞∑

n=0

(
1 −

m̃n,κ

mn

)
< ∞ (3.11)

for κ > 0 large enough, where m̃n,κ = ENnIn(Nn) with In(x) = 1{x(log x)κ≤Pn+1}. In fact, in the the
proof, we will use (3.10) and (3.11) instead of (3.4) (cf. Lemmas 3.3, 3.4 and 3.5). The condition
(3.4) in Theorem 3.1 is used only to have (3.10) and (3.11). Notice that from Lemma 3.1, we see
that (3.4) implies (3.11). The fact that (3.4) also implies (3.10) can be seen as follows. Using
log+ Nn ≤ e for Nn ≤ ee, 1 ≤ log+ log+ Nn for Nn > ee, and 1

n1+δ1
≤ 1

n(log n)1+δ for all n ≥ n0 with
n0 > 1 large enough, we see that for all n ≥ n0

1
mnn1+δ1

ENn log+ Nn ≤
e

n1+δ1
+

1
mnn(log n)1+δ

E(Nn log+ Nn)(log+ log+ Nn)1+δ

Theofore (3.4) implies (3.10).

The following result is a local limit theorem on (Zn). For a general BRWVE, we have found
no such theorems in the literature, except the local limit theorem by Biggins [15] for the homo-
geneous case.

Theorem 3.2 (Local limit theorem). For a BRWVE satisfying (3.1), assume that {φi} satisfies
condition (A) with bn ∼ θnγ for some constants 0 < γ ≤ 1

2 and θ > 0, and g (the characteristic
function of L) integrable on R, and that for some ι > 0,

sup
i

sup
|t|≥ι
|φi(t)| =: ρι < 1.

Assume also that the distributions of {Nn} satisfies (3.5) and that for some δ > 0 and β > γ,

∞∑
n=2

1
mnn(log n)1+δ

ENn(log+ Nn)1+β < ∞.

Then for any h > 0,

sup
x∈R

∣∣∣bnP−1
n Zn(x, x + h) −WhpL(x/bn − cn)

∣∣∣→ 0 a.s., (3.12)

where pL denotes the continuous density function of L (which exists because its characteristic
function g is supposed to be integrable).
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3.2. Proof of Theorem 3.1

Notice that (3.7) together with condition (A) implies (3.8); by standard results on the conver-
gence of measures, (3.8) holds for all t ∈ R if and only if (3.9) holds for any continuity point x
of the distribution function of L. Therefore, to prove Theorem 3.1, we only need to prove that
a.s. (3.7) holds for all t ∈ R. Notice also that the convergence of a sequence of characteristic
functions to a characteristic function for a countable dense set of t implies convergence for all t
(cf. Klebaner [50, p.368] ). So we only need to prove that a.s. (3.7) holds for each fixed t ∈ R.
Our proof below is inspired by some ideas from [15, 50].

We will use a truncation method. Let κ > 0 be a constant. Consider a new BRWVE while the
branching numbers Nu are replaced by

Ñu = NuIn(Nu) ∀u ∈ N∗n, n ≥ 0,

where In(x) = 1{x(log x)κ≤Pn+1}. We use the notation Z̃n,κ, X̃n,κ, m̃n,κ, ν̃n,κ, φ̃n,κ etc. for the new BR-
WVE just as we used Zn, Xn,mn, νn, φn etc. for the original process. Then m̃n,κ = EX̃n =

ENnIn(Nn) and

φ̃n,κ(t) =

∫
eitxν̃n,κ(dx) =

1
m̃n,κ

∫
eitxEX̃n,κ(dx) =

1
m̃n,κ

E
∫

eitxXn(dx) In(Nn), t ∈ R.

The proof of (3.7) for a fixed t is composed of several lemmas.

Lemma 3.1. Let β ≥ 0. If
∑∞

n=2
1

mnn(log n)1+δENn(log+ Nn)1+β(log+ log+ Nn)1+δ < ∞ for some δ > 0,
then for all κ > 0,

∑∞
n=0 nβ(1 − m̃n,κ/mn) < ∞.

Proof. Let Ic
n(x) = 1 − In(x) = 1{x(log x)κ>Pn+1}. Then mn − m̃n,κ = ENnIc

n(Nn), so that for all a > 0,

∑
n

nβ
(
1 −

m̃n,κ

mn

)
=

∑
n

nβ

mn
ENnIc

n(Nn)1{Nn>a} +
∑

n

nβ

mn
ENnIc

n(Nn)1{Nn≤a}.

The second series converges for all a > 0 by (3.1) (see also (3.2)) since

ENnIc
n(Nn)1{Nn≤a} ≤ ENn

Nn(log Nn)κ

Pn+1
1{Nn≤a} ≤

a2(log a)κ

Pn+1
.

It remains to prove that the first series converges for some a > 0. Notice that

f (x) := (log x)1+β(log log x)(1+δ)

is increasing and positive on (a,+∞) for a > 0 large enough, and f (x(log x)κ) ∼ f (x) as x → ∞.
Therefore from (3.2), we have for n large enough,

nβ

mn
ENnIc

n(Nn)1{Nn>a} ≤
nβ

mn
E

Nn f (Nn(log Nn)κ)
f (Pn+1)

1{Nn>a}

≤
C

mnn(log n)1+δ
ENn(log+ Nn)1+β(log+ log+ Nn)1+δ,

where C > 0 is a constant independent of n. Thus
∑

n
nβ
mn
ENnIc

n(Nn)1{Nn>a} < ∞ by the condition
of the lemma.
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Lemma 3.2 ([15], Lemma 3 (ii)). For each κ > 0, if
∑

n(1 − m̃n,κ/mn) < ∞, then for each t ∈ R,

n−1∏
i=0

φ̃i,κ(
t

bn
) −

n−1∏
i=0

φi(
t

bn
)→ 0, as n→ ∞. (3.13)

Proof of Theorem 3.1. As explained in the beginning of this section, we only need to prove that
a.s. (3.7) holds for each fixed t ∈ R. By Lemma 3.1 with β = 0 and Lemma 3.2, we see that (3.4)
implies (3.13). Therefore for each fixed t, (3.7) holds a.s. if it holds a.s. with φ̃i,κ in place of φi:
that is, if

Ψn(
t

bn
) −W

n−1∏
i=0

φ̃i,κ(
t

bn
)→ 0 a.s. (3.14)

In the following we will prove that (3.14) holds under the conditions of Theorem 3.1, when κ is
large enough. For simplicity, let

ζn(t) = φ̃n,κ(t) and ωn =
m̃n,κ

mn
,

where the value of κ will be fixed later to be suitably large. Let

Ψ(1)(u, t) =
1
m n

∫
eitxX(u)(dx) for u ∈ N∗n and t ∈ R. (3.15)

Then

Ψn+1(t) − ωnζn(t)Ψn(t)

=
1
Pn

∑
u∈Tn

eitS uΨ(1)(u, t)Ic
n(N(u)) +

1
Pn

∑
u∈Tn

eitS u
(
Ψ(1)(u, t)In(N(u)) − ωnζn(t)

