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Abstract. Over the last few years, a collaborative work between CERFACS, LNHE (EDF R&D), SCHAPI and CE-REMA
resulted in the implementation of a Data Assimilation (DA) method on top of MASCARET in the framework of real-time

forecasting. This prototype was based on a simplified Kalman filter where the description of the background error

covariances is prescribed based on off-line climatology constant over time. This approach showed promising results on the
Adour and Marne catchments as it improves the forecast skills of the hydraulic model using water level and discharge in-situ
observations. An ensemble-based DA algorithm has recently been implemented to improve the modelling of the background
error covariance matrix used to distribute the correction to the water level and discharge states when observations are

assimilated from observation points to the entire state. It was demonstrated that the flow dependent description of the

background error covariances with the EnKF algorithm leads to a more realistic correction of the hydraulic state with

significant impact of the hydraulic network characteristics.

1 Introduction

The present study was carried out in the framework of a
collaboration between CERFACS, SCHAPI and LNHE
(EDF). It deals with the simulation of river hydrodynamics,
with a focus on environmental risk assessment related to
flooding. It relies on the use of the MASCARET software
that solves the mono-dimensional shallow water equations
and is used by SCHAPI (Service Central
d'Hydrométéorologie et d'Appui a la Prévision des
Inondations) and SPCs (Services de Prévision des Crues) to
build models for catchments of interest in France. In spite of
the advances in numerical modelling and the expertise
invested in the development and the use of MASCARET,
the capacity for real-time anticipation of extreme flood
events remains limited because of several sources of
uncertainties in hydraulic models. In order to better forecast
flood events, these uncertainties should be identified,
quantified and reduced. To begin with, forcing data that
represent hydrologic boundary conditions for hydraulic
models usually result from the transformation of uncertain
observed water levels into discharges with an uncertain
rating curve or from discharges that are forecasted by
uncertain hydrologic models. Another source of uncertainty
is the description of the river channel and flood plain
geometry. This requires on-site measurements of
topographic and bathymetric profiles to provide a spatially

a Corresponding author: barthelemy@cerfacs.fr

distributed geometry. Additionally, the model equations are
based on simplifications and parameterizations of the
physics. The parameterization schemes are calibrated to
adjust the model behaviour to observed water levels or
discharges, typically, through the calibration of friction
coefficients. The calibration of the river bed and flood plain
friction coefficients is usually achieved once for all using a
batch of observations such as water levels from a limited
number of flood events, thus providing time-invariant values
for the model parameters. It is important to mention that
errors in the model inputs and in the model equations are
sometimes difficult to discriminate. These uncertainties
usually translate into errors in the model representation of
the water level-discharge (H-Q) relation that is not coherent
with that from the reality and generally translate into an
imperfect prediction of the hydraulic state in the river and
flood plains. Following the path of deterministic forecast
achieved at SCHAPI and SPCs, an error reduction approach
was implemented in the framework of the collaboration
between CERFACS, SCHAPI and LNHE. Previous work by
[1] assumed that major sources of uncertainties relate to
hydrologic forcing. The authors proposed to implement a
data assimilation (DA) algorithm to reduce these errors and
thus improve the flow simulation and forecast. [1] describe
the improvement of the simulated hydraulic state
assimilating water level and/or discharge observations in the
context of operational flood forecasting. These preliminary

