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Abstract. This paper describes a hardware implementation of the mod-
ular multiplication using the Adapted Modular Number System (AMNS)
representation of large integers. We propose a novel adaptation of the
FIOS block Montgomery multiplication fitted to the AMNS representa-
tion. We explore multiple operations schedulings for the design of systolic
architectures well suited to this FIOS algorithm. Our scalable implemen-
tation targets Ultrascale FPGA devices and takes full advantage of mod-
ern DSP48E2 Slices. We provide open-source, ready to use designs which
are scalable to any width of the operands and a large range of AMNS
parameters. Our designs can perform 256, 512, 1024, 2048 and 4096 bits
modular multiplications in 0.178, 0.362, 0.764, 1.57 and 2.96 µs using 18,
35, 65, 125 and 245 DSP block respectively. They can allow for an im-
provement in computing speed and DSP AT (Digital Signal Processing
block Area-Time product) of up to 17% and 13% respectively compared
to state of the art implementations.

Keywords: AMNS · Montgomery multiplication · Hardware Imple-
mentation

1 Introduction

Modular multiplication modulo large numbers (notably primes) is at the core
of the main public-key cryptography protocols in use today such as the RSA
public-key cryptosystem [24] or the elliptic-curve based ECDSA [19] signature
scheme. In order to guarantee the resilience of these protocols they must handle
very large numbers (up to 4096 bits wide for RSA and 512 bits wide for ECDSA
or the isogeny-based SQIsign post-quantum algorithm). Modular multiplication,
which traditionally requires divisions is expensive in terms of computing time
and memory/hardware resource cost. As such considerable efforts have been
made to accelerate modular multiplication and increase its efficiency.

In 1985 Peter Montgomery introduced the Montgomery multiplication algo-
rithm which performs modular multiplications by replacing trial divisions with
simple binary right shifts which are easily implemented in software or hard-
ware [21]. This algorithm is specifically suited to the binary nature of computers
and is often used when multiple modular multiplications must be performed se-
quentially using the same modulus, as is the case in RSA (square and multiply



algorithm) or ECDSA (double and add algorithm). However very large integers
cannot be directly handled by general purpose processors, which usually manip-
ulate words of width 32 or 64 bits. Thus Koç et al. further refined Montgomery
multiplication in 1996 by describing block variants of the algorithm [17]. They
also provided a classification of these variants depending on the ways operands
are parsed and the order in which elementary operations are performed.

Montgomery multiplication can be used regardless of the shape of the mod-
ulus, however different prime moduli can lead to different implementations of
the modular multiplication. Specific classes of prime moduli leading to fast and
efficient modular multiplications have been studied such as the Mersenne primes.
Subsequently multiple other classes of prime moduli were explored such as the
pseudo-Mersenne primes [25], the generalized Mersenne primes [26] and the more
generalized Mersenne primes [9].

Instead of selecting a specific form of prime moduli, Bajard et al. overhauled
classical modular multiplication entirely in 2004 by introducing the Polynomial
Modular Number System (PMNS) [6]. The PMNS is an alternate polynomial
representation of large integers intended to further accelerate modular multi-
plications by taking advantage of the parallelization of operations. It is also a
redundant system where a single large integer can have multiple representatives
in a PMNS. This redundancy and parallel execution has the potential to in-
crease the security of cryptographic protocols and their resilience to hardware
attacks such as side-channel attacks. The Adapted Modular Number System is
a specific case of PMNS which allows for more efficient arithmetic operations.
Modular multiplications in AMNS involve a polynomial multiplication step and
a reduction step, the latter of which is critical for the overall performance of
the process. Different methods for performing this reduction step have been ex-
plored. The so-called Montgomery-like algorithm [22] was devised for use with
AMNS and further refined by Didier et al. [13]. As its name implies it follows
the same principles that are behind the Montgomery multiplication algorithm.
Didier et al. also devised refined generation processes for AMNS regardless of the
primality of the target modulus granted it is odd. Software implementations of
AMNS/PMNS have been proposed by Dosso et al. [14] and Coladon et al. [10],
and a reference hardware implementation of AMNS multiplications exists in [8],
which this work compares against.

Hardware acceleration of the Montgomery multiplication and its block vari-
ants has been explored thoroughly. Implementations involve trade-offs in terms of
maximum operating frequency, computing time, memory/resource costs, result
throughput, power consumption... [4, 16, 27, 28]. Namely some of these aspects
and trade-offs were studied in [23] through systolic architectures implementing an
adaptation of the FIOS block variant of Montgomery multiplication and target-
ing Ultrascale FPGAs by taking advantage of DSP48E2 arithmetic accelerator
components capabilities.

Our main contribution consists in the development of a ready-to-use scalable
design for the hardware acceleration of modular multiplications within AMNS.
This implementation is based on the work from [23] on the classical represen-
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tation of numbers and also targets Ultrascale FPGA devices. It is fully scalable
to any width of the operands/AMNS parameters which makes it highly flexible
and adaptable to multiple use cases. In order to develop this implementation
we propose a novel block variant description of the Montgomery-like multiplica-
tion suited to AMNS representation. We discuss the impact of the scheduling of
polynomial modular multiplications on the efficiency of our systolic architecture
designed for the FIOS algorithm. Finally we compare our implementation re-
sults to hardware implementations of the Montgomery multiplication using the
classical representation of numbers and the AMNS implementation of [8]. All of
our work, source, verification systems and results are open and freely available
at [3]. Furthermore we have developed easy to use python/sagemath tools for
the generation and study of PMNS (available at [3], see Appendix A).

