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ABSTRACT. The coupled criterion, using both stress and energy conditions, 

satisfactorily predicts the crack nucleation starting from a stress concentration point in 

brittle or quasi-brittle materials under monotonic loading. But it is a priori difficult to 

generalize to fatigue. A first fatigue model was established based on a Dugdale 

cohesive zone model but in turn it proved difficult to be extended to complex loadings. 

The present work is twofold: (i) showing how to generalize the coupled criterion to take 

into account both shear and tensile strengths as well as mode I and II toughness to 

predict crack nucleation under monotonic complex loadings; (ii) extending this 

criterion to the crack nucleation under fatigue cycles by considering a gradual 

degradation along the presupposed crack path. One parameter is identified so that the 

rate of advance coincides with that of a Paris law in case of a pre-existing long crack. 

As derived from the model, the growth is intermittent which provides an explanation for 

the striations observed in experiments. 

A relationship is established between the initial crack velocity and the exponent of the 

singularity characterizing the stress concentration, showing that the weaker the 

singularity and the smaller the crack advance rate. From these considerations one can 

deduce that the short crack range can be characterized by the distance required to 

reach a steady velocity. 

 

 

INTRODUCTION  

 

The coupled criterion, using both stress and energy conditions [1], was developed to 

predict crack nucleation at stress concentration points in brittle materials under 

monotonic loading.  It was established using asymptotic expansions and theory of 

singularity and gave satisfactory predictions. However, in its original form, it appeared 

difficult to generalize to fatigue. It was a priori dedicated to brittle fracture and did not 

seem able to integrate concepts such as the accumulation of damage or plasticity. That 

is why we tried in a first step to develop a fatigue criterion [2] based on the use of 

Dugdale’s cohesive zone model (CZM) [3]. It was originally developed as a simplified 

model of crack tip plasticity: the traction acting ahead of the crack tip cannot exceed a 

threshold value denoted here 
cσ (the tensile strength), but corresponding to the plastic 

flow threshold in the original model. It was extended to V-notches in homogeneous 
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materials [4] and proved that, under symmetric monotonic loadings, such a model gave 

similar answers to the coupled criterion. The generalization to fatigue was obtained by 

exploiting the following idea: there is an accumulation of the successive elementary 

openings of the cohesive zone until it reaches a critical value [5]. This model is similar 

to a kind of cumulative plasticity. However, this approach has had to be modified 

because it leads systematically to a Paris exponent [6] equal to 4 which is a special case 

poorly adapted to quasi-brittle materials. For this purpose, an alternative interpretation 

of the accumulation law was made which is more consistent with the concept of 

cumulative damage. We proposed that only an adjustable part of the opening energy is 

converted into damage while the other is restored. The partition is achieved by using a 

parameter which can be identified in the particular case of a pre-existing long crack 

using a known relationship with the Paris exponent. 

Unfortunately these results are difficult to generalize to complex loadings or other 

geometries that will inevitably require the concept of mode mixity. All these statements 

will be adapted to develop the model presented below. 

 

COMPLEX MONOTONIC LOADINGS 

 

Before focusing on fatigue, the first stage is to generalize the coupled criterion [2] to 

monotonic complex loadings. This was required in many situations examined in 

different contexts such as the study of bonded structures under complex loading using 

the Arcan test [7] (Fig. 1) for instance.  

 

 
Figure 1. The Arcan test (left) and a PMMA specimen with an adhesive joint (right). 

Such a setup allows a complete range of mixity from a pure symmetric mode (loading 

angle 0°) to a pure antisymmetric one (loading angle 90°). 

 

The Williams expansion of the elastic solution ( , )U r θ , in polar coordinates emanating 

from the notch root, is written with two singular terms, and a mixity parameter m  
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Where σ  and τ  hold for the tensile ( θθσ ) and shear (
rθσ ) components of the stress 

tensor. The coefficients 1k  and 2k  are the generalized stress intensity factors (GSIF) of 

the two singular terms characterized by the exponents 1λ  and 2λ  and the two modes 

1( )u θ  and 2 ( )u θ , respectively symmetric and antisymmetric with respect to the 

bisector. The functions 1( )s θ  and 1( )t θ  (resp. 2 ( )s θ  and 2 ( )t θ ) are associated with the 

components θθ  and rθ  of the stress field derived from 1( )u θ  (resp. 2 ( )u θ ) through the 

elastic constitutive law. Note that the definition of m implies 1 0k ≠ ,  the particular case 

1 0k =  refers to the pure mode II that can be treated similarly to the pure mode I. Energy 

and stress conditions give  
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Where 
cG  is the toughness, and where  and f fσ τ  are the tensile and shear strength at 

failure under mix mode loading (the mixity is characterized by µ ). According to (1)  
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The scaling functions 
iA  were defined in [8] and 0θ  is the crack direction. With the 

additional relation ( 2q =  holds for an elliptical criterion) 
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With the Hutchinson and Suo [9] condition, setting 1tan ( )ψ µ−=  and where 
IcG  and 

IIcG  respectively denote mode I and II toughness 
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The general form of the criterion can be written 
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Where 
0

1
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l

c c
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l
= ∫  corresponds to the mean toughness along the presupposed 

crack path and 0 0( )m m l= , 0l  being the solution to the implicit equation 
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A more general form of the criterion (yet slightly heavier to handle) was established by 

Garcia and Leguillon [10], it avoids the asymmetry between mode I and mode II that 

appears through the mixity parameter m  defined in (4).  