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution

License 4.0 (http://creativecommons.org/licenses/by/4.0/).
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developments are gathered in a platform called DAMP
(Data Assimilation for Mascaret Prototype). Water level
data were sequentially assimilated using an Extended
Kalman Filter (EKF) algorithm to control the upstream flow
for the hydraulic network and dynamically correct the
hydraulic state. The first step of the analysis is based on the
assumption that the upstream flow can be adjusted using a
simple three-parameter correction, and the second step
consists in correcting the hydraulic state every hour (the
observation frequency) to provide an improved initial
condition for a forecast simulation. This procedure is
applied on a sliding time-window over the entire period of
each flood event for the Adour and Marne catchments; the
results were interpreted for several events over each
catchment. It was shown that the simulation with DA is
significantly closer to the observation than the free run (no
assimilation) over the re-analysis period as well as over the
forecast period. It was also found that the sensitivity to an
initial condition for the forecast mode is negligible
compared to the sensitivity to the upstream flow, except at
short forecast lead-time. Recent work by [2] provides a
time-dependent correction of the river bed and flood plain
friction coefficients to account for errors in the bathymetry
that vary as water level reaches different sections of the
described geometry. It is worth noting that the system
presented in [1] and [2] is used operationally at SPC SAMA
since 2014 and is currently being implemented at SCHAPI
for operational flood forecasting. The present paper is based
on [3] and it investigates the impact of the flow dynamics
and the river geometry on the background error covariance
functions in an Ensemble Kalman Filter (EnKF) algorithm
with  MASCARET for the Adour catchment. It was
demonstrated that the correlation length-scales for the errors
in the hydraulic state are large with a strong impact of the
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where S [m’] is the river cross sectional area, Q [m’s '] is the
discharge, V is the flow velocity [m s'], ga(x,2) [m’s"] is the
lateral lineic discharge, K [m'”s] is the friction coefficient,
Ry, is the hydraulic radius, g is the gravity, J and J; represent
regular and singular head losses respectively. The river cross
sectional area S is, for each location x, a function of the
water level H = Z(x,£)-Zyowom(X,1), Where Z(x,f) [m] is the
free surface height and where Zyoyom [#2] corresponds to the
riverbed bathymetry. The unsteady kernel of MASCARET
was used in this study.

1.2 Hydraulic modelling and test case catchment

The Adour maritime hydraulic network (Fig. 1) is
located in South West France, close to the Atlantic Ocean.
The section of the river network that is described in this
work is 161 km long. It is composed of 7 reaches with 3
confluences and 3 dams located on reaches 3, 6 and 7. The
entire network is under tidal influence except upstream of
the dams. The upstream forcings are described by observed
water level (available every 15 minutes) translated into
discharges with a local rating curve established at the
observing stations of Dax, Orthez, Escos and Cambo. Since

bathymetry and the confluences in the hydraulic network;
they also vary in time especially due to the maritime
influence. Finally, the EnKF leads to a correction of water
level and discharge that is coherent with the model
equations and it further improves the DA results when
compared to those of the previously described EKF. The
implementation of an ensemble-based DA algorithm thus
appears as the next step towards a physically consistent DA
system for flood forecasting.

The structure of the paper is as follows: Section 2
provides a brief description of the hydraulic model
equations and application to the Adour catchment. The
ensemble-based approach is presented in Sect. 3 as well as
the elements for the implementation of this approach with a
coupling software and MASCARET. In Sect. 4, the DA
results are presented for a synthetic test case as well as over
a set of selected real flood events. Conclusions and
perspectives for this work are given in Sect. 5.

2 Hydraulic modelling

2.1 Shallow water equations

Along this hydraulic network, the 1D form of the shallow
water equations is solved with the MASCARET [4]
software developed by EDF-R&D and CEREMA (Centre
d’Etudes et d’Expertise sur les Risques, I’Environnement, la
Mobilité et 1’Aménagement), widely used for modelling
flood events, submersion waves resulting from the failure of
hydraulic infrastructures, river control, and channel waves
propagation. The 1D shallow equations read (non-
conservative form):

