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LIMIT THEOREMS FOR MULTITYPE BRANCHING PROCESSES
IN RANDOM ENVIRONMENTS AND PRODUCTS OF POSITIVE

RANDOM MATRICES

ION GRAMA, QUANSHENG LIU, AND THI TRANG NGUYEN

Abstract. Let Zx
n = (Zx

n(1), · · · , Zx
n(d)) be a supercritical d-type branching pro-

cess in an independent and identically distributed random environment (ξn), start-
ing with Z0 = x ∈ Nd \ {0}, whose offspring distribution at time n depends the
environment ξn. Let Mn = M(ξn) be the mean matrix of the offspring distribution
at time n. We establish a Kesten-Stigum type theorem for the scalar product 〈Zx

n, y〉
for any y ∈ Rd

+\{0}: under suitable conditions,W x
n (y) := 〈Zx

n, y〉/〈xM0 · · ·Mn−1, y〉
converges in probability to some R+-valued random variable W x; the almost sure
convergence is also established under additional moment conditions; a criterion is
given for W x to be non-degenerate. In the proof, we find (un) such that (W x

n (un))
is a martingale, and prove that W x

n (y) converges uniformly for y ∈ Rd
+ \ {0} to

the limit W x of W x
n (un). We also prove a duality of the Kesten-Stigum theorem

about the convergence of 〈Zn+k, y〉/〈ZnMn · · ·Mn+k−1, y〉 for fixed k as n → ∞,
and a theorem about the convergence of the direction Zx

n/‖Zx
n‖. An important

ingredient of the proofs is the Perron-Frobenius type theorem that we establish
for the products of random matrices, which is of independent interest. Let {Mn :
n ∈ Z} be a stationary and ergodic sequence of positive random matrices, and
let Mk,n = Mk · · ·Mn, for k 6 n. We find unit vectors un, vn > 0, and scalars
λn, µn, ak,n > 0, such that, almost surely, for fixed k as n→∞, and for fixed n as
k → −∞, 〈xM0 · · ·Mn, y〉 ∼ ak,n〈uk, x〉〈vn, y〉 uniformly in x and y, where ak,n can
be taken as the product form akµk · · ·µn; all the sequences (uk), (vn), (λn), (µn)
and (ak) are stationary and ergodic. As further applications, we find new laws of
large numbers and central limit theorems for 〈Zx

n, y〉, as well as for the products of
random matrices.
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1. Introduction

1.1 Perron-Frobenius theorem for products of positive random matrices.
Let d > 1 be an integer. Denote by ‖ · ‖ the L1 norm of Rd, and by 〈·, ·〉 the scalar
product. For a matrix or vector a, we write a > 0 (resp. a > 0) to mean that
all its entries are strictly positive (resp. nonnegative). Let G be the semi-group of
d × d positive matrices, and let M > 0 be an element of G. Assume that M is
primitive in the sense that there is an integer k > 0 such that Mk > 0. The famous
Perron-Frobenius theorem states that the spectral radius ρ ofM is a dominant simple
eigenvalue, and there are unique vectors u = (u(1), · · · , u(d)), v = (u(1), · · · , u(d)) ∈
Rd

+ such that u, v > 0, ‖u‖ = ‖v‖ = 1,

uMT = ρu and vM = ρv, (1.1)

where MT denotes the transpose of M ; moreover, the (i, j)-th entry Mn(i, j) of the
power matrix Mn satisfies, as n→∞,

Mn(i, j) ∼ ρn
〈u, ei〉〈v, ej〉
〈u, v〉

, i, j = 1 · · · , d (1.2)

(as usual an ∼ bn means an/bn → 1), where ei ∈ Rd
+ is the unit vector whose i-th

component is 1, the others are 0.
An extension of (1.2) to products of random matrices has been established by

Hennion [30]. Let (Mn)n∈Z be a stationary and ergodic sequence of random elements
of G, defined on some probability space (Ω,F ,P). For any k, n ∈ Z, let

Mk,n = Mk . . .Mn and MT
k,n = (Mk,n)T if k 6 n, Mk,n = Id if k > n, (1.3)

where Id denotes the d× d identity matrix; the notation MT
k,n should not be confused

withMT
k · · ·MT

n . For k 6 n, let ρk,n be the spectral radius ofMk,n, and uk,n, vk,n ∈ Rd
+

be such that

uk,nM
T
k,n = ρk,nuk,n, vk,nMk,n = ρk,nvk,n, ‖uk,n‖ = ‖vk,n‖ = 1. (1.4)

For the symmetry of the results that we will present below, we use the norming
‖uk,n‖ = ‖vk,n‖ = 1 rather than the more usually used norming ‖uk,n‖ = 〈uk,n, vk,n〉 =
1. Assuming that almost surely (a.s.) M0 is allowable (every row and every column
has at least a strictly positive entry), and P

(
∃n > 0 such that M0,n > 0

)
> 0,

Hennion [30] proved that, a.s.

M0,n−1(i, j) ∼ ρ0,n−1
〈u0,n−1, ei〉〈v0,n−1, ej〉
〈u0,n−1, v0,n−1〉

, i, j = 1, · · · d. (1.5)

In this paper, motivated by applications, especially to multitype branching processes
in random environments, we complete Hennion’s result by proving the following
Perron-Frobenius type theorem: we find unit vectors uk, vn > 0, such that, a.s.,
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uniformly in x and y, for all fixed k ∈ Z as n → ∞, and for all fixed n ∈ Z as
k → −∞,

uk,n − uk → 0, vk,n − vn → 0, (1.6)
〈xMk · · ·Mn, y〉 ∼ ak,n〈uk,n, x〉〈vk,n, y〉 (1.7)

∼ ak,n〈uk, x〉〈vn, y〉, (1.8)

where (uk) and (vk) have the nice property that for all k ∈ Z,

uk+1M
T
k = λkuk and vk−1Mk = µkvk, (1.9)

with λk = ‖uk+1M
T
k ‖ and µk = ‖vk−1Mk‖; ak,n can be taken as the form akµk · · ·µn;

all the sequences (uk), (vn), (λn), (µn) and (ak) are stationary and ergodic. See
Theorem 2.1 where more information will be given.

Notice that the relation (1.9) can pass to the products Mk,n by iteration (see Re-
mark 2.2, Eq. (2.19)), just as the relation (1.1) can pass to the power Mn of M .
In some sense, (uk) and (vk) play the same role for products of random matrices,
as u, v do for the powers of the constant matrix M . We call (uk) and (vk) pseudo
eigenvectors of (Mk), which are very useful in applications. The sequence (uk)k>0 has
been defined in [30]. Both sequences (uk) and (vk) will play important role in the
study of branching processes in random environments.

Compared with Hennion’s result (1.5), the new variants presented here may have
advantages in applications. Indeed, from (1.8) and limit theorems about the station-
ary and ergodic sequence (log µn) of real random variables, we can get corresponding
limit theorems for the logarithme of the matrix norm ‖M0,n−1‖, the vector norm
‖xM0,n−1‖, the spectral radius ρ0,n−1, and the scalar products 〈xM0,n−1, y〉. As ex-
ample, in Corollary 2.5 we get limit theorems on products of random matrices, which
improve some earlier results by Hennion [30] by relaxing his first moment conditions:

1.2 Limit theorems on multitype branching processes in random envi-
ronments. As main applications of the Perron-Frobenius theorem presented above,
we will establish several new limit theorems for multitype branching processes in
random environments. A branching process in a random environment (BPRE) is a
family of non-homogeneous branching processes indexed by the environment denoted
by ξ = (ξ0, ξ1, · · · ); the environment sequence (ξn) is supposed to be stationary and
ergodic. In such a process, given the environment ξ, the offspring distribution of
particles of generation n depend on the environment ξn at time n.

Fundamental limit theorems on single or multitype BPRE can be found in the early
papers by Smith and Wilkinson [50], Athreya and Karlin [2, 3], and Tanny [53]. For
more recent results on the single type case, see e.g. Geiger, Kersting and Vatutin
[20] and Afanasyev, Geiger, Kersting, and Vatutin [1] on the survival probability in
the subcritical and critical cases, Bansaye and Berestycki [5], Huang and Liu [34],
Grama, Liu and Miqueu [21], and Buraczewski and Dyszewski [9] on large deviations
in the supercritical case. We refer the book of Kersting and Vatutin [39] for many
other results.

Here we focus on the multytype case. For recent studies in this case, see e.g. Le
Page, Peigné and Pham [47], Vatutin and Dyakonova [56] and Vatutin and Wachtel
[57] on the survival probability for critical and subcritical processes, and Grama, Liu
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and Pin [22, 23] on the Kesten-Stigum theorem and Lp convergence for supercritical
processes.

Let Zn = (Zn(1), · · · , Zn(d)) be a d-type branching process in a stationary and
ergodic environment ξ = (ξ0, ξ1, · · · ), where Zn(j) denotes the number of type j
particles of generation n. We suppose that the process starts with the initial state
Z0 = x ∈ Nd \{0} (where N = {0, 1, · · · }), and we then write Zx

n for Zn; when x = ei,
we simply write Zi

n instead of Zei
n . Let Mn = M(ξn) be the mean matrix of the

offspring distribution at time n: its (i, j)-th entry Mn(i, j) is the conditional expec-
tation of the number of type j particles produced by a type i particle of generation
n. Then (Mn) is a stationary and ergodic sequence of positive random matrices, and
EξZi

n(j) = M0,n−1(i, j), where Eξ denotes the conditional expectation given the envi-
ronment ξ (and we continue to use the notation (1.3)). This explains why the study
of a multitype BPRE depends much on the theory of products of random matrices.

One of the fundamental problems in the theory of branching processes is the de-
scription of the population size at time n. For a multitype branching process (Zn),
the famous theorem of Kesten-Stigum [42] tells us exactly when the population size
grows at an exponential rate that we can determine explicitly, via the study of the
nondegeneracy of the limit of the fundamental martingale.

Extending the Kesten-Stigum theorem to the multitype random environment case
has been a challenging problem. The problem is very interesting especially due to
a number of applications. Various contributions in this respect can be found in
Tanny [53], Cohn [12], Jones [37], Biggins, Cohn and Nerman [6], Dolgopyat, Hebbar,
Koralov and Perlman [14]. A full extension for the coordinates Zi

n(j) has been recently
performed in [22]. Suppose that the multitype BPRE is supercritical in the sense that

γ := lim
n→∞

1
n
E log ‖M0,n−1‖ > 0, (1.10)

where for a matrix g, ‖g‖ denotes its operator norm induced by the L1-norm ‖ · ‖ of
Rd. Under simple conditions, it has been established in [22] that for all 1 6 i, j 6 d,

Zi
n(j)

EξZi
n(j) → W i in probability, (1.11)

where W i is a random variable with values in [0,∞), which is non-degenerate for all
i if and only if

E

 Zi
1(j)

M0(i, j) log+ Zi
1(j)

M0(i, j)

 <∞. (1.12)

In this paper, we consider the scalar product 〈Zx
n , y〉 for all x ∈ Nd \ {0} and

y ∈ Rd
+ \ {0}, instead of the coordinates Zi

n(j). This consideration is interesting,
both in theory and in applications. In fact, for a full probabilistic description of
the random vector Zx

n , a usual way is to consider the scalar product; for example,
the characteristic function of Zx

n is defined by the Fourier transform of the scalar
product 〈Zx

n , y〉. If x = ei and y = ej, then 〈Zx
n , y〉 reduces to the coordinate Zi

n(j).
If y = (1, · · · , 1), then 〈Zx

n , y〉 = ‖Zx
n‖ = Zx

n(1) + · · · + Zx
n(d) is the population

size of generation n. This consideration may also be interesting for some applied
problems occurring in the society. For example, if we consider a population where
individuals are classified into three types: type 1 for an individual of the upper
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class, say with y(1) = 108 e; type 2 for an individual of the middle class, say with
y(2) = 106 e; and type 3 for an individual of the lower class, say with y(3) = 104 e.
Then 〈Zx

n , y〉 = 108Zx
n(1) + 106Zx

n(2) + 104Zx
n(3) is the total amount of money of n-th

generation.
The first objective of the present paper is to extend the Kesten-Stigum theorem on

Zi
n(j) established in [22] to the scalar product 〈Zx

n , y〉 when Z0 = x ∈ Nd \ {0} and
y ∈ Rd

+ \ {0}, for the multitype branching process (Zn) in random environment. We
will prove that under suitable conditions, uniformly in y ∈ Rd

+ \ {0},

W x
n (y) := 〈Zx

n , y〉
〈xM0 · · ·Mn−1, y〉

→ W x in probability (1.13)

(see Theorem 2.6), where W x (which depends on x but not on y) is a random vari-
able with values in [0,∞), which is non-degenerate if and only if (1.12) holds. The
convergence in probability in (1.13) can be improved to the a.s. convergence under
additional moment conditions. When x = ei and y = ej, (1.13) reduces to (1.11), the
Kesten-Stigum theorem established in [22].

For the proof of (1.13), we first prove that, with un defined in (1.6), W x
n (un), n > 0,

is a martingale, thus converges a.s. to some R+-valued random variable W x. In the
constant environment case, for x = ei, this martingale reduces to the fundamental
martingale introduced by Kesten and Stigum [42]. We then prove that the limit
variableW x is non-degenerate if and only if (1.12) holds, under some simple additional
assumptions. For the proof of the non-degeneracy of W x, we use a general result
of Biggins and Kyprianou [7] for the non-degeneracy of the limit of a martingale
constructed from mean-harmonic functions. In particular, this leads to a simpler
proof for the non-degeneracy of W i established in [22].

To complete the proof of the convergence (1.13), we further establish a theorem
about the convergence of the direction ~Zx

n := Zx
n

‖Zx
n‖
. In particular, we find an equiva-

lence of 〈~Zn, y〉 uniformly for y ∈ Rd
+ \ {0}: see Theorem 2.9.

The Kesten-Stigum type result (1.13) is interesting because it is a good bridge
between branching processes in random environments and products of random ma-
trices. In particular, it can be used to prove important theorems such as laws of large
numbers and central limit theorems: see e.g. Corollaries 2.7 and 2.10 for such results
on the total population size ‖Zx

n‖ of generation n, the j-type population size Zx
n(j),

and the scalar product 〈Zx
n , y〉. For large deviation results and convergence rates in

the Gaussian approximation, see the forthcoming paper [27].
An interesting duality result of the Kesten-Stigum type theorem is also established,

showing the convergence of 〈Zn+k, y〉/〈ZnMn · · ·Mn+k−1, y〉 for fixed k as n→∞: see
Theorem 2.8.

An important ingredient of the proofs is the Perron-Frobenius type theorem that we
establish for the products of positive random matrices (see Theorem 2.1). Combining
the Perron-Frobenius type theorem and the Kesten-Stigum result (1.13), we get a
good description of the growth rate of 〈Zx

n , y〉.
The rest of the paper is organized as follows. In Section 2, we present our main

results. The Perron-Frobenius type theorem is proved in Section 3. In Section 4, we
introduce the fundamental martingale (W x

n (un)), and establish a criterion for the non-
degeneracy of its limit W x. In Section 5 we show some relations between the survival
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event S := {Zn 6→ 0} and the explosion event E := {‖Zn‖ → ∞}. The convergence
of the direction Zx

n/‖Zx
n‖ is investigated in Section 6. A duality of the Kesten-Stigum

theorem is established in Section 7, about the convergence of 〈Zn+k,y〉
〈ZnMn,n+k−1,y〉

for fixed k
as n→∞. The uniform convergence in probability and a.s. of the normalized scalar
product W x

n (y) is proved in Section 8.

2. Main results

2.1 Notation. We begin with some notation. Let d > 1, and let Rd be the d-
dimensional Euclidean space endowed with the canonical orthonormal basis (ei)16i6d,
and with the scalar product and the L1 norm defined for any x = (x(1), · · · , x(d)), y =
(y(1), · · · , y(d)) ∈ Rd by

〈x, y〉 =
d∑
i=1

x(i) y(i) and ‖x‖ =
d∑
i=1
|x(i)|. (2.1)

We denote by G the multiplicative semigroup of d × d matrices with non-negative
entries. The subsemigroup of G with strictly positive matrices is denoted by G◦. For
g ∈ G, define the operator norm and the iota function:

‖g‖ = sup
‖x‖=1

‖xg‖ = max
16i6d

d∑
j=1

g(i, j) = max
16i6d

‖eig‖, (2.2)

ι(g) = inf
‖x‖=1

‖xg‖ = min
16i6d

d∑
j=1

g(i, j) = min
16i6d

‖eig‖. (2.3)

(As the vectors x ∈ Rd are represented in the row form, the action of a matrix g on x
is denoted xg, to be consistent with the matrix multiplication; the operator norm ‖g‖
defined here corresponds to the induced L1-norm of the transpose gT usually defined
with column vectors, since sup

‖x‖=1
‖xg‖ = sup

‖x‖=1
‖gTxT‖ = sup

‖y‖=1
‖gTy‖.) We shall also

use the entry-wise L1-matrix norm: for g ∈ G,

‖g‖1,1 = 〈1,1g〉 =
d∑

i,j=1
g(i, j), (2.4)

where 1 ∈ Rd stands for the vector with all coordinates equal to 1. For a matrix
g ∈ G, we write g > 0 to mean that each entry of g is strictly positive. The same
convention applies for vectors. The transpose of a matrix g is denoted by gT . Then,
for any x, y ∈ Rd we have

〈xg, y〉 = 〈x, ygT 〉.
Let S := {x ∈ Rd

+ : ‖x‖ = 1}. For any matrix g ∈ G and any x ∈ S, we define the
action of g on x by setting

x · g = xg

‖xg‖
. (2.5)

For two probability laws α, µ, respectively on S and G, we denote α∗µ the convolution
of α and µ: for each mesurable B ⊂ S, we have

α ∗ µ(B) =
∫

1B(a · g)α(da)µ(dg). (2.6)
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As usual, for sequences of real numbers an, bn, we write an ∼ bn if an/bn → 1. For
sequences of real numbers an(δ) and bn(δ) depending on some parameter δ ∈ ∆, we
say that, as n→∞,

an(δ) ∼ bn(δ) uniformly for δ ∈ ∆ if lim
n→∞

sup
δ∈∆
|an(δ)
bn(δ) − 1| = 0. (2.7)

Clearly, this uniform equivalence is an equivalent relation; in particular, if an(δ) ∼
bn(δ) and bn(δ) ∼ cn(δ), both uniformly for δ ∈ ∆, then an(δ) ∼ cn(δ), also uni-
formly for δ ∈ ∆. For a sequence of real random variables Xn(θ) depending on some
parameter θ ∈ Θ and for l ∈ R, we say that

Xn(θ) P−→ l uniformly for θ ∈ Θ if sup
θ∈Θ
|Xn(θ)− l| → 0 in probability; (2.8)

we say that Xn(θ) P−→ −∞ (resp. ∞) uniformly for θ ∈ Θ if supθ∈ΘXn(θ) → −∞
(resp. infθ∈ΘXn(θ)→∞) in probability. The a.s. uniform convergence is defined in
a similar way.