We analyze implementation results for cryptographic sizes (256, 512, 1024,
2048 and 4096 bits). The acceleration of modular multiplication is crucial to
increasing the efficiency of cryptosystems such as Elliptic Curve Cryptography
(ECDSA 256-512 bits). Legacy cryptosystems which use larger data width such
as RSA (2048-4096 bits) are also likely to remain in use for the foreseeable future
as institutions and companies transition to Post-Quantum Cryptography (PQC)
algorithms. RSA-4096 is still widely used today by companies to secure traffic [2]
and by government agencies for instance to provide root certificates [1]. Isogeny-
based PQC cryptosystem like the SQIsign NIST candidate for standardisation
(256-384-512 bits) [12] or the CSIDH cryptosystem (512 bits) [7] also stand to
benefit from accelerating modular multiplications.

Organization of the paper: Section 1 of our paper constitutes this intro-
duction. Section 2 introduces the AMNS representation of numbers, its opera-
tions, and the block Montgomery-like multiplication method we have devised.
We describe our hardware implementation and discuss the impact of polynomial
multiplication scheduling in Section 3. Section 4 highlights and compares our
implementation results to state of the art hardware implementations. Finally
Section 5 concludes this paper.

2 The Adapted Modular Number System

In this section, we describe the AMNS representation of numbers and its multi-
plication operations. We propose a novel FIOS block variant adaptation of the
Montgomery-like multiplication algorithm. We do not delve into the generation
of AMNS parameters and conversion operations from the classical representa-
tion of numbers to the AMNS representation which are both covered in [13]. For
convenience we define the following conventions:

• Uppercase letters usually represent polynomial elements A ∈ Z[X] with
A =

∑N−1
i=0 Ai ·Xi while lowercase letters represent large integers a ∈ Z

• [p] represents modulo p operations while [E] represents a polynomial modulo
operation with reduction (see Figure 2)

• ||A||∞ represents the infinite norm of polynomial A with ||A||∞ = max0≤i<N |Ai|
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• A ≫ w represents a w-bit signed arithmetic right shift of each coefficient of
A (two’s complement representations of signed integers are both shifted and
sign-extended)

A PMNS B ⊂ Z[X] is a subset of polynomials with integer coefficients described
by the tuple (p,N,E, ρ, γ) where

• p is the prime modulus such that B represents Z/pZ
• N is the number of coefficients of polynomial elements of B
• E is a monic polynomial of degree N called the external reduction polynomial
• ρ is the upper bound on the infinite norm of elements of B
• γ is a root of E modulo p: E(γ)[p] = 0

Thus A ∈ B =⇒ deg(A) ≤ (N − 1) and ||A||∞ < ρ.
B is said to be a PMNS if ∀a ∈ Z/pZ, ∃A ∈ B such that A(γ)[p] = a.
Finally an AMNS is a PMNS such that E(X) = XN − λ where λ is a small
number. In the remainder of this paper λ is taken to be 2 or a small power of
2. An example of AMNS representation with p of width 64 bits is highlighted
Figure 1.

•N = 4 • E = X4 − 2 • ρ = 262144 • γ = 13020125524669010305

p = 13157208063559315537

a = 10797837636805329088

A representation of a in B is

A = 83086 + 7554 ·X + 34715 ·X2 − 4780 ·X3

Indeed A(γ)[p] = 10797837636805329088 = a and ||A||∞ ≤ 262144

Fig. 1. 64 bits example of an AMNS

2.1 AMNS multiplication

The straightforward multiplication of AMNS elements results in a polynomial
element that no longer belongs to the AMNS, both because it has too high a
degree and because its coefficients have too large an infinite norm as shown in
Figure 2.

E = X4 − 2

A = 83086 + 7554 ·X + 34715 ·X2 − 4780 ·X3

B = 80081 + 33377 ·X − 3680 ·X2 + 25843 ·X3

A ·B = 6653609966 + 3378093296 ·X + 2726385293 ·X2 + 2895288153 ·X3

− 92075238 ·X4 + 914730145 ·X5 − 123529540 ·X6

A ·B = 6653609966 + 3378093296 ·X + 2726385293 ·X2 + 2895288153 ·X3

(− 92075238 + 914730145 ·X − 123529540 ·X2) · (EEE + 2)

deg(A ·B) > N, ||A ·B||∞ > ρ =⇒ A ·B /∈ B
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External Reduction:
Reduced mod E(X) = XN − λ

A ·B[E] =

(
6653609966

− 2 · 92075238

)
+

(
3378093296

+ 2 · 914730145

)
·X +

(
2726385293

− 2 · 123529540

)
·X2

+ 2895288153 ·X3

A ·B[E] = 6469459490 + 5207553586 ·X + 2479326213 ·X2 + 2895288153 ·X3

deg(A ·B[E]) ≤ N − 1, ||A ·B[E]||∞ > ρ =⇒ A ·B /∈ B

Internal Reduction:

C = RedInt(A ·B[E]) = 5419 + 19939 ·X + 12918 ·X2 + 17941 ·X3

deg(C) ≤ N − 1, ||C||∞ < ρ =⇒ C ∈ B and C(γ)[p] = A(γ) ·B(γ)[p]

Fig. 2. AMNS multiplication

In order to derive an element that belongs to the AMNS we must first decrease
the degree of the polynomial multiplication’s result through an operation called
the External Reduction (described Figure 3). It simply consists in performing
polynomial multiplication operations modulo E. Indeed A ·B = Q ·E+R where
R = A ·B[E] is the remainder of the euclidean division by E and deg(R) ≤ N−1
since deg(E) = N . Finally E(γ)[p] = 0 =⇒ R(γ)[p] = (A ·B)(γ)[p].

Xk[E] =

{
Xk if k < N

λ ·X(k−N) if k ≥ N

Fig. 3. External Reduction process

After the external reduction process the coefficients are still too large for
the result to belong to the AMNS. In order to decrease the coefficient size an
Internal Reduction process must be performed. The most common method is
the Montgomery-like algorithm. It involves new parameters:
• For convenience, we set t = (1 + |λ|(N − 1)) which is a multiplicative fac-

tor involved in computing the bound on the infinite norm of the result of
polynomial multiplications modulo E [14].