the rating curves are built from a limited number of water
level and discharge measurements and are usually
extrapolated for higher flows, these are significant
uncertainties related to these upstream boundaries. The
downstream forcing is given by observed water level at the
observing station of Convergent on the Atlantic Ocean’s
coast. Water level observations are available hourly at
Lesseps, Urt, Pont-Blanc, Villefranque and Peyrehorade. It
takes approximately 5/ for the upstream forcings to be
propagated to the observing stations of Peyrehorade and
Pont-Blanc, 10 ~ for Urt and 12 % for Lesseps. It should be
noted that in forecast mode, the upstream hydrological
forcings are set constant to the last observed value beyond
this transfer time. Whereas in forecast the downstream
forcing is given by the forecast water level computed by the
SHOM (Service Hydrographique et Océanographique de la
Marine). The Adour 1D hydraulic model is described with
548 topographic and bathymetric cross sections interpolated
over 2,795 grid points. The river is represented as a 1D flow
bounded with infinitely high banks except in the
neighbouring of Peyrehorade, where a limited number of
cross sections give a local description of the flood plains.
The Gironde-Adour-Dordogne (GAD) SPC developed this
model for operational purposes in collaboration with
SCHAPI. The tidal influence of the Atlantic Ocean
combined with the influence of the mountainous region of
the Pyrenees result in a complex atmospheric and hydraulic
dynamic over the Adour catchment. According to SCHAPI's
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statistical records, the Adour catchment is ranked amongst
the most challenging catchments in France due to a large
number of orange and red alerts. The alerts are defined by
water level thresholds at the stations of Cambo-les-Bains,
Orthez, Dax, Escos and Peyrehorade. For example, the
yellow, orange, and red thresholds at Peyrehorade are set to
2.1 m, 4.1 m, and 4.9 m respectively. Flood events on the
Adour maritime hydraulic network can be categorized in
three types. First, flood peaks occurring on reach 4 with a
slow dynamic over 7 to 14 days and maximum discharge
between 400 and 1000 n’s'm3. 571, Second, flood peaks
on reaches 6 and 7 resulting from flash floods event over 2
to 3 days with a maximum discharge between 800 and 1650
m’s'm3.s™1 for reach 6 and a maximum discharge
between 400 and 1100 n’s” m3.s Yor reach 7. Third,
flood peaks on reach 3 that are eventually correlated in time
with flood peaks on reaches 6 and 7 and last 2 to 3 days.
These events might occur simultaneously and may be
worsened by tidal influence.

Upstream

7 Orthez

Upstream
Escos

V

Lesseps

Convergent
Downstream \
1

Atlantic
ocean

Pont-Blanc

Upstream
Figure 1. Hydraulic network scheme of the Adour river
network simulated with MASCARET with reach
numbering. Water level observing stations are
represented with red crosses. Dams on reaches 3, 6 and
7 are represented with black markers.

3 Ensemble methods for
reduction

uncertainty

3.1 Monte-Carlo approach and statistics estimation

The Monte Carlo (MC) approach allows for propagating

the uncertainty sources through the physical model M by
running the numerical code N, times independently with
different sets of input variables, randomly generated from
their assumed probability distributions. This provides a
sample of deterministic solutions, which are used to infer
the statistical properties of the output distribution. MC
methods are straightforward and robust techniques that
allow for the treatment of nonlinearities and the computation
of the whole pdf of model outputs. As a drawback, MC
simulations are computationally demanding, especially
when dealing with high quantiles as it is the case in
hydraulics for flood events. In order to achieve statistically
reliable results, the number of runs should be large enough
to reach the convergence; hence the application of classical

MC techniques is limited to non-expensive numerical
models. An extension of the MC approach is the generalized
likelihood uncertainty estimation (GLUE) procedure,
introduced by [5] and widely used in hydrology. The
analytical treatment of the problem is also a less expensive
approach, but is limited to simple relationships between
model inputs and outputs, and thus less applied in real life
problems. An alternative approach is to build a surrogate
model for the physical model. When Monte-Carlo based
methods are used to sample the prior distribution, one idea is
to use a surrogate partial differential equations model and
thus compute efficiently the statistics of the quantities of
interest [6]. Numerical methods to build a surrogate issued
from spectral-based representations entitled Polynomial
Chaos (PC) and introduced by [7] are very promising in
terms of precision and cost reduction [8] as long as the input
uncertainty remains reasonably correlated and the numerical
model weakly non-linear. While the reduced model issue is
beyond the scope of this study, the MC approach is used in
the following to estimate the model state error covariance
matrix for the DA algorithm.