2.2 Perron-Frobenius theorem. Below we present a Perron-Frobenius type the-
orem that we will prove. This will play an important role in the proofs of limit
theorems for multitype branching processes in random environments. This theorem
is of interest both in theory and in applications. Let (Mk)k∈Z be a stationary and er-
godic sequence of random elements of G, defined on some probability space (Ω,F ,P).
It turns out that the consideration of the double sided sequence (indexed by Z) is
more convenient in applications than the one sided sequence (indexed by N).

We will use the following three conditions. The first is the moment condition on
log+ ‖M0‖ under which we can define the Lyapunov exponent γ of the sequence of
random matrices (Mn). The second is the positivity condition used e.g. by Tanny [53]
and Hennion [30], which in the constant environment case reduces to the primitivity
of the matrix. The third was introduced by Furstenberg and Kesten [19], for which
we propose a weaker version. Recall the notation Mk,n = Mk . . .Mn for k 6 n as
introduced in (1.3).

A1. The random matrix M0 satisfies the moment condition

E log+ ‖M0‖ <∞.

By sub-additivity, under A1, the limit

γ := lim
n→∞

1
n
E log ‖M0,n−1‖ (2.9)

exists and is equal to the quantity inf
k>1

1
k
E log ‖M0,k−1‖, which lies in R∪{−∞}. More-

over, the following strong law of large numbers has been established [19]:

lim
n→∞

1
n

log ‖M0,n−1‖ = γ P-a.s. (2.10)

A2. A.s. M0 is allowable, that is, every row and every column has at least a strictly
positive entry, and

P
(
∃n > 1 such that M0,n−1 > 0

)
> 0.
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A3. There exists a constant D > 1 such that for all i, j ∈ {1, · · · , d},
0 < maxM0(i, j) 6 DminM0(i, j) P-a.s.

For some results a much weaker version of A3 is sufficient. We will use a condition
based on the following: there is some measurable function D : G→ [1,∞) such that
for n ∈ Z, Dn = D(Mn) satisfies, for all i = 1, · · · , d,

max
16j6d

Mn(i, j) 6 Dn min
16j6d

Mn(i, j), P-a.s. (2.11)

For example, when Mn > 0 a.s. we can take Dn = max16i6d
max16j6d Mn(i,j)
min16j6d Mn(i,j) . We will

also use the same condition for the transpose of Mn, that is, for all i = 1, · · · , d,
max
16j6d

Mn(j, i) 6 Dn min
16j6d

Mn(j, i), P-a.s. (2.12)

Notice that when the Furstenberg-Kesten condition A3 holds, then the conditions
(2.11) and (2.12) hold with Dn = D a constant.

Recall that k 6 n, ρk,n denotes the spectral radius of Mk,n = Mk · · ·Mn, and
uk,n, vk,n ∈ Rd

+ are such that (1.4) holds. Recall also (2.7) for the definition of the
uniform equivalence relation ∼.

Theorem 2.1 (Perron-Frobenius type theorem). Assume condition A2. Then:
1. There are two stationary and ergodic sequences (uk)k∈Z and (vk)k∈Z such that for
all k, uk > 0, vk > 0, ‖uk‖ = ‖vk‖ = 1, and that for each fixed k ∈ Z as n→∞, and
for each fixed n ∈ Z as k → −∞, P-a.s.

uk,n − uk → 0 and vk,n − vn → 0. (2.13)

Moreover, for all k ∈ Z, with λk = ‖uk+1M
T
k ‖ and µk = ‖vk−1Mk‖, P-a.s.

uk+1M
T
k = λkuk and vk−1Mk = µkvk, (2.14)

where (λk) and (µk) are two stationary and ergodic sequences. The common law of
vn (resp. un) is the limit law of vk,n (resp. uk,n), which is the unique probability law
ν (resp. ν∗) on S satisfying ν ∗ µ = ν (resp. ν∗ ∗ µ = ν∗), where µ (resp. µ∗) is the
law of M0 (resp. MT

0 ). If additionally A1 holds, then

E log λ0 = γ = E log µ0. (2.15)
2. For each fixed k ∈ Z as n→∞, and for each fixed n ∈ Z as k → −∞, uniformly
for x, y ∈ Rd

+ \ {0}, P-a.s.
〈xMk,n, y〉 ∼ ak,n〈uk,n, x〉〈vk,n, y〉 (2.16)

∼ ak,n〈uk, x〉〈vn, y〉, (2.17)

where (ak,n) is any of the following equivalent sequences:

a) ak,n = ρk,n
〈uk,n, vk,n〉

, b) ak,n = ‖Mk,n‖1,1, c) ak,n =
∏n
j=k λj

〈un+1, vn〉
=

∏n
j=k µj

〈uk, vk−1〉
, (2.18)

in which the sequence {(un+1, vn) : n ∈ Z} is stationary and ergodic.

The proof will be given in Section 3. The first equality in (2.15) has been proved
in [22]. A new proof based on the equivalences in (2.18) will be given.
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Remark 2.2. Just as we can iterate the relation (1.1) to get similar relation for the
powers of M , we can iterate (2.14) to obtain the similar relation for the products
Mk,n:

un+1M
T
k,n =

(
n∏
j=k

λj

)
uk and vk−1Mk,n =

(
n∏
j=k

µj

)
vn P-a.s.. (2.19)

Hence (uk) and (vk) play the same role for products of matrices as u and v do for
powers of M . For this reason we call un and vn the pseudo-eigenvectors of Mn. The
above relation indicates that the vectors un and vn have the stability for products of
matrices, in the sense that the relation (2.14) can pass to the products. This property
is remarkable compared with the eigenvectors of Mn.

The following remark is useful to have different forms of (2.16) and (2.17), by re-
placing the factors 〈uk,n, x〉 or 〈vk,n, y〉 therein by their uniform equivalences indicated
below. See the end of Section 3 for the proof of the remark.

Remark 2.3. For all fixed k ∈ Z as n → ∞, and for all fixed n ∈ Z as k → −∞,
P-a.s.,

〈uk,n, x〉 ∼ 〈uk, x〉 and 〈vk,n, x〉 ∼ 〈vn, x〉 uniformly for x ∈ Rd
+ \ {0}; (2.20)

consequently,
〈uk,n, vk,n〉 ∼ 〈uk, vk,n〉 ∼ 〈uk, vn〉 ∼ 〈uk,n, vn〉.

Remark 2.4. Hennion [30] considered the case where k = 0 and n → ∞: he found
the sequence (un)n>0 and proved that,

〈xM0,n−1, y〉 ∼ ρ0,n−1
〈u0,n−1, x〉〈v0,n−1, y〉
〈u0,n−1, v0,n−1〉

uniformly for x, y ∈ Rd
+ \ {0} (2.21)

(although in [30, Theorem 1], only the case x = ei and y = ej was considered,
the conclusion for general x, y was proved in its proof). In fact his statement is
slightly different as he used the norming ‖u0,n−1‖ = 〈u0,n−1, v0,n−1〉 = 1, instead of
‖u0,n−1‖ = ‖v0,n−1‖ = 1 that we used here. We prefer the the latter for the result
to be more symmetric. We remark that, with our norming, the equivalence (2.21)
does not depend on the choice of eigenvalues u0,n−1, v0,n−1, as 〈u0,n−1,x〉〈v0,n−1,y〉

〈u0,n−1,v0,n−1〉 remains
unchanged while u0,n−1, v0,n−1 are replaced by any other eigenvectors (with different
norming).

The new variants presented here may have advantages in applications. For example,
from (2.17) and the ergodic theorem applied to the sequence (log µn) or (log λn), we
get immediately the laws of large numbers (for a stationary and ergodic sequence of
random positive matrices), as stated in the following corollary which improves earlier
results by Hennion [30].

Recall that for g ∈ G, ‖g‖ = max16i6d
∑d
j=1 g(i, j) and ι(g) = min16i6d

∑d
j=1 g(i, j)

(see (2.2) and (2.3)). Recall also that for x > 0, log+ x = max(0, log x); set log− x =
max(0,− log x). For the uniform convergence in probability, we refer to the definition
(2.8).
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Corollary 2.5 (LLN for products of random matrices). Assume A1 and A2. Then
γ ∈ R ∪ {−∞} and,

1
n

log ρ0,n−1 → γ P-a.s., (2.22)
1
n

log ‖xM0,n−1‖ → γ uniformly for x ∈ S, P-a.s., (2.23)
1
n

log ι(M0,n−1)→ γ P-a.s., (2.24)
1
n

log〈xM0,n−1, y〉
P−→ γ uniformly for x, y ∈ S. (2.25)

If, additionally, either E log− ι(M0) < ∞ or E logD0 < ∞ (where Dn is defined as
in (2.11)), then the convergence in probability in (2.25) can be improved to the a.s.
convergence. In particular, in the case where E log− ι(M0) <∞, we have γ ∈ R and

supx,y∈S
∣∣∣∣∣ 1n log〈xM1,n, y〉 − γ

∣∣∣∣∣→ 0 P-a.s. (2.26)

The proof will be given in Section 3.
Notice that the condition E logD0 < ∞ is much weaker than the Furstenberg-

Kesten condition A3. Actually, when A3 holds, then D0 can be taken as a constant.
The convergences (2.22), (2.24) and (2.26) were established in Hennion [30] under

the moment condition that E| log ‖M0‖| < ∞ and E| log ι(M0)| < ∞. Corollary 2.5
completes Hennion’s results without assuming E| log ι(M0)| <∞.

When Mn are the mean matrices of a multi-type branching process (Zn) in a sta-
tionary and ergodic environment with Pξ(Zi

n → 0) < 1 a.s. for all i = 1, · · · , d, under
the same conditions A1 and A2, Tanny [53] proved a weaker version of (2.24): he
established the convergence in probability instead of the a.s. convergence.

In the same spirit, from central limit theorems for the stationary and ergodic se-
quence (log µn) of real random variables, we can easily get the corresponding results
for the scalar products 〈xM0,n−1, y〉. We also mention that using (2.16) or (2.17),
limit theorems on (log µn) also enable us to get corresponding results for the spectral
radius ρ0,n−1 and for the matrix norm ‖M0,n−1‖.

2.3 Definition of a multitype branching process in a random environment.
Let ξ = (ξ0, ξ1, ξ2, · · · ) be a stationary and ergodic sequence of random variables
taking values in some abstract space Θ. This sequence represents the environment,
with ξn denoting the random environment at time n. Suppose that each realization
of ξn corresponds to d probability distributions on Nd:
pr(ξn) = {prk(ξn) : k ∈ Nd}, where prk(ξn) > 0 and

∑
k

pk(ξn) = 1, 1 6 r 6 d,

called offspring distribution at time n, given the environment ξ. Let d > 1 be an inte-
ger. A d-type branching process Zn = (Zn(1), · · · , Zn(d)) in the random environment
ξ = (ξ0, ξ1, . . .) is defined as follows: for any n > 0,

Zn+1 =
d∑
r=1

Zn(r)∑
l=1

N r
l,n, (2.27)
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where, for any j ∈ {1, . . . , d}, the j-th component Zn(j) of Zn is the number of type j
particles of generation n, and the j-th component N r

l,n(j) of N r
l,n (row vector) denotes

the number of type j children of l-th type r particle of generation n. All the random
variables ξ, Zn, N r

l,n, are defined on some probability space (Ω,F ,P). Given the
environment ξ, all the vectors Z0, N

r
l,n for n > 0, l > 1, 1 6 r 6 d are independent of

each other, and for any l > 1, each N r
l,n has the same law pr(ξn), whose probability

generating function is

f rξn
(s) = Eξ

(
d∏
j=1

s
Nr

l,n(j)
j

)
=

∞∑
k1,...,kd=0

prk1,...,kd
(ξn)sk1

1 . . . skd
d , s = (s1, . . . , sd) ∈ [0, 1]d,

i.e. Pξ(N r
l,n = k) = prk(ξn), ∀k ∈ Nd, l > 1, n > 0, 1 6 r 6 d. Here we denote

by Pξ the conditional probability given ξ, and by Eξ the corresponding conditional
expectation. The probability Pξ is called quenched law, while the total probability P
is called annealed law. The expectation with respect to P will be denoted by E.

Notice that (Zn) reduces to the classical d-type Galton-Watson process if all the
ξn are the same constant.

As usual we suppose that Z0 = x is non random, and we write Zx
n for Zn when

Z0 = x, for each x = (x(1), · · · , x(d)) ∈ Nd \ {0}. When x = ei, we write Zi
n for Zei

n .

2.4 Main results on multitype branching processes in random environ-
ments. All over the paper we assume that the environment sequence ξ = (ξn) is
stationary and ergodic unless stated otherwise, and that the means of the offspring
distributions,

Mn(r, j) = Eξ
(
N r
l,n(j)

)
= Eξ

(
Zn+1(j)

∣∣∣∣Zn = er

)
=
∂f rξn

∂sj
(1),

exist and are finite a.s. for all 1 6 r, j 6 d and n > 0. The non-negative matrix
formed by the entries Mn(r, j) is denoted by Mn = M(ξn).

For convenience we extend (ξk)k>0 to a stationary and ergodic sequence (ξk)k∈Z with
the index set Z. Consequently the sequence (Mn)n>0 is also extended to a stationary
and ergodic sequence indexed by Z. The sequence of the mean matrices (Mn) will
play an important role in the sequel.

We are interested in the asymptotic properties of Zx
n in the supercritical case where

γ > 0, with γ the Lyapunov exponent defined by (2.9). We shall mainly consider the
convergence of the normalized scalar product

W x
n (y) := 〈Zx

n , y〉
Eξ〈Zx

n , y〉
= 〈Zx

n , y〉
〈xM0,n−1, y〉

, n > 0, y ∈ Rd
+ \ {0}. (2.28)

We will use the following L logL condition. In the constant environment case, it was
first introduced by Kesten and Stigum [40].

H1. For all 1 6 r, j 6 d,

E
[

Zr
1(j)

〈erM0, ej〉
log+ Zr

1(j)
〈erM0, ej〉

]
<∞.
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Our first main result is a Kesten-Stigum type theorem for the scalar products 〈Zx
n , y〉.

We will use the natural filtration
F0 = σ{ξ} and Fn = σ{ξ,N r

l,j : l > 1, 0 6 j < n, 1 6 r 6 d} for n > 1. (2.29)

Theorem 2.6 (Kesten-Stigum type theorem for 〈Zx
n , y〉). Let x ∈ Nd \ {0}.

(1) Assume A2. Let (un), (λn) be defined as in Theorem 2.1. Then, the sequence

W x
n (un) = 〈Zx

n , un〉
〈xM0,n−1, un〉

= 〈Zx
n , un〉

〈u0, x〉
∏n−1
j=0 λj

, n > 0, (2.30)

is a martingale with respect to the filtration (Fn), both under Pξ (for almost
every ξ) and under P, so that the limit

W x = lim
n→∞

W x
n (un) exists with EξW x 6 1 P-a.s.

(2) Assume A1, A2 and γ > 0. If H1 holds, then EξW x = 1 P-a.s., so that
W x is non-degenerate, that is, Pξ(W x > 0) > 0 P-a.s. Moreover, when W x is
non-degenerate, then

{W x > 0} = {‖Zx
n‖ → ∞} = {Zx

n 6→ 0} P-a.s. (2.31)
Assume additionally that the Furstenberg-Kesten condition A3 holds, and the
random environment sequence (ξn) is i.i.d. Then W x is non-degenerate if and
only if H1 holds.