 

EXTENSION TO FATIGUE LOADINGS 

 

 
Figure 2. Schematic view of a fatigue loading vs. time t. The load intensity is 

characterized by the GSIF 1k  of the singularity at the root of the V-notch, 1ck  is its 

critical value under monotonic loading and 1mk  the maximum reached during a cycle. 

452



We assume that 
cG  remains approximately constant along the crack path (it is not a 

strong assumption since the crack extension lengths are very small especially in fatigue, 

which is easy to check a posteriori). For simplicity we note f c c
G G G= =  and 

mG  is the 

toughness of a material having the same elastic moduli but a failure corresponding to 

1mk  (the GSIF at the peak of a fatigue cycle) and we set 
1 1/m fk kα = . 

To be consistent with the fatigue model derived from the Dugdale CZM, it is assumed 

that the toughness is degraded at each cycle of a quantity G∆  proportional to 
mG  ( β  is 

an adjustable parameter), then for n  cycles during the nucleation phase 
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Where 
fl  and 

ml  are the extension lengths derived from the coupled criterion, they are 

solution to (10) where 
fG  and 

mG  successively replace 
c

G  
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It is important to note that the intensity of the cyclic loading occurs only through 
mG . 

From (12), we deduce 
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Inserting in (11) leads to 
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The case of a symmetric loading (pure mode I) corresponds to 0m fm m= =  then 

f cσ σ= , 0fτ = , 
f IcG G= , * *

1m f
A A A= = , * *
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S S τ= =  and * 1F = , through proper 

normalization of the singular modes. 

 

The stress conditions (6) and (7) lead to 
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These inequalities refer only to tensions but by virtue of (7) inequalities in tension and 

shear are equivalent. It comes finally 
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In the symmetric case * 1H = . Parameter β  can be identified so that (18) coincides 

with the Paris law of the material in case of a pre-existing long crack: 1 1/ 2λ =  then 

4pβ = −  where p  is the Paris exponent ( 4p ≥ ). 

 

Remark 1: If 
1 1m fk k=  then 

m fG G= , 1α = , * 1F =  and 1n = , failures occurs at the 

first cycle. In other terms, the fatigue criterion remains valid for a monotonic loading. 

 

Remark 2: In this model, the crack growth under fatigue loading is intermittent, every n  

cycles, the crack length increases by 
ml . We put forward the idea that this length could 

be identified to the striations spacing observed in fatigue in quasi-brittle materials [12]. 
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AN EXAMPLE 

 

Numerical simulations have been carried out for a V-notch in a PMMA specimen under 

symmetric loading (loading angle 0° in Fig. 1). Parameters for PMMA are: E = 3250 

MPa (Young’s modulus), ν =0.3 (Poisson’s ratio), 
cσ = 70 MPa (tensile strength), 

IcG = 0.35 MPa.mm (toughness), p = 6 (Paris’ exponent [2,12]). 

Table 1 shows the invariant parameters that do not depend on the intensity of loading 

and table 2 those specifically related to fatigue. The remarkable features of these results 

are, first that the parameter 
ml  seems to remain approximately constant and depends 

only on the intensity of the loading, except for wide openings; and second that the crack 

velocity varies more with respect to the opening angle for low intensity loadings than 

for higher ones.  

 

 

Table 1. The singular exponent λ ,  the dimensionless scaling coefficient 1 1 A E A′ =  and 

the characteristic length at failure 
cl under monotonic loading for different openings ω  

of the V-notch. 

 

ω  (°) λ  
1A′  cl  (mm) 

0 0.500 6.28 0.033 

30 0.502 6.16 0.033 

60 0.512 5.85 0.035 

90 0.545 5.26 0.038 

120 0.616 4.26 0.047 

160 0.819 2.65 0.076 

  

 

Table 2. The characteristic length at failure under fatigue loading 
ml  (the striations 

spacing) and the crack advance rate a , function of the loading intensity α  and the 

opening ω  of the V-notch. 

 

α  0.3 0.6 

ω  (°) 
ml  (mm) a  

(mm/cycle) 
ml  (mm) a  

(mm/cycle) 

0 0.0029 2.4 10
-5 

0.0117 0.0015 

30 0.0029 2.3 10
-5

 0.0118 0.0015 

60 0.0029 2.2 10
-5

 0.0121 0.0015 

90 0.0027 1.7 10
-5

 0.0125 0.0015 

120 0.0021 0.8 10
-5

 0.0126 0.0012 

160 0.0001 1.0 10
-8

 0.0045 0.0001 
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Obviously for wide openings, the initial crack velocity is low and the crack tip 

accelerates to reach a steady state growth rate corresponding to long cracks. Starting 

from asymptotic considerations, we can show that this regime is reached for ω =160° 

(resp. ω =120°) when the crack length exceeds 5 0

m
l  (resp. 2 0

m
l ), where 0

m
l  holds for 

ml  

at ω =0°. For smaller openings, the steady state seems to be reached very quickly. 

 

CONCLUSION 

 

The theoretical results established here still await experimental confirmation for both 

complex monotonic loadings and fatigue. Investigations are underway to perform tests 

such as those illustrated in Figure 1 with specimens made of PMMA. 

Only mechanical loadings were included in the above presentation, but the 

generalization to thermal loads should not introduce any insuperable difficulties except 

for some minor technical problems almost solved [11]. The special case of complex 

exponents (including interface cracks) has not yet been considered. 
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