3.2 EnKF algorithm

The DA algorithm used in this study is the Ensemble
Kalman filter algorithm commonly referred to as EnKF [9].
The control vector is composed of the hydraulic state
described by the discretized water level and discharge over
the domain. The EnKF decomposes in an analysis step and a
forecast step that are sequentially applied and presented in
Fig. 2 for the analysis cycle at time i.

The EnKF relies on the integration of an ensemble of N,
perturbed members (indexed by the subscript k) and on the
assumption that the stochastic estimate of the ensemble
statistics is a fair representation of the model state error
statistics. For an analysis at time i, the background error
covariance matrix B; is stochastically estimated following

Eq. (1)

Ne
1 , T
B; = m;(xf'k - &) (" - 7) (D)

b _ 1 Ne bk
where X; = Ne Zk:lxi corresponds to the

ensemble mean (members are indexed with k) and T stands

for the transition operator. Then the Kalman gain Kj is
computed with K; = B;HT (HB;HT + R)™! where H is
the tangent linear of the observation operator H that maps
the control vector onto the observation space and R is the
observation error covariance matrix. For each member of the
ensemble over the i-th assimilation cycle, the analysis step
consists in assimilating a perturbed observation vector

o,k . o,k . . .
yio +¢&7 (with &7 a Gaussian noise with zero mean)

[10], to correct the background vector xlp ok using the

classical Kalman filter update equation:

x®* = xf”k + K; (yl- + slf”k — H(xf”k)) )

l
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It should be noted that the perturbation of the

observation in Eq. (2), _‘yl-o + 8? ’k, allows for maintaining
the spread of uncertainty within the ensemble and avoiding
the divergence of the filter. As illustrated in Fig. 2 at time (i-
1), the analysed states are propagated forward in time by the
model M;_1 ; to provide an ensemble of background states
for the next assimilation cycle (here, the model error is
supposed to be negligible):

bk __ ak
x;" = M (x( 3)
: i e N A
Analysis I Background 4 Analysis I
1 YO 4% I
x?.ll M, X?J i i X?‘l 1
e 32 L % Y L+ >

a2 1 b2 7 e 22 1

X 1 My X; ¥ X; 1
—_—t>» X Il > X 7 > X ——:—)'

: [ 5 : 1

' 1 1 1 ]

! ! ' Yo 4 oM ! 1
x?f\;r | i x;‘.:.Ng i i x:a Ne H
% ! > % Y > 1y

— J 1 4 1
1 1

o B !

Prn.’lrpagatlon > K, :

\\ Cycle i ,"

Figure 2. Schematic representation of the EnKF
algorithm for the analysis cycle i over the time period [i-

Li].

In the present study, as the control state is composed of
the discretized hydraulic state in water level and discharge
denoted by (Z, Q). The matrix B decomposes into 4
symmetrical sub-matrices that correspond to univariate and
multivariate covariances. In the following, we denote Bz

Byzand Boq Bggthe univariate water level and discharge
background error covariance sub-matrices and Bzq and Bqy
B @zthe multivariate water level/discharge background error

covariance sub-matrices with Bzq = B'oz Bzg = BQZT.
Thus, B can be written as:

Bzz Bzg
B = ( ) 4
Boz Bgq @

The water levels at the observing stations are translated
into a water level correction that is spread over the entire
hydraulic network thanks to the univariate covariance
function for water level and into a discharge correction
thanks to the multivariate covariance function.