(3) Assume A1, A3, γ > 0, and that the random environment (ξn) is i.i.d. Then
as n→∞,

sup
y∈Rd

+\{0}
|W x

n (y)−W x| → 0 in probability under P. (2.32)

If additionally for some p > 1,

max
16r,j6d

E
(

Zr
1(j)

M0(r, j)

)p
<∞ and E‖M0‖1−p <∞, (2.33)

then the convergence in probability in (2.32) can be improved to the a.s. con-
vergence:

sup
y∈Rd

+\{0}
|W x

n (y)−W x| −→
n→∞

0 P-a.s. (2.34)

Recall that by Theorem 2.1, the sequences (un) and (λj) are stationary and ergodic;
the common law of un is the unique probability measure ν∗ on S satisfying ν∗ = ν∗∗µ∗,
where µ∗ is the law of MT

0 ; the common law of λj satisfies E log λ0 = γ.
The proof of Theorem 2.6 will be done in Sections 4 and 8: see Lemma 4.2, Theorem

4.4, Proposition 4.8, and Theorem 8.1. When x = ei and y = ej, the convergence (in
probability and a.s.) of W ei

n (ej) = Zi
n(j)/M0,n−1(i, j) and the non-degeneracy of its

limit W i together with the properties (2.31) have been established in [22].
Notice that the convergence of W x

n (y) with y = 1 improves Tanny’s result that
‖Zx

n‖ = O(‖xM0,n−1‖) [53, Theorem 9.11].
Theorem 2.6 gives a good bridge between branching processes in random environ-

ment and products of random matrices. It can be applied to establish interesting
limit theorems on branching processes. For example, from it we obtain easily the
following:
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Corollary 2.7 (LLN and CLT for ‖Zx
n‖〉). Assume A1, A2, γ > 0 and qei(ξ) :=

Pξ(Zi
n → 0) < 1 a.s. for all i ∈ {1, · · · , d}. Then

1
n

log ‖Zx
n‖ → γ P-a.s. on {Zn 6→ 0}. (2.35)

If additionally
E[(log+ ‖M0‖)2] + E[(log− ι(M0))2] <∞, (2.36)

and Zn 6→ 0 a.s., then for some σ ∈ [0,∞),
log ‖Zx

n‖ − nγ√
n

→ N(0, σ2) in distribution. (2.37)

For x = ei, the law of large numbers (2.35) is due to Tanny [53]. Actually, Tanny
[53, Proposition 9.7] first proved that if (Zn) satisfies A1, A2 and qei(ξ) := Pξ(Zi

n →
0) < 1 a.s., then the process Zn is stable in the sense that

1
n

log ι(M0,n−1)→ γ in probability (2.38)

(notice that the Mn defined in [53] corresponds to MT
n defined in this paper). In

fact the convergence in (2.38) holds a.s. whenever A1 and A2 hold: see (2.24) of
Corollary 2.5 below. He then proved that the condition γ > 0, together with the
stability implies (2.35) for x = ei: see Tanny [53, Theorem 9.6]. Based on Parts 1
and 2 of Theorem 2.6, we can give a short proof of (2.35) for any x, assuming the
non-degeneracy condition H1 and following the proof of Corollary 2.9 of [22] where
the case x = ei was treated.

Also for x = ei, the central limit theorem (2.37) has been established in [24, Theo-
rem 2.4], using the fundamental martingale for x = ei, and the central limit theorem
for products of positive random matrices [30]. Using Parts 1 and 2 of Theorem 2.6
we can prove (2.37) in the same way for arbitrary x ∈ Nd \ {0}.

Notice that if we assume the stronger conditions A3 and (2.33), then using Part 3
of Theorem 2.6 with y = 1, we can obtain directly (2.35) and (2.37) from the law of
large numbers and the central limit theorem on log ‖xM0,n−1‖ established in [30].

We now state a duality of the Kesten-Stigum theorem. Let
E = {‖Zx

n‖ → ∞} and S = {‖Zx
n‖ 6→ 0}

be the explosion and survival events. Write PE(·) = P(·|E) for the conditional proba-
bility given E, and PE−→

n→∞
(resp. d(PE)−→

n→∞
) for the convergence in probability (resp. in law)

under PE. The same notation will be used for the conditional probability PS given
S, as well as for the annealed and quenched probabilities P and Pξ.

Theorem 2.8 (Duality of the Kesten-Stigum theorem ). Assume conditions A1, A2,
γ > 0, and that the random environment sequence ξ = (ξ0, ξ1, · · · ) is i.i.d. Assume
also that the explosion event E has positive probability. Then, for any fixed integer
k > 0, as n→∞,

sup
y∈Rd

+\{0}

∣∣∣∣ 〈Zn+k, y〉
〈ZnMn,n+k−1, y〉

− 1
∣∣∣∣ PE−→ 0; (2.39)
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Assume additionally that for some p > 1,

max
16r,j6d

E
(

Zr
1(j)

M0(r, j)

)p
<∞ and max

16i,j6d
E
(
M0(i, j)1−p

)
<∞. (2.40)

Then the convergence in probability in (2.39) can be improved to the a.s. convergence
conditionally on S: for any fixed k > 0, as n→∞,

sup
y∈Rd

+\{0}

∣∣∣∣ 〈Zn+k, y〉
〈ZnMn,n+k−1, y〉

− 1
∣∣∣∣ −→n→∞ 0 PS a.s. (2.41)

Our main result Theorem 2.6 states that the convergence of the ratio 〈Zn+k,y〉
〈ZnMn,n+k−1,y〉

in (2.39) or (2.41) also holds for n = 0 as k → ∞, but with the limit W x instead
of the limit 1 here. Applying this to the new process (Zm)m>n starting at time n
(with initial state Zn, which is independent of the branching elements {N r

l,m : r ∈
{1, · · · , d},m > n, l > 1}, conditional on ξ), we see that the convergence remains
valid for fixed n > 0 as k →∞, conditioned on Zn = z, for any given z ∈ Nd. In this
sense Theorem 2.8 is a duality of Theorem 2.6.

An important ingredient in the proof of the Kesten-Stigum type theorem (Theorem
2.6) is the following theorem about the convergence of the direction ~Zx

n := Zx
n

‖Zx
n‖
. Recall

that, for k 6 n, ρk,n is the spectral radius of Mk,n = Mk · · ·Mn, and uk,n, vk,n ∈ Rd
+

are such that (1.4) holds.

Theorem 2.9 (Convergence of the direction). Assume conditions A1, A3, γ > 0,
and that the random environment sequence (ξn) is i.i.d. Assume also that the explosion
event E has positive probability. Let x ∈ Nd \ {0}, and ~Zx

n = Zx
n

‖Zx
n‖
. Then:

(1) Let (vn) be defined as in Theorem 2.1. For each k ∈ N,

lim
n→∞

~Zx
n − vk,n−1 = lim

n→∞
~Zx
n − vn−1 = 0 in probability under PE. (2.42)

(2) Conditional on E, ~Zx
n converges in law to the common law ν of vn, which is

the unique µ-invariant measure: ν ∗ µ = ν, where µ is the law of M0.
(3) For each k ∈ N, the following convergences hold in probability under PE:

lim
n→∞

sup
y∈Rd

+\{0}

∣∣∣∣ 〈~Zx
n , y〉

〈vk,n−1, y〉
− 1

∣∣∣∣ = lim
n→∞

sup
y∈Rd

+\{0}

∣∣∣∣ 〈~Zx
n , y〉

〈vn−1, y〉
− 1

∣∣∣∣ = 0. (2.43)

(4) If additionally (2.33) holds for some p > 1, then the convergence in probability
on E in (2.42) and (2.43) can be improved to the a.s. convergence on S.

For x = ei and k = 0, the convergence of ~Zx
n−v0,n−1 in (2.42), and the convergence

in law of ~Zx
n , have been proved in [22]. It is interesting to notice that the convergence

in (2.42) does not depend on the history before the time k, for any k > 0. This
memoryless property can be useful in the numerical calculation of the direction ~Zx

n

when the data Mi is missing for i < k. For the constant environment case, see e.g.
[55] for the result corresponding to Part 1.

Theorem 2.9 can be applied to establish limit theorems for 〈Zx
n , y〉. For example,

from this theorem we can deduce the following:



MULTI-TYPE BRANCHING PROCESS IN RANDOM ENVIRONMENT 15

Corollary 2.10 (LLN and CLT for 〈Zx
n , y〉). Assume that the random environment

sequence (ξn) is i.i.d.
(1) Assume A1, A3, γ > 0 and qei(ξ) := Pξ(Zi

n → 0) < 1 a.s. Then for each
starting state x ∈ Nd \ {0}, we have: as n→∞,

1
n

sup
y∈S

∣∣∣ log〈Zx
n , y〉 − γ

∣∣∣→ 0 in probability conditional on E. (2.44)

If additionally (2.33) holds for some p > 1, then the above convergence in prob-
ability conditional on E can be improved to the a.s. convergence conditional
on S.

(2) Assume A3, H1, (2.36), γ > 0 and ‖Zn‖ → ∞ a.s. Then then for some
σ ∈ [0,∞) and all sequences (yn) in Rd

+ such that log ‖yn‖√
n
→ 0, we have

log〈Zx
n , yn〉 − nγ√

n
→ N(0, σ2) in distribution. (2.45)

In particular, taking y = ej in (2.44) and yn = ej (for each n) in (2.45), we obtain
a law of large numbers and a central limit theorem on Zx

n(j).
For the proof of Corollary 2.10, we first remark that, from Theorem 2.9, we have

log〈Zx
n , y〉 = log ‖Zx

n‖+ log〈vn−1, y〉+ εxn(y), (2.46)

where supy∈Rd
+\{0}

|εxn(y)| → 0, conditional on E or S, in probability or a.s. under the
corresponding conditions. We also remark that vn−1 > 1/(dD) under A3 (see Lemma
3.6 of Section 3, or [22, Lemma 7.1]), so that

1
dD
‖y‖ 6 〈vn−1, y〉 6 ‖y‖. (2.47)

With (2.46) and (2.47), we can then deduce the desired conclusions on 〈Zx
n , y〉 from

the law of large numbers and central limit theorem on ‖Zn‖ of Corollary 2.7.

3. Perron-Frobenius theorem and proof of Theorem 2.1

The objective of this section is to establish the Perron-Frobenius theorem and its
corollary, namely Theorem 2.1 together with Remark 2.3., and Corollary 2.5.

We begin with some preliminaries for products of random matrices. Let Rd
+ = {x ∈

Rd, x > 0} be the non-negative quadrant, where x > 0 means that each component
of x is non-negative. Let S = {v ∈ Rd

+ : ‖v‖ = 1}. The space S will play the role of
the projective space. Recall that G is the set of d× d non-negative matrices.

Following [30], we equip the projective space S with the Hilbert cross-ratio metric
d defined as follows: for any x, y ∈ S,

d(x, y) = 1−m(x, y)m(y, x)
1 +m(x, y)m(y, x) , (3.1)

where m(x, y) = sup{λ > 0 : λy(i) 6 x(i), ∀i = 1, . . . , d} for x = (x(1), . . . , x(d)) ∈
Rd and y = (y(1), . . . , y(d)) ∈ Rd. By Proposition 3.1 in [30], the distance d is
bounded, d(x, y) 6 1, for any x, y ∈ S, and has the important property that for any
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matrix g ∈ G the action (2.5) on S is a contraction with respect to d, that is, for any
g there exists c(g) 6 1 such that, for any x, y ∈ S, it holds

d(x · g, y · g) 6 c(g)d(x, y) 6 c(g). (3.2)
The number c(g) is called contraction coefficient of the matrix g. An explicit calcu-
lation of the coefficient c(g) in terms of the matrix is performed in [30], where it is
shown that

c(g) = max
i,j,k,l∈{1,...,d}

|g(k, i)g(l, j)− g(k, j)g(l, i)|
g(k, i)g(l, j) + g(k, j)g(l, i) .

The contraction coefficient c(·) has the following properties: (i) c(g) < 1 if and only
if g > 0; (ii) c(g) = c(gT ); and (iii) c(g, g′) 6 c(g)c(g′) for g, g′ ∈ G. The distance d
satisfies, for any x, y ∈ S,

1
2‖x− y‖ 6 d(x, y) 6 1. (3.3)

Our goal of this section is to prove an analog of the Perron-Frobenius theorem
(Theorem 2.1) for products of random matrices. The central point of the proof is the
following contracting property due to Hennion [30]. In this section, we assume that
(Mn)n∈Z is a stationary and ergodic sequence of random d× d non-negative matrices,
defined on some probability space (Ω,F ,P). Recall that c(g) denotes the contraction
coefficient of the matrix g.

Lemma 3.1. Under condition A2, for any fixed k ∈ Z as n→∞, and for any fixed
n ∈ Z as k → −∞,

c(Mk,n) = c((Mk,n)T )→ 0 P-a.s. (3.4)

The assertion for the case where k = 0 and n→∞ was established in [30, Lemma
3.2]. The assertion for each fixed k ∈ Z as n → ∞ can be proved in a similar way.
The assertion for fixed n as k → −∞ can be obtained from the previous assertion
applied to the transposed and reversed sequence {MT

−k, k ∈ Z}.
Denote

θk = inf{n > k : Mk,n ∈ S◦}.
Recall that ρk,n denotes the spectral radius of Mk,n = Mk · · ·Mn, uk,n and vk,n are
associated unit eigenvectors of MT

k,n and Mk,n (cf. (1.4)). It was proved in [30] that
under condition A2, we have θk < ∞ P-a.s. for all n > 0. Thus, for n > θk, the
eigenvalue ρk,n is strictly positive, and the unit eigenvectors uk,n and vk,n are strictly
positive and unique.

In the following lemma we state some properties of the eigenvector uk,n. We will
need the following σ-algebras: for any k ∈ Z,

F−∞,k = σ{Mj, j 6 k}, Fk,∞ = σ{Mj, j > k}. (3.5)

Lemma 3.2. Assume condition A2. Then there exists a sequence {uk : k ∈ Z} with
uk ∈ S and uk > 0 such that, for each fixed k ∈ Z as n → ∞, and for each fixed
n ∈ Z as k → −∞,

sup
y∈S

d(y · (Mk,n)T , uk)→ 0 P-a.s. (3.6)
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The limit variable uk is Fk,∞-measurable and satisfies
uk+1 ·MT

k = uk, k ∈ Z, P-a.s. (3.7)
Moreover, for any fixed k ∈ Z as n→∞, and for any fixed n ∈ Z as k → −∞,

d(uk,n, uk)→ 0 P-a.s.. (3.8)
The sequence (uk) is stationary and ergodic; each uk has the same law ν∗, which is
the unique µT -invariant law: that is, ν∗ is the unique probability law on S satisfying
ν∗ ∗ µT = ν∗, where µT is the law of MT

0 .
The results of Lemma 3.2 for the case where k = 1 and n → ∞ were proved in

Hennion [30]. The conclusion presented here can be proved in the same way. For
convenience of readers, we give a proof below, following Hennion [30].
Proof of Lemma 3.2. By Lemma 3.1, the event

Ω1 =
{

lim
n→∞

c((Mk,n)T ) = 0 ∀k ∈ Z, lim
k→−∞

c((Mk,n)T ) = 0 ∀n ∈ Z
}
, (3.9)

has probability 1. For any k 6 n in Z, introduce the event Ck,n = S · (Mk,n)T . Since,
S ·MT

n+1 ⊆ S. (3.10)
we have Ck,n+1 ⊂ Ck,n. Moreover, the sets Ck,n are compact. So Ck := ∩∞m=kCk,m 6= ∅.
On Ω1, the diameter |Ck| of Ck is 0 because

|Ck| 6 sup
y,y′∈S

d(y · (Mk,n)T , y′ · (Mk,n)T ) 6 c((Mk,n)T ) (3.11)

which goes to 0 as n→∞. Therefore, on Ω1, the set Ck consists of one single point,
which we denote by uk. From condition A2 we know that a.s. Mk,n > 0 for n large
enough (see [30, Lemma 3.1]). Since uk ∈ Ck ⊂ Ck,n, this implies that uk > 0 a.s.

Using again the fact that uk ∈ Ck,n, we know that there exists y′ ∈ S such that
uk = y′ · (Mk,n)T . Therefore, by (3.11), we have that, for any k 6 n in Z and any
y ∈ S,

d(y · (Mk,n)T , uk) = d
(
y · (Mk,n)T , y′ · (Mk,n)T

)
6 c

(
(Mk,n)T

)
. (3.12)

So on Ω1, supy∈S d(y · (Mk,n)T , uk)→ 0. This proves (3.6). In particular, for any fixed
k ∈ Z, uniformly in y ∈ S,

lim
n→∞

y · (Mk,n)T = uk P-a.s., (3.13)

which implies that uk is Fk,∞-measurable.
To see (3.7), we just need to notice that

uk = lim
n→∞

y · (MkMk+1 . . .Mn)T = ( lim
n→∞

y · (Mk+1,n)T ) ·MT
k = uk+1 ·MT

k .

For the proof of (3.8), we just need to use again (3.6): choosing in it y = uk,n and
using the fact that uk,n ·MT

k,n = uk,n, we get (3.8).
As uk depends only on (Mk,Mk+1, · · · ), and (Mk) is stationary and ergodic, the

sequence (uk) remains to be stationary and ergodic. In particular, all uk have the
same law. Therefore, from (3.7), we see that the common law ν∗ of uk satisfies the
equation ν∗ = ν∗ ∗ µ∗.

We now prove that ν∗ is the unique solution of the equation ν∗ = ν∗ ∗ µ∗. To see
this, let ν ′ be a probability law on S satisfying ν ′ = ν ′ ∗ µ∗, and let U0 be a random
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variable with law ν ′, independent of the sequence (Mk). Then by the equation on
ν ′, for each n > 1, U0 ·MT

1,n has the same law as ν ′. On the other hand, from (3.6),
U0 ·MT

1,n converges a.s. to u1 as n→∞, so that it converges in law to the law ν∗ of
u1. This shows that ν ′ = ν∗.