• φ is a power of 2 such that φ > 2 · t · ρ for boundary consistency [14].
• The internal reduction polynomials M and M ′ such that M(γ)[p] = 0

and M ·M ′[E, φ] = −1[φ] with M ∈ B. When the Montgomery-like algorithm
is used such as described in Algorithm 1, ρ is taken such that ρ > 2·t·||M ||∞.

Algorithm 1 Montgomery-like
multiplication
Input: A,B,M,M ′, φ
Output: RES ∈ B

RES(γ)[p] = a · b · φ−1[p]
1: RES ← A ·B[E]
2: Q← RES ·M ′[E, φ]
3: RES ← RES +Q ·M [E]

4: RES ← RES

φ
5: return RES

Similarly to the Montgomery multipli-
cation using the classical representation
of numbers, the Montgomery-like algo-
rithm only involves multiplications and
modulo/division operations by a power
of two, which are easy to implement in
hardware by selecting either the most or
least significant bits of operands. An ex-
ample of computation is given Figure 4.
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• φ = 224 •M = −15681 + 51863 ·X + 416 ·X2 − 6054 ·X3

• E(X) = X4 − 2 •M ′ = 5676967 + 132653 ·X + 15298711 ·X2 + 13286439 ·X3

• p = 13157208063559315537 • γ = 13020125524669010305

A = 1a62ch + 1489dh ·X + 10b53h ·X2 + f26ch ·X3

B = 22de4h + 148e0h ·X + 1065h ·X2 + f41eh ·X3

step 1:RES = 89bd8547ah+ 7075db400h ·X+ 5d61a5ef8h ·X2+ 50f5803e9h ·X3

step 2: Q = e90e10h+ 29cde0h ·X+ d3cbch ·X2+ 32682dh ·X3

step 3:RES = 1912000000h+ b3a7000000h ·X+ 1beb000000h ·X2− 11ca000000h ·X3

step 4:RES = 1912h+ b3a7h ·X+ 1bebh ·X2− 11cah ·X3

Fig. 4. Montgomery-like multiplication Internal Reduction (hexadecimal notation)
according to algorithm 1

2.2 Signed Montgomery-like FIOS multiplication
The initial description of the Montgomery multiplication algorithm from [21]
for the classical representation of numbers was meant to handle data of ar-
bitrary bit width. Since general purpose processors typically manipulate fewer
data bits (32 or 64 bits) compared to cryptographic sizes, operands are sliced into
multiple data blocks and finer descriptions of the Montgomery algorithm have
been described. The seminal work on these block variants of the Montgomery
multiplication is [17]. The authors propose a classification of block variants de-
pending on the way operands are parsed, and the order in which multiplication
and reduction operations are performed. The two most popular variants are the
CIOS (Coarsely-Integrated Operand Scanning) and the FIOS (Finely-Integrated
Operand Scanning) variants. In CIOS, one block of the first operand multiplies
the full second operand before a reduction operation is performed while in FIOS,
every block-by-block multiplication is followed by a reduction operation.

In this section we strive to adapt block variants of the Montgomery multi-
plication algorithm to the AMNS representation of numbers using ”polynomial
blocks” by analogy with the classical representation of numbers. We then adapt
the methodology from [23] to develop a hardware accelerator for an AMNS ver-
sion of the FIOS Montgomery multiplication block variant.

As far as we are aware, up until now there were no block variants of this
algorithm specifically suited to the AMNS. As such software implementations of
AMNS multiplications usually require polynomial elements to have coefficients
which can be held within a single 32 or 64 bits wide variable (depending on the
processor architecture). We introduce the following parameters:
• Let w be the word width that a processing unit can handle, and W = 2w.
• Let s be the number of w-bit blocks required to hold coefficients such that
φ = 2sw.

An additional constraint is the use of negative coefficients in the A, B, and M
polynomials. To the contrary, in the classical representation the Montgomery
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multiplication algorithm and its block variants only handle positive integers.
Signed arithmetic is usually performed using two’s complement representation
of negative numbers. Performing arithmetic operations using two’s complement
representation requires sign extending operands to the maximum bit width of
the result and keeping the least significant bits of the final result (see Figure 5).
The notation swa denotes the two’s complement representation of a over s · w
bits.

swa =

{
a if a > 0

2sw − |a| if a < 0
2swa · b =2sw a · 2swb [22sw]

a = 7 4a = 0111b
sign−−−−−−→

extension
8a = 00000111b

b = −5 4b = 1011b
sign−−−−−−→

extension
8b = 11111011b

8a · b =8 a · 8b[28] = 00000111b · 11111011b[28] = 0000011011011101b[2
8]

8a · b = 11011101b =⇒ a · b = −35

Fig. 5. Example of two’s complement signed multiplication

In the example of Figure 5 operands a and b are first represented on 4 bits
using two’s complement. Their most significant bit is then replicated so as to
perform a sign extension over 8 bits prior to performing a signed multiplication.
Finally the multiplication is performed and the result is truncated to the least
significant 8 bits to obtain the actual result of the signed multiplication.

2.3 Our new polynomial block variant of FIOS

In order to adapt the FIOS block variant of the Montgomery multiplication
inspired from [23] to the AMNS representation of numbers we must fit the rep-
resentation to computing hardware (as illustrated Figure 6). We have to:

• Represent coefficients with two’s complement: swA =
∑N−1

k=0 swAk ·Xk.
For simplicity swA ⇐⇒ A in the remainder of this section and the signed
nature of arithmetic operations is left implicit unless specified otherwise
(notably in Algorithm 3). We also write Ak =

∑s−1
i=0 Aki · (2w)i in base 2w.