The representation of the ensemble is thus a key issue for
the EnKF. In this study we consider that the major source of
uncertainty in the simulated water level and discharge
results from an approximate knowledge of the hydrology of
the catchment that provides upstream and lateral boundary
conditions to the hydraulic model. As a consequence the
ensemble is generated by adding a Gaussian noise to the
observed forcings. The river bed friction coefficient could
have also been perturbed so as to represent an error in the
model hydraulic parameters within the ensemble. A
sensitivity analysis on the spatialized friction coefficient for

the Adour river that is under maritime influence is on going
in the framework of complementary studies.

Downstream the hydraulic network, at the observing
station of Convergent, the water level is perturbed with a
Gaussian noise characterized by a zero mean and temporal
correlation length scale of 6 % that is coherent with the tidal
cycle. The observed upstream forcings are perturbed with a
Gaussian noise characterized by a temporal auto-correlation
length-scale of 4/ that was estimated with synthetic
experiments. The amplitude of the perturbation is set equal
to 15% of the discharge so that the error increases with the
discharge value to traduce the uncertainty on the rating
curve for high flow. An illustration of the upstream forcing
perturbation for 3 members of the ensemble at Escos is
given in Fig. 3.

10001

800

400

Discharge (m3.s~1)

2001

0

0 25 50 75 100
Time (h)

Figure 3. Time evolving profile of the upstream forcing
on reach 6 during 2011 flood event: the black dashed
line corresponds to the original forcing; green, red and
blue lines correspond to perturbed forcings.

A common drawback of the EnKF is that when the size
of the ensemble is limited, it tends to be under-dispersive
and may diverge over time ignoring the observed
information. [11] proposed to artificially increase the
dispersion within the ensemble by introducing a
multiplicative inflation factor to the ensemble anomalies that
increases the model state error variance at the observation
point. According to [12], the difference between each
member of the ensemble x”* and its mean can be inflated
using a time-varying inflation factor A > 1 thus defining a
new set of background states #”*as well as a new set of
anomalies over which the background error covariance
matrix can be computed:

%P — %P = A(xPK — £P). (5)

The inflation factor is derived from the consistency
criterion presented in [13] based on the assumption that the
errors in the background and observation error matrices are
uncorrelated and properly described so that:

d,_pd’_, = HBHT + R.(6)

Considering only one observation is assimilated,
covariances matrices are reduced to scalars; HBHT = g
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and R=o02 If Eq6 does mnot hold and
M =d, ,dl_, > —0%>a}

then A is specified as follows:
22 = dO—bd(’I)ﬂ—b2 > _O-g (7)
Op

and the inflated background error variance at the
observation point is increased to 67 = 1%aZ. The inflation is
then applied from the observation point to the entire spatial
domain (grid points are indexed with j) in coherence with
the shape of the univariate correlation function C at the
observation point using

R = 50() =

1+@=-1D VRV (x4 - 2()). (8)

This formulation ensures that

14+ (A —-1)VvC()v> 1,implying that the mean of the

ensemble over the domain and the background error
correlations over the domain are preserved and that the
background error covariances are locally increased in the
neighboring of the observation point. When N, observations
distributed over the hydraulic network are assimilated, the
observation error matrix R is diagonal. The inflation
equation now reads:

14202, (e = DV Cu() v (2240 = 22(7)) . (9)

#() = 2 () =
where Zgil(/ln — 1) v C,(j) V is larger than 1 if 1,, > 1 for
all observation points (n = 1, .., Np). The resulting
algorithm is called the Inflated Ensemble Kalman Filter
denoted by IEnKF in the following.