The proof of the lemma is thus finished. �

The properties of the eigenvector vk,n are similar to those of uk,n, as indicated below.
They can be deduced from the previous Lemma 3.2 by considering the transposed
and reversed sequence (MT

−n)n∈Z. They can also be proved in a similar way as in the
proof of Lemma 3.2.

Lemma 3.3. Assume condition A2. Then there exists a sequence {vn : n ∈ Z} with
vn ∈ S and vn > 0 such that, for each fixed n ∈ Z as k → −∞, and for each fixed
k ∈ Z as n→∞,

sup
y∈S

d(y ·Mk,n, vn)→ 0 P-a.s. (3.14)

The limit variable vn is F−∞,n-measurable and satisfies
vn ·Mn+1 = vn+1, n ∈ Z, P-a.s. (3.15)

Moreover, for any fixed n ∈ Z as k → −∞, and for any fixed k ∈ Z as n→∞,
d(vk,n, vn)→ 0 P-a.s. (3.16)

The sequence (vn) is stationary and ergodic; each vn has the same law ν, which is the
unique µ-invariant law: ν ∗ µ = ν.

The following result is the key for the proof of the Perron-Frobenius theorem,
Theorem 2.1.

Lemma 3.4. Assume condition A2. Then, for any k ∈ Z, we have P-a.s.,

lim
n→∞

sup
x,y∈S

∣∣∣∣∣∣〈y · (Mk,n)T , x〉
〈uk, x〉

− 1

∣∣∣∣∣∣ = 0, (3.17)

and

lim
n→∞

sup
x,y∈S

∣∣∣∣∣∣〈y · (Mk,n)T , x〉
〈uk,n, x〉

− 1

∣∣∣∣∣∣ = 0. (3.18)

Proof. Let k ∈ Z be fixed. Notice that for any x ∈ S, P-a.s.,
〈uk, x〉 > min

16j6d
uk(j)‖x‖ = min

16j6d
uk(j) =: uk > 0, (3.19)

so that for n > k,

sup
x,y∈S

∣∣∣∣∣∣〈y · (Mk,n)T , x〉
〈uk, x〉

− 1

∣∣∣∣∣∣ = sup
x,y∈S

∣∣∣∣∣∣〈y · (Mk,n)T , x〉 − 〈uk, x〉
〈uk, x〉

∣∣∣∣∣∣
= sup

x,y∈S

∣∣∣∣∣∣〈y · (Mk,n)T − uk, x〉
〈uk, x〉

∣∣∣∣∣∣ 6 sup
y∈S

1
bk
‖y · (Mk,n)T − uk‖

→ 0 as n→∞,
where the last step holds by (3.6) of Lemma 3.2 and (3.3). This proves (3.17).
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The proof of (3.18) is similar: we just need to replace uk by uk,n, using the fact
that (see (3.8)) as n→∞,

sup
x∈S
|〈uk,n, x〉 − 〈uk, x〉| → 0,

so that for P-almost all ω, there is nω large enough, such that for all n > nω and all
x ∈ S, with ε = uk/2 (see (3.19) for the definition of uk),

〈uk,n, x〉 > 〈uk, x〉 − ε > min
16j6d

uk(j)− ε = uk/2 > 0.

�

The following result is the counterpart of Lemma 3.4 for vn and vk,n. It can be
proved in a similar way, and is also a direct consequence of Lemma 3.4 applied to the
transposed and reversed sequence {MT

−k : k ∈ Z}.

Lemma 3.5. Assume condition A2. Then, for any fixed n ∈ Z, we have P-a.s.,

lim
k→−∞

sup
x,y∈S

∣∣∣∣∣∣〈y ·Mk,n, x〉
〈vn, x〉

− 1

∣∣∣∣∣∣ = 0, (3.20)

and

lim
k→−∞

sup
x,y∈S

∣∣∣∣∣∣〈y ·Mk,n, x〉
〈vk,n, x〉

− 1

∣∣∣∣∣∣ = 0. (3.21)

Proof of Theorem 2.1. For Part 1, the assertions (2.13) and (2.14), together with the
ergodicity of the sequences {uk} and {vk}, have already been proved in Lemmas 3.2
and 3.3. The assertion (2.15) will be proved after the proof of (2.18) of Part 2.

We now prove Part 2. We first consider the case where k ∈ Z is fixed and n→∞.
The proof will be based on Lemma 3.4. Fix k ∈ Z, and let n > k.

Step 1. We begin with the proof of (2.16) with ak,n = ρk,n

〈uk,n,vk,n〉
. Notice that

〈y · (Mk,n)T , x〉 = 〈y(Mk,n)T , x〉
‖y(Mk,n)T‖ = 〈xMk,n, y〉

〈1Mk,n, y〉
.

So from (3.17) of Lemma 3.4, we get that, P-a.s., uniformly for x, y ∈ Rd
+ \ {0},

〈xMk,n, y〉
〈1Mk,n, y〉〈uk, x〉

→ 1, as n→∞. (3.22)

Substituting x = vk,n into (3.22), we get that, P-a.s., uniformly for y ∈ Rd
+ \ {0},

ρk,n〈vk,n, y〉
〈1Mk,n, y〉〈uk, vk,n〉

→ 1, as n→∞. (3.23)

Substituting y = uk,n into (3.22), and using the fact that 〈1Mk,n, uk,n〉 = 〈1, uk,nMT
k,n〉 =

‖uk,nMT
k,n‖ = ρk,n, we get that, P-a.s., uniformly for x ∈ Rd

+ \ {0},

ρk,n〈uk,n, x〉
〈1Mk,n, uk,n〉〈uk, x〉

= 〈uk,n, x〉
〈uk, x〉

→ 1, as n→∞. (3.24)
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Multiplying (3.23) with (3.24), we obtain that, P-a.s., uniformly for x, y ∈ Rd
+ \ {0},

ρk,n〈uk,n, x〉〈vk,n, y〉
〈1Mk,n, y〉〈uk, vk,n〉〈uk, x〉

→ 1, as n→∞. (3.25)

Dividing (3.22) by (3.25), we see that, P-a.s., uniformly for x, y ∈ Rd
+ \ {0},

〈xMk,n, y〉
ρk,n

〈uk,n,x〉〈vk,n,y〉
〈uk,vk,n〉

→ 1, as n→∞. (3.26)

Taking x = vk,n in (3.24) implies
〈uk, vk,n〉 ∼ 〈uk,n, vk,n〉 as n→∞. (3.27)

Therefore, (3.26) implies that, P-a.s., uniformly for x, y ∈ Rd
+ \ {0},

〈xMk,n, y〉 ∼ ρk,n
〈uk,n, x〉〈vk,n, y〉
〈uk,n, vk,n〉

, as n→∞. (3.28)

This ends the proof of (2.16) with ak,n = ρk,n

〈uk,n,vk,n〉
.

Step 2. We next prove (2.17) with ak,n = ‖Mk,n‖1,1. Taking x = vk−1 in (3.22)
gives that, P-a.s., uniformly for x, y ∈ Rd

+ \ {0},
〈vn, y〉µk . . . µn

〈uk, vk−1〉〈1Mk,n, y〉
→ 1, as n→∞, (3.29)

where µk = ‖vk−1Mk‖. Dividing (3.22) by (3.29), we get, uniformly for x, y ∈ Rd
+\{0},

P-a.s.,
〈xMk,n, y〉
〈uk, x〉〈vn, y〉

〈uk, vk−1〉
µk . . . µn

→ 1, as n→∞. (3.30)

Let x = y = 1 into (3.30), we obtain, P-a.s.,

‖Mk,n‖1,1
〈uk, vk−1〉
µk . . . µn

→ 1, as n→∞. (3.31)

Combining (3.30) and (3.31), we get (2.17) with ak,n = ‖Mk,n‖1,1.
Step 3. We now prove that P-a.s., for k 6 n and as n→∞,

‖Mk,n‖1,1 ∼
ρk,n

〈uk,n, vk,n〉
, ‖Mk,n‖1,1 ∼

∏n
j=k µj

〈uk, vk−1〉
and

∏n
j=k λj

〈un+1, vn〉
=

∏n
j=k µj

〈uk, vk−1〉
.

(3.32)

This gives the equivalences of the different norming factors in (2.18). Indeed, the first
assertion in (3.32) follows from (3.28) with x = y = 1, and the second from (3.31).
The third follows from the identity that

〈un+1M
T
k,n, vk−1〉 = 〈un+1, vk−1Mk,n〉 P-a.s. (3.33)

(recall that MT
k,n = (Mk,n)T by our notation), together with the identity (2.19).

Combining the results proved in Steps 1-3, we see that the proof of all the equiva-
lences of Part 2 is finished in the case where k ∈ Z is fixed and n→∞.

For the case where n ∈ Z is fixed and k → −∞, the corresponding results can
be obtained from those in the previous case applied to the transposed and reversed
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sequence {MT
−k : k ∈ Z}; they can also be proved in a similar way as in the previous

case, using Lemma 3.5 instead of Lemma 3.4.
Finally we remark that {(un+1, vn) : n ∈ Z} is a stationary and ergodic sequence.

To see this, assume without loss of generality that the underlying probability space
(Ω,F ,P) is the canonical one, so that Ω = GZ, P is the law of the sequence {Mk : k ∈
Z}, andMk is just the k-th coordinate function ω 7→ ωk. For each n ∈ Z, let T n be the
n-th fold shift operator: by definition the k-th coordinate of (T nω) is (T nω)k = ωn+k
for all k ∈ Z; in particular T = T 1 is the shift operator, which is assumed to be
measure preserving and ergodic. Then we can write (u1, v0) in the form (u1, v0) =
X(ω), where X is a measurable function with values in Rd

+ × Rd
+. Consequently,

(un+1, vn) = X(T nω), for each n ∈ Z, so that they constitute a stationary and
ergodic sequence.

This ends the proof of Part 2.

It remains the proof of assertion (2.15) of Part 1. We will prove it as a consequence
of the equivalences of the sequences in (2.18) of Part 2. Indeed, under the condition
E(log+ ‖M0‖) <∞, we have P-a.s.

1
n

log ‖M0,n−1‖1,1 → γ,
1
n

log
n−1∏
j=0

λj → E log λ0,
1
n

log
n−1∏
j=0

µj → E log µ0, (3.34)

where the first convergence is the law of large numbers established by Furstenberg-
Kesten [19] , and is also a consequence of the sub-additive ergodic theorem; the second
and the third are consequences of the ergodic theorem, remarking that

E log+ λ0 6 E log+ ‖MT
0 ‖ <∞ and E log+ µ0 6 E log+ ‖M0‖ <∞. (3.35)

(It can be easily seen that each of the conditions E log+ ‖MT
0 ‖ <∞ and E log+ ‖M0‖ <

∞ is equivalent to E log+ ‖M0‖1,1 <∞.)
On the other hand, since 〈un, vn−1〉 has the same law for all n ∈ Z, from Slutsky’s

lemma we know that
1
n

log〈un, vn−1〉 → 0 in probability (3.36)

From the equivalences of the sequences in (2.18), together with (3.34), (3.36) and
the uniqueness of the limit in probability, we get (2.15). This ends the proof of the
theorem. �

Proof of Remark 2.3. For fixed k as n→∞, the fact that P-a.s.

〈uk,n, x〉 ∼ 〈uk, x〉 uniformly for x ∈ Rd
+ \ {0} (3.37)

has been seen in (3.24). Consequently, from (2.16) and (2.17), we see that for fixed k
as n→∞, P-a.s.

〈vk,n, y〉 ∼ 〈vn, y〉 uniformly for y ∈ Rd
+ \ {0} (3.38)

So we have proved that (2.20) holds P-a.s. for fixed k as n → ∞. Applying this to
the transposed and reversed sequence {MT

−k : k ∈ Z} or using a similar argument, we
see that (2.20) still holds P-a.s. for fixed n as k → −∞. �
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Proof of Corollary 2.5 . Assume A1 and A2. We have already seen that under A1,
γ ∈ R ∪ {−∞}. From (2.17) with k = 1 6 n and a1,n = ‖M1,n‖1,1, we get P-a.s.,

sup
x,y∈S

∣∣∣ log〈xM1,n, y〉 − log ‖M1,n‖1,1 − log〈u1, x〉 − log〈vn, y〉
∣∣∣→ 0. (3.39)

1) We first prove (2.23). Using (3.39) with y = 1, together with the law of large
numbers on log ‖M1,n‖1,1, and the fact that P-a.s., 〈vn,1〉 = 1 and, as n→∞,

1
n

sup
x∈S
| log〈u1, x〉| → 0, (3.40)

we obtain (2.23), the a.s. convergence of 1
n

log ‖xM1,n‖ to γ, uniformly for x ∈ S.
2) We next prove (2.22). Taking x = v1,n in (2.23) and remarking that ρ1,n =
‖v1,nM1,n‖ (since v1,nM1,n = ρ1,nv1,n), we obtain (2.22), the law of large numbers on
the spectral radius ρ1,n.

3) We now prove (2.25). Using again (3.39) and the fact that
1
n

sup
y∈S
| log〈vn, y〉| → 0 in probability (3.41)

(which is a consequence of Slutsky’s lemma and the fact that supy∈S | log〈vn, y〉| have
the same law), we obtain (2.25), the weak law of large numbers for log〈xM1,n, y〉.

4) We finally consider the uniform strong law of large numbers for the scalar
product, under the additional assumption E log− ι(M0) < ∞ or M0 > 0 a.s. and
E logD0 <∞.

Assume first E log− ι(M0) < ∞. Together with the condition E log+ ‖M0‖ <
∞, this implies E log+ ι(M0) < ∞ and E log− ‖M0‖ < ∞, so that E| log ‖M0‖ +
E| log ι(M0)| < ∞. Under this condition, Hennion [30] proved that γ ∈ R and that
(2.26) holds. The fact that γ ∈ R can be seen as follows. We already saw that
E log+ ‖M0‖ < ∞ implies γ < +∞. We now prove that E log− ι(M0) < ∞ implies
γ > −∞. In fact, since µ0 = ‖v−1M0‖ > ι(M0), we have E log− µ0 6 E log− ι(M0) <
∞. Hence from (2.15), it follows that γ = E log µ0 > −∞.

Assume now E logD0 <∞. Since 〈vn, y〉 ∼ 〈v1,n, y〉 uniformly for y ∈ S (see (2.20)
or (3.38)), we see that (3.39) still holds when 〈vn, y〉 is replaced by 〈v1,n, y〉: P-a.s.,

sup
x,y∈S

∣∣∣ log〈xM1,n, y〉 − log ‖M1,n‖1,1 − log〈u1, x〉 − log〈v1,n, y〉
∣∣∣→ 0. (3.42)

From this and the strong law of large numbers for log ‖M1,n‖1,1, together with (3.40),
we see that if

1
n

sup
y∈S
| log〈v1,n, y〉| → 0 P-a.s. (3.43)

then
1
n

log〈xM1,n, y〉 → γ uniformly for x, y ∈ S, P-a.s. (3.44)

So it remains to prove (3.43). Notice that for any y ∈ S,
1 > 〈v1,n, y〉 > min

16j6d
v1,n(j),

so (3.43) is a consequence of (3.47) of the following lemma. �
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Lemma 3.6. For n ∈ Z, let Dn be defined as in (2.11). Then for any k, n ∈ Z with
k 6 n and all i, j, l ∈ {1, · · · , d},

Mk,n(i, j) 6 DnMk,n(i, l) (3.45)
and

min
16i6d

vk,n(i) > 1/(dDn), min
16i6d

vn(i) > 1/(dDn), (3.46)

If E logD0 <∞, then for each fixed k ∈ Z,

lim
n→∞

1
n

log min
16i6d

vk,n(i) = lim
n→∞

1
n

log min
16i6d

vn(i) = 0 P-a.s. (3.47)

Similarly, if we define Dn as in (2.12), then same conclusions hold for uk,n and un,
instead of vk,n and vn.

Under the Furstenberg-Kesten condition (so that (2.11) and (2.12) hold with Dn =
D a constant), the bound for un was obtained in [22, Lemma 7.1].

Proof. For the proof of (3.45), we just need to prove the following implication: for
two matrices g1, g2, if for some c2 ∈ [1,∞) and all i, j, l ∈ {1, · · · , d},

g2(i, j) 6 c2g2(i, l), (3.48)
then for all i, j, l ∈ {1, · · · , d},

(g1g2)(i, j) 6 c2 (g1g2)(i, l). (3.49)
Indeed, we have, for all i, j, l ∈ {1, · · · , d},

(g1g2)(i, j) =
d∑

m=1
g1(i,m)g2(m, j)

6
d∑
l=1

g1(i, l) c2g2(m, l) = c2 (g1g2)(i, l). (3.50)

From (3.45) and the identity vk,nMk,n = ρk,nvk,n, we get, for all i, j ∈ {1, · · · , d}

ρk,nvk,n(i) =
d∑

m=1
vk,n(m)Mk,n(m, i)

6
d∑

m=1
vk,n(m)DnMk,n(m, j)

= Dnρk,nvk,n(j).
It follows that for all i, j ∈ {1, · · · , d},

vk,n(i) 6 Dnvk,n(j). (3.51)
Summing this equation for i from 1 to d, we get for all j ∈ {1, · · · , d},

1 6 dDnvk,n(j). (3.52)
This gives (3.46). From (3.46), we get

0 > log min
16i6d

vk,n(i) > − log(dDn) (3.53)
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Since (Dn) = (D(Mn)) is a stationary and ergodic sequence, by the ergodic theorem,
we have

1
n

n∑
j=1

logDj → E logD0 ∈ [0,∞) P-a.s.