)
=: An(t) + Bn(t). (3.16)

By iteration, we obtain for 0 ≤ k < n and t ∈ R,

Ψn(t) = Ψk(t)
n−1∏
i=k

ωiζi(t) +

n−1∑
i=k

(Ai(t) + Bi(t))
n−1∏

j=i+1

ω jζ j(t) (3.17)

(by convention the empty product is taken to be 1). Using this decomposition with t replaced by
t/bn, we see that the left-hand side of (3.14) can be written as:

Ψn(
t

bn
) −W

n−1∏
i=0

ζi(
t

bn
) =

n−1∑
i=k

Ai(
t

bn
)

n−1∏
j=i+1

ω jζ j(
t

bn
) +

n−1∑
i=k

Bi(
t

bn
)

n−1∏
j=i+1

ω jζ j(
t

bn
)

+

Ψk(
t

bn
)

n−1∏
i=k

ωiζi(
t

bn
) −W

n−1∏
i=0

ζi(
t

bn
)

 . (3.18)

In the following we take α > 1, and define

k = J(n) = [n1/α] = the integral part of n1/α, (3.19)

so that kα ∼ n as n → ∞. For this choice of k, we will see in the following three lemmas that
each of the three terms in the right-hand side of (3.18) converges to 0 a.s. when α > 1 and κ > 0
are suitable chosen, which implies that (3.14) holds. So the proof of Theorem 3.1 is finished,
once the following three lemmas are established.
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Lemma 3.3. For each κ > 0, if
∑

n(1 − m̃n,κ/mn) < ∞, then, with k = J(n) = [n1/α] and α > 1,

sup
t∈R

∣∣∣∣∣∣∣∣
n−1∑
i=k

Ai(
t

bn
)

n−1∏
j=i+1

ω jζ j(
t

bn
)

∣∣∣∣∣∣∣∣→ 0 a.s., as n→ ∞. (3.20)

Proof. Notice that for all t ∈ R, |An(t)| ≤ 1
Pn

∑
u∈Tn
|Ψ

(1)
u (u, t)|Ic

n(Nu) ≤ 1
Pn

∑
u∈Tn

N(u)
mn

Ic
n(Nu), so

that ∣∣∣∣∣∣∣∣
n−1∑
i=k

Ai(
t

bn
)

n−1∏
j=i+1

ω jζ j(
t

bn
)

∣∣∣∣∣∣∣∣ ≤
n−1∑
i=k

|Ai(
t

bn
)| ≤

n−1∑
i=k

1
Pimi

∑
u∈Ti

N(u)Ic
i (N(u)). (3.21)

Since

E

∑
i

1
Pimi

∑
u∈Ti

N(u)Ic
i (N(u))

 =
∑

i

1
mi

ENiIc
i (Ni) =

∑
i

(
1 −

m̃i,κ

mi

)
< ∞,

we have
∑

i
1

Pimi

∑
u∈Ti

N(u)Ic
i (N(u)) < ∞ a.s. Together with (3.21), this implies (3.20).

Lemma 3.4. If for some δ1 > 0,

∞∑
n=1

1
mnn1+δ1

ENn log+ Nn < ∞,

then when κ ≥ α + δ1, we have for each t ∈ R, with k = J(n) = [n1/α] and α > 1,

Cn(t) :=
n−1∑
i=k

Bi(
t

bn
)

n−1∏
j=i+1

ω jζ j(
t

bn
)→ 0 a.s. as n→ ∞. (3.22)

Proof. We will show that
∑∞

n=1 E|Cn(t)|2 < ∞, which implies that
∑∞

n=1 |Cn(t)|2 < ∞ a.s., so that
(3.22) holds a.s. Notice that Tn and S u with |u| ≤ n are Fn mesurable and that for each u ∈ N∗n
(recall (3.15) for the definition of Ψ(1)(u, t)),

E[Ψ(1)(u, t)In(N(u))|Fn] =
1

mn
E

N(u)∑
i=1

eitLi(u) In(N(u)) =
m̃n,κ

mn
φ̃n,κ(t) = ωnζn(t).

Therefore by the definition of Bn(t) (cf. (3.16)), for all t ∈ R,

E(Bn(t)|Fn) = 0 a.s.

It follows that the summands in Cn(t) are martingale differences (which are orthogonal in L2), so
that

E|Cn(t)|2 = Var(Cn(t)) =

n−1∑
i=k

Var

Bi(
t

bn
)

n−1∏
j=i+1

ω jζ j

 ≤ n−1∑
i=k

Var(Bi(
t

bn
)).

Since the summands of Bn(t) are conditionally independent given Fn, we have for each t ∈ R,

E(|Bn(t)|2|Fn) = Var(Bn(t)|Fn)) =
1
P2

n

∑
u∈Tn

Var
(
Ψ(1)(u, t)In(N(u))

)
=

Zn(R)
P2

n
Var

(
Ψ(1)

n (t)In(Nn)
)
,
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where Ψ
(1)
n (t) = m−1

n

∫
eitxXn(dx). Taking the expectation, we get for each t ∈ R,

Var(Bn(t)) =
1
Pn

Var(Ψ(1)
n In(Nn)) ≤

1
Pnm2

n
EN2

n In(Nn). (3.23)

Set J−1( j) = {n : J(n) = j} and let |J−1( j)| be its cardinality. It is not difficult to see that
|J−1( j)| = O( jα−1) and

∑i
j=1 |J

−1( j)| = O(iα). Recall that C denotes a positive constant whose
value may change from line to line. From the preceding calculation for E|Cn(t)|2 and Var(Bn(t)),
and the estimation of |J−1( j)|, we get for any t ∈ R,

∞∑
n=1

E|Cn(t)|2 ≤

∞∑
n=1

n−1∑
i=k

1
Pim2

i

EN2
i Ii(Ni)

=

∞∑
j=1

∑
n∈J−1( j)

n−1∑
i= j

1
Pim2

i

EN2
i Ii(Ni)

≤

∞∑
j=1

|J−1( j)|
∞∑
i= j

1
Pim2

i

EN2
i Ii(Ni)

=

∞∑
i=1

i∑
j=1

|J−1( j)|
1

Pim2
i

EN2
i Ii(Ni)

≤ C
∞∑

i=1

iα

Pim2
i

EN2
i Ii(Ni)

= C
∞∑

i=1

iα

Pim2
i

EN2
i Ii(Ni)1{Ni>a} + C

∞∑
i=1

iα

Pim2
i

EN2
i Ii(Ni)1{Ni≤a}.

In the last line, the second series converges since
∑

i
iα

Pim2
i
< ∞. For the first series, notice that

f (x) := x(log x)−(α+1+δ1) is increasing and positive on (a,+∞) for a > 0 large enough, and
f (x(log x)κ) ∼ x(log x)κ−(α+1+δ1) as x → ∞, so that x2

f (x(log x)κ) = O(x log x) if κ ≥ α + δ1. Hence
when κ ≥ α + δ1, by (3.1) we have for i large enough,

iα

Pim2
i

EN2
i Ii(Ni)1{Ni>a} ≤

iα

Pim2
i

EN2
i

f (Pi+1)
f ({Ni(log Ni)κ)

1{Ni>a} ≤
C

mii1+δ1
ENi log+ Ni.