3.3 Implementation with MASCARET

The EnKF DA algorithm is implemented with the
OpenPALM [14] software. It is an open-source dynamic
code coupler that has been jointly developed at CERFACS
and ONERA since 1996. OpenPALM has been originally
designed for DA algorithm for operational oceanography
forecasting; it has now reached a high-degree of maturity
and stability, with applications ranging from operational DA
(oceanography, atmospheric chemistry, hydrology) to
industrially oriented multi-physics modelling (fluid-
structure interaction, combustion-acoustics interaction).
OpenPALM provides a straightforward parallel environment
based on high performance implementation of the Message
Passing Interface standard (i.e., MPICH, OpenMPI,
LAM/MPI). This interface is able to perform both data
parallelism (i.e. simultaneous execution on multiples cores
of the same code component for a unique data set) and task
parallelism (i.e. simultaneous execution on multiples cores
of multiple tasks across the same or different data sets)
which is particularly well adapted for ensemble-based
algorithms where each model integration can be achieved

independently of the others. The PALM PARASOL
functionality in OpenPALM particularly addresses this need.
It is based on the master/slaves principle, and allows for an
efficient management of memory and processor allocation
issues according to available resources. The different units
are organised thanks to the IHM interface named PrePALM.
The flowchart for the EnKF algorithm is presented in Fig. 4.
In the present work, OpenPALM is used as a task
parallelism manager to handle communications and data
exchanges between = MASCARET. The  different
mathematical units (here coded in Fortran) required to
perform the EnKF are sequentially achieved with a PALM
Branch. The first unit read damocles EnKF is in charge of
setting-up the ensemble, in the present case, the
hydrological forcing. This information is then sent to the
master_appel_mascaret unit by a PALM communication
and the ensemble members of MASCARET are run
simultaneously on the available processors. The Master
processor of PALM PARASOL spawns multiple copies of
MASCARET (the slaves), each on one or several processors
with a different set of input parameters (hydrological forcing
in the present case). The ensemble outputs are thus post-
processed by the make cov unit that provides a stochastic
estimate of the background error covariances in B. The
synthetic observations are generated by the unit
generate_obs. Both the observation vector and the B matrix
are communicated to the analysis unit analyse BLUE that
achieves the DA analysis step. This sequence is iterated over
the time when observations are available.

LI L L)

]
L]

IU

100 OO X X ) ]

Figure 4. OpenPALM scheme for the EnKF. Each
rectangle (called wunit) corresponds to a Fortran
subroutine associated to a part of the EnKF algorithm
(master_appel _mascaret propagates the water line,
analyse BLUE corresponds to the analysis step...). The
lines that link the units are data exchanged between the
subroutines.

4 Results
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In the following, the merits of the EnKF DA algorithm
are first highlighted in the framework of an Observing
System Simulation Experiment (OSSE) denoted by SE.
Then, it is applied on a set of real experiment (denoted by
RE), where in-situ water level observations are assimilated.
In SE, the water level observations are generated from the
integration of a reference run using the 2011 flood event
hydrological forcing, in addition with an artificial lateral
inflow injected downstream of the dam on reach number 6.
This inflow is correlated in time with the upstream forcings
on reaches 6 and 7, i-e this is a random inflow with the same
correlation length-scale as the upstream forcing (4 /) and a

maximum discharge of 575 m’ s m3.s tat the flood
peak. Synthetic data result from the extraction of simulated
water level at observing time and location on top of which a
Gaussian noise is added to represent the observation error.
In both SE and RE cases, the ensemble members are
integrated using perturbed upstream forcings only (no lateral
inflow).

4.1 Observing System Simulation Experiments
Results

In the following the ensemble mean for water level and
discharge are displayed. Synthetic water level observations
are sequentially assimilated at Peyrehorade. The water level
results of the sequential application of the IEnKF for the
2011 flood event in the framework of SE are shown in Figs.
5-6 for Peyrehorade and Urt respectively. The discharge
results are displayed in Figs. 7-8.

It should be noted that at the time of analysis, the water
level at both observing stations is brought closer to the
observations than the free run (without assimilation). The
correction from the DA algorithm at Peyrehorade is
translated into a correction over the entire network by the
univariate covariance function in B, i.e. at Urt. Thanks to the
multivariate covariance function between water level and
discharges in B, the discharge is also significantly improved
at the observing stations of Peyrehorade and Urt.