• Slice AMNS elements into ”block polynomials” whose coefficients have bit-
width w : A =

∑s−1
i=0 A•i · 2iw and ||A•i||∞ < 2w. Thus A•i =

∑N−1
k=0 AkiX

k.
Having to sign-extend the operands to the bit width of the result and retriev-

ing the least significant bits of the result is a mathematical view of signed arith-
metic. Computing hardware capable of handling arbitrarily large unsigned data
and whose elementary operations are the polynomial multiplication and addi-
tion modulo E could directly implement a signed version of the Montgomery-like
Algorithm 1 and would indeed require sign-extending operands to a bit-width of⌈
log2(t · φ2)e . Implementing these computations directly using common general
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purpose processors would be very costly in terms of performance and resource.
In practice processors have dedicated hardware/instructions meant to perform
signed arithmetic without having to alter the representation of operands thusly.
• p = 609751 • γ = 410669 • ρ = 128 • E = X4 − 2

•N = 4 • w = 3 • s = 4 • φ = 212

• a = 573030 •A = 59− 13 ·X + 3 ·X2 + 52 ·X3

• In Figure 6, A =

3∑
i=0

A•i ·
(
23
)i and A(X) =

3∑
i=0

Ai ·Xi

Polynomials within the blue dashed boxes are the ”block polynomials” A•i.

Fig. 6. Example of polynomial slicing for block Montgomery-like algorithm

Instead of directly performing polynomial multiplications modulo E we can
scan block polynomials of A one by one.

Algorithm 2 A-scan Montgomery-like
multiplication
Input: A,B,M,M ′

•0

Output: RES =
∑s−1

j=0 RES•j · 2jw

such that RES(γ)[p] ≡ a · b · φ−1[p]

1: RES ← 0

2: for i = 0 to s− 1 do
3: RES ← RES +A•i ·B[E]

4: Qi ← RES ·M ′
•0[E,W ]

5: RES ← RES +Qi ·M [E]

6: RES ← RES ≫ w

7: end for
8: return RES =

∑s−1
j=0 RES•j · 2jw

This leads to Algorithm 2 which is
an intermediate description between
a full polynomial and a completely
block polynomial version of the
Montgomery-like algorithm. In that
description all block polynomials
A•i are considered unsigned except
for A•s−1. Note that RES(γ)[p] =
a · b · φ−1[p]. Indeed Montgomery
multiplications are usually carried
out in the Montgomery domain
such that A(γ)[p] = a · φ[p] and
RES(γ)[p] = a · b · φ[p]. Multiplica-
tions by M ′ are replaced with poly-
nomial block multiplications by M ′

•0
which simplifies operations [15].
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Such an algorithm could be implemented directly using computing hardware
capable of performing a polynomial multiplication between a full polynomial and
a block polynomial whose coefficients are signed on w + 1 bits.

Finally Algorithm 2 can be further refined by scanning operands B and M
polynomial blocks by polynomial blocks and finely interleaving multiplication
steps in a way akin to the FIOS variant of the classical Montgomery multi-
plication (see [17] and [23]). A functional python/sagemath implementation of
Algorithm 3 is available at [3].

Algorithm 3 FIOS Montgomery-like
Input: A,B,M,M ′

•0

Output: RES =
∑s−1

j=0 RES•j · 2jw

such that RES(γ)[p] ≡ a · b · φ−1[p]

1: RES ← 0

2: for i = 0 to s− 1 do
3: RES•0 ← RES•0 +A•i ·B•0[E]

4: Qi ← RES•0 ·M ′
•0[E,W ]

5: RES•0 ← RES0 +Qi ·M•0[E]

6: RES•0 ← RES•0 ≫ w

7: for j = 1 to s− 1 do
8: RES•j−1 ← RES•j−1 +A•i ·B•j [E] +RES•j

9: RES•j−1 ← RES•j−1 +Qi ·M•j [E]

10: RES•j ← RES•j−1 ≫ w

11: RES•j−1 ← RES•j−1[W ]

12: end for
13: RES•s−1 ← RES•s−1[W ]

14: end for
15: return RES =

∑s−1
j=0 RES•j · 2jw

Like its classical representation counterpart, Algorithm 3 uses an outer loop
to scan block polynomials of A, generate the reduction parameter Qi and re-
duce the least significant block. An inner loop is used to scan blocks of B and
perform the remaining computation of A•i · B and Qi ·M , with multiplication
and reduction steps finely interleaved one after the other. All block operands in
Algorithm 3 are considered to be unsigned except during the last iteration of
the inner loop and outer loop, where A•s−1, B•s−1 and M•s−1 carry sign data
and signed arithmetic is performed.

Algorithm 3 could be directly implemented using computing hardware capa-
ble of performing polynomial multiplications and additions modulo E between
two block polynomials whose coefficients are signed using w + 1 bits.
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3 Hardware implementation

This section describes the target device of our hardware implementation and
its arithmetic components as well as the structure of our systolic architecture.
We then discuss multiple schedulings of operations for the modular polynomial
multiplication operation and their impact on performance/resource cost. Finally
we describe the scheduling of operations used to implement Algorithm 3.

3.1 Ultrascale FPGA and DSP48E2

FPGAs are matrices of elementary components which can be used to quickly
prototype and implement a wide range of electronic circuits in conjunction with
specific hardware description languages, as well as synthesis and routing devel-
opment tools. In 2013, Xilinx unveiled the Ultrascale family of FPGA devices
which include powerful DSP48E2 arithmetic accelerator components. We chose
to develop a fine hardware description of this technology which has seldom been
used to implement modular multiplication accelerators. DSP48E2 components,
which are also used in [23], have capabilities suited to the implementation of
block Montgomery algorithms as described Figure 7. These components feature

• A 27x18 bits asymmetric signed multiplier;
• A 3-input 48-bit adder which can be used to add the result of a multiplica-

tion, accumulate data and add external data in a single clock cycle;
• The ability to perform a native 17-bit right shift of accumulator data without

requiring additional external resource or computing time;
• Cascade capabilities to quickly share data between two DSP blocks;
• Three optional levels of registers on the multiplier path (ABreg, Mreg, Preg);
• An optional Creg register on the external pathway to the adder.