Thus
∑

i
iα

Pim2
i
EN2

i Ii(Ni)1{Ni>a} < ∞ by the condition of the lemma.

Lemma 3.5. If
∑

n(1 − m̃n,κ/mn) < ∞ and (3.5), (3.6) hold, then for each κ > 0 and each α > 1
large enough, we have for each t ∈ R, with k = J(n) = [n1/α] and α > 1,

Ψk(
t

bn
)

n−1∏
i=k

ωiζi(
t

bn
) −W

n−1∏
i=0

ζi(
t

bn
)→ 0 a.s., as n→ ∞. (3.24)

Proof. Since
∑

n(1 − ωn) < ∞ implies that
∏n−1

i=k ωi → 1, the factor
∏n−1

i=k ωi in (3.24) can be
ignored, namely it suffices to prove that

Ψk(
t

bn
)

n−1∏
i=k

ζi(
t

bn
) −W

n−1∏
i=0

ζi(
t

bn
)→ 0 a.s., as n→ ∞. (3.25)
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Notice that

Ψk

n−1∏
i=k

ζi −W
n−1∏
i=0

ζi =

(
Ψk −

Zk(R)
Pk

) n∏
i=k

ζi +

(
Zk(R)

Pk
−W

) n−1∏
i=k

ζi + W

n−1∏
i=k

ζi −

n−1∏
i=0

ζi

 .
Therefore, since Wk =

Zk(R)
Pk
→ W a.s., to prove (3.25) it suffices to prove that

Ψk(
t

bn
) −

Zk(R)
Pk

→ 0 a.s., as k → ∞. (3.26)

and that
n−1∏
i=k

ζi(
t

bn
) −

n−1∏
i=0

ζi(
t

bn
)→ 0, as k → ∞. (3.27)

We first prove (3.26). Since |eitx − 1| ≤ C|tx|ε, we have∣∣∣∣∣Ψk(
t

bn
) −

Zk(R)
Pk

∣∣∣∣∣ ≤ 1
Pk

∫ ∣∣∣∣eitb−1
n x − 1

∣∣∣∣ Zk(dx) ≤ C|t|εb−εn
1
Pk

∫
|x|εZk(dx).

If 0 < ε ≤ 1, by taking the expectation in the above inequality and using the elementary inequal-
ity (x1 + · · · + xk)ε ≤ xε1 + · · · + xεk for xi ≥ 0 (which implies that

∫
|x|εν0 ∗ · · · ∗ νk−1(dx) ≤ υk(ε))

and conditions (3.5) and (3.6), we obtain

E
∣∣∣∣∣Ψk(

t
bn

) −
Zk(R)

Pk

∣∣∣∣∣ ≤ C|t|εb−εn

∫
|x|εν0 ∗ · · · ∗ νk−1(dx)

≤ C|t|εb−εn υk(ε) = |t|εo(kγ1−αεγ2 ). (3.28)

If ε > 1, by a similar argument using the inequality (x1 + · · · + xk)ε ≤ kε−1(xε1 + · · · + xεk) for
xi ≥ 0, we get

E
∣∣∣∣∣Ψk(

t
bn

) −
Zk(R)

Pk

∣∣∣∣∣ ≤ C|t|εb−εn kε−1υk(ε) = |t|εo(kε−1+γ1−αεγ2 ). (3.29)

Hence (3.26) holds if we take α large enough such that max(0, ε − 1) + γ1 − αεγ2 < −1.
For (3.27), by combining (3.28) (when ε ≤ 1) or (3.29) (when ε > 1) with the fact that∣∣∣∣∣∣∣

n−1∏
i=k

φi(
t

bn
) −

n−1∏
i=0

φi(
t

bn
)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n−1∏
i=k

φi(
t

bn
)

1 − k−1∏
i=0

φi(
t

bn
)


∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
k−1∏
i=0

φi(
t

bn
) − 1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣E
(
Ψk(

t
bn

) −
Zk(R)

Pk

)∣∣∣∣∣∣
≤ E

∣∣∣∣∣Ψk(
t

bn
) −

Zk(R)
Pk

∣∣∣∣∣ ,
we obtain (3.27) with φi in place of ζi, which implies (3.27) by Lemma 3.2.
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3.3. Proof of Theorem 3.2
We follow the method used in [69] and in [15]. Let

K(x) =
1

2π

 sin( 1
2 x)

1
2 x

2

, Ka(x) =
1
a

K(
x
a

) for a > 0, x ∈ R,

with the convention that K(0) = 1/(2π). Then∫
R

K(x)dx = 1 and
∫
R

Ka(x)dx = 1.

The characteristic function of Ka is denoted by ka, which vanishes outside (− 1
a ,

1
a ), so that the

characteristic function of Zn
Pn
∗ Ka is integrable, and Zn

Pn
∗ Ka has a continuous density function

denoted by D(n)
a . We will get our result through the asymptotic property of D(n)

a .

Lemma 3.6 (see for example [27]). If f is a characteristic function such that | f (t)| ≤ ρ as soon
as b ≤ |t| ≤ 2b, then we have for |t| < b,

| f (t)| ≤ 1 − (1 − ρ2)
t2

8b2 .

Lemma 3.7. Under the conditions of Theorem 3.2, for κ > 0 large enough,

sup
x∈R
|bnD(n)

a (bn(x + cn)) −W pL(x)| → 0 a.s. as n→ ∞. (3.30)

Proof. Let M > 0 be a constant. By the Fourier inversion formula,

2π
∣∣∣bnD(n)

a (bn(x + cn)) −W pL(x)
∣∣∣ =

∣∣∣∣∣∣
∫ (

Ψn(
t

bn
)ka(

t
bn

)e−itcn −Wg(t)
)

e−itxdt

∣∣∣∣∣∣ . (3.31)

We split the integral of the right-hand side into |t| < M and |t| ≥ M. Using Theorem 3.1 (assertion
(3.8)) and noticing that limn ka( t

bn
) = 1, we have, by the dominated convergence theorem,∣∣∣∣∣∣

∫
|t|<M

(
Ψn(

t
bn

)ka(
t

bn
)e−itcn −Wg(t)

)
e−itxdt

∣∣∣∣∣∣→ 0 a.s. as n→ ∞.