Previous studies by [1] implemented an invariant
formulation of the background error covariance matrix for
the control of the hydraulic state. In this formulation, the
shape of the background error correlation function is
prescribed with two half-Gaussian functions, with shorter
correlation length scale upstream of the observation point
than downstream. The length scales were estimated in the
framework of an idealized study and the assumption was
made that they were not varying neither in time nor due to
the geometry of the river. With the IEnKF, the covariance
functions are stochastically estimated amongst the members
so that they are coherent with the dynamic of the flow as
well as with the hydraulic network characteristics. In the
following, the covariance functions are illustrated for the
2011 flood event before the flood peak in Figs. 9-10
respectively for univariate (Z,Z) and multivariate (Z,Q)
statistics both associated with the observing station in
Peyrehorade. These functions are plotted along the reaches
6-5-2-1. The Peyrchorade station is represented with a
vertical red dashed line. The vertical black dashed lines
represent the separation between two reaches (that
correspond to confluences) and the vertical blue dashed line

represents the position of the dam on reach 6. The IEnKF
water level univariate covariance function shows important
discontinuity where the geometry of the river varies, for
instance at the location of the dam on reach 6 as well as
upstream of the network where the bathymetry features
discontinuities. Downstream of the dam, the Adour river is
under tidal influence, the covariance function is smooth and
decreases towards the imposed maritime boundary condition
defined by the observed water level. The IEnKF water
level/discharge multivariate covariance function presents a
discontinuity at each confluence between reaches since
discharge is an additive variable. Thanks to the flow
dependent description of the B matrix, the IEnKF algorithm
provides an optimal and spatially distributed correction in
water level and discharge. As the error correlation length
scales are large, the impact of a local observation is spread
onto the entire hydraulic network both for water level and
discharge. The corrected hydraulic state is thus used as
initial conditions for further forecast.
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Figure 5. Water level at Peyrehorade at the time of
analysis for SE, for 2011 flood event. The observations
are represented with the blue line, the free run is
represented with the black line and the analysis is the
red line (on top of the blue line).
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Figure 6. Same caption as Fig. 5 but for the observing
station of Urt (SE).
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Figure 7. Same caption as Fig. 5 but for the discharge

at Peyrehorade (SE).

g

Discharge (m3.s71)
g g

=]

4% 25 50 100 125 150

75
Time (h)

Figure 8. Same caption as Fig. 5 but for the discharge
at Urt (SE).
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Figure 9. Representation of the water level univariate
background error covariance functions associated to
Peyrehorade computed with the IEnKF along reaches 6-
5-2-1 for two different simulation times. The vertical
red dashed line represents the Peyrehorade observing
station. Vertical black dashed lines represent the
separation between two reaches and the vertical blue

dashed line represents the position of the dam on reach
6.
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Figure 10. Same caption as Fig. 9 for the multivariate

water level/discharge background error covariance
functions.

a

Figures 11-12 respectively present the 2-4 and the 4-A
forecast water level at Peyrehorade and Urt respectively.
While there is a significant improvement for short-range
forecast (1-h to 3-h forecast), the improvement resulting
from DA decreases as the forecast lead-time increases.
Indeed, the impact of the correction of the hydraulic state is
limited in time and the analysed water level drifts back
towards the free run as other sources of uncertainties remain
uncorrected by the EnKF. This highlights the need for the
extension of the control vector to model parameters and
hydrological forcing to improve medium to long forecasts

(3-h to 6-h forecast and 6-4 to 24-h forecast respectively).
7 : :
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Figure 11. Forecasted water level at Peyrehorade for
SE for a 2-h lead-time. The observations are
represented with the blue line, the free run is the black
line and the analysis is the red line.
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Figure 12. Forecasted water level at Urt for SE for a 4-
h lead-time. The observations are represented with the
blue line, the free run is the black line and the analysis

is the red line.