Fig. 7. Diagram of a DSP48E2 block and λ multiplication path
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Like [23] we set the word width of our operand slicing to w = 17, namely
to use the DSP native 17-bit right shift efficiently and sign-extend inputs to the
DSP block when signed multiplication is required. This slicing also lets us take
advantage of the asymmetric 27 bits input to the DSP multiplier to perform a λ
multiplication of coefficients prior to feeding them to the DSP when necessary.
This imposes a boundary condition: dlog2(λ)e+w+1 ≤ 27. λ is usually be taken
to be 2 or a small power of 2 for performance reasons since λ multiplication then
merely requires bit-shifting the input.

Using these components we designed a systolic architecture to implement
Algorithm 3. A systolic architecture is a matrix of Processing Elements (PEs)
which operate in lockstep and can communicate data with one another. The
structure of our systolic array is illustrated Figure 8. In [23], the authors use a
linear systolic array where processing elements start their operations one after
the other in a single column. Contrarily, it seems natural for an AMNS imple-
mentation to use N columns of processing elements in a 2D systolic array, each
column dedicated to the computation of a single coefficient of the result. These
columns can process data in parallel (see scheduling Subsection 3.2). Each line
of processing elements computes operations related to a single iteration of the
outer loop of Algorithm 3 and can start their subroutine as soon as they are
provided data by the previous line of processing elements.

Fig. 8. Illustration of our systolic architecture (N = 4, s = 3)
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In Figure 8, coefficients required for the computations of a single line of PEs
are exchanged between PEs on the same line. Data required for a line of PEs to
proceed with its computations is provided by the previous line of PEs.

The configuration of DSP48E2 blocks in processing elements is fixed. We
do not use the cascade capabilities of DSP blocks, which could lead to conges-
tion and decreased maximum operating frequency as our processing elements
are more complex and numerous than those used in [23]. This also promotes
scalability as it relaxes constraints on our synthesizer and routing tool, which
are no longer required to use DSP blocks that are directly next to one another
within the FPGA. We chose to use the ABreg, Preg and Creg registers, which
provide a good compromise between the maximum operating frequency of our
circuit and the total number of clock cycles required for computation.

3.2 Scheduling of polynomial modular multiplication

There are multiple ways of scheduling a polynomial modular multiplication,
which have different impacts on the performance and resource cost of the imple-
mentation. In this section we explore two extreme cases of scheduling and their
consequences given N parallel processing elements which can perform a signed
multiplication of two w-bit coefficients (potentially a λ multiplication) and ac-
cumulation of the results. For the remainder of this section, Ã and B̃ represent
polynomials whose coefficients have width w bits and which can be handled by
a single line of processing elements.

Target Cycle Coefficients
XXX0 XXX1 XXX2 XXX3 XXX4

Ã Ã0 Ã1 Ã2 Ã3 Ã4

B̃ B̃0 B̃1 B̃2 B̃3 B̃4

Ã · B̃[E] 1 Ã0B̃0 Ã0B̃1 Ã0B̃2 Ã0B̃3 Ã0B̃4

2 + λÃ1B̃4 + Ã1B̃0 + Ã1B̃1 + Ã1B̃2 + Ã1B̃3

3 + λÃ2B̃3 + λÃ2B̃4 + Ã2B̃0 + Ã2B̃1 + Ã2B̃2

4 + λÃ3B̃2 + λÃ3B̃3 + λÃ3B̃4 + Ã3B̃0 + Ã3B̃1

5 + λÃ4B̃1 + λÃ4B̃2 + λÃ4B̃3 + λÃ4B̃4 + Ã4B̃0

Table 1. Congested Scheduling of polynomial modular multiplication (N = 5)

The first scheduling we suggest is highlighted in Table 1. Each computing
step corresponds to a different clock cycle. In this scheduling a single coeffi-
cient of Ã is used by all processing elements during each clock cycle, while a
different coefficient of B̃ is used by each processing element at any given time.
Subsequent computations involve feeding the next coefficient of Ã to all process-
ing elements, and rotating coefficients of B̃ between processing elements on the

12



same line. The issue with this scheduling is that if coefficients of Ã are stored in
a single source register, feeding a single coefficient to all PEs will generate a high
fanout/density of signals especially as N increases which is detrimental to scal-
ability. Consequently high congestion will decrease the maximum frequency of
our implementation and increase resource cost as our development tools struggle
to route all signals as is illustrated Figure 9.

Fig. 9. Congested PE line

A possible solution to this issue is to provide N copies of Ã in multiple
registers. However this would cost a lot of hardware resource and additional
clock cycles to fill up these registers. To remedy these issues, we propose a
relaxed scheduling (see Table 2).

Target Cycle Coefficients
XXX0 XXX1 XXX2 XXX3 XXX4

Ã · B̃[E] 1 Ã0B̃0 λÃ3B̃3 Ã1B̃1 λÃ4B̃4 Ã2B̃2

2 + λÃ2B̃3 + Ã0B̃1 + λÃ3B̃4 + Ã1B̃2 + Ã4B̃0

3 + λÃ4B̃1 + λÃ2B̃4 + Ã0B̃2 + Ã3B̃0 + Ã1B̃3

4 + λÃ1B̃4 + λÃ4B̃2 + Ã2B̃0 + Ã0B̃3 + Ã3B̃1

5 λÃ3B̃2 + Ã1B̃0 + λÃ4B̃3 + Ã2B̃1 + Ã0B̃4

Table 2. Relaxed Scheduling of polynomial modular multiplication (N = 5)

In this scheduling, the congestion issue is avoided as is shown Figure 10 by
making sure that no coefficient of A or B are used more than once by PEs at
any given time. Subsequent computations involve a right rotation of coefficients
of A and a left rotation of coefficients of B between PEs. The fact that these
transformations are of the same nature also simplifies the circuit compared to the
congested scheduling. Although the pattern of λ multiplications and the routing
of signals might seem more complex, synthesizer and routing tools can accom-
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modate these changes. The drawback of this scheduling is that it is only possible
for N an odd number of coefficients contrary to the congested scheduling, which
is valid regardless of the value of N . The relevance of this choice is explored in
Subsection 4.1.