So by (3.31), to show (3.30), it suffices to prove that

lim sup
M→∞

lim sup
n→∞

∣∣∣∣∣∣
∫
|t|≥M

(
Ψn(

t
bn

)ka(
t

bn
)e−itcn −Wg(t)

)
e−itxdt

∣∣∣∣∣∣ = 0 a.s. (3.32)

Notice that by the dominated convergence theorem and the integrability of g,∫
|t|≥M

g(t)e−itxdt → 0 as M → ∞. (3.33)

It remains to estimate

In,M :=

∣∣∣∣∣∣
∫
|t|≥M

Ψn(
t

bn
)ka(

t
bn

)e−itxdt

∣∣∣∣∣∣ =

∣∣∣∣∣∫
U

bnΨn(t)ka(t)e−ibntxdt
∣∣∣∣∣ , (3.34)
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where U = {t : M
bn
≤ |t| ≤ 1

a }. In the following for simplicity we write Ψn = Ψn(t), ka = ka(t),
ζi = ζi(t), Ai = Ai(t), Bi = Bi(t), and en = e−ibntx, where t ∈ R is arbitrary. By the decomposition
(3.17), we have for 0 ≤ k < n,

bnΨnkaen = bnΨk

n−1∏
i=k

ωiζikaen + bn

n−1∑
i=k

Ai

n−1∏
j=i+1

ω jζ jkaen + bn

n−1∑
i=k

Bi

n−1∏
j=i+1

ω jζ jkaen. (3.35)

Below we take k = J(n) defined by (3.19) as in the proof of Theorem 3.1, and we prove that the
integral over U of each of the three functions in the right-hand side of (3.35) tends to 0 a.s.

Firstly, we prove that∣∣∣∣∣∣∣∣bn

n−1∑
i=k

∫
U

Ai

n−1∏
j=i+1

ω jζ jkaendt

∣∣∣∣∣∣∣∣→ 0 a.s. as n→ ∞ (3.36)

For n large enough,∣∣∣∣∣∣∣∣bn

n−1∑
i=k

∫
U

Ai

n−1∏
j=i+1

ω jζ jkaendt

∣∣∣∣∣∣∣∣ ≤ bn

n−1∑
i=k

∫
U
|Ai|dt

≤ Ckαγ
n−1∑
i=k

1
Pimi

∑
u∈Ti

N(u)Ic
i (N(u))

≤ C
n−1∑
i=k

iαγ

Pimi

∑
u∈Ti

N(u)Ic
i (N(u)).

Like in the proof of Lemma 3.3, from Lemma 3.1 we obtain

E

 ∞∑
i=0

iαγ

Pimi

∑
u∈Ti

N(u)Ic
i (N(u))

 =

∞∑
i=0

iαγ
(
1 −

m̃i,k

mi

)
< ∞,

if we take α sufficiently close to 1 such that αγ < β. Hence (3.36) is proved.
Secondly, we prove (3.36) with Bi in place of Ai, that is:

Cn := bn

n−1∑
i=k

∫
U

Bi

n−1∏
j=i+1

ω jζ jkaendt → 0 a.s. as n→ ∞ (3.37)

We have already seen in the proof of Lemma 3.4 that E(Bi|Fi) = 0, so Cn is the sum of martingale
differences. Therefore, for n large enough, using Cauchy-Schwartz’s inequality and (3.23) we
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get

E|Cn|
2 = Var Cn = b2

n

n−1∑
i=k

Var

∫
U

Bi

n−1∏
j=i+1

ω jζ jkaendt


= b2

n

n−1∑
i=k

E

∣∣∣∣∣∣∣∣
∫

U
Bi

n−1∏
j=i+1

ω jζ jkaendt

∣∣∣∣∣∣∣∣
2

≤ b2
n

n−1∑
i=k

E
(∫

U
dt

) ∫
U
|Bi

n−1∏
j=i+1

ω jζ jka|
2dt


≤

2
a

b2
n

n−1∑
i=k

∫
U
E|Bi|

2dt

≤ C
n−1∑
i=k

i2αγ

Pim2
i

EN2
i Ii(Ni).

Following the last part of the proof of Lemma 3.4, we obtain that
∑∞

n=1 E|Cn|
2 < ∞ provided that

κ is large enough, which implies (3.37).
Finally, we consider the first term in the right-hand side of (3.35), and prove that there exists

a constant θ1 > 0 (not depending on M) such that

lim sup
n→∞

∣∣∣∣∣∣∣bn

∫
U

Ψk

n−1∏
i=k

ωiζikaendt

∣∣∣∣∣∣∣ ≤ W
∫
|t|≥M

e−θ1t2
dt. (3.38)

Clearly, ∣∣∣∣∣∣∣bn

∫
U

Ψk

n−1∏
i=k

ωiζikaendt

∣∣∣∣∣∣∣ ≤ Zk(R)
Pk

bn

∫
U

∣∣∣∣∣∣∣
n−1∏
i=k

ζi

∣∣∣∣∣∣∣ dt. (3.39)

Since Zk(R)
Pk
→ W a.s. as k → ∞, it suffices to prove that

lim sup
n→∞

bn

∫
U

∣∣∣∣∣∣∣
n−1∏
i=k

ζi(t)

∣∣∣∣∣∣∣ dt ≤ lim sup
n→∞

bn

∫
U

n−1∏
i=k

|φi(t)|dt, (3.40)

and that there exists a constant θ1 > 0 (not depending on M) such that

lim sup
n→∞

bn

∫
U

n−1∏
i=k

|φi(t)|dt ≤
∫
|t|≥M

e−θ1t2
dt. (3.41)

We first prove (3.40). Notice that

bn

∫
U

∣∣∣∣∣∣∣
n−1∏
i=k

ζi

∣∣∣∣∣∣∣ dt ≤ bn

∫
U

∣∣∣∣∣∣∣
n−1∏
i=k

ζi −

n−1∏
i=k

φi

∣∣∣∣∣∣∣ dt + bn

∫
U

n−1∏
i=k

|φi|dt.

By the definitions of φn and ζn = φ̃n,κ, we have

mnφn(t) = E
Nn∑
i=1

eitLi(1n) = m̃n,κζn(t) + E
∑

Ñn<i≤Nn

eitLi(1n).
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Hence |mnφn(t)−m̃n,κζn(t)| ≤ mn−m̃n,κ, which implies |ζn(t)−φn(t)| ≤ 2(1−m̃n,k/mn), as observed
by Biggins [15] in the proof of Lemma 3 therein. Therefore we have

bn

∫
U

∣∣∣∣∣∣∣
n−1∏
i=k

ζi −

n−1∏
i=k

φi

∣∣∣∣∣∣∣ dt ≤ bn

∫
U

n−1∑
i=k

|ζi − φi|dt

≤
4
a

bn

n−1∑
i=k

(
1 −

m̃i,k

mi

)

≤ C
n−1∑
i=k

(i + 1)αγ
(
1 −

m̃i,k

mi

)
→ 0 as n→ ∞,

provided αγ < β. Hence (3.40) holds. Now we turn to prove (3.41). Split the set U into two
parts: U1 = {t : M/bn ≤ |t| ≤ ε} and U2 = {t : ε ≤ |t| ≤ 1

a }. Since for some ι > 0, |φi(t)| ≤ ρι < 1
for all |t| ≥ ι, by Lemma 3.6, we have for all |t| < ι,

|φi(t)| ≤ 1 −
1 − ρ2

ι

8ι2
t2 ≤ e−γ1t2

,

where γ1 =
1−ρ2

ι

8ι2 . Thus

sup
i

sup
|t|≥ε
|φi(t)| = max{e−γ1ε

2
, ρι} =: ρ′ι < 1.