4.2 Real data experiment results

In the context of RE, the EnKF is applied to a set of
eight flood events on the Adour catchment from 2009 to
2014. Water level observations are assimilated hourly at
Peyrehorade and Pont-Blanc. In the following illustrations
are given for the 2014 flood event.

The results of the sequential application of the EnKF for
the 2014 flood event are displayed in Fig. 13 at Peyrehorade
and Fig. 14 at Urt for water level. At the time of analysis in
Fig. 13, the assimilation leads to excellent results as
previously observed for SE. At Urt, the water level is
improved except for high flow including at the flood peak
that is over-estimated. At this location, the improvement is
less obvious than it was for SE as model error now limits the
impact of the DA algorithm. During the beginning of the
flood event, the lack of flood plain modelling in the vicinity
of Urt is penalizing and the infinitely high banks assumption
in the 1D model results in an erroneous dynamic of the
water line that causes errors in the water level covariance
functions and leads in turn to an inappropriate correction of
the water line. Thus, in spite of the assimilation of observed
water level at Peyrehorade, the simulated water level at Urt
remains over-estimated for high flow on reaches 6 and 7.
After the flood peak, for medium flow, the 1D model is
realistic and the simulated water level is improved at Urt. It
should be noted that this problem does not appear in SE as
the model error is present both in the reference run and in
the ensemble runs.
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Figure 13. Water level at Peyrehorade at the time of
analysis for RE for the 2014 flood event. The
observations are represented with the blue line, the free
run is the black line and the analysis is the red line.
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Figure 14. Same caption as Fig. 13 but for Urt.

Table 1 summarizes the improvement in the mean
RMSE with DA computed over eight flood events for
forecast lead times ranging from +0 /4 to +12 % depending on
the observing station on the hydraulic network. DA of
observations at Peyrehorade and Pont-Blanc significantly
improves the RMSE for short to medium lead-time for water
level at these locations. The water level is also improved at
Lesseps where no observation is assimilated. However, the
impact at Urt is close to 0 on average due to model errors in
this area.

Observing point | Forecast lead RMSE
times (/)
0 87.91
Peyrehorade 1 74.18
3 40.59
6 12.08
0 -3.4
Urt 2 59
5 5.61
10 -0.99
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0 30.33
Lesseps 2 11.01
6 0.77
12 -1.36
0 70.95
Pont-Blanc 1 45.44
3 10.2
6 3.8

Table 1. Mean improvement of the RMSE at the stations of
Peyrehorade, Urt, Lesseps and Pont-Blanc for increasing
forecast lead times for RE; statistics computed for the eight
flood events between 2009 and 2014.

5 Conclusions

This study describes the application of the IEnKF algorithm
on the "Adour maritime" hydraulic network using the 1D
hydrodynamic code MASCARET. The EnKF is an
ensemble-based DA algorithm in which the background
error covariance statistics are stochastically and accurately
estimated using several model trajectories based on
perturbed upstream discharges. An inflation factor is applied
to preserve the spread of the ensemble over the assimilation
cycles. The model state functions are found to be closely
related to the network geometry and characterized by a large
spatial extent. They are also time dependant mostly due to
the time varying description of the upstream and
downstream forcing along the flood event but also
eventually due to the variability of the hydraulic parameters
and geometry of the river. It is demonstrated on a synthetic
experiment as well as on a real experiment that the IEnKF
allows for the correction of both water level and discharge at
the observing stations and all over the entire network and
provides better results, in terms of analysed and forecast
water level and discharge for short forecast lead-times (1-
34h), compared to a free run without assimilation.
In conclusion, the use of various techniques of data
assimilation considered in this article could improve the
understanding of hydraulic processes, the mapping of
flooded areas, and flood forecasting on
www.vigicrues.gouv.fr.
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