Consequently,
logDn

n
→ 0 P-a.s.

So from (3.53), we get limn→∞
1
n

log min16i6d vk,n(i) = 0 a.s. The same argument
applies for vn instead of vk,n, yielding the same conclusion for vn. So (3.47) is proved.

The conclusions for uk,n and un can be proved in the same manner. So the proof
of the lemma is finished. �

4. The fundamental martingale and the non-degeneracy of the limit

4.1 The triangular array of martingales and the fundamental martingale
For a good comprehension of the Kesten-Stigum type theorem, we first introduce a
triangular array of martingales, of which the terminal values will be the main object
of our study. As in the single type case, the construction follows from the basic
multiplicative property (see Part (1) of Lemma 4.1). However, the convergence of
the terminal values of the triangular array in the multitype case is not automatic
contrary to the single type case; it is our first goal to show their convergence under
appropriate assumptions.

For any vector y ∈ Rd
+ \ {0} and any n > 0, consider the triangular array

Wn,k(y) = 〈ZkMk,n−1, y〉
〈Z0M0,n−1, y〉

, 0 6 k 6 n, n > 0, (4.1)

with the convention that Mk,n−1 is the identity matrix when k > n − 1 (so that
Wn,0(y) = 1 and Wn,n(y) = 〈Zn,y〉

〈Z0M0,n−1,y〉 , for all n > 0.) The following lemma states
that each line of this triangular array is a martingale. Recall that the filtration (Fn)
was defined in (2.29).

Lemma 4.1 (The multiplicative property and the triangular array of martingales).
(1) For any n > 0, we have

Eξ[Zn+1|Fn] = ZnMn. (4.2)

(2) For any n > 0 and y ∈ Rd
+ \ {0}, the sequence (Wn,k(y)), 0 6 k 6 n, is a

non-negative martingale under the probability measures Pξ and P with respect
to the filtration {Fk : 0 6 k 6 n}, that is, for 0 6 k 6 n,

Eξ[Wn,k(y)|Fn−1] = Wn,k−1(y).

Proof. Let Mn(r, ·) be the r-th row-vector of the matrix Mn. Since Eξ(N r
l,n|Fn) =

Mn(r, ·), from (2.27) we get for n > 0.

Eξ[Zn+1|Fn] =
d∑
r=1

Zn(r)Mn(r, ·) = ZnMn.
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It is clear that for any 0 6 k 6 n, Zk and Wn,k are Fk-measurable. From the part (1)
we see that Eξ(〈Zk, z〉|Fk−1) = 〈Zk−1Mk−1, z〉, for any z ∈ Rd, so that for 0 6 k < n,

Eξ[Wn,k(y)|Fk−1] = Eξ[〈ZkMk,n−1, y〉|Fk−1]
〈Z0M0,n−1, y〉

= 〈Zk−1Mk−1,n−1, y〉
〈Z0M0,n−1, y〉

= Wn,k−1.

Therefore {(Wn,k(y),Fk) : 0 6 k 6 n} is a martingale sequence under Pξ. �

For each x ∈ Rd
+ \ {0}, when Z0 = x, we write respectively Zx

n ,W
x
n (y),W x

n (un)) for
Zn,Wn(y),Wn(un), to indicate the dependence on the initial state x.

We now introduce the fundamental martingale for the scalar product, with the help
of Theorem 2.1. The result states that with the special choice y = un, the terminal
sequence (Wn(un))n>0 of the above triangular arrays is a martingale. In the particular
case where Z0 = ei, it has been established in [22].

Lemma 4.2 (Fundamental martingale). Assume condition A2. Then the sequence

W x
n (un) = 〈Zx

n , un〉
〈xM0,n−1, un〉

, n > 0 (4.3)

(by convention W0(u0) = 1) is a non-negative martingale with respect to the filtration
(Fn)n>0, both under Pξ and under P. In particular, the limit

W x := lim
n→∞

W x
n (un) (4.4)

exists with W x ∈ [0,∞), P-almost surely.

Proof. Using equation (4.2) of Lemma 4.1, we have for all n > 0,

Eξ[W x
n+1|Fn] = Eξ[〈Zx

n+1, un+1〉|Fn]
〈xM0,n, un+1〉

= 〈Z
x
nMn, un+1〉

〈xM0,n, un+1〉

= 〈Zx
n , un+1M

T
n 〉

〈xM0,n−1, un+1MT
n 〉

= λn〈Zx
n , un〉

λn〈xM0,n−1, un〉
= W x

n .

This proves that the sequence (W x
n (un),Fn)n>0 is a martingale under Pξ; it follows

that it is also a martingale under P. The a.s. convergence of (W x
n (un))n>0 follows

from the martingale convergence theorem. �

4.2 The non-degeneracy of the martingale limit. For the non-degeneracy of
the martingale limit W x, we will use the following conditions:

H2. For all 1 6 r 6 d,

E
(
〈N r

1,0, u1〉
λ0〈u0, er〉

log+〈N r
1,0, u1〉

)
<∞.

H3. There exists a constant C > 1 such that, for all r ∈ {1, . . . , d}, P-a.s.
∞∑
n=0

Eξ

〈N r
1,n, un+1〉

λn〈un, er〉
1{
〈Nr

1,n,un+1〉>Cn

} <∞.

The following remark gives some relations among the conditions H1,H2 and H3.
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Remark 4.3 (Remark 2.8, [22]). Under conditions A1 and A2, we have the implica-
tions H1⇒ H2⇒ H3. If the environment is i.i.d. and conditions A1 and A3 hold,
then H3⇔ H2⇔ H1.

The theorem below gives conditions for the non-degeneracy of W x.

Theorem 4.4. Assume conditions A1, A2 and γ > 0. Then, for each initial state
Z0 = x ∈ Nd

+ \ {0}, we have:
(1) If H1 holds, then the random variable W x defined in (4.4) satisfies EξW x = 1

P-a.s. so that W x is non degenerate in the sense that Pξ(W x > 0) > 0 a.s.
(2) Assume also that the environment (ξn) is i.i.d. and that the Furstenberg-

Kesten condition A3 holds. Then condition H1 is necessary and sufficient
for W x to be non-degenerate.

For x = ei and y = ej, the results have been established in [22].

4.0.1. Preliminaries. We shall use the notion of mean-harmonic function introduced
in [7]. To stick with the notation in [7], we introduce the type space S = N ×
{∂, 1, · · · , d}, so that a particle of type r of generation n is identified as type (n, r).
The symbol ∂ stands for a ’ghost’ particle. Following [7], it is convenient to consider
that every particle has infinitely many children including those of type ∂; individuals
of type ∂ have children only of type ∂, and these individuals are interpreted as being
absent. Consider the positive function

H(n, ∂) = 0, H(n, r) = 〈er, un〉
λ0,n−1

, n > 0, r ∈ {1, . . . , d}. (4.5)

We will prove that H is a mean-harmonic function in the sense of [7], which in our
setting means that, for each particle of type (n, r) ∈ S∗ := N×{1, · · · , d} in the sense
of [7], that is, for each type r particle of generation n, say the l-th one, denoting by
N r
l,n(j) the number of its direct children of type j, we have

Eξ
[ d∑
j=1

H(n+ 1, j)N r
l,n(j)

]
= H(n, r). (4.6)

Indeed, since un+1M
T
n = λnun, we have:

Eξ
[ d∑
j=1

H(n+ 1, j)N r
l,n(j)

]
=

d∑
j=1

〈ej, un+1〉
λ0,n

Eξ(N r
l,n(j))

=
d∑
j=1

un+1(j)Mn(r, j)
λ0,n

= (un+1M
T
n )(r)

λ0,n

= 〈er, un〉
λ0,n−1

.
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With the harmonic function H, we recover the martingale (Wn) up to a scaling term
with the help of the martingale:

WH
n =

d∑
j=1

Zn(j)H(n, j) = 〈Zn, un〉
λ0,n−1

, n > 0.

We will use a result from [7] to study the non-degeneracy of the limit
WH = lim

n→∞
WH
n .

Before stating this result we introduce the necessary notation. For s ∈ S∗ := N ×
{1, . . . , d}, let

X(s) := 1
H(n, r)

d∑
j=1

H(n+ 1, j)N r
1,n(j)

= 1
〈un,er〉
λ0,n−1

d∑
j=1

〈un+1, ej〉N r
1,n(j)

λ0,n

=
〈N r

1,n, un+1〉
λn〈un, er〉

(which corresponds to the variable X(s, f) defined in (1.1) of [7]), and

A(s) := Eξ

〈N r
1,n, un+1〉

λn〈un, er〉
min

{〈un, er〉
λ0,n−1

〈N r
1,n, un+1〉

λn〈un, er〉
, 1
}

= Eξ

〈N r
1,n, un+1〉

λn〈un, er〉
min

{〈N r
1,n, un+1〉
λ0,n

, 1
} (4.7)

(which corresponds to the expression Es

[
X(s) min

{
H(s)X(s), 1

}]
used in (2.1) of [7]

with s = ζn ). For s = (n, r) ∈ S∗ and y > 0, write

By(s) := Eξ

〈N r
1,n, un+1〉

λn〈un, er〉
1{〈N r

1,n, un+1〉
λ0,n

>y

}
.

Let (ζn)n>0 be a homogenous Markov chain with the state space S∗ = N×{1, . . . , d}
and the following transition kernel: for any (n, r) ∈ S∗ and j ∈ {1, . . . , d},

Qξ

(
ζn+1 = (n+ 1, j)

∣∣∣∣ζn = (n, r)
)

= 1
H(n, r)Eξ

(
H(n+ 1, j)N r

1,n(j)
)

(4.8)

and, for m 6= n+ 1,

Qξ

(
ζn+1 = (m, j)

∣∣∣∣ζn = (n, r)
)

= 0. (4.9)

The two formulas above define a Markov kernel since H is a mean-harmonic function
(cf. (4.6)). Denote by Q∗ξ the probability measure on the space of trajectories Ω∗ =
(S∗)N∗ of this Markov chain, for fixed environment ξ. Notice that ζn is of the form
ζn = (n, ζ̃n) defined on the probability space (Ω∗,Q∗ξ), where (ζ̃n)n is also a Markov
chain with state space {1, . . . , d}. The following proposition is a translation of [7,
Theorem 2.1] in our context.
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Lemma 4.5. For almost every environment ξ, we have:
(i) Eξ[WH ] = Eξ[WH

0 ] > 0 if
∞∑
n=0

A(ζn) <∞ Q∗ξ-a.s.. (4.10)

(ii) Eξ[WH ] = 0 if for all y > 0,
∞∑
n=0

By(ζn) =∞ Q∗ξ-a.s.. (4.11)

We also need the following assertion.

Lemma 4.6. Assume condition A3. For almost every environment ξ and for any
n > 1 and j ∈ {1, . . . , d}, Q∗ξ-a.s.

Q∗ξ

(
ζ̃n = j

∣∣∣∣ζ̃n−1

)
>

1
dD2 . (4.12)

Proof. By the definition of H(n, j), the Furstenberg-Kesten condition A3, and the
fact that EξN r

1,n−1(j) = Mn−1(r, j) and un(j) > 1
dD

(see [22, Lemma 7.1] or Lemma
3.6), we have

Q∗
(
ζ̃n = j

∣∣∣∣ζ̃n−1 = r

)
= 1
H(n− 1, r)Eξ

(
H(n, j)N r

1,n−1(j)
)

= un(j)Mn−1(r, j)
λn−1un−1(r)

= un(j)Mn−1(r, j)∑d
k=1 un(k)Mn−1(r, k)

>
1
dD

( d∑
k=1

un(k)Mn−1(r, k)
Mn−1(r, j)

)−1

>
1
dD2

( d∑
k=1

un(k)
)−1

= 1
dD2 . (4.13)

�

4.0.2. Non degeneracy of W x.

Proof of Theorem 4.4. (1) Sufficient condition. We assume that γ > 0 and that
conditions A1, A2, H1 hold true. We will prove (4.10), which, by Lemma 4.5, will
imply that Eξ[WH ] = Eξ[WH

0 ] > 0, so that Eξ[W x] = 1. Since
∞∑
n=0

A(ζn) 6
∞∑
n=0

d∑
r=1

A(n, r), (4.14)

to prove (4.10) it is enough to prove that for almost every ξ and for any r ∈ {1, · · · , d},
∞∑
n=0

A(n, r) <∞. (4.15)
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Indeed, since 1
n

log λ0,n → γ > 0 a.s., for any C ∈ (1, eγ), and for almost every ξ,
there is some n0 = n0(ξ) ∈ N, such that λ0,n > Cn for any n > n0. Consequently,

∞∑
n=n0

A(n, r) =
∞∑

n=n0

Eξ
[〈N r

1,n, un+1〉
λn〈un, er〉

min
{〈N r

1,n, un+1〉
λ0,n

, 1
}]

6
∞∑

n=n0

Eξ
[
〈N r

1,n, un+1〉
λn〈un, er〉

min
{〈N r

1,n, un+1〉
Cn

, 1
}]

.

As the process {(ξn, ξn+1, . . .) : n > 0} is stationary, it follows that

E
∞∑

n=n0

A(n, r) 6
∞∑
n=0

E
[
〈N r

1,0, u1〉
λ0〈u0, er〉

min
{〈N r

1,0, u1〉
Cn

, 1
}]

. (4.16)

Let 1 < c < C. Then

E
[
〈N r

1,0, u1〉
λ0〈u0, er〉

min
{〈N r

1,0, u1〉
Cn

, 1
}]
6 E

[
〈N r

1,0, u1〉
λ0〈u0, er〉

min
{〈N r

1,0, u1〉
Cn

, 1
}]

1{
〈Nr

1,0,u1〉6cn

}
+ E

[
〈N r

1,0, u1〉
λ0〈u0, er〉

min
{〈N r

1,0, u1〉
Cn

, 1
}]

1{
〈Nr

1,0,u1〉>cn

}
6 E

[
〈N r

1,0, u1〉
λ0〈u0, er〉

cn

Cn

]
+ E

[
〈N r

1,0, u1〉
λ0〈u0, er〉

]
1{
〈Nr

1,0,u1〉>cn

}.
(4.17)

Therefore by (4.16),

E
∞∑

n=n0

A(n, r) 6 E
[
〈N r

1,0, u1〉
λ0〈u0, er〉

] ∞∑
n=0

(
c

C

)n
+
∞∑
n=0

E
[
〈N r

1,0, u1〉
λ0〈u0, er〉

]
1{
〈Nr

1,0,u1〉>cn

}. (4.18)

In the right-hand side, the first term is finite because c/C < 1 and

Eξ
[
〈N r

1,0, u1〉
λ0〈u0, er〉

]
= M0(r, .)uT1

λ0〈u0, er〉
= λ0u0(r)
λ0〈u0, er〉

= 1;

the second term is also finite because
∞∑
n=0

E

 〈N r
1,0, u1〉

λ0〈u0, er〉
1{〈N r

1,0, u1〉
cn

>1
}
 = E

 〈N r
1,0, u1〉

λ0〈U0, er〉

∞∑
n=0

1{
log+〈Nr

1,0,u1〉>n log c
}

6 E
[ 〈N r

1,0, u1〉
λ0〈u0, er〉

( log+〈N r
1,0, u1〉

log c + 1
)]

<∞.

(4.19)
Therefore from (4.19) and the implication H1⇒ H2, we get ∑∞n=n0 A(n, r) <∞ a.s.,
so that

∞∑
n=0

A(n, r) <∞ a.s.

By Lemma 4.5, this implies that Eξ[WH ] = Eξ[WH
0 ] > 0 and EξW x = 1.

(2) Necessary condition. From Part 1, we just need to prove that H1 is necessary
for the non-degeneracy ofWH . To this end, it is enough to prove that ifH1 fails, then
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WH is degenerate. Assume that H1 fails. By virtue of the equivalence H3⇔ H1 of
Remark 4.3, we see that H3 also fails. Therefore, for any fixed C > 1, there exists
1 6 r0 6 d such that, with positive probability,

∞∑
n=0

Eξ

〈N r0
1,n, un+1〉

λn〈un, er0〉
1{
〈Nr0

1,n,un+1〉>Cn

} =∞. (4.20)

We now introduce a new probability P̃ξ on (Ω,F ), such that, for every n > 0 and
Fn+1-mesurable set B,

P̃ξ(B) = Eξ

〈N r
1,n, un+1〉

λn〈un, er〉
1B

. (4.21)

The existence of the probability mesure P̃ξ is ensured by Kolmogorov’s extension
theorem and the fact that {( 〈N

r
1,n,un+1〉

λn〈un,er〉 ,Fn+1) : n > 0} is a martingale under Pξ.
Indeed, if we write P̃n+1(B) for the right-hand side, then the martingale property
implies that {P̃n+1 : n > 0} is a consistent system of probabilities: for all n > 0 and
any B ∈ Fn, we have

P̃n+1(B) = E

Eξ(〈N r
1,n, un+1〉

λn〈un, er〉
1B

∣∣∣∣Fn

) = Eξ

 〈N r
1,n−1, un〉

λn−1〈un−1, er〉
1B

 = P̃n(B).