Fig. 10. Relaxed PE line
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3.3 FIOS Montgomery-like scheduling

The implementation of the FIOS Montgomery-like algorithm using our systolic
architecture is fairly straightforward.

start cycle end cycle target variable operation
1 1 LOAD(ABreg)

2 N + 1 RES•0 A•i ·B•0[E] +RES•0

N + 2 N + 2 TEMP FIRST(A•i ·B•1[E])

N + 3 2N + 2 Qi RES•0 ·M ′
•0[E,W ]

2N + 3 2N + 3 TEMP SECOND(A•i ·B•1[E]) + TEMP
2N + 4 3N + 3 RES•0 Qi ·M•0[E] +RES•0

3N + 4 4N + 1 RES•0 REMAINING(A•i ·B•1[E]) + TEMP
+RES•0 ≫ w

4N + 2 5N + 1 RES•0 Qi ·M•1[E] +RES•0 +RES•1

5N + 2 6N + 1 RES•1 A•i ·B•2[E] +RES•0 ≫ w

6N + 2 7N + 1 RES•1 Qi ·M•2[E] +RES•1 +RES•2

7N + 2 8N + 1 RES•2 A•i ·B•3[E] +RES•1 ≫ w

8N + 2 9N + 1 RES•2 Qi ·M•3[E] +RES•2 +RES•3
...

(2s− 1)N + 2 2sN + 1 RES•s−2 A•i ·B•s−1[E] +RES•s−3 ≫ w

2sN + 2 2sN +N + 1 RES•s−2 Qi ·M•s−1[E] +RES•s−2 +RES•s−1

2sN +N + 2 2sN +N + 2 RES•s−1 RES•s−2 ≫ w

Table 3. Scheduling of the FIOS Montgomery-like algorithm for the ith line of PEs

Table 3 describes the scheduling of operations for iteration i of the outer loop
of Algorithm 3 handled by the ith line of processing elements. Initial values of
RES•j are assumed to be provided by the previous (i − 1)th line of processing
elements. Polynomial multiplications modulo E are performed according to the
chosen scheduling as described in Subsection 3.2. The three input adder of DSP
block is used every time two additions must be performed during the same
clock cycle, and the native 17 bits right shift of data is taken advantage when
RES•j−1 ≫ w is computed.

The first operation performed consists in the initial loading of data into the
ABreg registers of the DSP block. Subsequently RES•0 is computed as described
by line 3 of Algorithm 3. Data from RES•0 must be reused by the DSP block to
compute the Qi parameter but it is not immediately available since it must pass
through the ABreg registers. Thus in order not to waste computation cycles we
start computing the FIRST operation of A•i ·B•1[E]. The same is true while the
Qi parameter is being computed and the SECOND operation of A•i ·B•1[E] is
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performed. The final value of RES•0 used in the ith iteration of the outer loop
is then calculated (as well as the REMAINING operations of A•i ·B•1[E]). The
next, (i + 1)th line of processing elements can start its operation 4N + 2 clock
cycles after the start of the ith line of PEs as the final value of RES•0 will be
available just in time to be used by the (i + 1)th PE line. Further scheduling
assumes a regular behavior and performs operations described by the inner loop
of Algorithm 3 until the end of an FIOS Montgomery-like outer loop iteration.
Each PE line of PEs requires 2 · s ·N +N + 2 clock cycles to perform an outer
loop iteration. Since s PE lines are used in the systolic architecture and PE lines
start operations every 4N +2 clock cycles, the complete FIOS Montgomery-like
algorithm is performed in a total of (4 ·N + 2) · (s− 1) + 2 · s ·N +N + 2 clock
cycles.

4 Implementation results

In this section we first study the relevance of our choice of scheduling for the
polynomial multiplication modulo E and its theoretical impact on performance,
DSP resource cost, and DSP-wise efficiency. We then observe its influence on the
actual scalability of our implementation. Finally we compare our implementation
results with results from the state of the art. λ is set to 2.

4.1 Choice of polynomial modular multiplication scheduling

Although we have chosen the relaxed scheduling of polynomial multiplication
modulo E as described in Subsection 3.2, it constrains the use of an odd number
of coefficients N for the representation of AMNS elements in contrast with the
congested scheduling, which allows the use of any value for N . We can evaluate
the relevance of this choice for cryptographic sizes of p given that the total
number of clock cycles and processing elements required is independent of the
choice of polynomial modular multiplication scheduling. We first approximate s
the number of polynomial blocks/PE lines as a function of N .

• Let t = (1 + |λ| · (N − 1)) and w = 17.
• Let width = dlog2(p)e.

• Let ||M ||∞ ≈ p

1

N by virtue of the generation process of AMNS (not detailled

here, see [13]). Thus dlog2(||M ||∞)e ≈
⌈

width
N

⌉
.

• Let ρ(N) be a power of two such that ρ(N) > 2 · t · ||M ||∞
namely log2(ρ(N)) =

⌈
log2(2 · t) +

width
N

⌉
.

ρ(N) is taken to be a power of two to simplify conversions from the classical
representation to the AMNS representation.

• Let s(N) =

⌈
log2(2 · t) + log2(ρ(N)) + 1

w

⌉
. Note that φ = 2sw.
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Figures 11, 12 and 13 from Annex B present respectively the total number
of clock cycles, of processing elements, and the PEs/clock cycles product as a
measure of efficiency (the lower the better) for cryptographic sizes of p ranging
from 256 to 4096 bits and N ranging from 3 to 20. Increasing N beyond 20
has no further impact on s and thus decreases performance/increases resource
cost. For each of these metrics the best theoretical N is annotated. When the
best N is even, the next best odd N is also annotated. Regardless of the metric,
the difference between the best even N and best odd N is less than 0.6% of the
best solution in terms of metric. Furthermore using the best solution with N odd
usually results in a smaller N , which tends to provide better maximum operating
frequency in implementations. Additionally the relaxed scheduling corresponds
to the least congested system possible for our implementation and will thus tend
to provide better maximum frequency as highlighted in Table 4. This study leads
us to believe that the constraint of using N odd has a negligible negative impact
compared with its benefits.