It follows that

bn

∫
U2

n−1∏
i=k

|φi(t)|dt ≤
2
a

bn(ρ′ι)
n−k−1 → 0 as n→ ∞, (3.42)

and

bn

∫
U1

n−1∏
i=k

|φi(t)|dt ≤
∫
|t|≥M

exp(−b−2
n (n − k − 1)γ1t2)dt.

It is easy to see that

lim
n→∞

n − k − 1
b2

n
=

{ 1
θ2 if γ = 1

2 ,
∞ if 0 < γ < 1

2 .

So there exists a constant θ1 > 0 such that b−2
n (n − k − 1)γ1 > θ1 for n large enough. Thus

lim sup
n→∞

bn

∫
U1

n−1∏
i=k

|φi(t)|dt ≤
∫
|t|≥M

e−θ1t2
dt. (3.43)

From (3.42) and (3.43), we obtain (3.41). Combining (3.39), (3.40) and (3.41), we get (3.38).
From the decomposition (3.35) and the assertions (3.36), (3.37) and (3.38), we see that the

integral In,M defined in (3.34) satisfies

lim sup
n→∞

In,M ≤

∫
|t|≥M

e−θ1t2
dt.

This, together with (3.33), implies (3.32), which ends the proof of the lemma.
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By the proof of Stone [69, Lemma 1], we have the following result. Since the argument is
very similar, we omit the details.

Lemma 3.8. If (3.30) holds, then for every ε > 0, there exist n0 > 0 and δ > 0 such that for
n ≥ n0 and 0 < h < δ, a.s.,

h(W pL(x) − ε) ≤ P−1
n Zn

(
bn(x + cn), bn(x + cn + h)

)
≤ h(W pL(x) + ε), ∀x ∈ R.

Now we turn to the proof of Theorem 3.2.

Proof of Theorem 3.2. Fix h > 0. For ε > 0, take 0 < ε′ < ε/h. By Lemmas 3.7 and 3.8, for this
ε′ > 0, there exist n′0 > 0 and δ′ > 0 such that for n ≥ n′0 and 0 < h′ < δ′, a.s.,

h′(W pL(x) − ε′) ≤ P−1
n Zn

(
bn(x + cn), bn(x + cn + h′)

)
≤ h′(W pL(x) + ε′), ∀x ∈ R.

Let h′ = h/bn. Then there exists ñ0 > 0 such that 0 < h′ < δ′ for n ≥ ñ0. So for n ≥ n0 :=
max{n′0, ñ0}, we have a.s.,

h(W pL(x) − ε′) ≤ bnP−1
n Zn

(
bn(x + cn), bn(x + cn) + h

)
≤ h(W pL(x) + ε′), ∀x ∈ R,

which implies that

sup
x∈R
|bnP−1

n Zn

(
bn(x + cn), bn(x + cn) + h

)
−WhpL(x)| ≤ ε′h < ε a.s.,

so that
sup
x∈R
|bnP−1

n Zn(x, x + h) −WhpL(x/bn − cn)| < ε a.s.

This ends the proof of (3.12).

From the proof, we have the following remark which will be used to relax a moment condition
in the random environment case.

Remark 3.3. For a BRWVE satisfying (3.1), the conclusion (3.12) of Theorem 3.2 holds when-
ever the following conditions hold:

1) the convergence result (3.8) holds a.s. for all t ∈ R, where {bn, cn} are normalizing con-
stants such that bn ∼ θnγ for some 0 < γ ≤ 1

2 and θ > 0, and g is the characteristic function
of a non-degenerate probability distribution L on R, which is integrable on R;

2) there exists a constant β > γ such that
∑

n nβ(1 − m̃n,κ/mn) < ∞ for κ large enough;

3) there exists a constant δ1 > 0 such that (3.10) holds;

4) there exists a constant θ1 > 0 such that (3.41) holds for all M > 0 large enough.
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4. Proofs of Theorems 1.5 and 1.6

Let us return back to a BRWRE and establish central limit theorems for it. As already men-
tioned in Section 3, when the environment ξ is fixed, a BRWRE is a BRWVE. So the results of
the previous section on a BRWVE can be applied to a BRWRE conditioned on the environment.
We use the notation already introduced in the introduction for a BRWRE, which correspond
the notation used in Section 3 but with the probability and expectation therein replaced by the
quenched probability Pξ and the quenched expectation Eξ, given the environment ξ. For exam-
ple, the intensity measures νn are now defined as νn =

EξXn(·)
mn

, whose mean and variance are still
denoted respectively by µn and σ2

n; mn = EξNn denotes the mean of the offspring distribution
given the environment.

By Theorem 3.1, and Remark 3.2, we can obtain the following theorem about the conver-
gence to infinitely divisible laws for a BRWRE.

Theorem 4.1. Assume that for some ε > 0,

υ(ε) := E
∫
|x|εν0(dx) < ∞,

and that bn = bn(ξ) satisfies

b−1
n = o(n−γ) a.s. for some γ > 0,

then a.s. for all t ∈ R,

Ψn(
t

bn
) −W

n−1∏
i=0

φi(
t

bn
)→ 0. (4.1)

If in addition (A) holds with bn = bn(ξ), cn = cn(ξ) and g = gξ for almost every environment ξ,
then it is a.s. that for all t ∈ R,

e−itcnΨn(
t

bn
)→ gξ(t)W, (4.2)

and for all continuity point x of the distribution function Lξ(x) = Lξ(−∞, x] of Lξ,

P−1
n Zn(−∞, bn(x + cn)]→ Lξ(x)W.

Proof of Theorem 4.1. We apply Theorem 3.1 and Remark 3.2 by checking the conditions therein.
We need to prove that (4.1) holds (for all t) Pξ a.s. for almost every environment ξ (which implies
that (4.1) holds P a.s.). Notice that for a BRWRE, assumption (1.1) implies that

lim
n→∞

1
n

log Pn = E log m0 > 0 and lim
n→∞

1
n

log mn = 0 a.s.

by the ergodic theorem. Hence the assumption (3.1) is satisfied for almost every environment ξ.
The condition (3.4) now reads∑

n

1
mnn(log n)1+δ

EξNn log+ Nn(log+ log+ Nn)1+δ < ∞
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for some δ > 0. Taking the expectation, we see that this condition holds for almost every
environment ξ if E N

m0
log+ N(log+ log+ N)1+δ < ∞ for some δ > 0. To relax this condition to the

usual one E N
m0

log+ N < ∞, we will use the conditions in Remark 3.2 instead of (3.4): namely,

∞∑
n=1

1
mnn1+δ1

EξNn log+ Nn < ∞ a.s. (4.3)

for some δ1 > 0, and
∞∑

n=0

(
1 −

m̃n,κ

mn

)
< ∞ a.s. (4.4)

for κ > 0 large enough. Taking the expectation at both sides of (4.3), we see that (4.3) holds a.s.
for every δ1 > 0 provided that E N

m0
log+ N < ∞. From Lemma 4.1 below, we see that this latter

condition also implies that (4.4) holds a.s. for every κ > 0.
The condition (3.5) holds a.s. for each γ1 > 1 because by the ergodic theorem,

lim
n

υn(ε)
n

= υ(ε) < ∞ a.s.