With the new measure P̃ξ,

∑
n∈N

P̃ξ
(

log+〈N r0
1,n, un+1〉 > n logC

)
=∞. (4.22)

Recall that (ζ̃n)n is a Markov chain with state space {1, · · · , d}, and transition prob-
abilities given by (4.8). Note that

N ζ̃n
1,n =

d∑
r=1

N r
1,n1

(
ζ̃n = r

)
,

which is a random variable defined on the product space (Ω × Ω∗, P̃∗ξ), where P̃∗ξ =
P̃ξ ⊗Q∗ with Q∗ defined in Section 4.0.1. We will prove that

∑
n∈N

P̃∗ξ
(

log+〈N ζ̃n
1,n, un+1〉 > n logC

∣∣∣ ζ̃n) =∞. (4.23)

This will imply that WH is degenerate by a Borel-Cantelli argument.
Let (F ∗

n)n>0 be the filtration defined by F ∗
0 = σ (ξ), and for n > 1,

F ∗
n = σ

(
ξ,N r

l,k, ζ̃k, 0 6 k < n, 1 6 r 6 d, l > 1
)

= Fn ∨ σ
(
ξ, ζ̃k, 0 6 k < n

)
.

We shall prove that {N r
1,n : 1 6 r 6 d} and F ∗

n are independent under P̃∗ξ = P̃ξ ⊗Q∗.
Indeed, denoting by Ẽ∗ξ the expectation with respect to P̃∗ξ , we have for any positive
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Borel function f and F ∗
n measurable set B of the form B = B1×B2, where B1 ∈ Fn

and B2 ∈ σ
(
ξ, ζ̃k, 0 6 k < n

)
,

Ẽ∗ξ

f(N r
1,n : 1 6 r 6 d)1B

 =
∫

1B2

∫ 〈N r
1,n, un+1〉

λn〈un, er〉
f(N r

1,n : 1 6 r 6 d)1B1

dPξ
dQ∗

= Eξ

〈N r
1,n, un+1〉

λn〈un, er〉
f(N r

1,n : 1 6 r 6 d)
 Pξ(B1)Q∗(B2)

= Ẽ∗ξ

f(N r
1,n : 1 6 r 6 d)

 Ẽ∗ξ1B,

where the second step holds because N r
1,n is independent of 1B1 under Pξ, and the

third one holds since

Ẽ∗ξ1B =
∫

1B2

∫ 〈N r
1,n, un+1〉

λn〈un, er〉
1B1dPξ

dQ∗
= Eξ

〈N r
1,n, un+1〉

λn〈un, er〉

Pξ(B1)Q∗(B2) = Pξ(B1)Q∗(B2).

Using the independence established before, we get
∞∑
n=1

P̃∗ξ
(

log+〈N ζ̃n
1,n, un+1〉 > n logC

∣∣∣∣F ∗
n

)

=
∞∑
n=1

Ẽ∗ξ

(
d∑
r=1

1{log+〈Nr
1,n,un+1〉>n logC}1{ζ̃n=r}

∣∣∣∣F ∗
n

)

=
∞∑
n=1

d∑
r=1

P̃ξ
(

log+〈N r
1,n, un+1〉 > n logC

∣∣∣∣F ∗
n

)
P̃∗ξ
(
ζ̃n = r

∣∣∣∣F ∗
n

)

=
∞∑
n=1

d∑
r=1

P̃ξ
(
log+〈N r

1,n, un+1〉 > n logC
)
P̃∗ξ
(
ζ̃n = r

∣∣∣∣F ∗
n

)
. (4.24)

Note that, for any n > 1, under P̃∗ξ , ζ̃n is independent of the family {N r
l,k} with

0 6 k 6 n − 1, 1 6 r 6 d and l > 1. Therefore, by Lemma 4.6, for 1 6 r 6 d and
n > 1, Q∗-a.s.

P̃∗ξ
(
ζ̃n = r

∣∣∣∣F ∗
n

)
= P̃∗ξ

(
ζ̃n = r

∣∣∣∣ ζ̃k, 1 6 k 6 n− 1
)

= Q∗
(
ζ̃n = r

∣∣∣∣ζ̃n−1

)
>

1
dD2 . (4.25)

Therefore, from (4.24), we obtain that, for any C > 1, Q∗-a.s. (and therefore also
P̃∗ξ-a.s.),

∞∑
n=1

P̃∗ξ
(

log+〈N ζ̃n
1,n, un+1〉 > n logC

∣∣∣∣F ∗
n

)

>
1
dD2

∞∑
n=1

d∑
r=1

P̃ξ
(
log+〈N r

1,n, un+1〉 > n logC
)
. (4.26)
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Hence, from (4.22) it follows that, for any ξ, P̃∗ξ-a.s.
∞∑
n=1

P̃∗ξ
(

log+〈N ζ̃n
1,n, un+1〉 > n logC

∣∣∣∣F ∗
n

)
=∞. (4.27)

By the conditional Borel-Cantelli lemma [15, Theorem 5.3.2], we have P̃∗ξ-a.s.{
log+〈N ζ̃n

1,n, un+1〉 > n logC i.o.
}

=
{ ∞∑
n=1

P̃∗ξ
(

log+〈N ζ̃n
1,n, un+1〉 > n logC

∣∣∣∣F ∗
n

)
=∞

}
.

(4.28)

From (4.27) and (4.28), it follows that

P̃∗ξ
(
log+〈N ζ̃n

1,n, un+1〉 > n logC for infinitely many n
)

= 1.

This implies that for Q∗ξ-almost all ω∗ ∈ Ω∗,

P̃ξ
(

log+〈N ζ̃n(ω∗)
1,n , un+1〉 > n logC for infinitely many n

)
= 1.

As in (4.28), by the conditional Borel-Cantelli lemma [15, Theorem 5.3.2], we have
that, for Q∗ξ-almost every ω∗,

∞∑
n=1

P̃ξ
(

log+〈N ζ̃n(ω∗)
1,n , un+1〉 > n logC

)
=∞. (4.29)

Now, for any y > 0 there exists n0 = n0(ξ, y) such that for all r ∈ {1, . . . , d} and
n > n0,

P̃ξ
(

log+〈N r
1,n, un+1〉 > n logC

)
= Eξ

〈N r
1,n, un+1〉

λn〈un, er〉
1

(
log+〈N r

1,n, un+1〉 > n logC
)

= Eξ
〈N r

1,n, un+1〉
λn〈un, er〉

1

(
elog+〈Nr

1,n,un+1〉 > en logC
)

= Eξ
〈N r

1,n, un+1〉
λn〈un, er〉

1

(
〈N r

1,n, un+1〉 > en logC
)

6 Eξ

〈N r
1,n, un+1〉

λn〈un, er〉
1{〈N r

1,n, un+1〉
λ0,n〈Z0, u0〉

>y

} = By(n, r),

where the last inequality holds since limn→∞
1
n

log (λ0,n〈Z0, u0〉y) = limn→∞
1
n

log λ0,n
= γ > 0 for P-almost every ξ, so that λ0,n〈Z0, u0〉y < en logC , when logC > γ and
n > n0. This, together with (4.29), shows that for any y > 0 and Q∗ξ-almost every
ω∗,

∞∑
n=n0

By(ζn(ω∗)) >
∞∑

n=n0

P̃ξ
(

log+〈N ζ̃n(ω∗)
1,n , un+1〉 > n logC

)
=∞,

so that (4.11) is satisfied. Then, by Lemma 4.5, it follows that Eξ[WH ] = 0 for
P-almost every ξ. �
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Remark 4.7. The non degeneracy criterion of W x in Theorem 4.4 can also be de-
duced from that for W i proved in [22], as shown in the following. (In the preceding
we have given a direct proof based on the general result of Biggins and Kyprianou [7,
Theorem 2.1], as the proof in [22] is quite long and somehow complicated.)

Let Z0 = x and x = x1 + x2, with x1, x2 ∈ Nd \ {0}. Notice that the process (Zx
n)

can be written as the form

Zx
n = Zx1

n + Z̃x2
n , n > 0, (4.30)

where conditional on ξ the processes (Zx1
n ) and (Z̃x2

n ) are independent, and (Z̃x2
n ) has

the same law as (Zx2
n ). Using Theorem 2.1, we then have

W x
n (un) = 〈Zx

n , un〉
〈xM0,n−1, un〉

= 〈Z
x1
n + Z̃x2

n , un〉
〈xM0,n−1, un〉

= 〈Zx1
n , un〉

〈xM0,n−1, un〉
+ 〈Z̃x2

n , un〉
〈xM0,n−1, un〉

= 〈Zx1
n , un〉

〈x1M0,n−1, un〉
.
〈x1M0,n−1, un〉
〈xM0,n−1, un〉

+ 〈Z̃x2
n , un〉

〈x2M0,n−1, un〉
.
〈x2M0,n−1, un〉
〈xM0,n−1, un〉

= W x1
n (un).‖M0,n−1‖1,1〈x1, u0〉〈vn−1, un〉

‖M0,n−1‖1,1〈x, u0〉〈vn−1, un〉
(1 + o(1))

+W x2
n (un).‖M0,n−1‖1,1〈x2, u0〉〈vn−1, un〉

‖M0,n−1‖1,1〈x, u0〉〈vn−1, un〉
(1 + o(1))

= W x1
n (un).〈x1, u0〉

〈x, u0〉
(1 + o(1)) +W x2

n (un).〈x2, u0〉
〈x, u0〉

(1 + o(1)). (4.31)

Passing to the limit as n→∞, we get the decomposition

W x = 〈x1, u0〉
〈x, u0〉

W x1 + 〈x2, u0〉
〈x, u0〉

W̃ x2 a.s. (4.32)

where W̃ x2 is independent ofW x, and has the same distribution asW x2 . Consequently
(or by the same argument), if x = ∑d

i=1 xiei, then

W x =
d∑
i=1

xi∑
j=1

〈ei, u0〉
〈x, u0〉

W̃ i
j a.s. (4.33)

(by convention the empty sum is 0), where {W̃ i
j : i, j = 1, · · · , d} is a family of

independent random variables, each W̃ i
j has the same distribution as W i.

It follows thatW x is non-degenerate if and only if there is i ∈ {1, · · · , d} with xi > 0
such that W i is non degenerate. So the non-degeneracy of W x can be deduced from
that of W i established in [22]. However, as the proof for the non-degeneracy of W i in
[22] is quite long, the different proof presented in this paper for the non-degeneracy
of W x remains of interest.

As an application of the decomposition (4.33), we obtain the following:
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Proposition 4.8. Assume conditions A1, A2, H1, and γ > 0. For each initial state
x ∈ Nd

+ \ {0}, if W x is non-degenerate, then
Pξ(W x = 0) = Pξ(Zx

n 6→ ∞) = Pξ(Zx
n → 0) P-a.s. (4.34)

Proof. Notice that under the given conditions,
{Zx

n → 0} ⊂ {W x = 0}.
As shown in [22], when x = ei, this together with the same functional equation
satisfied by Pξ(Zi

n → 0) and Pξ(W i = 0) implies that Pξ(Zi
n → 0) = Pξ(W i = 0), so

that
{Zi

n → 0} = {W i = 0} P-a.s. ∀i = 1, · · · , d.
Therefore, by the decomposition (4.33), for each x ∈ Nd \ {0},

{W x > 0} = ∪di=1{W i > 0} = ∪16i6d,xi>0{Zi
n 6→ 0}

= {Zx
n 6→ 0}, P-a.s.

Since {W x > 0} ⊂ {Zx
n →∞} ⊂ {Zx

n 6→ 0} a.s., the above equality implies that
{W x > 0} = {Zx

n →∞} = {Zx
n 6→ 0} P-a.s.

This gives the desired conclusion. �

5. Relations between the explosion and survival events

In this section we show some relations between the survival and explosion events:
S = {Zn 6→ 0}, E := {‖Zn‖ → ∞}. (5.1)

Their complements are denoted respectively by Sc and Ec. So Sc is the extinction
event. Notice that

S = {Zn 6→ 0} = ∩∞n=0{Zn 6= 0} = lim
n→∞

↓ {Zn 6= 0},

Sc = {Zn → 0} = ∪∞n=0{Zn = 0} = lim
n→∞

↑ {Zn = 0}.
The following proposition shows that conditioned on the explosion E, each compo-

nent Zn(r) of Zn tends to ∞ in probability.

Proposition 5.1. Assume conditions A1, A2 and γ > 0. Then, for all 1 6 r 6 d,
conditional on E, Zn(r)→∞ in probability, namely,

Zn(r) PE−→
n→∞

∞,

where PE−→ denotes the convergence in probability under the conditional probability
PE(·) = P(·|E).

Proof. It suffices to prove that for all 1 6 r 6 d and K > 0,

P
(
Zn(r) > K,E

)
−→
n→∞

P(E). (5.2)

By the definition of the branching process, we have the decomposition:

Zn+k =
d∑
j=1

Zn(j)∑
l=1

Zj
l,n,k, n > 0; k > 1.
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Let K1, K2 > 0. For n, k > 1 and 1 6 r 6 d, we have, P-a.s.,
Pξ (Zn+k(r) 6 K1, ‖Zn‖ > K2)

= Pξ

 d∑
j=1

Zn(j)∑
l=1

Zj
l,n,k(r) 6 K1, ‖Zn‖ > K2


6 Pξ

(
Zj
l,n,k(r) 6 K1, ‖Zn‖ > K2, 1 6 l 6 Zn(j), 1 6 j 6 d

)
= Eξ

[
PTnξ

(
Z1
k(r) 6 K1

)Zn(1)
· · · PTnξ

(
Zd
k(r) 6 K1

)Zn(d)
1{‖Zn‖>K2}

]
.

It follows that, P-a.s.,

Pξ (Zn+k(r) 6 K1, ‖Zn‖ > K2) 6
(

max
16j6d

PTnξ

(
Zj
k(r) 6 K1

))K2

. (5.3)

Notice that
lim sup
n→∞

P{E, ‖Zn‖ < K2} 6 P(E ∩ lim sup
n→∞

{‖Zn‖ < K2}) = 0

(in fact E ∩ lim supn→∞{‖Zn‖ < K2} = ∅). From this and (5.3) we get that
lim sup
n→∞

P(Zn(r) 6 K1, E) 6 lim sup
n→∞

P (Zn+k(r) 6 K1, ‖Zn‖ > K2)

6 E
(

max
16j6d

Pξ
(
Zj
k(r) 6 K1

) )K2
.

Letting K2 →∞, it follows that
lim sup
n→∞

P(Zn(r) 6 K1, E) 6 P
(

max
16j6d

Pξ(Zj
k(r) 6 K1) = 1

)
6

d∑
j=1

P
(
Pξ(Zj

k(r) 6 K1) = 1
)
. (5.4)

By Corollary 2.5 (equation (2.25) with x = ej and y = er) and the condition γ > 0,
we know that for all K1 > 0,

P
(
M0,k−1(j, r) 6 K1

)
−→
k→∞

0, (5.5)

which implies that for all K1 > 0,
P
(
Pξ(Zj

k(r) 6 K1) = 1
)
6 P

(
EξZj

k(r) 6 K1
)

= P
(
M0,k−1(j, r) 6 K1

)
−→
k→∞

0.

Therefore from (5.4), we conclude that for all K1 > 0,

P
(
Zn(r) 6 K1, E

)
−→
n→∞

0, (5.6)

which implies (5.2) and ends the proof of Proposition 5.1. �

The theorem below shows that, under suitable conditions, the survival event S
coincides a.s. with the explosion event E = {‖Zn‖ → ∞}. It also gives similar
results when a fixed type is considered.

Theorem 5.2. Assume conditions A1, A2 and γ > 0. Assume also that one of the
conditions H1, H2, H3 holds. The following assertions hold for each m ∈ {1, · · · , d}:

(1) {lim supn→∞ Zn(m) =∞} = E = S a.s.
(2) {lim supn→∞ Zn(m) > 0} = lim supn→∞{Zn(m) > 0} = S a.s.
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(3) {Zn(m)→ 0} = lim infn→∞{Zn(m) = 0} = Sc a.s.

As a consequence of Theorem 5.2 and Proposition 5.1, we get the following proper-
ties, including the dichotomy (Part (1)) and the weak transience (Part (3)). We will
consider the extinction probabilities

q = P
(

lim
n
Zn = 0

)
, q(ξ) = P

(
lim
n
Zn = 0

)
. (5.7)

When we consider the dependence on the starting state x ∈ Nd \ {0}, we write

qx = P
(

lim
n
Zx
n = 0

)
, qx(ξ) = Pξ

(
lim
n
Zx
n = 0

)
. (5.8)

Corollary 5.3. Under the conditions of Theorem 5.2, we have:

(1) P
(

lim supn→∞ Zn(m) = 0 or ∞
)

= P
(

limn→∞ ‖Zn‖ = 0 or ∞
)

= 1.

(2) limn→∞ P
(
Zn(m) = 0

)
= q and limn→∞ P

(
Zn(m) > 0

)
= 1− q.

(3) For each k ∈ N∗ and each j ∈ Nd \ {0},

lim
n→∞

P
(
Zn(m) = k

)
= 0 and lim

n→∞
P
(
Zn = j

)
= 0.

Remark 5.4. Tanny [53] proved the dichotomy that a.s. ‖Zn‖ → 0 or ∞, for a
multitype branching process in a stationary and ergodic environment which is strongly
regular in the sense that

∃n > 1 such that P
(

min
16i6d

Pξ(‖Zi
n‖ > 1) > 0

)
> 0 (5.9)

and which satisfies the condition Q:
a.s. qei(ξ) < 1 ∀i = 1, · · · , d, or a.s. qei(ξ) = 1 ∀i = 1, · · · , d. (5.10)

The branching process (Zn) is called regular if
∃n > 1 such that min

16i6d
P(‖Zi

n‖ > 1) > 0. (5.11)

A strongly regular branching process is necessarily regular (see [53]). Our results
show that under the conditions for the non-degeneracy of W x, we do not need the
strong regularity condition, nor the condition Q.