Scheduling N s Frequency (MHz)
Congested 5 4 625
Congested 11 2 550
Relaxed 5 4 625
Relaxed 11 2 600

Table 4. Illustration of scalability depending on scheduling

Table 4 illustrates the difference in scalability between implementations using
either the congested or relaxed scheduling of polynomial modular multiplication
and justifies our choice of the relaxed scheduling. Indeed as N increases the
congested scheduling incurs a sharper drop in the maximum frequency of the
system while the relaxed scheduling remains stable at around 600 MHz for the
same values of s.

4.2 State of the Art comparison

In Table 5 we compare the implementation results of our AMNS design with
the equivalent CA0D2C1E design from [23] which uses the classical representa-
tion of numbers for multiple cryptographic sizes. We also compare against the
work from [8], which implements AMNS with a fixed number of 4 coefficients
for multiple cryptographic sizes. Area-Time product (AT) is computed for the
three main types of resource used (DSP/LUT/FF) and is meant to be a measure
of efficiency (the lower the better). While implementations from [8] provide the
fastest performance owing to their low number of clock cycles, they require a
very large number of DSP blocks (up to 6.7 times more than our most conser-
vative implementation) which leads to a poor DSP AT. Although they are still
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Design Freq Latency DSP/LUT/FF Time DSP/LUT/FF
parameters (MHz) (cc) (µs) AT (resource.µs)

width = 256

CA0D2C1E [23] 625 140 16/1759/3365 0.224 3.58/394/754
[8] 200 33 120/2728/- 0.165 19.8/450/-
[8] 194 47 91/1718/- 0.242 22.0/415/-
[29] - - 289/87622/2952 0.01755 5.072/1537/51
[5] - - 248/9450/- 0.0852 21.13/805/-
[18] 86.79 29 120/6688/5163 0.334 40.1/2234/1724
[20] 68 - 0/187900/- 0.0147 0/2762/-

N = 3, s = 6 625 111 18/4156/5145 0.178 3.20/738/914
N = 5, s = 4 625 113 20/4824/5541 0.181 3.62/872/1000
N = 7, s = 3 625 111 21/5109/5637 0.178 3.73/907/1000
N = 11, s = 2 600 103 22/5421/5528 0.172 3.78/931/949
width = 512

CA0D2C1E [23] 625 275 31/3443/6602 0.440 13.6/1510/2900
[8] 162 33 188/29985/- 0.204 38.4/6120/-
[8] 182 47 176/37138/- 0.258 45.4/9580/-
[29] - - 1089/329868/4143 0.02568 27.97/8471/106
[18] 61.3 29 560/23511/11307 0.472 264.3/11097/5336

N = 5, s = 7 525 209 35/8044/10510 0.398 13.9/3200/4180
N = 7, s = 5 550 199 35/8124/10128 0.362 12.7/2940/3660
N = 11, s = 4 525 239 44/10498/12350 0.455 20.0/4780/5620
N = 13, s = 3 500 201 39/9268/11033 0.365 14.3/3390/4030
width = 1024

CA0D2C1E [23] 625 545 61/6785/12108 0.872 53.2/5920/10600
[11] 244 1372 9/5003/- 5.63 50.7/28166/-

N = 5, s = 13 525 401 65/14999/19272 0.764 49.6/11500/14700
N = 11, s = 7 500 443 77/18282/21598 0.886 68.2/16200/19100
width = 2048

CA0D2C1E [23] 625 1085 121/13487/22602 1.74 210/23400/39000
[11] 246 2945 9/5964/- 11.99 107.9/71508/-

N = 5, s = 25 500 785 125/29182/35008 1.57 196/45800/54900
width = 4096

CA0D2C1E [23] 625 2174 242/26978/44806 3.48 842/93800/156000
[11] 175 2945 27/11898/- 16.82 454.1/200124/-

N = 5, s = 25 525 1553 245/58161/66740 2.96 725/172000/197000
Table 5. Comparison of implementation results
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competitively efficient for LUT AT when width = 256, their LUT cost explodes
for width = 512, leading to poor LUT AT. They also have a fairly low maximum
frequency compared to our implementations, which may be due to congestion
issues and the fact they are implemented on older Xilinx Artix 7 technology
compared to our use of Ultrascale devices.

When comparing with the implementation of [23], our most conservative
designs require slightly more DSP blocks (between 2 or 4 additional blocks).
However they also require up to 20% fewer clock cycles (up to 27% in the case
of 2048 bits), leading to faster computations (up to 17% in the case of 512 bits).
This allows us to propose designs with a comparable or better DSP AT (up to
13% in the case of 4096 bits). Our implementations require twice as many LUTs
and FFs, leading to poorer LUT and FF AT.