We have therefore proved Theorem 4.1, using Theorem 3.1, Remark 3.2 and the lemma below
which will also be used later.

Lemma 4.1. Let β ≥ 0. If E N
m0

(log+ N)1+β < ∞, then for all κ > 0,
∑

n nβ(1 − m̃n,κ/mn) < ∞ a.s.

Proof. As the proof of Lemma 3.1, we have
∑

n
(
1 − m̃n,κ/mn

)
=

∑
n

1
mn
EξNnIc

n(Nn). By (3.2), for
n large enough, EξNnIc

n(Nn) ≤ EξNn1{Nn(log Nn)κ>cn+1}. Notice that

E
∑

n

nβ

mn
EξNn1{Nn(log Nn)κ>cn+1}

 = E
N
m0

∑
n

nβ1{N(log N)κ>cn+1}

≤ CE
N
m0

(log+ N)1+β < ∞.

Therefore
∑

n nβ(1 − m̃n,κ/mn) < ∞ a.s.

Similarly to the varying environment case, we also have a local limit theorem:

Theorem 4.2. Assume that ν0 is non-lattice a.s., condition (A) holds for almost every environ-
ment ξ, with (bn, cn) = (bn(ξ), cn(ξ)) satisfying a.s. bn ∼ θnγ for some constants 0 < γ ≤ 1

2 and
θ > 0, and g = gξ a.s. integrable. If υ(ε) := E

∫
|x|εν0(dx) < ∞ for some ε > 0, and

E
N
m0

(log+ N)1+β < ∞

for some β > γ, then a.s. ∀h > 0,

sup
x∈R
|bnP−1

n Zn(x, x + h) −WhpL(x/bn − cn)| → 0, (4.5)

where pL is the continuous density function of Lξ (which exists since its characteristic function
gξ is integrable).
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Notice that if we use Theorem 3.2 to the random environment case, then we need the (3.2)
which is stronger than the non-lattice condition assumed in Theorem 4.2. For this reason, we
will use Remark 3.3 instead. We first establish the following technical lemma.

Lemma 4.2. Let M > 0 be a constant. Assume that bn ∼ θnγ a.s. for some constants 0 < γ ≤ 1
2 .

If ν0 is non-lattice a.s.,then there exists a constant θ1 > 0 (not depending on M) such that

lim sup
n→∞

bn

∫
U

n−1∏
i=k

|φi(t)|dt ≤
∫
|t|≥M

e−θ1t2
dt a.s., (4.6)

where k = J(n) is defined by (3.19) as in the proof of Theorem 3.1 and U = {t : M
bn
≤ |t| ≤ 1

a }.

Proof. Take 0 < 2ε < 1
a . As the last part of the proof of Theorem 3.2, we split U into U1 and U2

defined therein, so that

bn

∫
U

n−1∏
i=k

|φi(t)|dt = bn

∫
U1

n−1∏
i=k

|φi(t)|dt + bn

∫
U2

n−1∏
i=k

|φi(t)|dt.

Since νi is non-lattice a.s., we have

sup
ε≤|t|≤a−1

|φi(t)| =: ρi(ε, a) = ρi < 1 a.s. (4.7)

Hence by Lemma 3.6, for |t| < ε,

|φi(t)| ≤ 1 −
1 − ρ2

i

8ε2 t2 ≤ exp
−1 − ρ2

i

8ε2 t2
 = e−αit2

a.s., (4.8)

where αi =
1−ρ2

i
8ε2 > 0 a.s. Using (4.7), we immediately get

bn

∫
U2

n−1∏
i=k

|φi(t)| ≤
2
a

bn

n−1∏
i=k

ρi → 0 a.s., (4.9)

since

lim
n→∞

log bn +
∑n−1

i=k log ρi

n
= E log ρ0 < 0 a.s.

Observe that

lim
n→∞

∑n−1
i=k αi

b2
n

=

{ 1
θ2 Eα0 > 0 if γ = 1

2
∞ if 0 < γ < 1

2
a.s.

So taking 0 < θ1 <
1
θ2 Eα0 and using (4.8), we get a.s. for n large enough,

bn

∫
U1

n−1∏
i=k

|φi(t)|dt ≤
∫
|t|≥M

exp

−b−2
n

n−1∑
i=k

αit2

 du ≤
∫
|t|≥M

e−θ1t2
dt. (4.10)

Combining (4.9) and (4.10) yields (4.6).

29



Proof of Theorem 4.2. We apply Remark 3.3 when the environment ξ is given. Below we prove
that the four conditions of Remark 3.3 are satisfied for almost every environment ξ. First, by
Theorem 4.1, we see that a.s. (4.2) holds for every t; in other words, (3.8) holds in the random
environment case for almost every environment ξ. Second, by Lemma 4.1,

∑
n nβ(1− m̃n,κ/mn) <

∞ a.s. for all κ > 0. Third, in the proof of Theorem 4.1 we have already proved that (4.3) (which
corresponds to (3.10) when environment ξ is given) holds a.s. for every δ1 > 0. Finally, by
Lemma 4.2, there exists a constant θ1 > 0 such that (4.6) (which corresponds to (3.41) when
random environment ξ is given) holds for all M > 0 large enough. Therefore, from Remark 3.3,
we see that (4.5) holds Pξ a.s. for almost every environment ξ. This implies that (4.5) holds P
a.s. The proof of Theorem 4.2 is therefore finished.

We now establish the convergence to the normal law, and the corresponding local limit the-
orem. To this end, we first prove that in the random environment case, under the usual second
moment condition, the normalizing condition (A) holds a.s. with L = N(0, 1), as shown by the
following central limit theorem for means EξZn(·). For the notation used below, we refer to the
definitions introduced before Theorem 1.5 .

Theorem 4.3. If Eσ2
0 ∈ (0,∞), then a.s. for all x ∈ R,

EξZn(−∞, bnx + `n]
EξZn(R)

→ Φ(x), (4.11)

where `n =
∑n−1

i=0 µi, bn = (
∑n−1

i=0 σ
2
i )1/2, and Φ(x) = 1

√
2π

∫ x
−∞

e−t2/2dt is the distribution function
of the standard normal distribution.

Observe that EξZn(·)
EξZn(R) = ν0 ∗ · · · ∗ νn−1(·). So (4.11) just means that condition (A) holds for

almost every environment with bn defined above, cn = `n/bn and L = N(0, 1).
We notice that by using Theorem 4.3 and [7, Theorem 3.5], we can prove a weaker version

of Theorem 1.5: if Eσ2
0 ∈ (0,∞) and E

(
log EξN2

m2
0

)
< ∞, then for almost every ξ we have, for each

x ∈ R,
Zn(−∞, bnx + `n]

Zn(R)
→ Φ(x) in probability under Pξ.