Proof of Theorem 5.2. (1) Recall the notation E = {‖Zn‖ → ∞}. We first prove that
E = S a.s. (5.12)

Since E ⊂ S and Pξ(S) = 1− q(ξ), to show (5.12) we only need to prove that
Pξ(E) = 1− q(ξ) P-a.s. (5.13)

We write Ex for E when Z0 = x. From [22, Corollary 2.9], we know that, under the
conditions of Theorem 5.2, (5.13) is true for Z0 = ei:

Pξ(Eei) = 1− qei(ξ), i = 1, · · · d. (5.14)

As any x ∈ Nd \ {0} is written as the form x = ∑d
i=1 x(i)ei, using (5.14), to prove

that (5.13) holds for all x ∈ Nd \ {0}, we just need to prove that if it holds for x1
and x2 in Nd \ {0}, then it also holds for x = x1 + x2. Assume that (5.13) holds for
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x1, x2 ∈ Nd \ {0}, and let x = x1 + x2. Notice that the process (Zx
n) can be written

as the form
Zx
n = Zx1

n + Z̃x2
n , n > 0, (5.15)

where conditional on ξ the processes (Zx1
n ) and (Z̃x2

n ) are independent, and (Z̃x2
n ) has

the same law as (Zx2
n ). Therefore
Ex = Ex1 ∪ Ẽx2 and qx(ξ) = qx1(ξ)qx2(ξ),

where Ẽx2 = {Z̃x2
n 6→ 0} is independent of Ex1 , and has the same probability as Ex2 ,

under Pξ. Since (5.13) holds for x1 and x2, it follows that
Pξ(Ex) = Pξ(Ex1) + Pξ(Ẽx2)− Pξ(Ex1 ∩ Ẽx2)

= Pξ(Ex1) + Pξ(Ex2)− Pξ(Ex1)Pξ(Ex2)
= (1− qx1(ξ)) + (1− qx2(ξ))− (1− qx1(ξ))(1− qx2(ξ))
= 1− qx1(ξ)qx2(ξ)
= 1− qx(ξ). (5.16)

Therefore (5.13) still holds for x. This shows that (5.13) holds for all x ∈ Nd \ {0}.
So we have proved (5.12), namely the second equality in Part 1.

We next prove the first equality, that is,
{lim sup

n
Zn(m) =∞} = E a.s. (5.17)

Notice that
{lim sup

n
Zn(m) =∞} = ∩∞k=1 lim sup

n→∞
{Zn(m) > k}.

For any integer k > 0, we know that
P(lim sup

n→∞
{Zn(m) > k}, E) > lim sup

n→∞
P(Zn(m) > k,E) = P(E), (5.18)

where the last step holds by Proposition 5.1 or (5.2). This shows that for any integer
k > 0,

PE(lim sup
n→∞

{Zn(m) > k}) = 1.

It follows that
PE{lim sup

n
Zn(m) =∞} = 1.

Since {lim supn Zn(m) =∞} ⊂ E, this implies (5.17). So we have finished the proof
of Part 1.

(2) Since the first equality is evident, we just need to prove the second one. Because
{Zn(m) > 0} ⊂ {Zn 6= 0}, we have

lim sup
n
{Zn(m) > 0} ⊂ lim sup

n
{Zn 6= 0} = S. (5.19)

On the other hand, by (5.18) and the fact that E = S a.s. (see the second equality
in Part 1), we have for any integer k > 0,

P
(

lim sup
n→∞

{Zn(m) > 0}, S
)
> lim sup

n→∞
P
(
Zn(m) > k,E

)
= P(E) = P(S). (5.20)
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From (5.21) and (5.20), we obtain
lim sup
n→∞

{Zn(m) > 0} = S a.s. (5.21)

This ends the proof of Part 2.

(3) Taking the complements of the events in Part 2, we get the conclusion of Part
3. �

Proof of Corollary 5.3. (1) Part 1 is a direct consequence of Theorem 5.2:

P
(

lim sup
n→∞

Zn(m)→ 0 or ∞
)

= P
(
Zn → 0 or ∞

)
(by Part 2 or 3 of Theorem 5.2)

= P(Sc) + P(S) (by Part 1 of Theorem 5.2)
= 1.

(2) For Part 2, we first notice that by Part 2 of Theorem 5.2,
lim sup
n→∞

P(Zn(m) > 0) 6 P(lim sup
n→∞

{Zn(m) > 0}) = P(S). (5.22)

Next, by Proposition 5.1 and Part 1 of Theorem 5.2, we have for each k > 0,
lim inf
n→∞

P(Zn(m) > 0) > lim inf
n→∞

P(Zn(m) > k,E) = P(E) = P(S). (5.23)

Therefore, limn→∞ P(Zn(m) > 0) = P(S) = 1− q. This proves the second conclusion
of Part 2, which implies the first one.

(3) Let k ∈ N∗ be arbitrarily fixed. By Proposition 5.1 (or (5.6)) and the fact that
E = S a.s. (see Theorem 5.2), we have

lim sup
n→∞

P
(
Zn(m) = k

)
6 lim sup

n→∞
P
(
Zn(m) = k,E

)
+ lim sup

n→∞
P
(
Zn(m) = k, Sc

)
6 P

(
lim sup
n→∞

(
Zn(m) = k

)
, E
)

+ P
(

lim sup
n→∞

{Zn(m) = k}, Sc
)

= 0 + P(∅) = 0.
This gives the first conclusion of Part 3. The second conclusion follows from the first
one, because for any j = (j1, . . . , jd) ∈ Nd \ {0}, there is m such that jm > 0, so that

P
(
Zn = j

)
6 P

(
Zn(m) = jm

)
−→
n→∞

0.

�

6. Convergence of the direction and proof of Theorem 2.9

Proof of Theorem 2.9. (1) We begin with the proof of (2.42). For x = ei, i = 1, · · · , d,
the result concerning v0,n−1 has been proved in [22, Theorem 2.11]. For the general
case, we do a decomposition as follows. Let x = ∑d

i=1 xiei. By the definition of the
branching process, we can decompose Zx

n as follows:

Zx
n =

d∑
i=1

xi∑
k=1

Z̃i
n,k (6.1)
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(by convention the empty sum is equal to 0), where (Z̃i
n,k)n denotes the branching pro-

cess starting with the k-th type i particle. Conditional on ξ, the processes (Z̃i
n,k)n>0,

for 1 6 i 6 d, 1 6 k 6 xi, are independent of each other, each (Z̃i
n,k)n has the same

law as (Zi
n)n. Using (2.42) for x = ei, we obtain, for i = 1, · · · , d,

Z̃i
n,k = ‖Z̃i

n,k‖(v0,n−1 + εik,n),
where ‖εik,n‖ → 0 in probability under PE, as n→∞. Therefore

Zx
n =

d∑
i=1

xi∑
k=1
‖Z̃i

n,k‖(v0,n−1 + εik,n)

=
( d∑
i=1

xi∑
k=1
‖Z̃i

n,k‖
)(
v0,n−1 + εxn

)
, (6.2)

where

‖εxn‖ 6
∑d
i=1

∑xi
k=1 ‖Z̃i

n,k‖ ‖εik,n‖∑d
i=1

∑xi
k=1 ‖Z̃i

n,k‖

6 max
16i6d,16k6xi

‖εik,n‖
PE−→ 0. (6.3)

Notice that ‖Zx
n‖ = ∑d

i=1
∑xi
k=1 ‖Z̃i

n,k‖. So it follows that
Zx
n

‖Zx
n‖
− v0,n−1

PE−→ 0. (6.4)

Since a.s. vk,n− vn → 0 for each fixed k ∈ N as n→∞ (see (2.13)), this implies that
Zx
n

‖Zx
n‖
− vn−1

PE−→
n→∞

0 and Zx
n

‖Zx
n‖
− vk,n−1

PE−→
n→∞

0 ∀k ∈ N. (6.5)

This is just (2.42).
(2) The convergence in distribution of Zx

n

‖Zx
n‖

is a direct consequence of (2.42), using
the fact that all vn have the same law ν (see Theorem 2.1).

(3) For the proof of (2.43) about the convergence in probability under PE, by
homogeneity, we just need to prove the convergence uniformly for y ∈ S. To this end,
we notice that by Lemma 3.6 and the condition A3, we know that vk,n(j) > 1/(dD)
and vn > 1/(dD) for all k and n with k 6 n. Therefore, for all y ∈ S, we have
〈v̄n−1, y〉 > min16j6d vn−1(j)‖y‖ > 1/(dD), so that

|〈~Zx
n , y〉 − 〈vn−1, y〉|
〈vn−1, y〉

6 dD|〈~Zx
n , y〉 − 〈vn−1, y〉| 6 dD‖~Zx

n − vn−1‖. (6.6)

Hence by (2.42), we get

sup
y∈S

∣∣∣∣∣ 〈~Zx
n , y〉

〈vn−1, y〉|
− 1

∣∣∣∣∣ PE−→ 0.

The same argument applies when vn−1 is replaced by vk,n−1. This ends the proof of
(2.43).

(4) The a.s. convergence can be proved by the same argument as in Parts 1 and
3 above, using the a.s. convergence of Z̄i

n − v0,n−1 established in [22, Theorem 2.14]
under the additional moment condition (2.33).
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7. Duality of the Kesten-Stigum theorem and proof of Theorem 2.8

In this section we prove Theorem 2.8, the duality of Theorem 2.6, for the conver-
gence of 〈Zn+k,y〉

〈ZnMn,n+k−1,y〉
for fixed k as n → ∞. We consider both the convergence in

probability and the a.s. convergence.

Proof of Theorem 2.8. 1) We first prove (2.39), the uniform convergence in probability
conditional on E. We fix k > 1. For n > 0, write Zn in the form

Zn =
d∑
r=1

Zn(r)er =
d∑
r=1

Zn(r)∑
l=1

er. (7.1)

By the definition of the branching process, we have for n > 0,

Zn+k =
d∑
r=1

Zn(r)∑
l=1

N r
l,n,k, (7.2)

where for j ∈ {1, · · · , d} the j-th component of N r
l,n,k denotes the number of type-j

offsprings at time n+k of the l-th type r particle of generation n. By (7.1) and (7.2),
for any y ∈ Rd

+ \ {0},

〈Zn+k, y〉 − 〈ZnMn,n+k−1, y〉 =
d∑
r=1

Zn(r)∑
l=1

(
〈N r

l,n,k, y〉 − 〈erMn,n+k−1, y〉
)

=
d∑
r=1
〈erMn,n+k−1, y〉

Zn(r)∑
l=1

(
〈N r

l,n,k, y〉
〈erMn,n+k−1, y〉

− 1
)
. (7.3)

By Proposition 5.1, dividing both sides by 〈ZnMn,n+k−1, y〉, we find that, on {Zn 6= 0},

〈Zn+k, y〉
〈ZnMn,n+k−1, y〉

− 1 =
d∑
r=1

〈erMn,n+k−1, y〉
〈ZnMn,n+k−1, y〉

Zn(r)∑
l=1

(
〈N r

l,n,k, y〉
〈erMn,n+k−1, y〉

− 1
)
. (7.4)

This implies that on {Zn 6= 0}, for all 1 6 r 6 d,∣∣∣∣ 〈Zn+k, y〉
〈ZnMn,n+k−1, y〉

− 1
∣∣∣∣ 6 d∑

r=1

〈erMn,n+k−1, y〉Zn(r)
〈ZnMn,n+k−1, y〉

Rn,k(r, y) 6 max
16r6d

Rn,k(r, y), (7.5)

where

Rn,k(r, y) =
∣∣∣∣ 1
Zn(r)

Zn(r)∑
l=1

(
〈N r

l,n,k, y〉
〈erMn,n+k−1, y〉

− 1
) ∣∣∣∣. (7.6)

We will prove that Rn,k(r, y)→ 0 in probability conditionally on the explosion event
E, uniformly in y ∈ S, as n→∞: that is ∀ε > 0,

lim
n→∞

P
(

sup
y∈S

Rn,k(r, y) > ε,E

)
= 0. (7.7)
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Notice that by the independence of {N r
l,n,k : l > 1} and Zn under Pξ, and the

condition that the environment sequence (ξn) is i.i.d., we have

P
(

sup
y∈S

Rn,k(r, y) > ε,Zn(r) > 0
)

= E

Pξ
sup
y∈S

∣∣∣∣ 1
Zn(r)

Zn(r)∑
l=1

(
〈N r

l,n,k, y〉
〈erMn,n+k−1, y〉

− 1
) ∣∣∣∣ > ε,Zn(r) > 0


= E

 ∞∑
j=1

Pξ

1
j

sup
y∈S

∣∣∣∣ j∑
l=1

(
〈N r

l,n,k, y〉
〈erMn,n+k−1, y〉

− 1
) ∣∣∣∣ > ε

Pξ
(
Zn(r) = j

)
=
∞∑
j=1

P

1
j

sup
y∈S

∣∣∣∣ j∑
l=1

(
〈N r

l,0,k, y〉
〈erM0,k−1, y〉

− 1
) ∣∣∣∣ > ε

P
(
Zn(r) = j

)
.

(7.8)
By the uniform law of large numbers or the law of large numbers in a Banach space
(see e.g. [49, p.189, Corollary 7.10]),

Pξ

1
j

sup
y∈S

∣∣∣∣ j∑
l=1

(
〈N r

l,0,k, y〉
〈erM0,k−1, y〉

− 1
) ∣∣∣∣ > ε

 −→
j→∞

0 P-a.s., (7.9)

since miny∈S〈erM0,k−1, y〉 = 〈erM0,k−1, y0〉 for some y0 = y0(ξ) ∈ S and

Eξ
(

sup
y∈S

〈N r
l,0,k, y〉

〈erM0,k−1, y〉

)
6 Eξ

(
supy∈S〈Zr

k , y〉
〈erM0,k−1, y0〉

)
6
〈erM0,k−1,1〉
〈erM0,k−1, y0〉

<∞, P-a.s.

By the dominated convergence theorem, (7.9) implies that

P

1
j

sup
y∈S

∣∣∣∣ j∑
l=1

(
〈N r

l,0,k, y〉
〈erM0,k−1, y〉

− 1
) ∣∣∣∣ > ε

 −→
j→∞

0. (7.10)

So for any η > 0, there is some integer j0 = j0(η) > 0 such that for all j > j0,

P

1
j

sup
y∈S

∣∣∣∣ j∑
l=1

(
〈N r

l,0,k, y〉
〈erM0,k−1, y〉

− 1
) ∣∣∣∣ > ε

 < η. (7.11)

For short, we set

An :=
{

sup
y∈S

∣∣∣∣ 1
Zn(r)

Zn(r)∑
l=1

(
〈N r

l,n,k, y〉
〈erMn,n+k−1, y〉

− 1
) ∣∣∣∣ > ε

}
.

Combining (7.8), (7.11) and Proposition 5.1, we obtain that for all n > 0,
P (An, E, Zn(r) > 0)

6
∑
j>j0

P

1
j

sup
y∈S

∣∣∣∣ j∑
l=1

(
〈N r

l,0,k, y〉
〈erM0,k−1, y〉

− 1
) ∣∣∣∣ > ε

P
(
Zn(r) = j

)
+

∑
16j6j0

P
(
Zn(r) = j, E

)

6 η
∑
j>j0

P
(
Zn(r) = j

)
+ P

(
1 6 Zn(r) 6 j0, E

)

6 η + P
(

1 6 Zn(r) 6 j0, E
)
. (7.12)
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Consequently, for all n > 0,

P
(
An ∩ E

)
6 P

(
An, E, Zn(r) > j0

)
+ P

(
E, 1 6 Zn(r) 6 j0

)
6 η + 2P

(
E, 1 6 Zn(r) 6 j0

)
. (7.13)

Recall that (cf. (5.6)) P
(
E, 1 6 Zn(r) 6 j0

)
→ 0. Therefore, from (7.13), we get

lim sup
n→∞

P
(
An ∩ E

)
6 η. (7.14)

As η > 0 is arbitrary, this implies that

lim
n→∞

P
(
An ∩ E

)
= lim

n→∞
P

sup
y∈S

∣∣∣∣ 1
Zn(r)

Zn(r)∑
l=1

(
〈N r

l,n,k, y〉
〈erMn,n+k−1, y〉

− 1
) ∣∣∣∣ > ε,E

 = 0.

(7.15)

So (7.7) is proved. Thus, by (7.5) we obtain (2.39).
2) We now prove (2.41), the a.s. uniform convergence on S, under the conditional

condition (2.40). We first observe that condition (2.40) implies H1. Therefore, by
applying Theorems 4.4 and 5.2, it follows that W x is non-degenerate and E = S a.s.

For the proof of (2.41), we proceed in two steps, by proving first the simple con-
vergence, and then the uniform convergence, a.s. on E.