We also compare against other methods based on the classical representa-
tion of numbers. [29] also uses an Ultrascale+ target device for data widths
256 and 512 bits. Despite its implementations being 10 times faster than ours,
it uses more LUTs and up to 31 times more DSP blocks, hence a worse DSP
and LUT AT. It does use fewer FFs, likely due to registers within DSP blocks
being used instead. Likewise the 256 bits implementation from [5] which ex-
ploits the RNS representation of numbers on an Ultrascale+ target uses vastly
more DSP blocks than ours. Although it is faster than our implementation, it
is still slower compared to [29] which leads it to have a worse LUT AT and
a 7 times higher DSP AT. Implementations using the Karatsuba method for
integer multiplication have also been presented in [18] and [20]. Interestingly
the 256 bits implementation from [20] uses no DSP blocks in exchange for an
extremely high number of LUTs which causes it to have a worse LUT AT despite
it being the fastest 256 bits implementation. Implementations from [18] have
worse DSP, LUT and FF AT than ours because of their higher resource cost
and slower execution speed. This might not be indicative of the performance or
efficiency of Karatsuba based Montgomery multiplication implementations since
methods such as Karatsuba typically target data with larger bit-width. For in-
stance the FFT-based implementations from [11], although slower and having
a worse LUT AT, uses much fewer resource than ours. Thus it has a comparable
DSP efficiency to ours for width 1024 bits but much better efficiency for widths
2048 and 4096 bits where it boasts almost half as much DSP AT than we do.

Actual implementation results of our designs confirm the predictions from
Figure 11 as far as performance is concerned but do not quite follow the DSP AT
predictions from Figure 13 because of the slight decrease in maximum operating
frequency incurred by the increase in number of coefficients N and number of
polynomial blocks s.
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5 Conclusion and perspectives

This work has presented a complete FPGA hardware implementation of the
modular multiplication using the AMNS representation of large numbers. It is
meant to serve as a building block for the acceleration of cryptography protocols
involving modular multiplications such as RSA, ECDSA or the isogeny-based
post-quantum algorithm SQIsign. We have introduced and developed a novel
polynomial block description of the Montgomery-like algorithm used in AMNS
multiplication. Our methodology can be used to adapt any block variant of
the Montgomery multiplication algorithm previously intended for the classical
representation of numbers to the AMNS representation. We have subsequently
implemented a hardware accelerator of the FIOS Montgomery-like algorithm
through a 2D systolic architecture. This architecture takes full advantage of the
features available in the modern DSP48E2 arithmetic components of Ultrascale
FPGAs. Our design is highly flexible and adaptable to any number of coeffi-
cients, size of coefficients and other AMNS parameters which makes it versatile
and suited to a number of different applications. We have studied multiple dif-
ferent scheduling of operations for the polynomial modular multiplication and
explored their impact on the performance, resource cost and efficiency of the
system. We also demonstrated that the constraint we imposed of using an odd
number of coefficients N had negligible impact on the performance and resource
cost of our AMNS designs. In order to validate our design we have developed
software python/sagemath tools which can be used to effortlessly explore and
manipulate AMNS representations. All of our work, source, verification utilities
and results are open and available at [3] as a ready-to-use design. Our AMNS
design are competitive in terms of performance, DSP cost and DSP efficiency.
They can perform 256, 512, 1024, 2048 and 4096 bits modular multiplications
in 0.178, 0.362, 0.764, 1.57 and 2.96 µs using 18, 35, 65, 125 and 245 DSP block
respectively. They allow for an improvement in computing speed and DSP AT
of up to 17% and 13% respectively compared to [23].

Perspectives for this work include further software implementation of our
novel FIOS Montgomery-like algorithm as well as the study of other block vari-
ants of the Montgomery multiplication applied to AMNS. Indeed besides hard-
ware acceleration the FIOS Montgomery-like algorithm is also intended to ac-
celerate software implementations using general purpose processors. Finally we
intend to explore the resilience of hardware implementations based on AMNS
against Side-Channel attacks.
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PMNS_sage_example

April 17, 2024

[25]: load("PMNS.sage")
import random

[26]: width = 256

p = random_prime(2**width-1, False, 2**(width-1))

w = 17

N = 5

LAMBDA = 5

AMNS_inst = PMNS(p, f"x**{N}-{LAMBDA}", phi_word_width = w)

[27]: print("rho: ",AMNS_inst.rho)
print("phi: ", AMNS_inst.phi)

rho: 18014398509481984
phi: 295147905179352825856

[28]: a = random.randrange(2**(width-1), p)
b = random.randrange(2**(width-1), p)
print("a: ", a)
print("b: ", b)

a:
62577267816865040374513551895071381207230729393424714378763245797825372801858
b:
59019625754205588799238007112607496435520975214689516963400202087396311124454

[29]: A = AMNS_inst(a)
B = AMNS_inst(b)
print("A: ", A)
print("B: ", B)

A: -14534195664711727*x^4 - 8975346308491892*x^3 - 17266101555795343*x^2 -
38044210229715083*x - 63296665373787115

1

A AMNS sagemath toolchain example

23



B: -13839353480681752*x^4 - 10102002257426769*x^3 - 20338179628853391*x^2 -
38033682203030272*x - 54656749766418919

[30]: print("a: ", ZZ(A))
print("b: ", ZZ(B))

a:
62577267816865040374513551895071381207230729393424714378763245797825372801858
b:
59019625754205588799238007112607496435520975214689516963400202087396311124454

[32]: print("C: ", A*B)
print("a*b[p]: ", a*b % p)
print("C_conv: ", (A*B).conv_out())

C: -1682210683506286*x^4 - 2049296723737705*x^3 - 3278128968715415*x^2 -
2586983793371265*x - 7338291625272665
a*b[p]:
15544610659731745268727241451548090940986617564868848536444988739415207079853
C_conv:
15544610659731745268727241451548090940986617564868848536444988739415207079853

[35]: print("a^25[p]: ", power_mod(a, 25, p))
print("A^25: ", A**25)
print("A^25_conv: ", (A**25).conv_out())

a^25[p]:
60427471186010314968452702077853330592263650833126162984933156018100225582042
A^25: -1893350003871704*x^4 - 98327871230488*x^3 - 4843428483133068*x^2 -
5536477699931177*x - 4855191540622047
A^25_conv:
60427471186010314968452702077853330592263650833126162984933156018100225582042
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B Estimation of time/resource cost graphs

Fig. 11. Approximate number of clock cycles as a function of N

Fig. 12. Approximate number of processing elements as a function of N
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Fig. 13. Time-area product of PEs and clock cycles as a function of N
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