Actually we have the a.s. convergence, as seen in Theorem 1.5, assuming only Eσ2
0 ∈ (0,∞)

(without the additional condition E
(

log EξN2

m2
0

)
< ∞).

Remark 4.1. By Slutsky’s lemma, we know that if Fn, F are probability distribution functions
on R such that Fn(x)→ F(x) for any continuity point x of F, and if cn, dn ∈ R are constants such
that cn → 1 and dn → 0, then the same conclusion holds for Fn(cnx + dn) instead of Fn(x): as
n→ ∞,

Fn(cnx + dn)→ F(x) for all continuity point x of F.

With (4.11), using this for Fn(x) =
EξZn(−∞,bn x+`n]

EξZn(R) and F(x) = Φ(x), for fixed ξ, and taking cn =

b′n/bn and dn = (`′n − `n)/bn, we see that (4.11) still holds a.s. for all x ∈ R, when (bn, `n) is
replaced by (b′n, `

′
n) ∈ R2, provided that b′n = b′n(ξ) and `′n = `′n(ξ) satisfy

b′n ∼ bn and
`′n − `n

bn
→ 0. (4.12)
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In particular, since bn ∼ n1/2(Eσ2
0)1/2 a.s., (4.11) still holds a.s. for all x ∈ R, when bn is replaced

by n1/2(Eσ2
0)1/2. The advantage of the choice of bn and `n is to make that the mean and variance

of Fn to be 0 and 1, respectively:∫
xdFn(x) = 0 and

∫
x2dFn(x) = 1.

Proof of Theorem 4.3. Since EξZn(·)
EξZn(R) = ν0 ∗ · · · ∗ νn−1(·), it suffices to show that {νn} satisfies a.s.

the Lindeberg condition, that is, a.s. for all ε > 0 ,

lim
n→∞

1
b2

n

n−1∑
i=0

∫
|x−µi |>εbn

|x − µi|
2νi(dx) = 0. (4.13)

By the ergodic theorem,

lim
n→∞

b2
n

n
= lim

n→∞

1
n

n−1∑
i=0

σ2
i = Eσ2

0 > 0 a.s. (4.14)

So for a positive constant a satisfying 0 < a2 < Eσ2
0, there exists an integer n0 depending on a

and ξ such that b2
n ≥ a2n for all n ≥ n0. Fix a constant M > 0 . For n ≥ max{n0,M}, we have

b2
n ≥ a2n ≥ a2M, so that for each ε > 0,

1
b2

n

n−1∑
i=0

∫
|x−µi |>εbn

|x − µi|
2νi(dx) ≤

1
a2n

n−1∑
i=0

∫
|x−µi |>εa

√
M
|x − µi|

2νi(dx).

Taking the superior limit in the above inequality, we obtain

lim sup
n→∞

1
b2

n

n−1∑
i=0

∫
|x−µi |>εbn

|x − µi|
2νi(dx) ≤

1
a2 lim

n→∞

1
n

n−1∑
i=0

∫
|x−µi |>εa

√
M
|x − µi|

2νi(dx)

=
1
a2 E

∫
|x−µ0 |>εa

√
M
|x − µ0|

2ν0(dx).

Since Eσ2
0 < ∞, it follows that E

∫
|x−µ0 |>εa

√
M |x − µ0|

2ν0(dx) → 0 as M → ∞ by the dominated
convergence theorem. So we have proved that for each fixed ε > 0, (4.13) holds a.s. It follows
that a.s. (4.13) holds for all rational ε > 0. By the monotonicity in ε of the integral in (4.13) ,
this implies that a.s. (4.13) holds for all ε > 0. So the proof is completed.

Now we prove Theorems 1.5 and 1.6 about the convergence to the normal law N(0, 1).

Proof of Theorem 1.5. We can assume µ0 = 0 by centering the associated random walk, that is,
by considering L̄i(u) = Li(u) − µn instead of Li(u), for |u| = n. Then `n = 0.

We will use Theorems 4.1 and 4.3 to prove Theorem 1.5. By (4.14), bn ∼ Eσ2
0
√

n a.s., which
implies that for any 0 < γ < 1

2 , b−1
n = o(n−γ) a.s. Theorem 4.3 shows that {νn} satisfies a.s.

condition (A) with bn defined in Theorem 4.3, cn = 0, and L = N(0, 1). So by Theorem 4.1, a.s.
for all x ∈ R,

P−1
n Zn(−∞, bnx]→ Φ(x)W.

Since Zn(R)/Pn → W a.s., this implies that a.s. (1.6) holds (in the centered case where µ0 =

0).
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Remark 4.2. Like in the case of Theorem 4.3 (see also Remark 4.1), Theorem 1.5 still holds
when (bn, `n) is replaced by (b′n, `

′
n) ∈ R2, provided that b′n = b′n(ξ) and `′n = `′n(ξ) satisfy (4.12).

This can be seen from Remark 4.1 and the proof above.

Proof of Theorem 1.6. As in the proof of Theorem 1.5, we can first center the walk so that µn = 0.
In this case the condition that υ(ε) = E

∫
|x|εν0(dx) < ∞ holds with ε = 2, thanks to the condition

Eσ2
0 < ∞. Theorem 1.6 is then a direct consequence of Theorem 4.2, noting that the conditions

of Theorem 4.2 are satisfied by the conditions of Theorem 1.6 and the proof of Theorem 1.5.

5. Proof of Theorem 1.8

The method is a refinement of the proof of [72, Theorem 5.1] where a strong boundedness
condition was used. Consider the probability measures qn(·) =

EξZn(an·)
EξZn(R) . Recall that the sequence

(an) satisfies (1.9). Let λn be the log Laplace transform of qn: for t ∈ R,

λn(t) = log
∫

etxqn(dx) =

n−1∑
i=0

(
log mi(a−1

n t) − log mi

)
.

We first give a convergence result on the log Laplace transform of qn with suitable norming.

Lemma 5.1. If µ0 = 0 a.s. and E 1
m0

∑
u∈T1

eδ|S u | < ∞ for some δ > 0, then a.s. for all t ∈ R,

lim
n→∞

n
a2

n
λn

(
a2

n

n
t
)

=
1
2
σ2t2. (5.1)

Proof. We first notice that it suffices to prove that (5.1) holds a.s. for each fixed t, since this
implies that a.s. (5.1) holds for all rational t, and therefore for all t ∈ R by the convexity of λn

and the continuity of the limit function t 7→ 1
2σ

2t2. Fix t ∈ R, and set ∆n,i = mi( an
n t)m−1

i − 1. We
shall show that for each t ∈ R,

sup
0≤i≤n−1

|∆n,i| < 1 a.s. (5.2)

for n large enough. Let

Q(δ)
n =

1
mn

Eξ

∫
eδ|x|Xn(dx) =

1
mn

Eξ

N(u)∑
i=1

eδ|Li(u)| for u ∈ N∗n.