Step 1: prove the a.s. simple convergence in (2.41): that is, for any fixed y ∈
Rd

+ \ {0}, and any fixed k > 0, as n→∞,∣∣∣∣ 〈Zn+k, y〉
〈ZnMn,n+k−1, y〉

− 1
∣∣∣∣ −→n→∞ 0 PE-a.s. (7.16)

By homogeneity, we just need to consider y ∈ S. Like in the proof for the convergence
in probability, we still use (7.5), and it is sufficient to prove that the random variable
Rn,k(r, y) defined in (7.6) satisfies, for all 1 6 r 6 d,

Rn,k(r, y) =
∣∣∣∣ 1
Zn(r)

Zn(r)∑
l=1

(
〈N r

l,n,k, y〉
〈erMn,n+k−1, y〉

− 1
) ∣∣∣∣−→n→∞0 PE-a.s. (7.17)

To prove (7.17), it is enough to establish the following equivalent statement: for
all 1 6 r 6 d, 1 6 k and 0 6 b < k , P-a.s. on E,∣∣∣∣ 1

Zkn+b(r)

Zkn+b(r)∑
l=1

(
〈N r

l,kn+b,k, y〉
〈erMkn+b,k(n+1)+b−1, y〉

− 1
) ∣∣∣∣ −→n→∞ 0. (7.18)

Let (F̃n) be the filtration defined by

F̃0 = {∅}, F̃n = σ
(
ξs, N

r
l,s, 0 6 s 6 n− 1, 1 6 r 6 d, l > 1

)
for n > 1.

Applying the conditional Borel-Cantelli lemma [15, Theorem 5.3.2], we see that (7.18)
holds P-a.s. on the event E, if for all 1 6 r 6 d and C > 0, P-a.s. on E,
∞∑
n=1

P

∣∣∣∣ Zkn+b(r)∑
l=1

(
〈N r

l,kn+b,k, y〉
〈erMkn+b,k(n+1)+b−1, y〉

− 1
)∣∣∣∣∣ > CZkn+b(r)

∣∣∣∣ F̃kn+b

 <∞. (7.19)
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We can assume that condition (8.2) holds for some 1 < p 6 2 (as when it holds for
some p > 1, then it also holds when p is replaced by any p̄ ∈ (1, p)). Since the envi-
ronment sequence (ξn)n>0 is i.i.d., 〈N r

l,kn+b,k, y〉/〈erMkn+b,k(n+1)+b−1, y〉 is independent
of F̃kn+b for all 1 6 r 6 d and n, l > 1, 1 6 k 6 n. Therefore, using Markov’s in-
equality and [22, Lemma 10.1] (which is a consequence of the Marcinkiewicz-Zygmund
inequality), the series in (7.19) can be bounded as follows:

∞∑
n=1

P
(∣∣∣∣∣

Zkn+b(r)∑
l=1

(
〈N r

l,kn+b,k, y〉
〈erMkn+b,k(n+1)+b−1, y〉

− 1
)∣∣∣∣∣ > CZkn+b(r)

∣∣∣ F̃kn+b

)

6
∞∑
n=1

1
Cp(Zkn+b(r))p

E
(∣∣∣∣ Zkn+b(r)∑

l=1

( 〈N r
l,kn+b,k, y〉

〈erMkn+b,k(n+1)+b−1, y〉
− 1

)∣∣∣∣p ∣∣∣ F̃kn+b

)

6
∞∑
n=1

( Bp
p Zkn+b(r)

Cp(Zkn+b(r))p
E
∣∣∣∣ 〈Zr

k , y〉
〈erM0,k−1, y〉

− 1
∣∣∣∣p),

where Bp is a constant depending only on p. The last series converges provided that
P-a.s. on E,

(
E
∣∣∣∣ 〈Zr

k , y〉
〈erM0,k−1, y〉

− 1
∣∣∣∣p
) ∞∑
n=1

(Zkn+b(r))1−p <∞. (7.20)

Therefore (7.19) holds if (7.20) is satisfied for all 1 6 r 6 d, n > 1.
It remains to prove (7.20), which is done below. Applying Corollary 2.10 with

y = er, we obtain the strong law of large numbers for Zx
n(r): for all 1 6 r 6 d, P-a.s.

on E,

lim
n→∞

1
n

logZn(r) = γ > 0.

Therefore we deduce that, P-a.s. on E,

∞∑
n=1

(Zn(r))1−p <∞. (7.21)

To finish the proof of (7.20) we just need to prove that, for all 1 6 r 6 d and
1 6 k 6 n,

E
∣∣∣∣ 〈Zr

k , y〉
〈erM0,k−1, y〉

∣∣∣∣p <∞. (7.22)

We shall prove (7.22) by induction on k. For k = 1, it holds by the assumption
(2.33) of Theorem 2.6. Suppose that (7.22) holds for some k > 1. We will prove that
it still holds for k + 1. Using the decomposition (7.2) together with the inequality
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(a+ b)p 6 2p−1(ap + bp), a, b > 0, we have, for all 1 6 r 6 d and 1 6 k,

E
(
〈Zr

k+1, y〉
〈erM0,k, y〉

)p
= E

 d∑
j=1

〈ejM1,k, y〉
〈erM0,k, y〉

Zr
1 (j)∑
l=1

∣∣∣∣ 〈N j
l,1,k, y〉

〈ejM1,k, y〉
− 1 + 1

∣∣∣∣
p

6 E

 d∑
j=1

〈ejM1,k, y〉
〈erM0,k, y〉

Zr
1 (j)∑
l=1

∣∣∣∣ 〈N j
l,1,k, y〉

〈ejM1,k, y〉
− 1

∣∣∣∣+ d∑
j=1

〈ejM1,k, y〉
〈erM0,k, y〉

Zr
1(j)

p

6 2p−1E

 d∑
j=1

〈ejM1,k, y〉
〈erM0,k, y〉

Zr
1 (j)∑
l=1

∣∣∣∣∣∣ 〈N
j
l,1,k, y〉

〈ejM1,k, y〉
− 1

∣∣∣∣∣∣
p

+ 2p−1E

 d∑
j=1

〈ejM1,k, y〉
〈erM0,k, y〉

Zr
1(j)

p. (7.23)

By the convexity of the function x 7→ xp on R+ and the fact that∑d
j=1

〈erM0,ej〉〈ejM1,n,y〉
〈erM0,n,y〉 =

1, we get that, for all 1 6 r, j 6 d and 1 6 k,

E

 d∑
j=1

〈ejM1,k, y〉
〈erM0,k, y〉

Zr
1(j)

p = E

 d∑
j=1

〈erM0, ej〉〈ejM1,k, y〉
〈erM0,k, y〉

Zr
1(j)

〈erM0, ej〉

p

6 E

 d∑
j=1

〈erM0, ej〉〈ejM1,k, y〉
〈erM0,k, y〉

(
Zr

1(j)
〈erM0, ej〉

)p
6

d∑
j=1

E
(

Zr
1(j)

M0(r, j)

)p
. (7.24)

Using again the convexity of x 7→ xp on R+, we next have for all 1 6 r, j 6 d and
1 6 k,

E

 d∑
j=1

〈ejM1,k, y〉
〈erM0,k, y〉

Zr
1 (j)∑
l=1

∣∣∣∣ 〈N j
l,1,k, y〉

〈ejM1,k, y〉
− 1

∣∣∣∣
p

= E

 d∑
j=1

〈erM0, ej〉〈ejM1,k, y〉
〈erM0,k, y〉

1
〈erM0, ej〉

Zr
1 (j)∑
l=1

∣∣∣∣ 〈N j
l,1,k, y〉

〈ejM1,k, y〉
− 1

∣∣∣∣
p

6 E

 d∑
j=1

〈erM0, ej〉〈ejM1,k, y〉
〈erM0,k, y〉〈erM0, ej〉p

Eξ
[( Zr

1 (j)∑
l=1

∣∣∣∣ 〈N j
l,1,k, y〉

〈ejM1,k, y〉
− 1

∣∣∣∣
)p ∣∣∣ Zr

1(j)
]

6 E

 d∑
j=1

EξZr
1(j)

M0(r, j)pEξ
∣∣∣∣ 〈N j

1,1,k, y〉
〈ejM1,k, y〉

− 1
∣∣∣∣p
 (7.25)

6
d∑
j=1

EM0(r, j)1−pE
∣∣∣∣ 〈Zj

k, y〉
〈ejM0,k−1, y〉

− 1
∣∣∣∣p, (7.26)

where the last step holds since the environment sequence (ξn) is i.i.d.
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Combining the relations (7.23)-(7.26), we obtain that for all 1 6 r, j 6 d and 1 6 k,

E
(
〈Zj

k+1, y〉
〈ejM0,k, y〉

)p
6 2p−1Bp

p

d∑
j=1

EM0(r, j)1−pE
∣∣∣∣∣ 〈Zj

k, y〉
〈ejM0,k−1, y〉

− 1
∣∣∣∣∣
p

+ 2p−1
d∑
j=1

E
(

Zr
1(j)

M0(r, j)

)p
. (7.27)

From this and the hypothesis of induction, we see that (7.22) still holds for k + 1.
Therefore it holds for all k > 1.

From (7.22) and (7.21) we get (7.20), which implies consecutively (7.19) and (7.18).
This ends the proof of (7.17), and thus of (7.16).

Step.2: prove the a.s. uniform convergence (2.41), with a decomposition argument.
Applying the result proved in the first step for y = ej, j = 1, · · · , d, we obtain

〈Zn+k, ej〉
〈ZnMn,n+k−1, ej〉

= 1 + ε1
n,k(j), (7.28)

where ε1
n,k(j)→ 0 PE-a.s., as n→∞. Thus

〈Zn+k, y〉
〈ZnMn,n+k−1, y〉

=
∑d
j=1〈Zn+k, yjej〉
〈ZnMn,n+k−1, y〉

=
∑d
j=1〈ZnMn,n+k−1, yjej〉(1 + ε1

n,k(j))
〈ZnMn,n+k−1, y〉

= 1 + εn,k(y), (7.29)
where

sup
y∈Rd

+\{0}
|εn,k(y)| =

∣∣∣∣∣
∑d
j=1〈ZnMn,n+k−1, yjej〉ε1

n,k(j)
〈ZnMn,n+k−1, y〉

∣∣∣∣∣
6 sup

16j6d
|ε1
n,k(j)| → 0 PE-a.s. (7.30)

This finishes the proof of the a.s. uniform convergence (2.41). �

8. Convergence of the normalized scalar product and proof of
Theorem 2.6

In this section we establish the convergence of W x
n (y) uniformly in y ∈ Rd

+ \ {0},
first for the convergence in probability, and then for the almost sure convergence.

Recall that E = {‖Zn‖ → ∞} denotes the explosion event, and PE−→
n→∞

denotes the
convergence in probability under the conditional probability PE(·) = P(·|E). Write

P−→
n→∞

for the convergence in probability under P.

Theorem 8.1. Assume conditions A1, A3 and γ > 0. Assume additionally that the
random environment sequence (ξn) is i.i.d. Then, for all x ∈ Nd \ {0},

sup
y∈Rd

+\{0}
|W x

n (y)−W x| P−→
n→∞

0. (8.1)
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The convergence in probability can be improved to the a.s. convergence if additionally
for some p > 1,

max
16r,j6d

E
(

Zr
1(j)

M0(r, j)

)p
<∞ and E‖M0‖1−p <∞. (8.2)

Proof. The proof is based on the convergence of the direction (Theorem 2.9) and the
Perron-Frobenius theorem (Theorem 2.1). In the following, we fix x ∈ Nd \ {0} and
assume that Z0 = x; for simplicity, we just write Wn(y) and W instead of W x

n (y) and
W x.

1) We first prove (8.1) about the convergence in probability. By the definition
(2.28) of Wn(y) and the Perron-Frobenius theorem (Theorem 2.1), we have for all
y ∈ Rd

+ \ {0},

Wn(y) = 1
a0,n−1〈u0, x〉

〈Zn, y〉
〈vn−1, y〉

(1 + εn(y)) (8.3)

(in fact the expression εn(y) depends also on x, but for simplicity we just write εn(y)
as x is fixed, and we will do the same in the following for similar expressions), where
supy∈Rd

+\{0}
|εn(y)| → 0 a.s. For y = un, it gives

Wn(un) = 1
a0,n−1〈u0, x〉

〈Zn, un〉
〈vn−1, un〉

(1 + ε′n), (8.4)

where ε′n → 0 a.s. From (2.43) of Theorem 2.9 about the convergence of the direction,
we know that on the explosion event E (in order that ‖Zn‖ 6= 0), and for y ∈ Rd

+\{0},
〈Zn, y〉

〈vn−1, y〉‖Zn‖
= 1 + ηn(y), (8.5)

where ηn(y) satisfies supy∈Rd
+\{0}

|ηn(y)| → 0 in probability under PE. (Notice that
ηn(y) is in fact well defined on the survival event S ⊃ E, but we only need to consider
E since we are conditioning on E.) Taking y = un, we see that on E,

〈Zn, un〉
〈vn−1, un〉‖Zn‖

= 1 + ηn(un), (8.6)

where ηn(un) → 0 in probability under PE. From (8.5) and (8.6), we get that on E
and for y ∈ Rd

+ \ {0},
〈Zn, y〉
〈vn−1, y〉

= 〈Zn, un〉
〈vn−1, un〉

(
1 + η′′n(y)

)
, (8.7)

where η′′n(y) satisfies supy∈Rd
+\{0}

|η′′n(y)| → 0 in probability under PE. Therefore, from
(8.3) and (8.4) we see that on E, we have a.s.

Wn(y)
Wn(un) = 1 + ε′′n(y), (8.8)

for all y ∈ Rd
+ \ {0}, where ε′′n(y) is well defined on E with supy∈Rd

+\{0}
|ε′′n(y)| PE−→

n→∞
0.

Recall that from Lemma 4.2, we haveWn(un)→ W a.s. So the above equality implies
that a.s. on E, we have

Wn(y) = W + ε′′′n (y) (8.9)
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for all y ∈ Rd
+ \ {0}, where ε′′′n (y) is well defined on E with supy∈Rd

+\{0}
|ε′′′n (y)| → 0 in

probability under PE. This gives that

sup
y∈Rd

+\{0}
|W x

n (y)−W x| PE−→
n→∞

0. (8.10)

Under condition A3, by [22, Lemma 7.1] or Lemma 3.6 (applied with Dn = D), we
get that for all n > 0 and 1 6 i 6 d, P-a.s.,

1
dD
6 un(i) 6 1 and 1

dD
6 vn(i) 6 1. (8.11)

By (8.11) we have for all y ∈ Rd
+ \ {0}, P-a.s.,

Wn(un) = 〈Zn, un〉
〈Z0M0,n−1, un〉

>
1
dD

〈Zn,1〉
〈Z0M0,n−1, un〉

. (8.12)

By Theorem 2.1, we have, P-a.s., as n→∞,

1
dD

〈Zn,1〉
〈Z0M0,n−1, un〉

∼ 1
dD

〈Zn,1〉
‖M0,n−1‖1,1〈Z0, u0〉〈vn−1, un〉

. (8.13)

Moreover, in fact that 〈vn−1, un〉 6 1 for all n > 1, we get

1
dD

〈Zn,1〉
‖M0,n−1‖1,1〈Z0, u0〉〈vn−1, un〉

>
1

dD‖y‖
〈Zn, y〉〈vn−1, y〉

‖M0,n−1‖1,1〈Z0, u0〉〈vn−1, y〉

>
1

(dD)2
〈Zn, y〉

‖M0,n−1‖1,1〈Z0, u0〉〈vn−1, y〉
. (8.14)

Using again Theorem 2.1, we have, P-a.s., as n→∞,

1
(dD)2

〈Zn, y〉
‖M0,n−1‖1,1〈Z0, u0〉〈vn−1, y〉

∼ 1
(dD)2

〈Zn, y〉
〈Z0M0,n−1, y〉

= 1
(dD)2Wn(y). (8.15)

So from (8.12)-(8.15) (and the fact that if xn > yn ∼ zn and xn → 0, then zn → 0),
we get that

lim
n→∞

sup
y∈Rd

+\{0}
Wn(y) = 0 a.s. on {W = 0}. (8.16)

On the other hand, we claim that

{W > 0} ⊂ E a.s. (8.17)

Indeed, we have

Wn(un) = 〈Zn, un〉
〈Z0M0,n−1, un〉

6
‖Zn‖

〈Z0M0,n−1, un〉
. (8.18)

From the result of Corollary 2.5 and (8.18), we get ‖Zn‖ → ∞ P-a.s. on the event
{W > 0}. This gives (8.17). From (8.16), (8.17), and Theorem 8.1 , we get that for
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all ε > 0,
P( sup

y∈Rd
+\{0}

|Wn(y)−W | > ε)

= P( sup
y∈Rd

+\{0}
|Wn(y)−W | > ε,W = 0) + P( sup

y∈Rd
+\{0}

|Wn(y)−W | > ε,W > 0)

6 P( sup
y∈Rd

+\{0}
Wn(y) > ε,W = 0) + P( sup

y∈Rd
+\{0}

|Wn(y)−W | > ε,E)

→ 0. (8.19)
This ends the proof of (8.1).

2) We then prove that under the additional condition (8.2),
sup

y∈Rd
+\{0}

|W x
n (y)−W x| −→

n→∞
0 P-a.s. (8.20)

In fact, under the additional condition (8.2), with the same argument as in 1) but by
using Theorem 2.9 for the a.s. convergence of the direction instead of the convergence
in probability, we can see that the convergence in probability (8.10) can be improved
to the a.s. convergence:

sup
y∈Rd

+\{0}
|W x

n (y)−W x| −→
n→∞

0 PE-a.s. (8.21)

Since S = E = {W > 0} a.s. under the given conditions, (8.21) together with (8.16)
implies (8.20). So the proof is finished. �

Proof of Theorem 2.6. Part 1 is contained in Lemma 4.2, Part 2 is contained in The-
orem 4.4 and Proposition 4.8, while Part 3 is just Theorem 8.1. �
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