By the ergodic theorem, limn
∑n−1

i=0 Q(δ)
i /n = EQ(δ)

0 < ∞ a.s., hence a.s. for any constant C >

EQ(δ)
0 , there is n0 = n0(ξ) ∈ N large enough such that, for all n ≥ n0,

sup
0≤i≤n−1

Q(δ)
i ≤

n−1∑
i=0

Q(δ)
i ≤ Cn. (5.3)

Let nt ∈ N be large enough such that an
n |t| < δ for all n ≥ nt. Then for all n ≥ nt,

∞∑
k=0

1
mi

Eξ

∫
1
k!

∣∣∣∣∣an

n
tx

∣∣∣∣∣k Xi(dx) ≤
∞∑

k=0

1
mi

Eξ

∫
1
k!
|δx|k Xi(dx) = Q(δ)

i < ∞ a.s.

32



Write ∆n,i =
∑∞

k=2

(
αn

ik + βn
ik

)
, where

αn
ik =

1
k!

1
mi

Eξ

∫ (an

n
tx

)k
1{|x|≤ 2

δ log n}Xi(dx) and βn
ik =

1
k!

1
mi

Eξ

∫ (an

n
tx

)k
1{|x|> 2

δ log n}Xi(dx).

Using the fact that EξXi(R) = mi and that 1
k!

(
δ
2 |x|

)k
≤ e

δ
2 |x| for all k, we can see that

|αn
ik | ≤

1
k!

(an

n
|t|
)k 1

mi
Eξ

∫
|x|k1{|x|≤ 2

δ log n}Xi(dx)

≤
1
k!

(an

n
|t|
)k

(
2
δ

log n
)k

(5.4)

and

|βn
ik | ≤

(
2
δ

an

n
|t|
)k 1

mi
Eξ

∫
1
k!

(
δ

2
|x|

)k

1{|x|> 2
δ log n}Xi(dx)

≤

(
2
δ

an

n
|t|
)k 1

mi
Eξ

∫
e
δ
2 |x|1{|x|> 2

δ log n}Xi(dx)

=

(
2
δ

an

n
|t|
)k 1

mi
Eξ

∫
eδ|x|e−

δ
2 |x|1{|x|> 2

δ log n}Xi(dx)

≤

(
2
δ

an

n
|t|
)k 1

mi
Eξ

∫
eδ|x|e− log n1{|x|> 2

δ log n}Xi(dx)

≤

(
2
δ

an

n
|t|
)k Q(δ)

i

n
. (5.5)

Combining (5.5) and (5.3) yields, for n large enough,

sup
0≤i≤n−1

|βn
ik | ≤

(
2
δ

an

n
|t|
)k

n−1 sup
0≤i≤n−1

Q(δ)
i ≤ C

(
2
δ

an

n
|t|
)k

. (5.6)

By (5.4) and (5.6),
we see that a.s. for n large enough,

sup
0≤i≤n−1

|∆n,i| ≤

∞∑
k=2

sup
0≤i≤n−1

|αn
ik + βn

ik | ≤ C
∞∑

k=2

(
2
δ

dn|t|
)k

≤ Md2
n ,

where dn = (an log n)/n and M > 0 is a constant (depending on t but independent of n). It is
clear that limn dn = 0, so that (5.2) holds for n sufficiently large. Using (5.2) and the fact that
limn n2d3

n/a
2
n = 0, by the same argument as in the last part of the proof of [72, Theorem 5.1], we

can prove that (5.1) holds a.s. for each fixed t. This ends the proof of Lemma 5.1.

Proof of Theorem 1.8. Let Γn(t) = log
[ ∫

etxZn(andx+`n)
Zn(R)

]
. Observe that

n
a2

n
Γn(

a2
n

n
t) =

n
a2

n
log Wn(

an

n
t) +

n
a2

n

[
λn(

a2
n

n
t) −

an

n
t`n

]
−

n
a2

n
log Wn(0). (5.7)
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Set L̄i(u) = Li(u) − µ|u| and consider the new BRWRE with L̄i(u) in place of Li(u). Define λ̄n(t)
and W̄n(t) for the new BRWRE just as we defined λn(t) and Wn(t) for the original BRWRE. Then
W̄n(t) = Wn(t). Since E 1

m0

∑
u∈T1

eδ|S u−µ0 | < ∞, by Lemma 5.1, we have a.s. for all t ∈ R,

lim
n→∞

n
a2

n

[
λn(

a2
n

n
t) −

an

n
t`n

]
= lim

n→∞

n
a2

n
λ̄n(

a2
n

n
t) =

1
2
σ2t2. (5.8)

By [72, Theorem 1.6], we see that a.s. W̄n(t) converges uniformly in a neighbourhood of t = 0.
Thus, letting n→ ∞ in (5.7) yields that a.s. for all t ∈ R,

lim
n→

n
a2

n
Γn(

a2
n

n
t) =

1
2
σ2t2.

Therefore the conclusion of the theorem follows by the Gärtner-Ellis theorem.

Notice that, still by the Gärtner-Ellis theorem, formula (5.8) implies a moderate deviation
principle for means.

Theorem 5.1. If E 1
m0

∑
u∈T1

eδ|S u−µ0 | < ∞ for some δ > 0, then for almost every ξ, the sequence
of probabilities A 7→ EξZn(anA + `n)/EξZn(R) satisfies a moderate deviation principle with rate
function x2

2σ2 : for measurable set A ⊂ R,

−
1

2σ2 inf
x∈A◦

x2 ≤ lim inf
n→∞

n
a2

n
log

EξZn(anA + `n)
EξZn(R)

≤ lim sup
n→∞

n
a2

n
log

EξZn(anA + `n)
EξZn(R)

≤ −
1

2σ2 inf
x∈Ā

x2,

where σ2 = Eσ2
0, A◦ is the interior of A and Ā its closure.
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[3] E. Aı̈dékon, Z. Shi. The Seneta–Heyde scaling for the branching random walk. Ann. Probab. 42 (2014), 959–993.
[4] K.B. Athreya, S. Karlin, On branching processes in random environments I & II. Ann. Math. Statist. 42 (1971),

1499-1520 & 1843-1858.
[5] N. Attia, J. Barral, Hausdorff and packing spectra, large deviations and free energy for branching random walks in

Rd . Commun. Math. Phys. 331 (2014), 139-187.
[6] J. Baillon, P. Clément, A. Greven, F. den Hollander, A variational approach to branching random walk in random

environment. Ann. Probab. 21 (1993), 290-317.
[7] V. Bansaye, C. Huang, Weak law of large numbers for some Markov chains along non homogeneous genealogies.

ESAIM: P&S 19 (2015), 307-326.
[8] J. Barral, Y. Hu, T. Madaule, The minimum of a branching random walk outside the boundary case. Bernoulli 24

(2018), no. 2, 801-841.
34



[9] J. Barral, X. Jin, On exact scaling log-infinitely divisible cascades. Probab. Theory Related Fields 160 (2014), no.
3-4, 521-565.

[10] J. Berestycki, N. Berestycki, J. Schweinsberg, Critical branching Brownian motion with absorption: particle con-
figurations. Ann. Inst. H. Poincaré 51 (2015), no. 4, 1215-1250.
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